EP2182212A1 - Micropompe à actionnement par gouttes - Google Patents

Micropompe à actionnement par gouttes Download PDF

Info

Publication number
EP2182212A1
EP2182212A1 EP09173788A EP09173788A EP2182212A1 EP 2182212 A1 EP2182212 A1 EP 2182212A1 EP 09173788 A EP09173788 A EP 09173788A EP 09173788 A EP09173788 A EP 09173788A EP 2182212 A1 EP2182212 A1 EP 2182212A1
Authority
EP
European Patent Office
Prior art keywords
drop
microchannel
electrode
displacement
micropump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09173788A
Other languages
German (de)
English (en)
Other versions
EP2182212B1 (fr
Inventor
Yves Fouillet
Guillaume Delapierre
Olivier Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2182212A1 publication Critical patent/EP2182212A1/fr
Application granted granted Critical
Publication of EP2182212B1 publication Critical patent/EP2182212B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • the present invention relates to the general field of microfluidics and, more particularly, to that of micropumps, and relates to a drop-operated micropump.
  • Micropumps provide controlled flow of fluid, particularly in a microchannel, and are involved in many microfluidic systems.
  • micropumps may be present in lab-on-a-chip, medical substance injection systems, or the electronic cooling circuits of electronic chips.
  • micropumps can be actuated in various ways, for example using a piezoelectric, electrostatic, thermopneumatic or even electromagnetic device.
  • a presentation of these different actuators can be found in the document DJ Laser and JG Santiago entitled “A review of micropumps", J. Micromech. Microeng., 14 (2004), R35-R64 .
  • actuators have certain drawbacks such as the presence of deformable membranes or valves, the use of high voltages, for example for piezoelectric or electrostatic devices, or a significant electrical consumption, for example with thermopneumatic or electromagnetic devices.
  • Another approach which avoids at least partly the disadvantages mentioned above, is to actuate the micropump by electrowetting, and more precisely by electrowetting on dielectric.
  • the patent application WO2002 / 07503A1 describes a micropump, illustrated in Fig. 1 , comprising a substrate in which is formed a microchannel 10, and an actuating device for ensuring the flow of a fluid F1 in the microchannel 10.
  • the operating principle of the actuating device is based on the displacement by electrowetting a conductive liquid L1 in the microchannel 10 from a tank 41.
  • the actuating device comprises a linear array of displacement electrodes 31 (1), 31 (2), 31 (3) ... integrated in the substrate and arranged in the microchannel 10 from the tank 41.
  • a counter-electrode 43 is disposed in the tank 41 and provides electrical contact with the conductive liquid L1.
  • the displacement electrodes are covered with a hydrophobic dielectric layer (not shown).
  • a voltage generator (not shown) is connected to the displacement electrode array 31 and to the counter-electrode 43, and makes it possible to apply a voltage U between the electrodes.
  • the conductive liquid L1 forms with the fluid F1 filling the microchannel 10 an interface I1.
  • the displacement electrode 31 (i) located opposite the interface I1 is activated, using switching means (not shown) whose closure establishes a contact between this electrode and the voltage source via a conductor common, the liquid under voltage L1, dielectric layer and activated electrode 31 (i) acts as a capacitance.
  • the liquid L1 behaves like a conductor insofar as the frequency of the bias voltage is substantially lower than a cutoff frequency.
  • the latter which depends in particular on the electrical conductivity of the liquid, is typically of the order of a few tens of kilohertz (see for example the article by Mugele and Baret entitled “Electrowetting: from basics to applications", J. Phys. Condens. Matter, 17 (2005), R705-R774 ).
  • the frequency is preferably substantially greater than the frequency corresponding to the hydrodynamic response time of the liquid, which depends on the physical parameters such as the surface tension, the viscosity or the size of the microchannel, and which is of the order a few tens or hundreds of Hertz.
  • the response of the liquid then depends on the rms value of the voltage, since the contact angle depends on the voltage U 2 , according to the relation (1).
  • micropump according to the prior art has certain disadvantages.
  • the pressure force exerted by the liquid on the fluid is proportional to cos ⁇ ( U ).
  • ⁇ ( U ) the smaller the angle ⁇ ( U ), the greater the pressure force and the high flow rate.
  • the contact angle decreases with the increase of the polarization voltage U to a saturation angle which is usually between about 30 ° and 80 °. The pressure force, and thus the fluid flow rate, are then limited by this saturation angle.
  • the displacement length of the liquid in the microchannel corresponds to that of the operating electrode array. Also, moving the liquid along the entire length of the microchannel requires extending the electrode array all along the microchannel. The manufacture is then made particularly complex, especially in the case where the microchannel has a non-rectangular transverse shape, for example circular, or if it has changes of direction.
  • the object of the present invention is to provide a micropump whose pressure force is not limited by the electrowetting saturation angle, while having a simplified manufacturing.
  • the invention relates to a micropump for moving a fluid in a microchannel.
  • the microchannel comprises an inlet orifice and has a hydrophilic wall extending from said inlet orifice
  • the micropump comprises means for moving a drop of liquid by electrowetting on a hydrophobic surface until contacting said drop with said hydrophilic wall, whereby said drop is introduced by wetting into said microchannel through said inlet port, causing said fluid to move.
  • the pressure force exerted by the liquid on the fluid in the microchannel is not limited by the electrowetting saturation angle, as in the micropump according to the prior art.
  • electrowetting makes it possible to bring drops of liquid to the inlet orifice of the microchannel, but is not the driving phenomenon of the micropump.
  • Fluid flow is achieved by introducing the drop of liquid into the microchannel through the inlet port. This naturally occurs because of the difference in wettability to which the drop is subjected. Indeed, when the drop is brought into contact with the hydrophilic wall through the inlet port, it wets at the same time the hydrophobic surface and the hydrophilic wall of the microchannel. The difference in wettability between these two surfaces causes the migration of the entire drop of the hydrophobic surface towards the hydrophilic wall. The drop of liquid is then introduced into the microchannel and simultaneously "pushes" the fluid.
  • the realization of the micropump is simplified since it is no longer necessary to have the electrowetting electrodes along the entire length of the microchannel.
  • said drop forms a contact angle on said hydrophilic wall substantially less than that formed by electrowetting on said hydrophobic surface.
  • Said displacement means preferably comprise at least one displacement electrode and a counter-electrode in electrical contact with the drop, and a voltage generator for applying a potential difference between one or more displacement electrodes and said counter-electrode.
  • Said displacement electrodes may be arranged along a determined path.
  • a so-called contacting displacement electrode is advantageously arranged so that a drop of liquid covering it is in contact with said hydrophilic wall through said inlet orifice.
  • Said displacement means may comprise a single displacement electrode, which is then said contacting electrode.
  • Said hydrophilic wall may have a nanotextured or microtextured surface.
  • Said hydrophilic wall may be of hydrophilic material.
  • Said hydrophilic wall may comprise a layer of a hydrophilic material.
  • said hydrophilic wall extends over the entire length of the microchannel.
  • a dielectric material layer is preferably disposed between said hydrophobic surface and said electrodes.
  • the microchannel comprises a connecting portion defining an upstream portion and a downstream portion, said connecting portion having a section transversely larger than that of the upstream portion.
  • the size of the connecting portion is preferably between 5 and 50 times that of the upstream portion.
  • a second fluid may be located downstream of the first fluid so as to form therewith an interface located in said coupling portion.
  • the upstream portion may comprise a first upstream portion extending from the inlet orifice and a plurality of second elementary upstream portions arranged in parallel each communicating with said first upstream portion.
  • Each second elementary upstream portion may communicate with said connection portion.
  • Each second elementary upstream portion may be at least partially filled with said fluid.
  • the micropump advantageously comprises means for forming said droplet on said hydrophobic surface, by electrowetting.
  • the drop forming means may comprise a plurality of drop forming electrodes, one of which is adjacent to a displacement electrode.
  • a second hydrophobic surface may be arranged facing the first hydrophobic surface so as to form a closed or confined device for said drop.
  • a first embodiment of the invention is shown schematically on the Figures 2A and 2B , in top view.
  • the micropump comprises a microchannel 10 at least partially filled with a fluid F1 and an actuating device for ensuring the flow of said fluid F1 in the microchannel 10.
  • the Figure 2A shows a direct orthonormal frame ( i , j , k ).
  • a droplet 51 can be moved in a plane substantially parallel to the plane ( i , j ).
  • the longitudinal axis of the microchannel 10 is defined as being the median line of the microchannel.
  • the longitudinal axis may be rectilinear or curved, and have changes of direction.
  • the microchannel 10 may have a convex polygonal cross section, for example square, rectangular, hexagonal, a square section being a particular case of the more general rectangular shape. It can also have a circular cross section.
  • the term microchannel is taken here in a general sense and includes in particular the case particular microtube whose section is circular.
  • the microchannel may also be the catheter of a drug delivery system.
  • the term "height" refers to the transverse characteristic size of the microchannel 10. In the case of a microtube, the height refers to the diameter.
  • the microchannel 10 comprises an inlet orifice 11 allowing the passage of a liquid L1 from the outside inside the microchannel 10.
  • the inlet orifice 11 is located at one end of the microchannel 10.
  • the microchannel 10 comprises a hydrophilic wall 12 which extends from said inlet orifice 11 over a portion of the transverse contour, or preferably over the entire transverse contour.
  • the hydrophilic wall 12 may extend over a length defined along the longitudinal axis of the microchannel, or preferably extend over the entire length of the microchannel.
  • the device for actuating the micropump ensures the flow of the fluid F1 in the microchannel 10.
  • It comprises means for moving at least one drop 51 of liquid L1, by electrowetting, on a hydrophobic surface to the inlet orifice 11 of the microchannel 10.
  • the displacement means here comprise a single displacement electrode 31 integrated in or disposed on a support substrate 21, and covered with the hydrophobic surface.
  • the displacement electrode 31, called the contacting electrode, is arranged so that a droplet 51 of liquid L1 covering it is in contact with the hydrophilic wall 12 through said inlet orifice 11.
  • a series of displacement electrodes may be arranged in a determined path ending in a contacting electrode 31 arranged to contact a drop 51 covering it with the hydrophilic wall 12 through the inlet orifice 11 of the microchannel 10.
  • the verbs "to cover”, “to be located on” and “to be disposed of” do not necessarily imply direct contact here.
  • the droplet 51 of liquid can cover the displacement electrode 31 without direct contact, a hydrophobic surface being disposed here between the drop 51 and the electrode 31.
  • the means of displacement of the drops are here in a so-called open configuration, or not confined, to the extent that said drops of liquid are not confined between two support substrates, or two hydrophobic surfaces, parallel between they but rest solely on the support substrate 21.
  • the inlet orifice 11 is disposed substantially opposite the displacement electrode 31. More specifically, the inlet axis through the orifice 11, here following i , is substantially parallel to the plane ( i , j ) of the displacement electrode 31. Other arrangements are possible, as shown in FIG. figure 5 (described in detail below), where the inlet port 11 is formed substantially in the same plane as the displacement electrode 31.
  • the input axis through the orifice, here following k is substantially perpendicular to the plane ( i , j ) of the displacement electrode 31.
  • the inlet orifice 11 is surrounded by the displacement electrode 31, so that a drop 51 which covers the electrode 31 is brought into contact with said hydrophilic wall 12 through said inlet orifice 11.
  • the hydrophobic surface may be a layer of a hydrophobic material.
  • a layer of a dielectric material is disposed between the displacement electrode (s) 31 and the hydrophobic surface.
  • the dielectric and hydrophobic layers may be a single layer combining these two functions, for example a parylene layer.
  • a counter electrode (not shown) is provided to provide electrical contact with liquid drop 51. It is arranged at least facing the displacement electrode 31.
  • This counter-electrode can be either a catenary, a wire buried between the dielectric layer and the hydrophobic layer, or a planar electrode integrated into a hood of the micropump (a such hood is described later). In the latter case, an electrically conductive hydrophobic layer may cover the counter-electrode.
  • the displacement electrode 31 and the counterelectrode may be connected to a continuous voltage generator (not shown) or, preferably, alternative, to move the drop 51 by electrowetting, as previously described.
  • the frequency is advantageously between 100 Hz and 10 kHz, preferably of the order of 1 kHz, so as to maintain the conductive electrical properties of the liquid and to exceed the hydrodynamic response time of the droplet.
  • the response of the drop 51 then depends on the rms value of the applied voltage.
  • the rms value can vary between a few volts and a few hundred volts, for example 200V. Preferably, it is of the order of a few tens of volts.
  • the micropump has means for forming drops 51 by electrowetting from a tank 41 containing said liquid L1.
  • the drop forming means preferably comprise at least three forming electrodes 42 (1), 42 (2), 42 (3) integrated in or deposited on said support substrate 21 and covered with said hydrophobic surface.
  • said dielectric layer is also disposed between the hydrophobic surface and the formation electrodes 42.
  • a first forming electrode 42 (1) is disposed substantially facing or near the tank 41 containing the liquid.
  • a second forming electrode 42 (2) is adjacent to the first 42 (1) and followed by a third electrode 42 (3).
  • the third electrode 42 (3) is preferably adjacent to the displacement electrode 31.
  • the drop forming means have in common with the displacement means against the electrode and the voltage generator described above.
  • the counter-electrode is then arranged so as to be opposite the formation electrodes 42.
  • Switching means are provided for successively activating the different electrodes 42 (1), 42 (2), 42 (3), 31 and thus ensuring, on the one hand, the formation of a drop and, on the other hand, its displacement to the inlet orifice 11 of the microchannel 10.
  • FIGS. 3A to 3C illustrate an example of forming a drop by electrowetting from a tank 41 containing said liquid L1, in the case of an open configuration.
  • the patent application W02006 / 070162 filed in the name of the Applicant, describes in detail the principle of drop formation used herein, and also gives an example of droplet formation in confined configuration.
  • said reservoir 41 may be a reservoir electrode at which a reservoir drop 53 of liquid L1 is disposed.
  • This reservoir electrode defines a liquid holding micro-reservoir, and may be similar or identical to the reservoir electrode 46 described later with reference to the second embodiment of the invention.
  • Said reservoir electrode 41 may have a circular shape as on the Figures 2A and 2B , square as on the Figure 4A , or any other form.
  • FIGS. 3A to 3C Three electrodes 42 (1), 42 (2), 42 (3) are shown on the FIGS. 3A to 3C .
  • this liquid segment 52 is cut in two parts by deactivating the electrode 42 (2). A drop 51 is thus obtained, as shown in FIG. figure 3C .
  • a series of electrodes 42 (1), 42 (2), 42 (3) are thus used to stretch liquid L1 from the reservoir drop 53 into a liquid segment 52 (FIG. figure 3B ) then to cut this liquid segment 52 ( figure 3C ) and form a drop 51 which can be moved by the moving means.
  • micropump The operation of the micropump according to the first embodiment of the invention is as follows, with reference to Figures 2A and 2B .
  • the drop forming means are activated so as to electromagnetically form a drop 51 of liquid L1 on the hydrophobic surface, as described above.
  • the displacement means are activated to move the drop 51 formed by electrowetting up to the inlet orifice 11, and thus bring it into contact with the hydrophilic wall 12.
  • the drop When the drop is in contact with the hydrophilic wall 12 through the inlet orifice 11, it is introduced spontaneously by wetting in the More precisely, the drop migrates from the hydrophobic surface of the actuating device to the hydrophilic wall 12 of the microchannel 10. In doing so, it "pushes" the fluid F1 contained in the microchannel 10 and thus ensures the controlled flow of the microchannel 10. this one.
  • a second drop 51 can be brought to the inlet port 11 by electrowetting and then introduced by wetting in the microchannel 10. More precisely, the second drop 51 coalesces with the liquid L1 already present in the microchannel 10 from the In this case, a drop of larger volume is obtained, one part wetting the hydrophobic surface and the other part wetting the hydrophilic wall 12. The phenomenon remains the same. The new drop will move to dewake the hydrophobic surface and further wet the hydrophilic wall 12 of the microchannel 10. And in doing so, it "pushes" the fluid F1 and thus ensures the flow thereof.
