EP2318136A1 - Procede et dispositif de manipulation et d'observation de gouttes de liquide - Google Patents

Procede et dispositif de manipulation et d'observation de gouttes de liquide

Info

Publication number
EP2318136A1
EP2318136A1 EP09793960A EP09793960A EP2318136A1 EP 2318136 A1 EP2318136 A1 EP 2318136A1 EP 09793960 A EP09793960 A EP 09793960A EP 09793960 A EP09793960 A EP 09793960A EP 2318136 A1 EP2318136 A1 EP 2318136A1
Authority
EP
European Patent Office
Prior art keywords
substrate
liquid
drop
hydrophobic layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09793960A
Other languages
German (de)
English (en)
Inventor
Olivier Fuchs
Fabien Sauter-Starace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2318136A1 publication Critical patent/EP2318136A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0678Facilitating or initiating evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1481Optical analysis of particles within droplets

Definitions

  • the present invention relates to the general field of microfluidics and relates to a method and a device for manipulation and observation in parallel of suspended particles contained in drops of liquid to analyze them.
  • the high throughput screening technique is usually used since it can conduct a few thousand or even millions of tests in a relatively short time in order to select the reagents producing the desired effects.
  • well plates comprising for example 96, 384 or 1536 wells. These plates make it possible to put in contact in each well, for example, a different reagent with a specific type of cell.
  • the observation can then be carried out by confocal microscopy which makes it possible to observe by fluorescence the response of the cells to the stimulus provoked by the reagent tested.
  • the scanning time of the microscope to identify the cells to be observed is directly related to the volume of the wells and can be, depending on the concentration of cells, relatively long, which is contrary to the requirement of rapidity of high throughput screening.
  • the volume of the wells leads to the use of a large quantity of reagent per plate.
  • a plate comprising 1536 wells whose volume is of the order of a few microliters leads to use a few milliliters of reagent. The cost generated is then particularly important because of the large number of tests to be performed.
  • FIGS. 1A and 1B schematically represent the device according to the prior art in longitudinal section (FIG. 1A) and in plan view (FIG. 1B).
  • the microfluidic device comprises an AlO substrate in which an A15 microchannel is formed.
  • An A90 well plate rests on an outer face of the AlO substrate, and includes at least one inlet well A91 and an A94 exit well, each having an opening A95 at the bottom of the well.
  • the A91 and A94 exit wells are connected to each other by the microchannel A15 of the AlO substrate.
  • the inlet well A91 forms a reservoir A91 which can contain particles in suspension, for example cells in solution in a liquid toxin.
  • the outlet well A94 can be an evacuation tank.
  • a removable pressurizing cover A130 is provided on the A91 inlet and A94 outlet wells to control the flow rate of the flow in the microchannel A15.
  • a positive or negative pressure is applied to the liquid / air interface in the A91 and A94 exit wells.
  • a pressure gradient is then created inside the microchannel A15 which causes the movement of the liquid, and thus particles in suspension.
  • the cover A130 is connected by hoses A131 to a pressure source (not shown).
  • the pressure source is computer controlled to control the value of the pressure gradient generated and therefore the flow intensity in the microchannel A15.
  • the liquid can then be set in motion, stopped, or moved at a determined rate.
  • part of the microchannel A15 forms an observation site AlOO through which pass the particles to be observed.
  • An observation device (not shown) disposed opposite the observation site AlOO makes it possible to produce a sequence of images.
  • This observation device can be a microscope optical, fluorescence, phase contrast or confocal.
  • the operation of the device according to the prior art is as follows.
  • a pressure gradient in the microchannel A15 By applying a pressure gradient in the microchannel A15, a flow is generated which circulates the suspended particles of the A91 inlet well to the A95 exit well.
  • the flow is stopped to allow the production of a sequence of images by the observation device. Then the flow is resumed and other suspended particles are introduced into the observation site AlOO to carry out the following sequence of images.
  • the geometry and the size of the microchannel A15 and therefore of the AlOO observation site make it possible to reduce the scanning time of the microscope used.
  • microfluidic device has a certain number of drawbacks related to the mode of displacement of the liquid containing the particles in suspension.
  • the volume of liquid set in motion remains high. It is of the order of the capacity of the entrance well A91, a few microliters. Indeed, the creation of the pressure gradient in the microchannel A15 causes the displacement of all the liquid contained in the inlet well A91.
  • the fact that the suspended particles are displaced in an A15 microchannel does not make it possible to control the localized displacement of the particles in suspension. Indeed, by maintaining the flow rate, the movement of the downstream liquid necessarily affects the upstream liquid, as well as the liquid located in tributary channels.
  • the microchannel A15 may comprise recirculation zones Al 6 in which the particles may be trapped. These include areas where the walls of the microchannel form a concave edge. The particles can accumulate there and thus disturb the flow.
  • the invention firstly relates to a method for handling and observing particles suspended in a liquid.
  • the method comprises the following steps: contacting a first liquid with a hydrophobic surface,
  • the method may further comprise, before said step of observing the particles, a step of mixing said first drop with a second drop of a second liquid.
  • the drop is preferably confined during its movement between said hydrophobic surface and a substrate disposed opposite the hydrophobic surface.
  • the drop is formed from an orifice passing through said hydrophobic surface or said substrate, said orifice communicating with a well of a well plate.
  • the volume of the drop may be between 0.1 lnl and 10 l.
  • Said first drop of liquid preferably comprises cells of different types, or at least one type of cells and one type of toxin.
  • the particle concentration of said first drop may be between 50 and 5000 particles per microliter.
  • the invention also relates to a device for handling and observing particles suspended in a liquid, comprising: a first substrate comprising at least a first inlet-site orifice of said liquid, an observation site for observing the particles in suspension, and means for moving the liquid from said inlet site to said observation site.
  • the first substrate comprising a first hydrophobic layer, the liquid being electrically conductive, said liquid displacement means are adapted to move said liquid in the form of a drop by electrowetting, said drop being in contact with said first hydrophobic layer.
  • the first port passes through said first substrate substantially orthogonal.
  • the means for moving said drop, by electrowetting comprise: a plurality of electrodes between said first hydrophobic layer and said first substrate, a dielectric layer between said first hydrophobic layer and said plurality of electrodes, at least a counter electrode in electrical contact with the drop of liquid, and a voltage generator for applying a potential difference between the electrodes and said counter electrode.
  • the device comprises a second substrate disposed facing the first substrate.
  • the second substrate may be covered with a second hydrophobic layer facing said first hydrophobic layer, said counter electrode being located between said second hydrophobic layer and said second substrate.
  • the device comprises a second substrate arranged facing the first substrate and covered with a second hydrophobic layer facing said first hydrophobic layer.
  • the means for moving said drop, by electrowetting advantageously comprise: a plurality of electrodes between said second hydrophobic layer and said second substrate, - a dielectric layer between said second hydrophobic layer and said plurality of electrodes, at least one counter-electrode in electrical contact with the drop of liquid, - a voltage generator for applying a potential difference between the electrodes and said counter-electrode.
  • the counter-electrode is preferably located between said first hydrophobic layer and said first substrate.
  • said first orifice communicates with a first well disposed on an outer face of said first substrate opposite said first hydrophobic layer.
  • said first substrate comprises at least one second orifice forming an entrance site or liquid outlet, said second orifice communicating with a second well disposed on an outer face of said first substrate opposite said first hydrophobic layer.
  • said well is a well of a well plate.
  • the electrowetting displacement means comprise means for forming a drop of liquid from said tank.
  • the first substrate and / or the second substrate are made of a transparent material.
  • the electrodes are made of a transparent material.
  • the device comprises an observation device for observing the particles in suspension contained in said drop located in the observation site.
  • Said observation device may comprise a confocal microscope.
  • FIGS. 1A and 1B are diagrammatic representations in longitudinal section (FIG. 1A) or in plan view (FIG. manipulation and observation of particles suspended in a liquid according to the prior art;
  • FIGS. 2A to 2C show the operating principle of electro-droplet displacement in an open configuration
  • FIG. 3 represents the operating principle of liquid displacement by electrowetting, in a closed or confined type device that can be implemented in the context of the invention
  • Figure 4 is a schematic representation in longitudinal section of a device according to the preferred embodiment of the invention.
  • Figure 5 is a top view of the device shown in Figure 4.
  • FIGS. 6A to 6C show the principle of forming a droplet from liquid contained in the inlet site of the device according to the invention
  • FIGS 7 and 8 are schematic representations in top view of alternative embodiment of the invention.
  • Figure 9 is a sectional view of the device according to the embodiment shown in Figure 8 provided with a suspended particle observation device.
  • a device implements a device for moving liquid, by electrowetting, or more precisely by electrowetting on dielectric.
  • the verbs "to cover”, “to be located on” and “to be disposed of” do not necessarily imply direct contact here.
  • a material or a liquid may be disposed on a wall without there being direct contact between the material and the wall.
  • An intermediate material can thus be present.
  • the direct contact is made when the qualifier "directly" is used with the verbs mentioned above.
  • FIG. 2A The principle of electrowetting on dielectric implemented in the context of the invention can be illustrated using Figures 2A - 2C, in the context of an open type device.
  • a drop of an electrically conductive liquid Fi is based on an array of electrodes 30, from which it is isolated by a dielectric layer 40 and a hydrophobic layer 50 (FIG. 2A). There is therefore a hydrophobic and insulating stack.
  • the hydrophobic nature of this layer means that the drop has a contact angle, on this layer, greater than 90 °.
  • the electrodes 30 are themselves formed on the surface of a substrate 11.
  • a counterelectrode 60 here in the form of a catenary wire, maintains an electrical contact with the drop Fi.
  • This counterelectrode may also be a buried wire or a planar electrode in the hood of a confined system.
  • the electrodes 30 and the counterelectrode 60 are connected to a voltage source 70 for applying a voltage U between the electrodes.
  • dielectric layer 40 and activated electrode 30 (1) act as a capacitance.
  • the value of the frequency is chosen so as to exceed the hydrodynamic response time of the drop Fi.
  • the response of the drop Fi then depends on the effective value of the voltage, since the contact angle depends on the voltage U 2 .
  • the drop can thus be optionally displaced step by step (FIGS. 2B and 2C), on the hydrophobic surface 50, by successive activation of the electrodes 30 (1), 30 (2), etc., along the catenary 60. II It is therefore possible to move liquids, but also to mix them (by making drops of different liquids approach), and to carry out complex protocols.
  • the electrodes can indeed be arranged in a linear manner, but also in two dimensions, thus defining a displacement plane for the drop.
  • FIG. 3 illustrates the phenomenon of displacement of a liquid by electrowetting in a closed or confined type device that can be implemented in the context of the invention.
  • a drop of conductive liquid F 1 is confined between a lower substrate 11 containing the plurality of control electrodes 30, and an upper substrate 12 arranged facing the lower substrate 11.
  • the drop Fi comprises an upstream interface Ii, R and a downstream interface Ii, A - A hydrophobic layer 52 preferably covers the upper substrate 12.
  • the counterelectrode 60 is here a planar electrode disposed between the hydrophobic layer 52 and the upper substrate 12. It may be a catenary wire as in FIGS. 2A to 2C, or a buried wire.
  • the operating principle in this type of device is similar to what has been described previously.
  • the triple line of the upstream interfaces Ii, R and downstream Ii, A is set in motion by the successive activation of the control electrodes 30, causing an overall movement of the drop in the X direction, or (-X).
  • the fluid F D does not undergo an overall movement in the direction of displacement of the drop. In other words, the fluid F D is not "pushed" by the drop Fi, as it would be the case in a microchannel, but bypasses the drop that moves.
  • the electrodes 30 and the dielectric layer 40 may, alternatively, be located between the hydrophobic layer 52 and the upper substrate 12, the counter-electrode 60 then being located under the hydrophobic layer 51 of the lower substrate 11.
  • Figures 4 and 5 show, in longitudinal section ( Figure 4) and in view from above
  • Figure 5 a microfluidic device for handling and observing particles suspended in a drop of liquid.
  • FIG. 4 The section of FIG. 4 is taken along the plane A-A shown in FIG.
  • the device comprises a lower substrate 11 and an upper substrate 12, arranged facing one another.
  • the two substrates 11 and 12 are mounted to each other by means of a spacer 13 which makes it possible to maintain the spacing between the substrates 11, 12 constant.
  • the spacer 13 extends along the periphery of each substrate 11, 12.
  • the upper substrate 12 advantageously comprises a plurality of orifices 21, 22, 23 and 24 (FIG. 5) forming liquid entry or exit sites, passing through the substrate 12 in a substantially perpendicular manner (FIG. 4).
  • the substrate 12 comprises at least one orifice 21 forming a site of entry and storage of liquid containing particles to be observed, at least an orifice 22 forming an active agent entry site.
  • active agent is used to designate, for example, a toxin or a drug.
  • the substrate 12 may also comprise at least one aperture 23 forming a buffer liquid inlet site to control the concentration of particles in the drops, and for example an orifice 24 forming an outlet or discharge site.
  • the orifices 21, 22, 23 and 24 may communicate with wells which contain the corresponding liquids, respectively 91, 92, 93 and 94 (FIG. 5), situated against the external face of the upper substrate 12 opposite to the hydrophobic layer 52. Fluidic communication is provided through an opening 95 disposed at the bottom of the well.
  • the orifices 21, 22, 23, 24 can thus form reservoirs.
  • Wells 91, 92, 93 and 94 are advantageously wells of a well plate (8, 96, 384, 1586 wells) and can be integrated in the device according to the invention.
  • the substrates 11 and 12 may be attached at their periphery to the peripheral wall 120 of the well plate which extends perpendicularly to the plane of the substrates, to provide integral mounting between the orifices and the wells.
  • the same well can communicate with several orifices.
  • the well then has a volume and a suitable geometry. It comprises a plurality of openings 95, each being arranged opposite the corresponding orifice.
  • the plurality of control electrodes 30 and the dielectric layer 40 are located between the hydrophobic layer 52 and the upper substrate 12. More specifically, the plurality of electrodes 30 is in contact with the upper substrate 12 and the dielectric layer 40 covers these electrodes.
  • the electrodes 30 are arranged to form a two-dimensional array. This array of electrodes 30 makes it possible to move drops of liquid, step by step, on a plane, to mix them, and to bring them to an observation site 100 to observe the particles they contain.
  • FIG. 4 shows the counter-electrode 60 incorporated under the hydrophobic layer 51 of the lower substrate 11. It can have a two-dimensional structure so as to ensure electrical contact with the moving drops. It can also be formed by a two-dimensional set of catenary wires.
  • the voltage source 70 which is preferably alternating, is connected to the electrodes 30 and to the counter-electrode 60.
  • the frequency is advantageously between 100 Hz and 10 kHz, preferably of the order of 1 kHz, so as to exceed the response time. hydrodynamic drops of liquid. The ions possibly contained in the liquid then do not have time to migrate and accumulate, depending on their charge, near the activated electrode.
  • the response of the drops depends on the temporal average of the applied voltage, or more precisely on the effective value thereof, since the angle of contact depends on the voltage U 2 , according to the relationship given above.
  • the rms value can vary between OV and a few hundred volts, for example 200V. Preferably, it is of the order of a few tens of volts.
  • Means make it possible to control or activate the electrodes 30, for example a PC type computer and a relay system connected to the device or to the chip, such as the relays 81 of FIG. 1A, these relays being controlled by the means of the type PC.
  • the dielectric layer 40 and the electrodes 30 may be disposed under the hydrophobic layer 51 of the lower substrate 11, as explained above, the counter-electrode 60 may then be located between the hydrophobic layer 52 and the upper substrate 12 .
  • the drop formed can be displaced "on" the plane of displacement formed by the electrode array 30, that the electrodes are located at the level of the lower substrate 11 or upper 12.
  • FIG. 4 shows a drop of liquid Fi containing particles to be observed near an orifice 21 and a second drop of liquid F 2 near a second orifice 22.
  • the second drop then contains an active agent.
  • the particles to be observed are preferably biological cells.
  • the concentration of particles may be between 50 and 5000 particles per microliter, and is preferably about 500 particles per microliter.
  • the drops are surrounded by a dielectric fluid F D , immiscible with the liquids of the drops Fi and F 2 .
  • the fluid F D may be air, a mineral or silicone oil, a perfluorinated solvent such as FC-40 or FC-70, or an alkane such as undecane.
  • Each drop may have a volume of between 0.1 and 100 nanoliters, and is preferably 0.2, 2, 8 or 64 nl.
  • the drops can therefore be moved over the two-dimensional array of electrodes 30 to an observation site 100.
  • a plurality of observation sites 100 can be provided in the electrode array 30.
  • the observation site 100 is an area of the device according to the invention by which it is possible to observe the content of the drop that is located there.
  • the observation can be made through the lower substrate 11.
  • the materials of the lower substrate 11, the hydrophobic layer 51 and the counter-electrode 60 are preferably transparent.
  • the materials of the upper substrate 12, the hydrophobic layer 52 and the electrode 30 located in the observation site are preferably transparent.
  • the observation device may comprise an optical microscope of direct light, phase contrast or fluorescence type, or even a near field type. It can also be a confocal or digital tomography microscope, or a digital holographic microscopy device.
  • It may also include a management unit for shooting and storing data, of the PC type, and then post-processing and analyzing the sequences of images made.
  • the substrates 11 and 12 are preferably made of transparent material, for example glass or polycarbonate.
  • the spacing shim 13 may preferably be made of a photo-imageable dry film of the Ordyl type, which makes it possible to precisely control the spacing between the lower 11 and upper 12 substrates.
  • the spacing between the lower substrate 11 and the upper substrate 12 is typically between 10 ⁇ m and 500 ⁇ m, and preferably between 50 ⁇ m and 100 ⁇ m.
  • the orifices 21, 22, 23 and 24 have a diameter of a few microns, for example between 50 .mu.m and a few millimeters. These orifices are for example made by lithography and selective etching. Depending on the diameters and depths to be engraved, dry etching (gas attack, for example SF 6 , in a plasma) may be used. Engraving can be wet too. For glass (mainly SiO 2) or silicon nitrides, it is possible to use hydrofluoric acid etchings or phosphoric (these engravings are selective but isotropic). Engraving can be performed by laser ablation or ultrasound. Micromachining can also be used, in particular for polycarbonate.
  • the electrodes 30 and against electrode 60 are made by depositing a transparent material, for example ITO, on the substrate. This conductive layer may be sprayed or made in a sol-gel process. It is then etched in a suitable pattern, for example by wet etching.
  • a transparent material for example ITO
  • the thickness of the electrodes is between 10 nm and 1 ⁇ m, preferably 300 nm.
  • the electrodes 30 are preferably square with a side whose length is between a few micrometers to a few millimeters, preferably between 50 .mu.m and 1 mm.
  • the surface of the electrodes 30 depends on the size of the drops to be transported.
  • the spacing between adjacent electrodes may be between 1 ⁇ m and 10 ⁇ m.
  • the dielectric layer 40 is produced by depositing a layer of silicon nitride Si 3 N 4 , of thickness, generally between 100 nm and 1 ⁇ m, preferably 300 nm.
  • a plasma enhanced chemical vapor deposition (PECVD) process is preferred to the low pressure vapor deposition (LPCVD) process for thermal reasons. Indeed, the temperature of the substrate is only brought between 150 ° C. and 350 ° C (depending on the desired properties) against 750 0 C for the deposit LPCVD.
  • the hydrophobic layers 51 and 52 are obtained by deposition by vacuum evaporation of a Teflon or SiOC layer, or of parylene, on the substrates below.
  • This layer makes it possible in particular to reduce or even to avoid the effects of hysteresis of the wetting angle. Its thickness, generally between 100 nm and 5 ⁇ m, is preferably 1 ⁇ m.
  • FIGS. 6A to 6C show how a drop can be formed from well 91, 92, 93 or 94, here from well 91.
  • the device according to the invention is represented here very schematically. Some components do not appear, so as to simplify the figures.
  • a liquid to be dispensed is introduced into the orifice 21 forming an entrance site from the well 91 (FIG. 6A). Each orifice then forms a reservoir.
  • the lower and upper substrates shown schematically in FIGS. 6A to 6C, are for example similar to the structure of FIG. 4.
  • FIGS. 6A to 6C Three electrodes 31 (1), 31 (2), 31 (3), similar to the liquid drop moving electrodes 30, are shown in FIGS. 6A to 6C.
  • a series of electrodes 31 (1), 31 (2), 31 (3) are therefore used to stretch liquid from the well 91 through the inlet site 21 into a liquid segment Li
  • a drop Fi containing suspended particles is formed from the well 91.
  • it is moved on the two-dimensional array of electrodes 30.
  • One or more drops F 2 containing an active agent may be formed and moved to the droplet F 1 in a mixing site so as to bring the particles in suspension into contact with the desired active agent.
  • the drops F 2 may also contain buffer liquid to control the particle concentration of the droplet F1.
  • the drop Fi is then moved to the observation site 100 to perform particle image sequences. It is thus possible to observe the response of the particles to the stimulus caused by the active agent. Then the drop F1 is moved to the outlet site 24 and discharged into the evacuation well 94. It should be noted that several drops Fi can be formed from a single well 91 opening on several orifices and moved simultaneously on the two-dimensional network without the displacement of one influences the movement of others.
  • observation devices It is then advantageous for a plurality of observation sites 100 to be provided to allow the observation of the different drops F 1, as shown in FIG. 5.
  • the observation device is then mobile in the reference frame linked to the substrates so as to next to each observation site 100 when a drop F is there.
  • FIG. 7 shows an alternative embodiment in which a single observation site is provided.
  • the electrode array 30 is then designed so that the drops Fi, once observed, can continue their movement in the same direction.
  • a train of drops Fi can then be formed and moved on the same path.
  • the observation device is then fixed to the device, facing the observation site.
  • a plurality of devices according to the invention can be mounted on a single well plate.
  • Each device according to the invention is independent of neighboring devices (FIG. 8).
  • the observation device 130 then moves to be placed opposite the different observation sites 100 of the different devices according to the invention (FIG. 9).
  • the invention offers multiple advantages. It firstly makes it possible to use extremely small volumes of liquid droplets, of the order of one nanolitre (for example between 0.1nl and 10OnI, preferably 2nl, 8nl or 64nl), without dead volume, and allows control concentrations.
  • the invention allows a single dispensing, from a reservoir, drugs and cells, or any active agent, instead of a well dispense per well as in the device of the prior art described above.
  • the device according to the invention meets the speed requirements of high throughput screening.
  • the concentration can be controlled by successive dilutions from a known concentration reservoir.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