  • the micropump according to the invention therefore has the advantage of not being limited by the saturation angle of electrowetting.
  • the driving force is then the wetting force that appears spontaneously when the liquid drop 51 is in contact with the hydrophilic wall 12 of the microchannel 10.
  • This wetting force depends on the contact angle formed by the liquid L1 on the hydrophilic wall . This can be very small, for example of the order of, or less than, 10 °.
  • the pressure force and therefore the fluid flow in the microchannel are then greater than in the micropump according to the prior art.
  • the flow of the fluid F1 is ensured as the microchannel 10 is supplied with drops of liquid 51 by the displacement means.
  • the liquid L1 can extend in the microchannel 10 over the entire length of the hydrophilic wall 12. It is thus not necessary to have displacement electrodes 31 along the microchannel 10. The manufacture of the micropump is then particularly simplified. .
  • a second embodiment of the invention is shown on the Figures 4A and 4B where the first is a view from above and the second a longitudinal section of the first along an axis II.
  • the means for forming and moving drops contain the drop of liquid.
  • a second hydrophobic surface 26 is disposed facing the first hydrophobic surface 22 and substantially parallel thereto, and integrated in or disposed on an upper cover 25.
  • a droplet 51 may be formed by the drop forming means and displaced by the displacement means between the first and second hydrophobic surfaces 22, 26.
  • the counter-electrode 43 is integrated in the cover 25 or disposed thereon, and covered by the second hydrophobic surface 26.
  • the means for forming a drop are advantageously similar to those described in the patent application. W02006 / 070162 filed in the name of the plaintiff.
  • a well 27 is formed in the upper cover 25.
  • This well 27 is placed at least partially in front of a transfer electrode 47, the latter being integrated with the substrate 21 or disposed thereon.
  • the drop forming electrodes 42 are then placed followed by at least one displacement electrode, here a single so-called contacting electrode 31.
  • dielectric layer if it is distinct from the hydrophobic layer 22, is not represented on the Figures 4A and 4B .
  • the transfer electrode 47 makes it possible to pump the liquid from the reservoir (not shown) communicating with the well, and to bring it close to the reservoir electrode 46.
  • this reservoir electrode can be accumulated a certain amount of liquid. It is represented as having a square or rectangular shape on the Figure 4A but its form can be any. Of Preferably, it can accumulate at least three to four times the volume of the drops 51 to be dispensed, and preferably at least 10 times or 20 times the volume of each drop dispensed 51.
  • the distance between the two substrates 21, 25 is substantially constant (as can be seen in FIG. Figure 4B ), it is actually the surface of the electrode 46 which is at least three to four times equal, or at least 10 or 20 times equal to the area of each of the drop forming electrodes 42.
  • the transfer electrode when it is activated, makes it possible to bring a portion of liquid located in the well 27 close to the reservoir electrode 46.
  • the transfer electrode 47 can be reactivated, and then the reservoir electrode 46, so as to continue to accumulate liquid in this reservoir zone.
  • the transfer electrode 47 is not activated, the liquid defined by the reservoir electrode 46 is not in contact with the well 27.
  • the formation of drops that can be made from the The liquid stored above the reservoir electrode 46 can therefore be calibrated while using a well 27, and independently of the pressure therein, to fill the component.
  • the two hydrophobic surfaces 22, 26 form two substantially parallel planes and do not constitute a microchannel.
  • the displacement of a drop 51 does not cause overall displacement of the surrounding fluid in the same direction. This one bypasses the drop 51 in its displacement. It is thus possible to bring a drop 51 to the inlet orifice 11 without introducing the surrounding fluid into the microchannel.
  • the micropump according to this embodiment of the invention makes it possible to precisely control the flow of the fluid F1 in the microchannel 10.
  • the fluid F1 is "pushed" by the drop 51 of liquid over a distance that depends in particular the volume of the drop 51.
  • the formation of a calibrated volume drop makes it possible to move the fluid F1 over a precise distance.
  • the distance between the two hydrophobic surfaces 22, 26 is of the order of a few hundred micrometers, preferably 100 microns.
  • the drops 51 obtained have a volume between a few nanoliters to a few microliters, for example 64nl.
  • the drop reservoir 53 located at the reservoir electrode 46 may be formed during the production of the micropump.
  • the drop forming means do not comprise wells communicating with a reservoir, nor transfer electrode, but only a drop reservoir located at the reservoir electrode. It is then advantageous for the cover 25 to include a cavity at the reservoir electrode 46, in order to accommodate a reservoir drop of a large volume.
  • the space located at the reservoir electrode 46, or said cavity can communicate with the outside, so that liquid can be introduced, for example manually with a pipette, to reform or replenish the droplet. tank.
  • the support substrate 21 and the cover 25 may be made of silicon or glass, polycarbonate, polymer or ceramic.
  • the microchannel 10 is, for example, produced by lithography and selective etching. Depending on the desired dimensions, it is possible to use dry etching (gas attack, for example SF 6 , in a plasma). Engraving can be wet too. For glass (mainly SiO 2 ) or silicon nitrides, can use hydrofluoric or phosphoric acid etchings (these etchings are selective but isotropic). Engraving can be performed by laser ablation or ultrasound. Micromachining can also be used, in particular for polycarbonate.
  • the microchannel 10 may also be a soft fused silica capillary.
  • the height of the microchannel 10 is typically between a few tens of nanometers and 200 .mu.m, and preferably between 1 .mu.m and 100 .mu.m, preferably 30 .mu.m.
  • the length of the microchannel 10 can be from a few hundred microns to a few centimeters, for example 50cm.
  • the displacement and forming electrodes 31, 42, as well as the transfer electrode 47 and the reservoir electrolyte 46, and the counter electrode 43, may be produced by depositing a thin layer of a metal chosen from Au , Al, ITO, Pt, Cu, Cr ... or an Al-Si alloy ... using conventional microtechnologies of microelectronics, for example by photolithography.
  • the electrodes 31, 42, 46, 47 are then etched in a suitable pattern, for example by wet etching.
  • the thickness of the electrodes 31, 42, 46, 47 may be between 10 nm and 1 ⁇ m, and preferably be of the order of 300 nm.
  • the length of the electrodes 31 and 42 can be between a few micrometers to a few millimeters, preferably between 50 .mu.m and 1 mm, preferably 800 .mu.m.
  • the surface of these electrodes depends on the size of the drops to be formed and moved.
  • the spacing between adjacent electrodes may be between 1 ⁇ m and 20 ⁇ m.
  • the displacement and drop-forming electrodes 31 and 42 may have a substantially square or rectangular shape, as shown in the figures.
  • the inter-electrode spacing may have a curved or angular shape.
  • the edge of an electrode may have a sawtooth shape substantially parallel to the edge of the neighboring electrode having a corresponding shape. This form of electrodes facilitates the passage of the drop of liquid from one electrode to another.
  • the reservoir electrode 46 may have a comb or half-star shape, or even a tip, to ensure an electrode surface gradient.
  • the transfer electrode 47 has a shape adapted to that of the reservoir electrode 46.
  • a dielectric layer may cover the various electrodes 31, 42, 46, 47. It may be made of Si 3 N 4 , SiO 2 , SiN, barium strontium titanate (BST) or other high-permittivity materials such as HFO 2 , Al 2 O 3 , Ta 2 O 5 [29], Ta 2 O 5 -TiO 2 , SrTiO 3 or Ba 1-x Sr x TiO 3 .
  • the thickness of this layer may be between 100 nm and 3 ⁇ m, generally between 100 nm and 1 ⁇ m, preferably 300 nm.
  • the dielectric layer of SiO 2 can be obtained by thermal oxidation.
  • PECVD Plasma assisted vapor phase
  • LPCVD low pressure vapor deposition
  • the hydrophobic surface 22 may be deposited on the dielectric layer.
  • a Teflon deposit by dipping or spray or SiOC deposited by plasma can be achieved.
  • Hydrophobic silane deposition in the vapor or liquid phase can be carried out. Its thickness will be between 100 nm and 5 ⁇ m, preferably 1 ⁇ m. This layer makes it possible in particular to reduce or even to avoid the effects of hysteresis of the wetting angle.
  • a hydrophobic layer 26 covers the counter electrode 43.
  • the microchannel 10 is at least partially filled with F1 fluid, preferably insulating, which may be air, a mineral oil or silicone, a perfluorinated solvent, such as FC-40 or FC-70, or an alkane such as undecane.
  • F1 fluid preferably insulating, which may be air, a mineral oil or silicone, a perfluorinated solvent, such as FC-40 or FC-70, or an alkane such as undecane.
  • the liquid L1 is electrically conductive and may be an aqueous solution loaded with ions, for example Cl - , K + , Na + , Ca 2+ , Mg 2+ , Zn 2+ , Mn 2+.
  • the liquid may also be mercury, gallium, eutectic gallium, or ionic liquids of the type bmim PF6, bmim BF4 or tmba NTf2.
  • the drops 51 of liquid have a volume between a few nanoliters and a few microliters, for example about 64nl.
  • the fluid F1 is immiscible with the conductive liquid L1.
  • the hydrophilic character of said wall 12 may be obtained by using a naturally hydrophilic material for the substrate 21 in which the microchannel 10 is formed, such as aluminum, silica or hydrogel.
  • the substrate may also be a hydrated porous medium, such as hydrated Nafion.
  • the hydrophilic wall 12 may also comprise a layer of silica.
  • the silica layer can be obtained by thermal oxidation of the silicon.
  • the surface of the hydrophilic wall 12 may also be microtextured or nanotextured, so as to amplify the wetting effects and increase the capillarity force, as described in the publication of J. Bico et al. entitled “Wetting of textured surfaces” Colloids and Surfaces A, Physicochem. Eng. Aspects, 206 (2002), 41-46 .
  • a surface is called nanotextured (or microtextured) when it has a relief whose characteristic scale is from a few nanometers (or micrometers) to a few hundred nanometers (or micrometers).
  • the textured surface may have an array of roughnesses, for example nicks, pads or nanometric or micrometric grooves.
  • a film of liquid is then present between the roughnesses.
  • the thickness of this so-called impregnation film is comparable to the height of the roughness but remains negligible compared to the characteristic size of the drop.
  • the drop is placed, in fine , on a wet substrate which is a sort of patchwork of solid and liquid.
  • the wall has an important hydrophilic character.
  • a layer or a chemical film is usually deposited on the wall 12, the thickness of which may vary between a few nanometers and a few hundred microns.
  • a silanization of a metal oxide or semiconductor surface for example SiO 2 , HfO 2 , ITO, TiO 2 , SnO 2
  • polymers for example PDMS, COC
  • a hydrophilic surface In order to be as hydrophilic as possible, the silanes preferably carry an ionic group such as, for example, a carboxylate, a phosphate, a phosphonate, an imidazolium, a protonated amine, a quaternary amine or a sulphonate.
  • an ionic group such as, for example, a carboxylate, a phosphate, a phosphonate, an imidazolium, a protonated amine, a quaternary amine or a sulphonate.
  • the group conferring the hydrophilic property may be of the same type as that described above.
  • the preparation of such compounds and their use on surfaces are described in particular in the publication of F. Durmaz et al. entitled "New phosphates / phosphonates; A modular approach to functional sams, European Cells and Materials, Vol. 6, Suppl. 1, 2003, 55 .
  • Polymer families make it possible to obtain a hydrophilic and resistant layer of a few hundred nanometers, such as polyhydroxystyrenes.
  • the patent application W02007 / 053326 also describes hydrophilic groups, for example silanols, introduced into a polymer matrix to be deposited to form the hydrophilic layer.
  • hydrophilic groups for example silanols
  • a third embodiment of the invention is shown on the figure 5 in top view.
  • the microchannel 10 may comprise a second fluid F2 disposed downstream of the first fluid F1 so as to form therewith an interface 12.
  • the first and second fluids F1, F2 are immiscible between them.
  • the interface I2 is located in a connection portion 17.
  • the connecting portion 17 defines an upstream portion 13 extending from the inlet orifice 11 to the connecting portion 17, and a downstream portion 16 extending downstream of the connecting portion 17.
  • the height of the connecting portion 17 is substantially greater than that of the upstream portion 13 of the microchannel.
  • the height is of the order of 5 to 50 times the height of the upstream portion 13, preferably 10 times.
  • the height of the upstream 13 and downstream 16 portions is constant.
  • the downstream portion 16 may have an identical height, greater or less than that of the connecting portion 17. In the example of the figure 4 , the downstream portion 16 has a height substantially identical to that of the upstream portion 13.
  • connecting portion 17 reduces the effects of the hysteresis of the contact angle that oppose the flow of fluids. Indeed, these are inversely proportional to the height of the connecting portion 17.
  • the means for forming and moving the drops are here in confined configuration, as described in the second embodiment and as shown in FIG. figure 5 . Alternatively, they may be in an open configuration, as described in the first embodiment.
  • This third embodiment of the invention has the advantage of delivering a calibrated flow rate of fluid F2 at the outlet of the downstream portion 16 of the microchannel.
  • a fourth embodiment of the invention is shown on the figure 6 in longitudinal section.
  • the inlet orifice 11 is disposed in the same plane as the displacement electrode 31 and surrounded by it.
  • the input axis of the orifice, here following k, is substantially orthogonal to the plane of the electrode of displacement, here (i, j).
  • a drop 51 which covers the displacement electrode is brought into contact with the hydrophilic wall 12 through the inlet orifice 11.
  • a connecting portion 17 is disposed between an upstream portion 13 and a downstream portion 16 of the microchannel.
  • the upstream portion 13 comprises a first upstream portion 14 and a second upstream portion 15.
  • the first upstream portion 14 extends from the inlet port 11.
  • the second upstream portion 15 extends from the first upstream portion 14 to the connecting portion 17.
  • the downstream portion 16 corresponds to a third portion 16 of the microchannel.
  • the second upstream portion 15 comprises a plurality of second upstream channel elemental upstream portions 15 'arranged in parallel, each communicating with the first upstream portion 14 and with the connecting portion 17.
  • the second elementary portions 15 ' may be arranged in a hexagonal network and have a diameter of the order of a few tens of microns, preferably 30 microns.
  • each second elementary portion 15 ' has a circular cross section, hexagonal or having a shape of the same type.
  • the second elementary portions 15 ' can be obtained by plasma etching of the RIE type of the substrate 21.
  • the second elementary portions 15 ' are filled with liquid L1 and / or first fluid F1.
  • the second elementary portions 15 ' may be of a number of hundreds, and have a height (diameter) of a few tens of microns, preferably 30 microns, and a length of a few hundred microns, preferably 700 microns.
  • the means for forming and moving the drops are here in confined configuration, as described in the second embodiment and as shown in FIG. figure 6 . Alternatively, they may be in an open configuration, as described in the first embodiment.
  • a variant of the fourth embodiment of the invention is represented on the figure 7 in longitudinal section.
  • two elementary micropumps each of which is substantially identical to that described in the fourth embodiment, are arranged in parallel and are interconnected on the one hand by a common well 27 filled with liquid L1, and on the other hand by a junction connecting the downstream portions 16-1 and 16-2. More specifically, the two downstream portions 16-1 and 16-2 are connected by a junction 18 so as to form only a portion 19.
  • the two micropumps may have means for controlling the electrodes for forming and moving drops that are independent of one another.
  • the second fluids F2-1 and F2-2 manipulated by the two micropumps may be different.
  • each second fluid F2-1 and F2-2 can be controlled from the control means of the electrodes.
  • the first fluids F1-1 and F1-2 are advantageously identical.
  • the elementary micropumps may not be interconnected at their respective downstream portion 16, to provide an independent exemption of their respective second fluid F2.
  • the phenomenon of direct electrowetting can be realized.
  • the capacity intervening is not that of the dielectric layer but that of a double electric layer forming in the conductive liquid L1 on the surface of the electrodes 31, 41.
  • the applied voltages must remain sufficiently low to avoid electrochemical phenomena such as the electrolysis of water.
  • the thickness e involved in the relationship connecting the contact angle ⁇ to the applied voltage U, described above, is that of the double layer, which is of the order of a few nanometers.
  • the zwitterions used may be amine sulfonates, amine phosphates, amine carbonates, or amine carboxylates, and in particular, trialkylammonium alkane sulfonates, alkyl imidazole alkanesulfonates or alkyl alkanesulfonates pyridine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