L'invention concerne un dispositif et un procédé de manipulation et d'observation de particules en suspension dans un liquide. Le dispositif comporte: -un premier substrat (12) comportant au moins un premier orifice (21) formant site d'entrée dudit liquide, -un site d'observation (100) pour observer les particules en suspension, et -des moyens de déplacement du liquide dudit site d'entrée (21) audit site d'observation (100). Selon l'invention, le premier substrat (12) comportant une première couche hydrophobe (52), le liquide étant électriquement conducteur, lesdits moyens de déplacement du liquide sont adaptés à déplacer ledit liquide sous forme de goutte (F1) par électromouillage, ladite goutte (F1) étant en contact avec ladite couche hydrophobe (52).

Description

PROCEDE ET DISPOSITIF DE MANIPULATION ET D'OBSERVATION
DE GOUTTES DE LIQUIDE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention se rapporte au domaine général de la microfluidique et concerne un procédé et un dispositif de manipulation et d'observation en parallèle de particules en suspension contenues dans des gouttes de liquide pour les analyser.
ETAT DE LA TECHNIQUE ANTERIEURE Dans le domaine pharmacologique, il est nécessaire d'analyser l'effet d'un nombre très important de composés chimiques et biologiques sur des cibles biologiques. Par exemple, il peut s'agir d'étudier l'action de différentes drogues ou toxines sur un type de cellule.
La technique d' analyse par criblage à haut débit est habituellement utilisée puisqu'elle permet de conduire quelques milliers voire millions de tests en un temps relativement court dans le but de sélectionner les réactifs produisant les effets recherchés.
Pour cela, il est courant d'utiliser des plaques à puits, comportant par exemple 96, 384 ou 1536 puits. Ces plaques permettent de mettre en contact dans chaque puits, par exemple, un réactif différent avec un type de cellule déterminée. L'observation peut ensuite être réalisée par microscopie confocale qui permet d' observer par fluorescence la réponse des cellules au stimulus provoqué par le réactif testé. Cependant, le temps de balayage du microscope pour repérer les cellules à observer est directement lié au volume des puits et peut être, selon la concentration des cellules, relativement long, ce qui est contraire à l'exigence de rapidité du criblage à haut débit. De plus, le volume des puits conduit à utiliser une quantité importante de réactif par plaque. Par exemple, une plaque comportant 1536 puits dont le volume est de l'ordre de quelques microlitres conduit à utiliser quelques millilitres de réactif. Le coût engendré est alors particulièrement important du fait du grand nombre de tests à effectuer.
Récemment, des améliorations ont été entreprises pour manipuler et observer des faibles volumes de réactifs . Ainsi, le document US-A1-2007/0243523 décrit un dispositif de manipulation et d'observation de particules en suspension dans le but de les analyser. Les figures IA et IB représentent schématiquement le dispositif selon l'art antérieur suivant une coupe longitudinale (figure IA) et en vue de dessus (figure IB) .
Comme le montre la figure IA, le dispositif microfluidique comprend un substrat AlO dans lequel est formé un microcanal A15. Une plaque à puits A90 repose sur une face externe du substrat AlO, et comprend au moins un puits d'entrée A91 et un puits de sortie A94, chacun présentant une ouverture A95 au fond du puits. Les puits d'entrée A91 et de sortie A94 sont reliés l'un à l'autre par le microcanal A15 du substrat AlO. Le puits d'entrée A91 forme un réservoir A91 pouvant contenir des particules en suspension, par exemple des cellules en solution dans une toxine liquide. Le puits de sortie A94 peut être un réservoir d' évacuation . Un capot amovible A130 de mise en pression est disposé sur les puits d'entrée A91 et de sortie A94 pour contrôler le débit de l'écoulement dans le microcanal A15. Pour cela, une pression positive ou négative est appliquée à l'interface liquide/air dans les puits d'entrée A91 et de sortie A94. Un gradient de pression est alors créé à l'intérieur du microcanal A15 qui provoque la mise en mouvement du liquide, et ainsi des particules en suspension. Le capot A130 est relié par des flexibles A131 à une source de pression (non représentée) .
La source de pression est commandée par ordinateur pour contrôler la valeur du gradient de pression généré et donc l'intensité du débit dans le microcanal A15. Le liquide peut alors être mis en mouvement, arrêté, ou déplacé selon un débit déterminé.
Enfin, une partie du microcanal A15 forme un site d'observation AlOO au travers duquel passent les particules à observer. Un dispositif d'observation (non représenté) disposé en regard du site d'observation AlOO permet de réaliser une séquence d'images. Ce dispositif d'observation peut être un microscope optique, à fluorescence, à contraste de phase ou encore confocal .
Le fonctionnement du dispositif selon l'art antérieur est le suivant. Par l'application d'un gradient de pression dans le microcanal A15, un écoulement est généré qui fait circuler les particules en suspension du puits d'entrée A91 vers le puits de sortie A95. Lorsque les particules sont présentes dans le site d'observation AlOO, l'écoulement est arrêté pour permettre la réalisation d'une séquence d'images par le dispositif d'observation. Puis l'écoulement est repris et d'autres particules en suspension sont introduites dans le site d'observation AlOO pour réaliser la séquence d'images suivante.
La géométrie et la taille du microcanal A15 et donc du site d'observation AlOO permettent de réduire le temps de balayage du microscope utilisé.
Le dispositif microfluidique selon l'art antérieur présente cependant un certain nombre d'inconvénients liés au mode de déplacement du liquide contenant les particules en suspension.
D'une part, le volume de liquide mis en mouvement reste élevé. Il est de l'ordre de la contenance du puits d'entrée A91, soit quelques microlitres. En effet, la création du gradient de pression dans le microcanal A15 provoque le déplacement de l'ensemble du liquide contenu dans le puits d'entrée A91.
En outre, il n'est pas possible de mettre en mouvement une quantité déterminée de liquide, inférieure au volume initial du liquide dans le puits d'entrée A91.
D'autre part, le fait que les particules en suspension soient déplacées dans un microcanal A15 ne permet pas de contrôler le déplacement de manière localisée des particules en suspension. En effet, par conservation du débit, le déplacement du liquide en aval influe nécessairement sur le liquide situé en amont, ainsi que sur le liquide situé dans des canaux affluents.
En outre, il n'est pas possible de réaliser un réseau fluidique complexe de microcanaux, c'est-à-dire comportant un grand nombre de microcanaux principaux et d'affluents. La gestion des gradients de pression appliqués est particulièrement compliquée. Aussi, le dispositif selon l'art antérieur est limité à un microcanal principal sans affluent, voire avec peu d' affluents .
Par ailleurs, le microcanal A15 peut comporter des zones de recirculation Al 6 dans lesquelles les particules peuvent être piégées. Il s'agit notamment des zones où les parois du microcanal forment une arête concave. Les particules peuvent s'y accumuler et ainsi perturber l'écoulement.
EXPOSÉ DE L'INVENTION
L'invention concerne d'abord un procédé de manipulation et d' observation de particules en suspension dans un liquide. Selon l'invention, le procédé comporte les étapes suivantes : - la mise en contact d'un premier liquide avec une surface hydrophobe,
- la formation d'une première goutte à partir du premier liquide puis le déplacement de ladite goutte par électromouillage afin de l'amener sur un site d'observation, ladite première goutte étant en contact avec ladite surface hydrophobe, l'observation des particules contenues dans ladite première goutte. Le procédé peut comporter en outre, avant ladite étape d'observation des particules, une étape de mélange de ladite première goutte avec une seconde goutte d'un second liquide.
La goutte est, de préférence, confinée lors de son déplacement entre ladite surface hydrophobe et un substrat disposé en regard de la surface hydrophobe.
Avantageusement, la goutte est formée à partir d'un orifice traversant ladite surface hydrophobe ou ledit substrat, ledit orifice communiquant avec un puits d'une plaque à puits.
Le volume de la goutte peut être compris entre 0,lnl et lOμl.
Ladite première goutte de liquide comprend, de préférence, des cellules de types différents, ou au moins un type de cellules et un type de toxine.
La concentration en particules de ladite première goutte peut être comprise entre 50 et 5000 particules par microlitre.