L'invention concerne une micropompe dont la force de pression n'est pas limitée par l'angle de saturation d'électromouillage, tout en présentant une fabrication simplifiée. Selon l'invention, le microcanal (10) comporte un orifice d'entrée (11) et présente une paroi hydrophile (12) s'étendant à partir dudit orifice d'entrée (11). Des moyens de déplacement sont prévus pour déplacer une goutte (51) de liquide (L1) par électromouillage sur une surface hydrophobe (22) jusqu'à mettre en contact ladite goutte (51) avec ladite paroi hydrophile (12), de sorte que ladite goutte (51) s'introduit par mouillage dans ledit microcanal (10) au travers dudit orifice d'entrée (11), provoquant le déplacement dudit fluide (F1).

Description

    DOMAINE TECHNIQUE
  • La présente invention se rapporte au domaine général de la microfluidique et, plus particulièrement, à celui des micropompes, et concerne une micropompe à actionnement par gouttes.
  • ETAT DE LA TECHNIQUE ANTERIEURE
  • Les micropompes permettent d'assurer l'écoulement contrôlé d'un fluide, en particulier dans un microcanal, et interviennent dans de nombreux systèmes microfluidiques.
  • Par exemple, des micropompes peuvent être présentes dans les laboratoires sur puce, les systèmes d'injection de substances médicales, ou encore les circuits hydrauliques de refroidissement de puces électroniques.
  • L'actionnement des micropompes peut être réalisé de différentes manières, par exemple, à l'aide d'un dispositif piézoélectrique, électrostatique, thermopneumatique, voire électromagnétique. Une présentation de ces différents dispositifs d'actionnement peut être trouvée dans le document de D.J. Laser et J.G. Santiago intitulé « A review of micropumps », J. Micromech. Microeng., 14(2004), R35-R64.
  • Cependant, ces dispositifs d'actionnement présentent certains inconvénients comme la présence de membranes déformables ou des valves, l'utilisation de tensions élevées, par exemple pour les dispositifs piézoélectriques ou électrostatiques, ou une consommation électrique importante par exemple avec les dispositifs thermopneumatiques ou électromagnétiques.
  • Une autre approche, qui permet d'éviter au moins en partie les inconvénients mentionnés ci-dessus, consiste à actionner la micropompe par électromouillage, et plus précisément par électromouillage sur diélectrique.
  • Ainsi, la demande de brevet WO2002/07503A1 décrit une micropompe, illustrée en Fig. 1, comportant un substrat dans lequel est formé un microcanal 10, et un dispositif d'actionnement permettant d'assurer l'écoulement d'un fluide F1 dans le microcanal 10. Le principe de fonctionnement du dispositif d'actionnement repose sur le déplacement par électromouillage d'un liquide L1 conducteur dans le microcanal 10 à partir d'un réservoir 41.
  • Le dispositif d'actionnement comprend un réseau linéaire d'électrodes de déplacement 31(1), 31(2), 31 (3)... intégrées au substrat et disposées dans le microcanal 10 à partir du réservoir 41. Une contre-électrode 43 est disposée dans le réservoir 41 et assure un contact électrique avec le liquide conducteur L1. Les électrodes de déplacement sont recouvertes d'une couche diélectrique hydrophobe (non représentée).
  • Un générateur de tension (non représenté) est connecté au réseau d'électrodes de déplacement 31 et à la contre-électrode 43, et permet d'appliquer une tension U entre les électrodes.
  • Le liquide conducteur L1 forme avec le fluide F1 remplissant le microcanal 10 une interface I1.
  • Lorsque l'électrode de déplacement 31(i) située en regard de l'interface I1 est activée, à l'aide de moyens de commutation (non représentés) dont la fermeture établit un contact entre cette électrode et la source de tension via un conducteur commun, l'ensemble liquide sous tension L1, couche diélectrique et électrode activée 31(i) agit comme une capacité.
  • Comme indiqué dans l'article de Berge intitulé « Electrocapillarité et mouillage de films isolants par l'eau », C.R. Acad. Sci., 317, série 2, 1993, 157-163, l'angle de contact θ de l'interface I1 du liquide s'exprime selon la relation : cosθ U = cosθ 0 + ε r 2 e σ U 2
    Figure imgb0001

    où e est l'épaisseur de la couche diélectrique, εr la permittivité de cette couche et σ la tension de surface de l'interface I1 du liquide L1.
  • Lorsque la tension de polarisation U est alternative, le liquide L1 se comporte comme un conducteur dans la mesure où la fréquence de la tension de polarisation est sensiblement inférieure à une fréquence de coupure. Cette dernière, qui dépend notamment de la conductivité électrique du liquide, est typiquement de l'ordre de quelques dizaines de kilohertz (voir par exemple l'article de Mugele et Baret intitulé « Electrowetting: from basics to applications », J. Phys. Condens. Matter, 17 (2005), R705-R774). D'autre part, la fréquence est de préférence sensiblement supérieure à la fréquence correspondant au temps de réponse hydrodynamique du liquide, qui dépend des paramètres physiques comme la tension de surface, la viscosité ou la taille du microcanal, et qui est de l'ordre de quelques dizaines ou centaines de Hertz. La réponse du liquide dépend alors de la valeur efficace de la tension, puisque l'angle de contact dépend de la tension en U 2, selon la relation (1).
  • Il apparaît alors une pression électrostatique agissant sur l'interface I1, à proximité de la ligne de contact, comme l'explique l'article de Bavière et al. intitulé « Dynamics of droplet transport induced by electrowetting actuation », Microfluid Nanofluid, 4, 2008, 287-294. Le liquide peut alors être déplacé de proche en proche, sur la surface hydrophobe, par activation successive des électrodes 31(1), 31(2), etc. Dans son déplacement, le liquide L1 « pousse » le fluide F1 le long du microcanal 10.
  • Cependant, la micropompe selon l'art antérieur présente certains inconvénients.
  • La force de pression exercée par le liquide sur le fluide est proportionnelle à cosθ(U) Ainsi, plus l'angle θ(U) est petit, plus la force de pression sera grande et le débit important. Or, en pratique l'angle de contact décroît avec l'augmentation de la tension de polarisation U jusqu'à un angle de saturation qui est habituellement compris entre 30° et 80° environ. La force de pression, et donc le débit de fluide, sont alors limités par cet angle de saturation.
  • D'autre part, la longueur de déplacement du liquide dans le microcanal correspond à celle du réseau d'électrodes d'actionnement. Aussi, déplacer le liquide sur toute la longueur du microcanal nécessite d'étendre le réseau d'électrodes tout le long du microcanal. La fabrication est alors rendue particulièrement complexe, notamment dans le cas où le microcanal présente une forme transversale non rectangulaire, par exemple circulaire, ou s'il présente des changements de direction.
  • EXPOSÉ DE L'INVENTION
  • Le but de la présente invention est de proposer une micropompe dont la force de pression n'est pas limitée par l'angle de saturation d'électromouillage, tout en présentant une fabrication simplifiée.
  • Pour ce faire, l'invention a pour objet une micropompe pour déplacer un fluide dans un microcanal.
  • Selon l'invention, le microcanal comporte un orifice d'entrée et présente une paroi hydrophile s'étendant à partir dudit orifice d'entrée, et la micropompe comprend des moyens de déplacement d'une goutte de liquide par électromouillage sur une surface hydrophobe jusqu'à mettre en contact ladite goutte avec ladite paroi hydrophile, de sorte que ladite goutte s'introduit par mouillage dans ledit microcanal au travers dudit orifice d'entrée, provoquant le déplacement dudit fluide.
  • Ainsi, la force de pression exercée par le liquide sur le fluide dans le microcanal n'est pas limitée par l'angle de saturation d'électromouillage, comme dans la micropompe selon l'art antérieur.
  • En effet, selon la présente invention, l'électromouillage permet d'amener des gouttes de liquide jusqu'à l'orifice d'entrée du microcanal, mais n'est pas le phénomène moteur de la micropompe.
  • L'écoulement du fluide est obtenu par l'introduction de la goutte de liquide dans le microcanal au travers de l'orifice d'entrée. Celle-ci a naturellement lieu du fait de la différence de mouillabilité à laquelle est soumise la goutte. En effet, lorsque la goutte est mise en contact avec la paroi hydrophile au travers de l'orifice d'entrée, elle mouille dans le même temps la surface hydrophobe et la paroi hydrophile du microcanal. La différence de mouillabilité entre ces deux surfaces provoque la migration de l'ensemble de la goutte de la surface hydrophobe vers la paroi hydrophile. La goutte de liquide s'introduit alors dans le microcanal et « pousse » simultanément le fluide.
  • De plus, la réalisation de la micropompe est simplifiée puisqu'il n'est plus nécessaire de disposer des électrodes d'électromouillage sur toute la longueur du microcanal.
  • Avantageusement, ladite goutte forme un angle de contact sur ladite paroi hydrophile sensiblement inférieur à celui formé par électromouillage sur ladite surface hydrophobe.
  • Lesdits moyens de déplacement comportent, de préférence, au moins une électrode de déplacement et une contre-électrode en contact électrique avec la goutte, et un générateur de tension pour appliquer une différence de potentiel entre une ou plusieurs électrodes de déplacement et ladite contre-électrode.
  • Lesdites électrodes de déplacement peuvent être disposées suivant un trajet déterminé.
  • Parmi lesdites électrodes de déplacement, une électrode de déplacement, dite de mise en contact, est avantageusement disposée de sorte qu'une goutte de liquide la recouvrant est en contact avec ladite paroi hydrophile au travers dudit orifice d'entrée.
  • Lesdits moyens de déplacement peuvent comporter une unique électrode de déplacement, celle-ci étant alors ladite électrode de mise en contact.
  • Ladite paroi hydrophile peut présenter une surface nanotexturée ou microtexturée.
  • Ladite paroi hydrophile peut être en matériau hydrophile.
  • Ladite paroi hydrophile peut comprendre une couche d'un matériau hydrophile.
  • Avantageusement, ladite paroi hydrophile s'étend sur toute la longueur du microcanal.
  • Une couche de matériau diélectrique est de préférence disposée entre ladite surface hydrophobe et lesdites électrodes.
  • Avantageusement, le microcanal comporte une portion de raccord définissant une portion amont et une portion aval, ladite portion de raccord présentant une section transversale sensiblement plus grande que celle de la portion amont.
  • La taille de la portion de raccord est, de préférence, comprise entre 5 et 50 fois celle de la portion amont.
  • Un second fluide peut être situé en aval du premier fluide de manière à former avec ce dernier une interface localisée dans ladite portion de raccord.
  • La portion amont peut comprendre une première portion amont s'étendant à partir de l'orifice d'entrée et une pluralité de deuxièmes portions amont élémentaires disposées en parallèle communiquant chacune avec ladite première portion amont.
  • Chaque deuxième portion amont élémentaire peut communiquer avec ladite portion de raccord.
  • Chaque deuxième portion amont élémentaire peut être au moins partiellement remplie dudit fluide.
  • La micropompe comprend avantageusement des moyens de formation de ladite goutte sur ladite surface hydrophobe, par électromouillage.
  • Les moyens de formation de gouttes peuvent comprendre une pluralité d'électrodes de formation de goutte, dont l'une est adjacente à une électrode de déplacement.
  • Une seconde surface hydrophobe peut être disposée en regard de la première surface hydrophobe de manière à former un dispositif fermé ou confiné pour ladite goutte.
  • D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
  • BRÈVE DESCRIPTION DES DESSINS
  • On décrira à présent, à titre d'exemples non limitatifs, des modes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels :
    • La figure 1, déjà décrite, est une représentation schématique en vue de dessus d'une micropompe selon l'art antérieur ;
    • Les figures 2A et 2B sont des représentations schématiques en vue de dessus d'une micropompe selon un premier mode de réalisation de l'invention, pour deux étapes de fonctionnement, dans lequel la configuration des moyens de formation et de déplacement de gouttes est dite ouverte ou non confinée ;
    • Les figures 3A à 3C illustrent la formation de gouttes par électromouillage dans le cas d'une micropompe selon le premier mode de réalisation ;
    • Les figures 4A et 4B sont des représentations schématiques d'une micropompe selon un deuxième mode de réalisation, dans lequel la configuration des moyens de formation et de déplacement de gouttes est dite confinée, la figure 4A étant une vue de dessus et la figure 4B une vue en coupe longitudinale de la figure 4A selon l'axe I-I ;
    • La figure 5 est une représentation schématique en vue de dessus d'une micropompe selon un troisième mode de réalisation de l'invention, dans lequel le microcanal comprend une portion de raccord ;
    • La figure 6 est une représentation schématique en coupe longitudinale d'une micropompe selon un quatrième mode de réalisation de l'invention, dans lequel le microcanal comporte une pluralité de portions élémentaires disposées en parallèle ;
    • La figure 7 est une représentation schématique en coupe longitudinale d'une micropompe selon une variante du quatrième mode de réalisation représenté sur la figure 6, comprenant deux micropompes élémentaires disposées en parallèle.
    EXPOSÉ DÉTAILLÉ D'UN MODE DE RÉALISATION PREFERE
  • Un premier mode de réalisation de l'invention est représenté schématiquement sur les figures 2A et 2B, en vue de dessus.
  • La micropompe comprend un microcanal 10 rempli au moins partiellement d'un fluide F1 et un dispositif d'actionnement permettant d'assurer l'écoulement dudit fluide F1 dans le microcanal 10.
  • La figure 2A montre un repère orthonormé direct (i,j,k). Dans le premier mode de réalisation de l'invention, une goutte 51 peut être déplacée dans un plan sensiblement parallèle au plan (i,j).
  • On définit l'axe longitudinal du microcanal 10 comme étant la ligne médiane du microcanal. L'axe longitudinal peut être rectiligne ou courbe, et présenter des changements de direction.
  • Le microcanal 10 peut présenter une section transversale polygonale convexe, par exemple carrée, rectangulaire, hexagonale, une section carrée étant un cas particulier de la forme rectangulaire plus générale. Il peut également présenter une section transversale circulaire. Le terme microcanal est pris ici dans un sens général et comprend notamment le cas particulier du microtube dont la section est circulaire. Le microcanal peut être également le cathéter d'un système de délivrance de médicament.
  • On désigne par le terme hauteur la taille caractéristique transversale du microcanal 10. Dans le cas d'un microtube, la hauteur désigne le diamètre.
  • Selon l'invention, le microcanal 10 comprend un orifice d'entrée 11 permettant le passage d'un liquide L1 de l'extérieur à l'intérieur du microcanal 10.
  • De préférence, l'orifice d'entrée 11 est situé à une extrémité du microcanal 10.
  • Le microcanal 10 comporte une paroi hydrophile 12 qui s'étend à partir dudit orifice d'entrée 11, sur une partie du contour transversal, ou, de préférence, sur tout le contour transversal.
  • La paroi hydrophile 12 peut s'étendre sur une longueur définie suivant l'axe longitudinal du microcanal, ou de préférence, s'étendre sur toute la longueur du microcanal.