L' invention concerne également un dispositif de manipulation et d'observation de particules en suspension dans un liquide comportant : un premier substrat comportant au moins un premier orifice formant site d'entrée dudit liquide, un site d'observation pour observer les particules en suspension, et - des moyens de déplacement du liquide dudit site d'entrée audit site d'observation.
Selon l'invention, le premier substrat comportant une première couche hydrophobe, le liquide étant électriquement conducteur, lesdits moyens de déplacement du liquide sont adaptés à déplacer ledit liquide sous forme de goutte par électromouillage, ladite goutte étant en contact avec ladite première couche hydrophobe .
De préférence, le premier orifice traverse ledit premier substrat de manière sensiblement orthogonal.
Selon un mode de réalisation, les moyens pour déplacer ladite goutte, par électromouillage, comportent : une pluralité d'électrodes entre ladite première couche hydrophobe et ledit premier substrat, une couche diélectrique entre ladite première couche hydrophobe et ladite pluralité d' électrodes, au moins une contre-électrode en contact électrique avec la goutte de liquide, et un générateur de tension pour appliquer une différence de potentiel entre les électrodes et ladite contre-électrode.
De préférence, le dispositif comprend un second substrat disposé en regard du premier substrat. Le second substrat peut être recouvert d'une seconde couche hydrophobe en regard de ladite première couche hydrophobe, ladite contre-électrode étant située entre ladite seconde couche hydrophobe et ledit second substrat.
Selon un autre mode de réalisation de l'invention, le dispositif comprend un second substrat disposé en regard du premier substrat et recouvert d'une seconde couche hydrophobe en regard de ladite première couche hydrophobe.
Les moyens pour déplacer ladite goutte, par électromouillage, comportent avantageusement : une pluralité d'électrodes entre ladite seconde couche hydrophobe et ledit second substrat, - une couche diélectrique entre ladite seconde couche hydrophobe et ladite pluralité d' électrodes, au moins une contre-électrode en contact électrique avec la goutte de liquide, - un générateur de tension pour appliquer une différence de potentiel entre les électrodes et ladite contre-électrode.
Ladite contre-électrode est, de préférence, située entre ladite première couche hydrophobe et ledit premier substrat.
Avantageusement, ledit premier orifice communique avec un premier puits disposé sur une face externe dudit premier substrat opposée à ladite première couche hydrophobe . Avantageusement, ledit premier substrat comporte au moins un second orifice formant site d'entrée ou de sortie de liquide, ledit second orifice communiquant avec un second puits disposé sur une face externe dudit premier substrat opposée à ladite première couche hydrophobe . De préférence, ledit puits est un puits d'une plaque à puits.
De préférence, les moyens de déplacement par électromouillage comprennent des moyens pour former une goutte de liquide à partir dudit réservoir. Avantageusement, le premier substrat et/ou le second substrat sont réalisés dans un matériau transparent .
Avantageusement, les électrodes sont réalisées dans un matériau transparent. De préférence, le dispositif comprend un dispositif d'observation pour observer les particules en suspension contenues dans ladite goutte située dans le site d'observation.
Ledit dispositif d'observation peut comprendre un microscope confocal .
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BREVE DESCRIPTION DES DESSINS
On décrira à présent, à titre d'exemples non limitatifs, des modes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels :
Les figures IA et IB sont des représentations schématiques en coupe longitudinale (figure IA) ou en vue de dessus (figure IB) d'un dispositif de manipulation et d' observation de particules en suspension dans un liquide selon l'art antérieur ;
Les figures 2A à 2C représentent le principe de fonctionnement de déplacement de gouttes par électromouillage, dans une configuration ouverte ;
La figure 3 représente le principe de fonctionnement de déplacement de liquide par électromouillage, dans un dispositif de type fermé ou confiné pouvant être mis en œuvre dans le cadre de l'invention ;
La figure 4 est une représentation schématique en coupe longitudinale d'un dispositif selon le mode de réalisation préféré de l'invention ;
La figure 5 est une vue de dessus du dispositif représenté dans la figure 4 ;
Les figures 6A à 6C représentent le principe de formation d'une goutte à partir de liquide contenu dans le site d'entrée du dispositif selon l'invention ;
Les figures 7 et 8 sont des représentations schématiques en vue de dessus de variante de réalisation de l'invention ;
La figure 9 est une vue en coupe du dispositif selon la variante de réalisation représentée dans la figure 8 muni d'un dispositif d'observation des particules en suspension.
EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PREFERE
Un dispositif selon l'invention met en œuvre un dispositif de déplacement de liquide, par électromouillage, ou plus précisément par électromouillage sur diélectrique. Dans la description qui va suivre, les verbes « recouvrir », « être situé sur » et « être disposé sur » n' impliquent pas ici nécessairement de contact direct. Ainsi, un matériau ou un liquide peut être disposé sur une paroi sans qu' il y ait de contact direct entre le matériau et la paroi. Un matériau intermédiaire peut ainsi être présent. Le contact direct est réalisé lorsque le qualificatif « directement » est utilisé avec les verbes précédemment cités.
Le principe de l' électromouillage sur diélectrique mis en œuvre dans le cadre de l'invention peut être illustré à l'aide des figures 2A - 2C, dans le cadre d'un dispositif de type ouvert. Une goutte d'un liquide électriquement conducteur Fi repose sur un réseau d'électrodes 30, dont elle est isolée par une couche diélectrique 40 et une couche hydrophobe 50 (figure 2A) . On a donc un empilement hydrophobe et isolant. Le caractère hydrophobe de cette couche signifie que la goutte a un angle de contact, sur cette couche, supérieur à 90 ° .
Elle est entourée d'un fluide diélectrique FD, et forme avec ce fluide une interface Ii . Les électrodes 30 sont elles-mêmes formées en surface d'un substrat 11.
Une contre-électrode 60, ici sous forme d'un fil caténaire, permet de maintenir un contact électrique avec la goutte Fi. Cette contre-électrode peut également être un fil enterré ou une électrode planaire dans le capot d'un système confiné. Les électrodes 30 et la contre-électrode 60 sont connectées à une source de tension 70 permettant d'appliquer une tension U entre les électrodes.
Lorsque l'électrode 30(1) située à proximité de la goutte Fi est activée, à l'aide de moyens 81 de commutation dont la fermeture établit un contact entre cette électrode et la source de tension 80 via un conducteur commun 82, l'ensemble goutte sous tension
Fi, couche diélectrique 40 et électrode activée 30(1) agit comme une capacité.
Comme le décrit l'article de Berge intitulé « Electrocapillarité et mouillage de films isolants par l'eau », CR. Acad. Sci., 317, série 2, 1993, 157-163, l'angle de contact de l'interface de la goutte Fi en regard de l'électrode activée 30(1) diminue alors suivant la relation : cosθ1 (t/)=cosθ1 (0)+--^-£/2 1 ι 2eσ où e est l'épaisseur de la couche diélectrique 40, εr la permittivité de cette couche et σ la tension de surface de l'interface de la goutte.
Dans le cas d'une tension alternative, la valeur de la fréquence est choisie de manière à excéder le temps de réponse hydrodynamique de la goutte Fi. La réponse de la goutte Fi dépend alors de la valeur efficace de la tension, puisque l'angle de contact dépend de la tension en U2.
Selon l'article de Bavière et al. intitulé
« Dynamics of droplet transport induced by electrowetting actuation », Microfluid Nanofluid, 4, 2008, 287-294, il apparaît une pression électrostatique agissant sur l'interface Ii, à proximité de la ligne de contact. Si cette pression électrostatique est appliquée de manière asymétrique, la goutte Fi peut alors être déplacée. Dans la figure 2A, l'activation de l'électrode 30(1) met la goutte en mouvement suivant la direction X.
La goutte peut ainsi être éventuellement déplacée de proche en proche (figures 2B et 2C) , sur la surface hydrophobe 50, par activation successive des électrodes 30(1), 30(2), etc., le long de la caténaire 60. II est donc possible de déplacer des liquides, mais aussi de les mélanger (en faisant s'approcher des gouttes de liquides différents), et de réaliser des protocoles complexes.
Bien entendu, le raisonnement est identique pour assurer le déplacement de la goutte dans la direction (-X) •
La manipulation de la goutte se situe dans un plan, les électrodes pouvant en effet être disposées de manière linéaire, mais aussi en deux dimensions, définissant ainsi un plan de déplacement pour la goutte .
La figure 3 illustre le phénomène de déplacement d'un liquide par électromouillage dans un dispositif de type fermé ou confiné pouvant être mis en œuvre dans le cadre de l'invention.