  • Le dispositif d'actionnement de la micropompe assure l'écoulement du fluide F1 dans le microcanal 10.
  • Il comprend des moyens de déplacement d'au moins une goutte 51 de liquide L1, par électromouillage, sur une surface hydrophobe jusqu'à l'orifice d'entrée 11 du microcanal 10.
  • Les moyens de déplacement comprennent ici une unique électrode de déplacement 31 intégrée dans ou disposée sur un substrat support 21, et recouverte de la surface hydrophobe.
  • L'électrode de déplacement 31, dite électrode de mise en contact, est disposée de sorte qu'une goutte 51 de liquide L1 la recouvrant est en contact avec la paroi hydrophile 12 au travers dudit orifice d'entrée 11.
  • Selon une variante non représentée, une série d'électrodes de déplacement peut être disposée selon un trajet déterminé se terminant par une électrode de mise en contact 31 disposée de manière à mettre en contact une goutte 51 la recouvrant avec la paroi hydrophile 12 au travers de l'orifice d'entrée 11 du microcanal 10.
  • On notera que les verbes « recouvrir », « être situé sur » et « être disposé sur » n'impliquent pas ici nécessairement de contact direct. Ainsi, la goutte 51 de liquide peut recouvrir l'électrode de déplacement 31 sans qu'il y ait contact direct, une surface hydrophobe étant ici disposée entre la goutte 51 et l'électrode 31.
  • Par ailleurs, il est à noter que les moyens de déplacement des gouttes sont ici dans une configuration dite ouverte, ou non confinée, dans la mesure où lesdites gouttes de liquide ne sont pas confinées entre deux substrats supports, ou deux surfaces hydrophobes, parallèles entre eux, mais reposent uniquement sur le substrat support 21.
  • Dans les figures 2A et 2B, l'orifice d'entrée 11 est disposé sensiblement en regard de l'électrode de déplacement 31. Plus précisément, l'axe d'entrée au travers de l'orifice 11, ici suivant i, est sensiblement parallèle au plan (i,j) de l'électrode de déplacement 31. D'autres dispositions sont possibles, comme représenté en figure 5 (décrite en détail plus loin), où l'orifice d'entrée 11 est formé sensiblement dans le même plan que l'électrode de déplacement 31. L'axe d'entrée au travers de l'orifice, ici suivant k, est sensiblement perpendiculaire au plan (i,j) de l'électrode de déplacement 31. Dans cet exemple, l'orifice d'entrée 11 est entouré de l'électrode de déplacement 31, de sorte qu'une goutte 51 qui recouvre l'électrode 31 est mise en contact avec ladite paroi hydrophile 12 au travers dudit orifice d'entrée 11.
  • La surface hydrophobe peut être une couche d'un matériau hydrophobe.
  • De préférence, une couche d'un matériau diélectrique est disposée entre la ou les électrodes de déplacement 31 et la surface hydrophobe.
  • Les couches diélectrique et hydrophobe peuvent être une couche unique combinant ces deux fonctions, par exemple une couche en parylène.
  • De préférence, une contre-électrode (non représentée) est disposée pour assurer un contact électrique avec la goutte 51 de liquide. Elle est disposée au moins en regard de l'électrode de déplacement 31. Cette contre-électrode peut être soit une caténaire, un fil enterré entre la couche diélectrique et la couche hydrophobe, ou une électrode planaire intégrée dans un capot de la micropompe (un tel capot est décrit plus loin). Dans ce dernier cas, une couche hydrophobe électriquement conductrice peut recouvrir la contre-électrode.
  • L'électrode de déplacement 31 et la contre-électrode peuvent être connectées à un générateur de tension (non représenté) continue ou, de préférence, alternative, pour déplacer la goutte 51 par électromouillage, comme décrit précédemment.
  • Dans le cas d'une tension alternative, la fréquence est avantageusement comprise entre 100Hz et 10kHz, de préférence de l'ordre de 1kHz, de manière à conserver les propriétés électriques conductrices du liquide et à excéder le temps de réponse hydrodynamique de la goutte 51. La réponse de la goutte 51 dépend alors de la valeur efficace de la tension appliquée. La valeur efficace peut varier entre quelques volts et quelques centaines de volts, par exemple 200V. De préférence, elle est de l'ordre de quelques dizaines de volts.
  • Il est particulièrement avantageux que la micropompe dispose de moyens de formation de gouttes 51 par électromouillage à partir d'un réservoir 41 contenant ledit liquide L1.
  • Comme le montre la figure 2A, les moyens de formation de gouttes comprennent de préférence au moins trois électrodes de formation 42(1), 42(2), 42(3) intégrées dans ou déposées sur ledit substrat support 21 et recouvertes de ladite surface hydrophobe.
  • De préférence, ladite couche diélectrique est également disposée entre la surface hydrophobe et les électrodes de formation 42.
  • Une première électrode de formation 42(1) est disposée sensiblement en regard ou à proximité du réservoir 41 contenant le liquide. Une deuxième électrode de formation 42 (2) est adjacente à la première 42(1) et suivie d'une troisième électrode 42(3). La troisième électrode 42(3) est, de préférence, adjacente à l'électrode de déplacement 31.
  • Avantageusement, les moyens de formation de gouttes ont en commun avec les moyens de déplacement la contre-électrode et le générateur de tension précédemment décrits. La contre-électrode est alors disposée de manière à être également en regard des électrodes de formation 42.
  • Des moyens de commutation (non représentés) sont prévus pour activer successivement les différentes électrodes 42(1), 42(2), 42(3), 31 et assurer ainsi, d'une part, la formation d'une goutte et, d'autre part, son déplacement jusqu'à l'orifice d'entrée 11 du microcanal 10.
  • Les figures 3A à 3C illustrent un exemple de formation d'une goutte par électromouillage à partir d'un réservoir 41 contenant ledit liquide L1, dans le cas d'une configuration ouverte. La demande de brevet W02006/070162 , déposée au nom de la demanderesse, décrit en détail le principe de formation de gouttes utilisé ici, et donne également un exemple de formation de gouttes en configuration confinée.
  • Comme le montre la figure 3A, ledit réservoir 41 peut être une électrode réservoir au niveau de laquelle est disposée une goutte réservoir 53 de liquide L1. Cette électrode réservoir définit un micro-réservoir de rétention de liquide, et peut être similaire ou identique à l'électrode réservoir 46 décrite plus loin en référence au deuxième mode de réalisation de l'invention. Ladite électrode réservoir 41 peut présenter une forme circulaire comme sur les figures 2A et 2B, carrée comme sur la figure 4A, ou toute autre forme.
  • Trois électrodes 42(1), 42(2), 42(3) sont représentées sur les figures 3A à 3C.
  • L'activation de cette série d'électrodes 42(1), 42(2), 42(3) conduit à l'étalement du liquide par électromouillage à partir de la goutte réservoir 53 sous forme de segment liquide 52, comme représenté sur la figure 3B.
  • Puis, on coupe en deux parties ce segment liquide 52 en désactivant l'électrode 42(2). On obtient ainsi une goutte 51, comme illustré sur la figure 3C.
  • On utilise donc une série d'électrodes 42(1), 42(2), 42(3) pour étirer du liquide L1 de la goutte réservoir 53 en un segment liquide 52 (figure 3B) puis pour couper ce segment liquide 52 (figure 3C) et former une goutte 51 qui va pouvoir être déplacée par les moyens de déplacement.
  • Le fonctionnement de la micropompe selon le premier mode de réalisation de l'invention est le suivant, en référence aux figures 2A et 2B.
  • Les moyens de formation de gouttes sont activés de manière à former par électromouillage une goutte 51 de liquide L1 sur la surface hydrophobe, tel que décrit précédemment.
  • Puis les moyens de déplacement sont activés pour déplacer par électromouillage la goutte 51 formée jusqu'à l'orifice d'entrée 11, et ainsi la mettre en contact de la paroi hydrophile 12.
  • Lorsque la goutte est en contact avec la paroi hydrophile 12 au travers de l'orifice d'entrée 11, elle s'introduit spontanément par mouillage dans le microcanal 10. Plus précisément, la goutte migre de la surface hydrophobe du dispositif d'actionnement vers la paroi hydrophile 12 du microcanal 10. Ce faisant, elle « pousse » le fluide F1 contenu dans le microcanal 10 et assure ainsi l'écoulement contrôlé de celui-ci.
  • Lorsque la goutte 51 s'est entièrement introduite dans le microcanal 10, la procédure peut être répétée. Une deuxième goutte 51 peut être amenée jusqu'à l'orifice d'entrée 11 par électromouillage puis introduite par mouillage dans le microcanal 10. Plus précisément, la deuxième goutte 51 coalesce avec le liquide L1 déjà présent dans le microcanal 10 à partir de l'orifice d'entrée 11. On obtient alors une goutte de plus grand volume dont une partie mouille la surface hydrophobe et l'autre partie mouille la paroi hydrophile 12. Le phénomène reste identique. La nouvelle goutte va se déplacer pour démouiller la surface hydrophobe et mouiller davantage la paroi hydrophile 12 du microcanal 10. Et ce faisant, elle « pousse » le fluide F1 et assure ainsi l'écoulement de celui-ci.
  • La micropompe selon l'invention présente donc l'avantage de ne pas être limitée par l'angle de saturation d'électromouillage. La force motrice est alors la force de mouillage qui apparaît spontanément lorsque la goutte 51 de liquide est en contact avec la paroi hydrophile 12 du microcanal 10. Cette force de mouillage dépend de l'angle de contact que forme le liquide L1 sur la paroi hydrophile. Celui-ci peut être très petit, par exemple de l'ordre de, ou inférieur à, 10°. La force de pression et donc le débit de fluide dans le microcanal sont alors plus importants que dans la micropompe selon l'art antérieur.
  • De plus, l'écoulement du fluide F1 est assuré à mesure que le microcanal 10 est alimenté en gouttes 51 de liquide par les moyens de déplacement. Le liquide L1 peut s'étendre dans le microcanal 10 sur toute la longueur de la paroi hydrophile 12. Il n'est ainsi pas nécessaire de disposer des électrodes de déplacement 31 le long du microcanal 10. La fabrication de la micropompe est alors particulièrement simplifiée.
  • Un deuxième mode de réalisation de l'invention est représenté sur les figures 4A et 4B où la première est une vue de dessus et la seconde une coupe longitudinale de la première selon un axe I-I.
  • Les références numériques identiques à celles de la figure 2A désignent des éléments identiques ou similaires.
  • Dans ce mode de réalisation, les moyens de formation et de déplacement de gouttes confinent la goutte de liquide.
  • En effet, une seconde surface hydrophobe 26 est disposée en regard de la première surface hydrophobe 22 et sensiblement parallèle à celle-ci, et intégrée dans ou disposée sur un capot supérieur 25.
  • Ainsi, une goutte 51 peut être formée par les moyens de formation de gouttes et déplacée par les moyens de déplacement entre les première et seconde surfaces hydrophobes 22, 26.
  • De préférence, la contre-électrode 43 est intégrée au capot 25 ou disposée sur celui-ci, et recouverte par la seconde surface hydrophobe 26.
  • Les moyens de formation de goutte sont avantageusement similaires à ceux décrits dans la demande de brevet W02006/070162 déposée au nom de la demanderesse.
  • Ainsi, un puits 27 est pratiqué dans le capot supérieur 25.
  • Ce puits 27 est placé au moins partiellement en face d'une électrode de transfert 47, celle-ci étant intégrée au substrat 21 ou disposée sur celui-ci.