Des exemples de dispositifs mettant en œuvre ce principe sont décrits dans l'article de Pollack et al. intitulé « Electro-wetting-based actuation of droplets for integrated microfluidics », Lab Chip, 2002, 2, 96- 101. Sur cette figure, les références numériques identiques à celles des figures 2A - 2C désignent les mêmes éléments.
Une goutte de liquide conducteur Fi est confinée entre un substrat inférieur 11 contenant la pluralité d'électrodes 30 de contrôle, et un substrat supérieur 12 disposé en regard du substrat inférieur 11.
La goutte Fi comporte une interface amont Ii,R et une interface aval Ii,A- Une couche hydrophobe 52 recouvre de préférence le substrat supérieur 12.
La contre-électrode 60 est ici une électrode planaire disposée entre la couche hydrophobe 52 et le substrat supérieur 12. Elle peut être un fil caténaire comme dans les figures 2A à 2C, ou un fil enterré.
Le principe de fonctionnement dans ce type de dispositif est similaire à ce qui a été décrit précédemment. La ligne triple des interfaces amont Ii,R et aval Ii,A est mise en mouvement par l'activation successive des électrodes de contrôle 30, provoquant un mouvement d'ensemble de la goutte dans la direction X, ou (-X) .
Il est à noter que le fluide FD ne subit pas de mouvement d'ensemble dans le sens de déplacement de la goutte. En d'autres termes, le fluide FD n'est pas « poussé » par la goutte Fi, comme ce serait le cas dans un microcanal, mais contourne la goutte qui se déplace .
Il est à noter également que les électrodes 30 et la couche diélectrique 40 peuvent, de manière alternative, être situées entre la couche hydrophobe 52 et le substrat supérieur 12, la contre-électrode 60 étant alors située sous la couche hydrophobe 51 du substrat inférieur 11.
Le mode de réalisation préféré de l'invention est représenté sur les figures 4 et 5 qui montrent, en coupe longitudinale (figure 4) et en vue de dessus
(figure 5) , un dispositif microfluidique de manipulation et d' observation de particules en suspension dans une goutte de liquide.
La coupe de la figure 4 est effectuée suivant le plan A-A représenté sur la figure 5.
Sur ces figures, les références numériques identiques à celles de la figure 3 désignent les mêmes éléments.
En référence à la figure 4, le dispositif comporte un substrat inférieur 11 et un substrat supérieur 12, disposés en regard l'un de l'autre.
Les deux substrats 11 et 12 sont montés l'un à l'autre par l'intermédiaire d'une cale d'espacement 13 qui permet de maintenir constant l'écartement entre les substrats 11, 12. La cale 13 s'étend le long de la périphérie de chaque substrat 11, 12.
Le substrat supérieur 12 comporte avantageusement une pluralité d'orifices 21, 22, 23 et 24 (figure 5) formant sites d'entrée ou de sortie de liquide, traversant le substrat 12 de manière sensiblement perpendiculaire (figure 4) .
Par exemple, le substrat 12 comporte au moins un orifice 21 formant site d'entrée et de stockage de liquide contenant des particules à observer, au moins un orifice 22 formant site d'entrée d'agent actif. On utilise le terme « agent actif » pour désigner par exemple une toxine ou une drogue. Le substrat 12 peut comporter également au moins un orifice 23 formant site d'entrée de liquide tampon pour contrôler la concentration de particules dans les gouttes, et par exemple un orifice 24 formant site de sortie ou d' évacuation .
Les orifices 21, 22, 23 et 24 peuvent communiquer avec des puits qui contiennent les liquides correspondants, respectivement 91, 92, 93 et 94 (figure 5) , situés contre la face externe du substrat supérieur 12 opposée à la couche hydrophobe 52. La communication fluidique est assurée par l'intermédiaire d'une ouverture 95 disposée au fond du puits. Les orifices 21, 22, 23, 24 peuvent former ainsi des réservoirs.
Les puits 91, 92, 93 et 94 sont avantageusement des puits d'une plaque à puits (8, 96, 384, 1586 puits) et peuvent être intégrés au dispositif selon l'invention. Les substrats 11 et 12 peuvent être fixés au niveau de leur périphérie au mur périphérique 120 de la plaque à puits qui s'étend de manière perpendiculaire au plan des substrats, pour assurer un montage solidaire entre les orifices et les puits. Avantageusement, un même puits peut communiquer avec plusieurs orifices. Dans ce cas, le puits présente alors un volume et une géométrie adaptée. Il comporte une pluralité d'ouvertures 95, chacune étant disposée en regard de l'orifice correspondant. Dans ce mode de réalisation, la pluralité d'électrodes de contrôle 30 et la couche diélectrique 40 sont situées entre la couche hydrophobe 52 et le substrat supérieur 12. Plus précisément, la pluralité d'électrodes 30 est en contact avec le substrat supérieur 12 et la couche diélectrique 40 recouvre ces électrodes.
Comme le montre la figure 5, les électrodes 30 sont disposées de manière à former un réseau bidimensionnel . Ce réseau d'électrodes 30 permet de déplacer des gouttes de liquide, de proche en proche, sur un plan, de les mélanger, et de les amener sur un site d'observation 100 pour observer les particules qu'elles contiennent .
La figure 4 montre la contre-électrode 60 incorporée sous la couche hydrophobe 51 du substrat inférieur 11. Elle peut avoir une structure bidimensionnelle de manière à assurer un contact électrique avec les gouttes en déplacement. Elle peut également être formée par un ensemble bidimensionnel de fils caténaires. La source de tension 70, de préférence alternative, est connectée aux électrodes 30 et à la contre- électrode 60. La fréquence est avantageusement comprise entre 100Hz et 1OkHz, de préférence de l'ordre de IkHz, de manière à excéder le temps de réponse hydrodynamique des gouttes de liquide. Les ions éventuellement contenus dans le liquide n'ont alors pas le temps de migrer et de s'accumuler, selon leur charge, à proximité de l'électrode 30 activée.
Ainsi, la réponse des gouttes dépend de la moyenne temporelle de la tension appliquée, ou plus précisément de la valeur efficace de celle-ci puisque l'angle de contact dépend de la tension en U2, selon la relation donnée précédemment. La valeur efficace peut varier entre OV et quelques centaines de volt, par exemple 200V. De préférence, elle est de l'ordre de quelques dizaines de volt.
Des moyens permettent de commander ou d'activer les électrodes 30, par exemple un ordinateur type PC et un système de relais connectés au dispositif ou à la puce, tels les relais 81 de la figure IA, ces relais étant pilotés par les moyens de type PC.
Selon une variante de réalisation, la couche diélectrique 40 et les électrodes 30 peuvent être disposées sous la couche hydrophobe 51 du substrat inférieur 11, comme expliqué précédemment, la contre- électrode 60 pouvant alors être située entre la couche hydrophobe 52 et le substrat supérieur 12.
Dans toute la description, on dira que la goutte formée peut être déplacée « sur » le plan de déplacement formé par le réseau d'électrodes 30, que les électrodes soient situées au niveau du substrat inférieur 11 ou supérieur 12.
La figure 4 montre une goutte de liquide Fi contenant des particules à observer à proximité d'un orifice 21 et une deuxième goutte de liquide F2 à proximité d'un second orifice 22. La deuxième goutte contient alors un agent actif.
Les particules à observer sont de préférence des cellules biologiques. La concentration en particules peut être comprise entre 50 et 5000 particules par microlitre, et est de préférence de 500 particules par microlitre environ. Les gouttes sont entourées d'un fluide FD diélectrique, non miscible avec les liquides des gouttes Fi et F2. Le fluide FD peut être de l'air, une huile minérale ou silicone, un solvant perfluoré, comme du FC-40 ou du FC-70, ou encore un alcane comme de 1' undécane .
Chaque goutte peut avoir un volume compris entre 0.1 et 100 nanolitres, et est de préférence de 0.2, 2, 8 ou 64nl. Les gouttes peuvent donc être déplacées sur le réseau bidimensionnel d'électrodes 30 jusqu'à un site d'observation 100. Une pluralité de sites d'observation 100 peut être prévue dans le réseau d'électrodes 30.
Le site d'observation 100 est une zone du dispositif selon l'invention par lequel il est possible d'observer le contenu de la goutte qui y est située.
L'observation peut être effectuée au travers du substrat inférieur 11. Pour cela, les matériaux du substrat inférieur 11, de la couche hydrophobe 51 et de la contre-électrode 60 sont de préférence transparents.
Elle peut alternativement être effectuée au travers du substrat supérieur 12. Pour cela, les matériaux du substrat supérieur 12, de la couche hydrophobe 52 et de l'électrode 30 située dans le site d'observation sont de préférence transparents.