  • A la suite de l'électrode de transfert 47, on trouve une électrode réservoir 46, qui va permettre de définir un micro-réservoir de rétention de liquide.
  • Sont ensuite disposées les électrodes de formation de gouttes 42 suivies d'au moins une électrode de déplacement, ici une unique électrode dite de mise en contact 31.
  • Notons que la couche diélectrique, si elle est distincte de la couche hydrophobe 22, n'est pas représentée sur les figures 4A et 4B.
  • Comme le décrit la demande de brevet W02006/070162 , l'électrode de transfert 47 permet de pomper le liquide du réservoir (non représenté) communiquant avec le puits, et de l'amener à proximité de l'électrode réservoir 46.
  • Sur cette électrode réservoir peut être accumulée une certaine quantité de liquide. Elle est représentée comme ayant une forme carrée ou rectangulaire sur la figure 4A, mais sa forme peut être quelconque. De préférence, elle peut accumuler au moins trois à quatre fois le volume des gouttes 51 à dispenser, et de préférence au moins 10 fois ou 20 fois le volume de chaque goutte dispensée 51.
  • Comme la distance entre les deux substrats 21, 25 est sensiblement constante (comme on peut le voir sur la figure 4B), c'est en fait la surface de l'électrode 46 qui est au moins trois à quatre fois égale, ou au moins 10 ou 20 fois égale à la surface de chacune des électrodes de formation de gouttes 42.
  • L'électrode de transfert, lorsqu'elle est activée, permet d'amener une portion de liquide, située dans le puits 27, à proximité de l'électrode réservoir 46.
  • Lorsque cette dernière est elle aussi activée, le liquide est transféré dans la zone située au-dessus de l'électrode réservoir 46.
  • Si l'on souhaite continuer à alimenter la zone située au-dessus de l'électrode réservoir 46, on peut réactiver l'électrode de transfert 47, puis l'électrode réservoir 46, de manière à continuer à accumuler du liquide dans cette zone réservoir.
  • Il est ainsi possible d'accumuler un volume important de liquide 53 (figure 4B). Un avantage important est que la pression dans ce volume de liquide accumulé au-dessus de l'électrode 46 est indépendante de la pression du liquide dans le puits 27 par désactivation de l'électrode de transfert 47.
  • Tant que l'électrode de transfert 47 n'est pas activée, le liquide défini par l'électrode réservoir 46 n'est pas en contact avec le puits 27. La formation de gouttes que l'on va pouvoir réaliser à partir du liquide stocké au-dessus de l'électrode réservoir 46 peut donc être réalisée de manière calibrée, tout en utilisant un puits 27, et indépendamment de la pression dans celui-ci, pour remplir le composant.
  • Il est à noter que les deux surfaces hydrophobes 22, 26 forment deux plans sensiblement parallèles et ne constituent pas un microcanal. Ainsi, le déplacement d'une goutte 51 n'entraîne pas de déplacement d'ensemble du fluide environnant dans la même direction. Celui-ci contourne la goutte 51 dans son déplacement. On peut ainsi amener une goutte 51 jusqu'à l'orifice d'entrée 11 sans introduire le fluide environnant dans le microcanal.
  • Cette disposition permet de dispenser des gouttes 51 de manière reproductible avec une grande précision en volume. Des coefficients de variation (CV) de volume (CV = 2x écart type/moyenne x100) inférieurs à 3% sont habituellement mesurés.
  • De plus, la micropompe selon ce mode de réalisation de l'invention permet de contrôler précisément l'écoulement du fluide F1 dans le microcanal 10. En effet, le fluide F1 est « poussé » par la goutte 51 de liquide sur une distance qui dépend notamment du volume de la goutte 51. Ainsi, la formation d'une goutte de volume calibré permet de déplacer le fluide F1 sur une distance précise.
  • Dans ce mode de réalisation de l'invention, la distance entre les deux surfaces hydrophobes 22, 26 est de l'ordre de quelques centaines de micromètres, de préférence 100µm. Les gouttes 51 obtenues présentent un volume compris entre quelques nanolitres à quelques microlitres, par exemple 64nl.
  • Selon des variantes non représentées, la goutte réservoir 53 située au niveau de l'électrode réservoir 46 peut être formée lors de la réalisation de la micropompe. Ainsi, les moyens de formation de gouttes ne comprennent pas de puits communiquant avec un réservoir, ni d'électrode de transfert, mais seulement une goutte réservoir située au niveau de l'électrode réservoir. Il est alors avantageux que le capot 25 comprenne une cavité au niveau de l'électrode réservoir 46, dans le but de loger une goutte réservoir d'un volume important.
  • Il est également possible que l'espace situé au niveau de l'électrode réservoir 46, ou ladite cavité, communique avec l'extérieur, de sorte que du liquide puisse être introduit, par exemple manuellement avec une pipette, pour reformer ou réalimenter la goutte réservoir. L'espace situé au niveau de l'électrode réservoir et ladite cavité, lorsque du liquide L1 y est présent, forment alors un réservoir.
  • Le substrat support 21 et le capot 25 peuvent être en silicium ou en verre, polycarbonate, polymère, céramique.
  • Le microcanal 10 est, par exemple, réalisé par lithographie et gravure sélective. En fonction des dimensions voulues, on pourra utiliser la gravure sèche (attaque par gaz, par exemple SF6, dans un plasma). La gravure peut être également humide. Pour le verre (majoritairement SiO2) ou des nitrures de silicium, on peut utiliser les gravures à l'acide fluorhydrique ou phosphorique (ces gravures sont sélectives mais isotropes). La gravure peut être effectuée par ablation laser ou encore par ultrasons. Le micro-usinage peut également être utilisé, en particulier pour du polycarbonate. Le microcanal 10 peut également être un capillaire souple en silice fondu.
  • La hauteur du microcanal 10 est typiquement comprise entre quelques dizaines de nanomètres et 200µm, et de préférence entre 1µm et 100µm, de préférence de 30µm. La longueur du microcanal 10 peut être de quelques centaines de microns à quelques centimètres, par exemple 50cm.
  • Les électrodes de déplacement et de formation 31, 42, ainsi que l'électrode de transfert 47 et l'électrde réservoir 46, et la contre-électrode 43, peuvent être réalisées par dépôt d'une fine couche d'un métal choisi parmi Au, Al, ITO, Pt, Cu, Cr... ou d'un alliage Al-Si... grâce aux microtechnologies classiques de la microélectronique, par exemple par photolithographie. Les électrodes 31, 42, 46, 47 sont ensuite gravées suivant un motif approprié, par exemple par gravure humide.
  • L'épaisseur des électrodes 31, 42, 46, 47 peut être comprise entre 10nm et 1µm, et être de préférence de l'ordre de 300nm. La longueur des électrodes 31 et 42 peut être comprise entre quelques micromètres à quelques millimètres, de préférence entre 50µm et 1mm, de préférence 800µm. La surface de ces électrodes dépend de la taille des gouttes à former et à déplacer.
  • L'espacement entre électrodes adjacentes peut être compris entre 1µm et 20µm.
  • Il est à noter que, dans les différents modes de réalisation, les électrodes de déplacement et de formation de gouttes 31 et 42 peuvent présenter une forme sensiblement carrée ou rectangulaire, telle que représentée sur les figures.
  • Cependant, l'espacement inter-électrodes peut présenter une forme courbe ou anguleuse. Dans le cas d'une forme anguleuse, le bord d'une électrode peut présenter une forme en dents de scie sensiblement parallèle au bord de l'électrode voisine présentant une forme correspondante. Cette forme d'électrodes facilite le passage de la goutte de liquide d'une électrode à l'autre.
  • Comme le décrit la demande de brevet W02006/07162 , l'électrode réservoir 46 peut présenter une forme de peigne ou de demi-étoile, voire d'une pointe, afin de garantir un gradient de surface d'électrode. L'électrode de transfert 47 a une forme adaptée à celle de l'électrode réservoir 46.
  • Une couche diélectrique peut recouvrir les différentes électrodes 31, 42, 46, 47. Elle peut être réalisée en Si3N4, SiO2, en SiN, en titanate de baryum strontium (BST) ou d'autres matériaux à permittivité élevée tels que du HFO2, Al2O3, Ta2O5 [29], Ta2O5-TiO2, SrTiO3 ou Ba1-xSrxTiO3. L'épaisseur de cette couche peut être comprise entre 100nm et 3µm, de manière générale comprise entre 100nm et 1µm, de préférence de 300nm. La couche diélectrique en SiO2 peut être obtenue par oxydation thermique. Un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD) est préféré au procédé de dépôt en phase vapeur à basse pression (LPCVD) pour des raisons de contraintes thermiques. En effet, la température du substrat n'est portée qu'entre 150°C et 350°C (selon les propriétés recherchées) contre 750°C environ pour le dépôt LPCVD.
  • Enfin, la surface hydrophobe 22 peut être déposée sur la couche diélectrique. Pour cela, un dépôt de Téflon par trempage ou par spray ou de SiOC déposé par plasma peut être réalisé. Un dépôt de silane hydrophobe en phase vapeur ou liquide peut être réalisé. Son épaisseur sera comprise entre 100nm et 5µm, de préférence de 1µm. Cette couche permet notamment de diminuer voire d'éviter les effets d'hystérésis de l'angle de mouillage.
  • Dans le cas d'une configuration confinée, une couche hydrophobe 26 recouvre la contre-électrode 43.
  • Le microcanal 10 est au moins partiellement rempli de fluide F1, de préférence isolant, qui peut être de l'air, une huile minérale ou silicone, un solvant perfluoré, comme du FC-40 ou du FC-70, ou encore un alcane comme de l'undécane.
  • Le liquide L1 est électriquement conducteur et peut être une solution aqueuse chargée en ions, par exemple en Cl-, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+. Le liquide peut également être du mercure, du gallium, du gallium eutectique, ou des liquides ioniques du type bmim PF6, bmim BF4 ou tmba NTf2.
  • Les gouttes 51 de liquide présentent un volume compris entre quelques nanolitres et quelques microlitres, par exemple 64nl environ.
  • Le fluide F1 est non miscible avec le liquide conducteur L1.
  • Le caractère hydrophile de ladite paroi 12 peut être obtenu en utilisant un matériau naturellement hydrophile pour le substrat 21 dans lequel est formé le microcanal 10, comme de l'aluminium, de la silice ou de l'hydrogel.
  • Le substrat peut également être un milieu poreux hydraté, comme du Nafion hydraté.
  • La paroi hydrophile 12 peut également comprendre une couche de silice. Dans le cas d'un substrat 21 réalisé en silicium, la couche de silice peut être obtenue par oxydation thermique du silicium.
  • La surface de la paroi hydrophile 12 peut également être microtexturée ou nanotexturée, de façon à amplifier les effets de mouillage et augmenter la force de capillarité, comme le décrit la publication de J. Bico et al. intitulée « Wetting of textured surfaces » Colloids and Surfaces A, Physicochem. Eng. Aspects, 206 (2002), 41-46.
  • Une surface est appelée nanotexturée (resp. microtexturée) lorsqu'elle présente un relief dont l'échelle caractéristique est de quelques nanomètres (resp. micromètres) à quelques centaines de nanomètres (resp. micromètres). La surface texturée peut présenter un réseau de rugosités, par exemple des picots, des plots ou des rainures nanométriques ou micrométriques.
  • Pour obtenir le caractère hydrophile, voire super-hydrophile de la paroi, un film de liquide est alors présent entre les rugosités. L'épaisseur de ce film dit d'imprégnation est comparable à la hauteur des rugosités mais reste négligeable par rapport à la taille caractéristique de la goutte. Ainsi, comme l'explique P.-G. de Gennes et al. dans l'ouvrage intitulé « Gouttes, bulles, perles et ondes » 2002, la goutte se trouve posée, in fine, sur un substrat mouillé qui est une sorte de patchwork de solide et de liquide. Ainsi, la paroi présente un caractère hydrophile important.
  • Différentes techniques connues de l'homme du métier peuvent être utilisées pour obtenir une surface texturée, et sont décrites notamment dans la thèse de M. Callies Reyssat intitulée « Splendeur et misère de l'effet lotus », 2007, Université Paris VI.
  • Les techniques de traitement chimique de surface peuvent être utilisées pour rendre hydrophile la paroi 12 du microcanal 10. Une couche ou un film chimique est habituellement déposé sur la paroi 12, dont l'épaisseur peut varier entre quelques nanomètres et quelques centaines de microns.
  • Par exemple, une silanisation d'une surface d'oxyde métallique ou semi-conducteur (par exemple SiO2, HfO2, ITO, TiO2, SnO2) ou encore des polymères (par exemple le PDMS, le COC) en phase vapeur ou en phase liquide permet de rendre hydrophile la paroi du microcanal. Une grande variété de silanes permet d'obtenir une surface hydrophile. Afin d'être le plus hydrophile possible, les silanes portent, de préférence, un groupe ionique tel que, par exemple, un carboxylate, un phosphate, un phosphonate, un imidazolium, une amine protonée, une amine quaternaire, un sulfonate. Un certain nombre de ces fonctions, la synthèse des molécules associées et les méthodes de fonctionnalisation des surfaces sont décrits dans la demande de brevet W02007/088187 .
  • Pour d'autres surfaces d'oxydes tels que TiO2 ou SnO2, il est avantageux d'utiliser un greffage de la molécule par phosphatation ou phosphanation, pour améliorer la résistance de la couche. Dans ce cas, le groupement conférant la propriété hydrophile pourra être du même type que celui décrit précédemment. La préparation de tels composés et leur mise en oeuvre sur les surfaces sont notamment décrites dans la publication de F. Durmaz et al. intitulée « New phosphates/phosphonates; A modular approach to functional sams », European Cells and Materials, Vol. 6, Suppl. 1, 2003, 55.
  • Ces deux méthodes décrites précédemment peuvent être mises en oeuvre de différentes façons suivant l'épaisseur de la couche que l'on souhaite obtenir. Ainsi, en milieu anhydre et peu concentré, on obtient ainsi une couche fine de quelques nanomètres. En présence d'eau et d'alcool (par exemple l'éthanol), on obtient une couche plus épaisse de quelques centaines de nanomètres à la centaine de microns par des procédés de type sol-gel.
  • Il est à noter que le greffage de molécules de la famille des polysaccharides permet également d'obtenir une surface hydrophile, comme le décrit la demande de brevet W02002/100559 .
  • Des familles de polymères permettent d'obtenir une couche hydrophile et résistante de quelques centaines de nanomètres, comme les polyhydroxystyrènes.
  • La demande de brevet W02007/053326 décrit également des groupements hydrophiles, par exemple des silanols, introduits dans une matrice polymère à déposer pour former la couche hydrophile.
  • Toutes les techniques mentionnées ci-dessus, connues de l'homme du métier, permettent de rendre hydrophile la paroi du microcanal à partir de l'orifice d'entrée.
  • Un troisième mode de réalisation de l'invention est représenté sur la figure 5 en vue de dessus.
  • Les références numériques identiques à celles de la figure 4A désignent des éléments identiques ou similaires.
  • Dans ce mode de réalisation, le microcanal 10 peut comprendre un second fluide F2 disposé en aval du premier fluide F1 de manière à former avec celui-ci une interface 12. De préférence, les premier et second fluides F1, F2 ne sont pas miscibles entre eux.
  • De préférence, l'interface I2 est située dans une portion de raccord 17.
  • La portion de raccord 17 définit une portion amont 13 s'étendant de l'orifice d'entrée 11 jusqu'à la portion de raccord 17, et une portion aval 16 qui s'étend en aval de la portion de raccord 17.
  • La hauteur de la portion de raccord 17 est sensiblement supérieure à celle de la portion amont 13 du microcanal. De préférence, la hauteur est de l'ordre de 5 à 50 fois la hauteur de la portion amont 13, de préférence 10 fois. Préférentiellement, la hauteur des portions amont 13 et aval 16 est constante.
  • La portion aval 16 peut présenter une hauteur identique, supérieure ou inférieure à celle de la portion de raccord 17. Dans l'exemple de la figure 4, la portion aval 16 présente une hauteur sensiblement identique à celle de la portion amont 13.
  • La présence de la portion de raccord 17 permet de diminuer les effets de l'hystérésis de l'angle de contact qui s'opposent à l'écoulement des fluides. En effet, ceux-ci sont inversement proportionnels à la hauteur de la portion de raccord 17.
  • Les moyens de formation et de déplacement des gouttes sont ici en configuration confinée, telle que décrite dans le deuxième mode de réalisation et comme le montre la figure 5. Alternativement, ils peuvent être en configuration ouverte, telle que décrite dans le premier mode de réalisation.
  • Ce troisième mode de réalisation de l'invention présente l'avantage de délivrer un débit calibré de fluide F2 en sortie de la portion aval 16 du microcanal.
  • Un quatrième mode de réalisation de l'invention est représenté sur la figure 6 en coupe longitudinale.
  • Les références numériques identiques à celles de la figure 4A désignent des éléments identiques ou similaires.
  • Dans ce mode de réalisation de l'invention, l'orifice d'entrée 11 est disposé dans le même plan que l'électrode de déplacement 31 et entouré par celle-ci. L'axe d'entrée de l'orifice, ici suivant k, est sensiblement orthogonal au plan de l'électrode de déplacement, ici (i,j). Ainsi, une goutte 51 qui recouvre l'électrode de déplacement est mise en contact avec la paroi hydrophile 12 au travers de l'orifice d'entrée 11.
  • Dans ce mode de réalisation, une portion de raccord 17 est disposée entre une portion amont 13 et une portion aval 16 du microcanal.
  • De plus, la portion amont 13 comprend une première portion amont 14 et une deuxième portion amont 15. La première portion amont 14 s'étend à partir de l'orifice d'entrée 11. La deuxième portion amont 15 s'étend à partir de la première portion amont 14 jusqu'à la portion de raccord 17. La portion aval 16 correspond à une troisième portion 16 du microcanal.
  • Plus précisément, la deuxième portion amont 15 comprend une pluralité de deuxièmes portions amont élémentaires de canal 15' disposées en parallèle, chacune communiquant avec la première portion amont 14 et avec la portion de raccord 17.
  • Les deuxièmes portions élémentaires 15' peuvent être disposées selon un réseau hexagonal et présenter un diamètre de l'ordre de quelques dizaines de microns, de préférence 30µm. De préférence, chaque deuxième portion élémentaire 15' présente une section transversale circulaire, hexagonale ou ayant une forme du même type. Les deuxièmes portions élémentaires 15' peuvent être obtenues par gravure plasma du type RIE du substrat 21.
  • De préférence, les deuxièmes portions élémentaires 15' sont remplies de liquide L1 et/ou de premier fluide F1.
  • Les deuxièmes portions élémentaires 15' peuvent être au nombre de quelques centaines, et présenter une hauteur (diamètre) de quelques dizaines de microns, de préférence 30µm, et une longueur de quelques centaines de microns, de préférence 700µm.
  • Cette disposition en parallèle des deuxièmes portions élémentaires 15' permet d'obtenir un grand débit de second fluide F2 dans la portion aval 16.
  • Les moyens de formation et de déplacement des gouttes sont ici en configuration confinée, telle que décrite dans le deuxième mode de réalisation et comme le montre la figure 6. Alternativement, ils peuvent être en configuration ouverte, telle que décrite dans le premier mode de réalisation.
  • Une variante du quatrième mode de réalisation de l'invention est représentée sur la figure 7 en coupe longitudinale.
  • Les références numériques identiques à celles de la figure 4A désignent des éléments identiques ou similaires.
  • Selon cette variante, deux micropompes élémentaires dont chacune est sensiblement identique à celle décrite dans le quatrième mode de réalisation, sont disposées en parallèle et sont reliées entre elles d'une part par un puits 27 commun rempli de liquide L1, et d'autre part, par une jonction raccordant les portions aval 16-1 et 16-2. Plus précisément, les deux portions aval 16-1 et 16-2 sont reliées par une jonction 18 de manière à ne former qu'une portion 19.
  • Les deux micropompes peuvent avoir des moyens de commande des électrodes de formation et de déplacement des gouttes indépendants les uns des autres.
  • De plus, les seconds fluides F2-1 et F2-2 manipulés par les deux micropompes peuvent être différents.
  • Ainsi, il est possible de mettre en contact les deux seconds fluides F2-1 et F2-2 au niveau de ladite jonction des portions aval 16-1 et 16-2, et ainsi de réaliser un mélange, voire un écoulement diphasique.
  • Les proportions de chaque second fluide F2-1 et F2-2 peuvent être contrôlées à partir des moyens de commande des électrodes.
  • Les premiers fluides F1-1 et F1-2 sont avantageusement identiques.
  • Bien entendu, plusieurs micropompes élémentaires peuvent être disposées en parallèle, sans que le nombre de micropompes élémentaires soit limité à deux micropompes comme décrit précédemment.
  • D'autre part, les micropompes élémentaires peuvent ne pas être reliées entre elles au niveau de leur portion aval 16 respective, pour assurer une dispense indépendante de leur second fluide F2 respectif.
  • Enfin, notons qu'en associant, dans les différents modes de réalisation décrits précédemment, des moyens de programmation électroniques aux moyens de commande des électrodes, il est possible de définir des séquences de délivrance de quantités calibrées de premier ou de second fluide.
  • Par ailleurs, dans le cas où la couche diélectrique n'est pas présente, le phénomène d'électromouillage dit direct peut être réalisé.
  • La capacité intervenant alors n'est plus celle de la couche diélectrique mais celle d'une double couche électrique se formant dans le liquide conducteur L1 à la surface des électrodes 31, 41. Dans ce cas, les tensions appliquées doivent rester suffisamment faibles pour éviter des phénomènes électrochimiques tels que l'électrolyse de l'eau.
  • L'épaisseur e intervenant dans la relation reliant l'angle de contact θ à la tension appliquée U, décrite précédemment, est celle de la double couche, qui est de l'ordre de quelques nanomètres.
  • Il est alors avantageux d'ajouter dans le liquide L1 des espèces à forte permittivité, comme par exemple des espèces zwitterioniques. Cela permet d'augmenter la permittivité εr de la double couche. Les zwitterions utilisés peuvent être des sulfonates d'amine, des phosphates d'amine, des carbonates d'amine, ou des carboxylates d'amine, et en particulier, des alcanes sulfonates de trialkyl ammonium, des alcanes sulfonates d'alkyle imidazole ou des alcanes sulfonates d'alkyle pyridine.