Il est avantageux que les matériaux de l'ensemble des composants qui viennent d'être cités soient transparents, pour permettre une observation au travers du substrat supérieur 12 ou inférieur 11, selon le choix de l'utilisateur ou les contraintes de 1' environnement . Le dispositif d'observation peut comprendre un microscope optique du type à lumière directe, à contraste de phase ou à fluorescence, ou encore à champ proche. Il peut également être un microscope confocal ou à tomographie numérique, ou un dispositif de microscopie holographique digitale.
Il peut comprendre également une unité de gestion des prises de vues et de stockage de données, du type PC, pour ensuite post-traiter et analyser les séquences d'images réalisées.
Comme il vient d'être dit, les substrats 11 et 12 sont réalisés de préférence en matériau transparent, par exemple en verre ou en polycarbonate .
La cale d'espacement 13 peut préférentiellement être réalisée en film sec photo-imageable de type Ordyl, ce qui permet de contrôler précisément l'écartement entre les substrats inférieur 11 et supérieur 12. L'espacement entre le substrat inférieur 11 et le substrat supérieur 12 est typiquement compris entre lOμm et 500μm, et de préférence entre 50μm et lOOμm.
Les orifices 21, 22, 23 et 24 présentent un diamètre de quelques micromètres, compris par exemple entre 50μm et quelques millimètres. Ces orifices sont par exemple réalisés par lithographie et gravure sélective. En fonction des diamètres et des profondeurs à graver, on pourra utiliser la gravure sèche (attaque par gaz, par exemple SF6, dans un plasma) . La gravure peut être également humide. Pour le verre (majoritairement SiO2) ou des nitrures de silicium, on peut utiliser les gravures à l'acide fluorhydrique ou phosphorique (ces gravures sont sélectives mais isotropes) . La gravure peut être effectuée par ablation laser ou encore par ultrasons. Le micro-usinage peut également être utilisé, en particulier pour du polycarbonate .
Ces orifices peuvent être en communication fluidique avec les puits de la plaque à puits, dont la contenance de chaque puits peut être comprise entre lμl et ImI . Les électrodes 30 et contre-électrode 60 sont réalisées par dépôt d'un matériau transparent, par exemple de l'ITO, sur le substrat. Cette couche conductrice peut être pulvérisée ou réalisée en procédé sol-gel. Elle est ensuite gravée suivant un motif approprié, par exemple par gravure humide.
L'épaisseur des électrodes est comprise entre lOnm et lμm, de préférence 300nm. Les électrodes 30 sont de préférence carrées avec un côté dont la longueur est comprise entre quelques micromètres à quelques millimètres, de préférence entre 50μm et lmm. La surface des électrodes 30 dépend de la taille des gouttes à transporter. L'espacement entre électrodes voisines peut être compris entre lμm et lOμm.
La couche diélectrique 40 est réalisée par dépôt d'une couche de nitrure de silicium Si3N4, d'épaisseur, de manière générale comprise entre lOOnm et lμm, de préférence de 300nm. Un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) est préféré au procédé de dépôt en phase vapeur à basse pression (LPCVD) pour des raisons thermiques. En effet, la température du substrat n'est portée qu'entre 1500C et 350°C (selon les propriétés recherchées) contre 7500C environ pour le dépôt LPCVD.
Les couches hydrophobes 51 et 52 sont obtenues par dépôt par évaporation sous vide d'une couche de Téflon ou de SiOC, ou de parylène, sur les substrats inférieur
11 et supérieur 12. Cette couche permet notamment de diminuer voire d'éviter les effets d'hystérésis de l'angle de mouillage. Son épaisseur, d'une manière générale comprise entre lOOnm et 5μm, est de préférence de lμm.
Les figures 6A à 6C représentent comment peut être formée une goutte à partir d'un puits 91, 92, 93 ou 94, ici à partir du puits 91.
Le dispositif selon l'invention est représenté ici de manière très schématique. Certains composants n'apparaissent pas, de manière à simplifier les figures .
Un liquide à dispenser est introduit dans l'orifice 21 formant site d'entrée à partir du puits 91 (figure 6A) . Chaque orifice forme alors un réservoir.
Les substrats inférieur et supérieur, représentés de manière schématique sur les figures 6A à 6C, sont par exemple similaires à la structure de la figure 4.
Trois électrodes 31(1), 31(2), 31(3), similaires aux électrodes 30 de déplacement de gouttes de liquide, sont représentées sur les figures 6A à 6C.
L'activation simultanée de cette série d'électrodes 31(1), 31(2), 31(3) conduit à l'étalement du liquide à partir du site d'entrée 21, et donc à un segment liquide Li comme illustré sur la figure 6B . Puis, on coupe ce segment liquide en désactivant l'électrode 31(2) . On obtient ainsi une goutte Fi, comme illustré sur la figure 6C.
On utilise donc une série d'électrodes 31(1), 31(2), 31(3) pour étirer du liquide du puits 91 au travers du site d'entrée 21 en un segment liquide Li
(figures 6A et 6B) puis pour couper ce segment liquide
Li (figure 6C) et former une goutte Fi qui va pouvoir être déplacée sur le plan de déplacement, comme décrit ci-dessus.
Le fonctionnement du dispositif selon l'invention est le suivant, en référence aux figures 4 et 5.
Une goutte Fi contenant des particules en suspension est formée à partir du puits 91. Par activation successive des électrodes 30, elle est déplacée sur le réseau bidimensionnel d'électrodes 30.
Une ou plusieurs gouttes F2 contenant un agent actif peuvent être formées et déplacées jusqu'à la goutte Fi, dans un site de mélange, de manière à mettre en contact les particules en suspension avec l'agent actif voulu.
Les gouttes F2 peuvent également contenir du liquide tampon, pour contrôler la concentration en particules de la goutte Fi.
La goutte Fi est ensuite déplacée jusqu'au site d'observation 100 pour effectuer des séquences d'images des particules. On peut ainsi observer la réponse des particules au stimulus provoqué par l'agent actif. Puis la goutte Fi est déplacée jusqu'au site de sortie 24 et évacuée dans le puits d'évacuation 94. II est à noter que plusieurs gouttes Fi peuvent être formées à partir d'un unique puits 91 débouchant sur plusieurs orifices et déplacées simultanément sur le réseau bidimensionnel sans que le déplacement de l'une influe le déplacement des autres.
Il est alors avantageux qu'une pluralité de sites d'observation 100 soit prévue pour permettre l'observation des différentes gouttes Fi, comme le montre la figure 5. Le dispositif d'observation est alors mobile dans le référentiel lié aux substrats de manière à venir en regard de chaque site d'observation 100 lorsqu'une goutte Fi y est située.
La figure 7 montre une variante de réalisation dans laquelle est prévu un site unique d'observation. Le réseau d'électrodes 30 est alors conçu pour que les gouttes Fi, une fois observées, puissent continuer leur déplacement dans la même direction. Un train de gouttes Fi peut alors être formé et déplacé sur un même trajet. Le dispositif d'observation est alors fixé au dispositif, en regard du site d'observation.
Selon une autre variante de réalisation de l'invention représentée dans les figures 8 et 9, une pluralité de dispositifs selon l'invention peut être montée sur une unique plaque à puits. Chaque dispositif selon l'invention est indépendant des dispositifs voisins (figure 8) . Le dispositif d'observation 130 se déplace alors pour se placer en regard des différents sites d'observation 100 des différents dispositifs selon l'invention (figure 9) .
L'invention offre de multiples avantages. Elle permet d'abord l'utilisation de volumes de gouttes de liquide extrêmement réduits, de l'ordre du nanolitre (par exemple entre 0,lnl et 10OnI, de préférence 2nl, 8nl ou 64nl) , sans volume mort, et permet le contrôle des concentrations.
L'invention permet une dispense unique, à partir d'un réservoir, des drogues et des cellules, ou de tout agent actif, au lieu d'une dispense puits par puits comme dans le dispositif de l'art antérieur précédemment décrit.
Le coût lié à l'utilisation des cellules et des réactifs est alors particulièrement réduit par rapport à celui du dispositif selon l'art antérieur.
De plus, le temps de balayage par le microscope pour repérer les particules contenues dans la goutte est également réduit de manière importante. Le dispositif selon l'invention répond aux exigences de rapidité du criblage à haut débit.
En outre il n'y a pas d' évaporation qui risquerait d'influencer la viabilité des cellules.
La concentration peut être contrôlée par dilutions successives à partir d'un réservoir de concentration connue .
Il est alors possible d'étudier les actions combinées des mélanges de toxines, afin de vérifier si leurs actions sont, ou pas, compatibles et/ou synergiques .
Il est possible également de contrôler localement le déplacement des gouttes, indépendamment des gouttes situées en amont et en aval. Un réseau complexe de chemin de parcours de goutte est donc facilement réalisable .
Il n'y a aucune zone de recirculation qui peut piéger les particules en suspension. En effet, celles- ci restent contenues dans la goutte en déplacement.

Claims

REVENDICATIONS
1. Procédé de manipulation et d'observation de particules en suspension dans un liquide, caractérisé en ce qu' il comporte les étapes suivantes :
- la mise en contact d'un premier liquide avec une surface hydrophobe (52),
- la formation d'une première goutte (Fi) à partir du premier liquide puis le déplacement de ladite goutte
(Fi) par électromouillage afin de l'amener sur un site d'observation (100), ladite première goutte étant en contact avec ladite surface hydrophobe (52), l'observation des particules contenues dans ladite première goutte (Fi) , ladite goutte (Fi) étant confinée lors de son déplacement entre ladite surface hydrophobe et un substrat (11) disposé en regard de la surface hydrophobe (52), et formée à partir d'un orifice (21) traversant ladite surface hydrophobe (52) ou ledit substrat (11), ledit orifice communiquant avec un puits (91, 92, 93) d'une plaque à puits.
2. Procédé selon la revendication 1, caractérisé en ce qu'il comporte en outre, avant ladite étape d'observation des particules, une étape de mélange de ladite première goutte (Fi) avec une seconde goutte (F2) d'un second liquide.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la goutte (Fi, F2) a un volume compris entre 0,lnl et lOμl.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite première goutte (Fi) de liquide comprend des cellules de types différents, ou au moins un type de cellule et un type de toxine.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la concentration en particules est comprise entre 50 et 5000 particules par microlitre.
6. Dispositif de manipulation et d'observation de particules en suspension dans un liquide comportant : un premier substrat (12) comportant au moins un premier orifice (21) formant site d'entrée dudit liquide, un site d'observation (100) pour observer les particules en suspension, et des moyens de déplacement du liquide dudit site d'entrée audit site d'observation, caractérisé en ce que, le premier substrat (12) comportant une première couche hydrophobe (52), le liquide étant électriquement conducteur, lesdits moyens de déplacement du liquide sont adaptés à déplacer ledit liquide sous forme de goutte (Fi) par électromouillage, ladite goutte (Fi) étant en contact avec ladite première couche hydrophobe (52), et en ce que ledit premier orifice (21) communique avec un premier puits
(91) disposé sur une face externe dudit premier substrat (12) opposée à ladite première couche hydrophobe (52), ledit premier puits (91) est un puits d'une plaque à puits.
7. Dispositif selon la revendication 6, caractérisé en ce que les moyens pour déplacer ladite goutte, par électromouillage, comportent : - une pluralité d'électrodes (30) entre ladite première couche hydrophobe (52) et ledit premier substrat (12) , une couche diélectrique (40) entre ladite première couche hydrophobe (52) et ladite pluralité d'électrodes (30), au moins une contre-électrode (60) en contact électrique avec la goutte de liquide (Fi) , et un générateur de tension (70) pour appliquer une différence de potentiel entre les électrodes (30) et ladite contre-électrode (30) .
8. Dispositif selon la revendication 7, caractérisé en ce qu'il comprend en outre un second substrat (11) disposé en regard du premier substrat (12) .
9. Dispositif selon la revendication 8, caractérisé en ce que le second substrat (11) est recouvert d'une seconde couche hydrophobe (51) en regard de ladite première couche hydrophobe (52), ladite contre- électrode (60) étant située entre ladite seconde couche hydrophobe (51) et ledit second substrat (11) .
10. Dispositif selon la revendication 6, caractérisé en ce qu' il comprend en outre un second substrat (11) disposé en regard du premier substrat (12) et recouvert d'une seconde couche hydrophobe (51) en regard de ladite première couche hydrophobe (52) .
11. Dispositif selon la revendication 10, caractérisé en ce que les moyens pour déplacer ladite goutte, par électromouillage, comportent : une pluralité d'électrodes entre ladite seconde couche hydrophobe (51) et ledit second substrat (11), une couche diélectrique (40) entre ladite seconde couche hydrophobe (51) et ladite pluralité d'électrodes (30), au moins une contre-électrode (60) en contact électrique avec la goutte de liquide (Fi) , et un générateur de tension (70) pour appliquer une différence de potentiel entre les électrodes (30) et ladite contre-électrode (60) .
12. Dispositif selon la revendication 11, caractérisé en ce que ladite contre-électrode (60) est située entre ladite première couche hydrophobe (52) et ledit premier substrat (12) .
13. Dispositif selon l'une quelconque des revendications 8 à 12, caractérisé en ce que ledit premier substrat (12) comporte au moins un second orifice (22, 23, 24) formant site d'entrée ou de sortie de liquide, ledit second orifice (22, 23, 24) communiquant avec un second puits (92, 93, 94) disposé sur une face externe dudit premier substrat (12) opposée à ladite première couche hydrophobe (52) .
14. Dispositif selon la revendication 13, caractérisé en ce que ledit second puits (92, 93, 94) est un puits d'une plaque à puits.
15. Dispositif selon l'une quelconque des revendications 8 à 14, caractérisé en ce que les moyens de déplacement par électromouillage comprennent des moyens (31(1), 31(2), 31(3)) pour former une goutte de liquide à partir dudit orifice (21, 22, 23, 24) .
16. Dispositif selon l'une quelconque des revendications 8 à 15, caractérisé en ce que le premier substrat (12) et/ou le second substrat (11) sont réalisés dans un matériau transparent.
17. Dispositif selon la revendication 16, caractérisé en ce que les électrodes (30) sont réalisées dans un matériau transparent.
18. Dispositif selon l'une quelconque des revendications 6 à 17, caractérisé en ce qu'il comprend un dispositif d'observation (130) pour observer les particules en suspension contenues dans ladite goutte
(Fi) située dans le site d'observation (100) .
19. Dispositif selon la revendication 18, caractérisé en ce que le dispositif d'observation (130) comprend un microscope confocal .
EP09793960A 2008-07-11 2009-07-09 Procede et dispositif de manipulation et d'observation de gouttes de liquide Withdrawn EP2318136A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854745A FR2933713B1 (fr) 2008-07-11 2008-07-11 Procede et dispositif de manipulation et d'observation de gouttes de liquide
PCT/EP2009/058777 WO2010004014A1 (fr) 2008-07-11 2009-07-09 Procede et dispositif de manipulation et d'observation de gouttes de liquide

Publications (1)

Publication Number Publication Date
EP2318136A1 true EP2318136A1 (fr) 2011-05-11

Family

ID=40380456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09793960A Withdrawn EP2318136A1 (fr) 2008-07-11 2009-07-09 Procede et dispositif de manipulation et d'observation de gouttes de liquide

Country Status (4)

Country Link
US (1) US20110147215A1 (fr)
EP (1) EP2318136A1 (fr)
FR (1) FR2933713B1 (fr)
WO (1) WO2010004014A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101146595B (zh) 2005-01-28 2012-07-04 杜克大学 用于在印刷电路板上操作液滴的装置和方法
FR2887305B1 (fr) 2005-06-17 2011-05-27 Commissariat Energie Atomique Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8658111B2 (en) 2006-04-18 2014-02-25 Advanced Liquid Logic, Inc. Droplet actuators, modified fluids and methods
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
WO2007123908A2 (fr) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Opérations en puits multiples à base de gouttelettes
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
WO2007146025A2 (fr) * 2006-06-06 2007-12-21 University Of Virginia Patent Foundation Dispositif actionneur de force capillaire et SA méthode d'application
US8685344B2 (en) 2007-01-22 2014-04-01 Advanced Liquid Logic, Inc. Surface assisted fluid loading and droplet dispensing
US8872527B2 (en) 2007-02-15 2014-10-28 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
WO2011084703A2 (fr) 2009-12-21 2011-07-14 Advanced Liquid Logic, Inc. Analyses d'enzymes sur un diffuseur à gouttelettes
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
MX2010007034A (es) 2007-12-23 2010-09-14 Advanced Liquid Logic Inc Configuraciones para eyector de gotas y metodos para realizar operaciones de gota.
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
WO2011057197A2 (fr) 2009-11-06 2011-05-12 Advanced Liquid Logic, Inc. Actionneur de gouttelettes intégré pour électrophorèse sur gel et analyse moléculaire
EP2553473A4 (fr) 2010-03-30 2016-08-10 Advanced Liquid Logic Inc Plateforme pour opérations sur des gouttelettes
US9011662B2 (en) 2010-06-30 2015-04-21 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
FR2967148B1 (fr) * 2010-11-10 2012-12-21 Commissariat Energie Atomique Procede d'evaporation controlee d'une goutte liquide dans un dispositif microfluidique.
WO2012085728A1 (fr) * 2010-12-20 2012-06-28 Koninklijke Philips Electronics N.V. Dispositif microfluidique comprenant un moyen de commande du flux de fluide
WO2012154745A2 (fr) 2011-05-09 2012-11-15 Advanced Liquid Logic, Inc. Rétroaction microfluidique utilisant une détection d'impédance
US9140635B2 (en) 2011-05-10 2015-09-22 Advanced Liquid Logic, Inc. Assay for measuring enzymatic modification of a substrate by a glycoprotein having enzymatic activity
FR2975491B1 (fr) * 2011-05-19 2013-07-05 Commissariat Energie Atomique Procede d'identification de la phase d'un echantillon fluide dans un dispositif microfluidique.
AU2012279420A1 (en) 2011-07-06 2014-01-30 Advanced Liquid Logic Inc Reagent storage on a droplet actuator
US8901043B2 (en) 2011-07-06 2014-12-02 Advanced Liquid Logic, Inc. Systems for and methods of hybrid pyrosequencing
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
WO2013016413A2 (fr) 2011-07-25 2013-01-31 Advanced Liquid Logic Inc Dispositif et système d'actionneur à gouttelettes
WO2013070627A2 (fr) 2011-11-07 2013-05-16 Illumina, Inc. Appareils de séquençage intégré et procédés d'utilisation
WO2013078216A1 (fr) 2011-11-21 2013-05-30 Advanced Liquid Logic Inc Dosages de la glucose-6-phosphate déshydrogénase
KR101337131B1 (ko) * 2012-04-18 2013-12-05 명지대학교 산학협력단 전기습윤 현상을 이용한 다중 버블 제어기술 및 이를 이용한 미소물체 제어방법
KR101923052B1 (ko) 2012-05-09 2018-11-29 리쿠아비스타 비.브이. 전기습윤 표시장치
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
BR112014032727B1 (pt) 2012-06-27 2021-12-14 Illumina France Método e sistema para realizar operações de gotícula em uma gotícula em um atuador de gotículas para redução da formação de bolhas
US9863913B2 (en) 2012-10-15 2018-01-09 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
CN114653413B (zh) 2017-06-21 2024-05-28 光投发现有限公司 微滴操控设备
EP3943192A1 (fr) 2017-06-21 2022-01-26 Lightcast Discovery Ltd Dispositif analytique microfluidique
US20190262829A1 (en) * 2018-02-28 2019-08-29 Volta Labs, Inc. Directing Motion of Droplets Using Differential Wetting
EP3656473A1 (fr) * 2018-11-20 2020-05-27 Lightcast Discovery Limited Détection de microgouttelettes de cellules
CN113383223B (zh) * 2019-02-08 2024-02-02 平田机工株式会社 标本制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043463A1 (en) * 2000-08-31 2002-04-18 Alexander Shenderov Electrostatic actuators for microfluidics and methods for using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI980874A (fi) * 1998-04-20 1999-10-21 Wallac Oy Menetelmä ja laite pienten nestemäärien kemiallisen analyysin suorittamiseksi
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
FR2872438B1 (fr) * 2004-07-01 2006-09-15 Commissariat Energie Atomique Dispositif de deplacement et de traitement de volumes de liquide
US8129123B2 (en) * 2004-10-05 2012-03-06 The Regents Of The University Of California Methods for assessing atherogenesis by determining oxidized phospholipid to apolipoprotein B ratios
FR2887030B1 (fr) * 2005-06-09 2008-06-13 Commissariat Energie Atomique Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
FR2887705B1 (fr) * 2005-06-27 2007-08-10 Commissariat Energie Atomique Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
US8293524B2 (en) * 2006-03-31 2012-10-23 Fluxion Biosciences Inc. Methods and apparatus for the manipulation of particle suspensions and testing thereof
WO2007123908A2 (fr) * 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Opérations en puits multiples à base de gouttelettes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043463A1 (en) * 2000-08-31 2002-04-18 Alexander Shenderov Electrostatic actuators for microfluidics and methods for using same

Also Published As

Publication number Publication date
WO2010004014A1 (fr) 2010-01-14
FR2933713A1 (fr) 2010-01-15
US20110147215A1 (en) 2011-06-23
FR2933713B1 (fr) 2011-03-25

Similar Documents

Publication Publication Date Title
EP2318136A1 (fr) Procede et dispositif de manipulation et d'observation de gouttes de liquide
EP1891329B1 (fr) Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
EP2143948A2 (fr) Dispositif microfluidique de déplacement de liquide
EP1827694B1 (fr) Dispositif de dispense de gouttes
EP3347128B1 (fr) Ensemble comportant un substrat de support d'échantillon liquide et son utilisation
EP1714700A1 (fr) Dispositif et procédé microfluidique de transfert de matière entre deux phases immiscibles
EP2609993B1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
WO2006131679A2 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
EP2161449B1 (fr) Micropompe pour microfluidique continue.
EP3318328B1 (fr) Equipement de tri de particules présentes dans un échantillon fluidique
WO2004052542A1 (fr) Dispositif microfluidique dans lequel l'interface liquide/fluide est stabilisee
EP3085444B1 (fr) Dispositif microfluidique de contrôle d'écoulement d'un fluide
EP2143949A2 (fr) Dispositif microfluidique de déplacement contrôlé de liquide
EP2165753A2 (fr) Micro-dispositif d'analyse d'echantillons liquides
EP2453220A1 (fr) Procédé d'évaporation contrôlée d'une goutte liquide dans un dispositif microfluidique
FR2887705A1 (fr) Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
EP2182212B1 (fr) Micropompe à actionnement par gouttes
EP1306674A1 (fr) Dispositif d'injection parallelisée et synchronisée pour injections séquentielles de réactifs differents
EP3541514B1 (fr) Procédé et système de commande d'un dispositif microfluidique
EP3013477B1 (fr) Dispositif de séparation d'une suspension
FR2971953A1 (fr) Dispositif microfluidique d'extraction a interface liquide-liquide stabilisee
EP1753535A1 (fr) Microdispositif et procede de separation d"emulsion
EP3538882B1 (fr) Dispositif, système et procédé relatif à la préconcentration d'analytes
WO2007012637A1 (fr) Dispositif microfluidique pour mesure de fluorescence et procede de mesure mettant en œuvre un tel dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130618