Claims (16)

  1. Micropompe pour déplacer un fluide (F1) dans un microcanal (10), ladite micropompe étant caractérisée en ce que :
    - le microcanal (10) comporte un orifice d'entrée (11) et présente une paroi hydrophile (12) s'étendant à partir dudit orifice d'entrée (11),
    et en ce qu'elle comprend
    - des moyens de déplacement d'une goutte (51) de liquide (L1) par électromouillage sur une surface hydrophobe (22) jusqu'à mettre en contact ladite goutte (51) avec ladite paroi hydrophile (12), de sorte que ladite goutte (51) s'introduit par mouillage dans ledit microcanal (10) au travers dudit orifice d'entrée (11), provoquant le déplacement dudit fluide (F1).
  2. Micropompe selon la revendication 1, caractérisée en ce que ladite goutte (51) forme un angle de contact sur ladite paroi hydrophile (12) sensiblement inférieur à celui formé par électromouillage sur ladite surface hydrophobe (22).
  3. Micropompe selon la revendication 1 ou 2, caractérisée en ce que lesdits moyens de déplacement comportent au moins une électrode de déplacement (31) et une contre-électrode en contact électrique avec la goutte (51), et un générateur de tension pour appliquer une différence de potentiel entre une ou plusieurs électrodes de déplacement (31) et ladite contre-électrode.
  4. Micropompe selon la revendication 3, caractérisée en ce que lesdits moyens de déplacement comportent une électrode de déplacement (31) disposée de sorte qu'une goutte (51) de liquide la recouvrant est en contact avec ladite paroi hydrophile (12) au travers dudit orifice d'entrée (11).
  5. Micropompe selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite paroi hydrophile (12) présente une surface nanotexturée ou microtexturée.
  6. Micropompe selon l'une quelconque des revendications 1 à 5, caractérisée en ce que ladite paroi hydrophile (12) est en matériau hydrophile ou comprend une couche d'un matériau hydrophile.
  7. Micropompe selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ladite paroi hydrophile (12) s'étend sur toute la longueur du microcanal (10).
  8. Micropompe selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le microcanal (10) comporte une portion de raccord (17) définissant une portion amont (13) et une portion aval (16), ladite portion de raccord (17) présentant une section transversale sensiblement plus grande que celle de la portion amont (13).
  9. Micropompe selon la revendication 8, caractérisée en ce que la taille de la portion de raccord (17) est comprise entre 5 et 50 fois celle de la portion amont (13).
  10. Micropompe selon la revendication 8 ou 9, caractérisée en ce qu'un second fluide (F2) est situé en aval du premier fluide (F1) de manière à former avec ce dernier une interface (I2) localisée dans ladite portion de raccord (17).
  11. Micropompe selon l'une quelconque des revendications 8 à 10, caractérisée en ce que la portion amont (13) comprend une première portion amont (14) s'étendant à partir de l'orifice d'entrée (11) et une pluralité de deuxièmes portions amont élémentaires (15') disposées en parallèle communiquant chacune avec ladite première portion amont (14).
  12. Micropompe selon la revendication 11, caractérisée en ce que chaque deuxième portion amont élémentaire (15') communique avec ladite portion de raccord (17).
  13. Micropompe selon la revendication 12, caractérisée en ce que chaque deuxième portion amont élémentaire (15') est au moins partiellement remplie dudit fluide (F1).
  14. Micropompe selon l'une quelconque des revendications 1 à 13, caractérisée en ce qu'elle comprend en outre des moyens de formation de ladite goutte (51) sur ladite surface hydrophobe (22), par électromouillage.
  15. Micropompe selon la revendication 14, caractérisée en ce que, lesdits moyens de déplacement comportant au moins une électrode de déplacement (31), les moyens de formation de gouttes comprennent une pluralité d'électrodes de formation (42) de gouttes, dont l'une est adjacente à une électrode de déplacement (31).
  16. Micropompe selon la revendication 14 ou 15, caractérisée en ce qu'une seconde surface hydrophobe (26) est disposée en regard de la première surface hydrophobe (22) de manière à former un dispositif fermé ou confiné pour ladite goutte (51).
EP09173788A 2008-10-28 2009-10-22 Micropompe à actionnement par gouttes Not-in-force EP2182212B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0857310A FR2937690B1 (fr) 2008-10-28 2008-10-28 Micropome a actionnement par gouttes

Publications (2)

Publication Number Publication Date
EP2182212A1 true EP2182212A1 (fr) 2010-05-05
EP2182212B1 EP2182212B1 (fr) 2012-02-29

Family

ID=40474704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09173788A Not-in-force EP2182212B1 (fr) 2008-10-28 2009-10-22 Micropompe à actionnement par gouttes

Country Status (4)

Country Link
US (1) US20100104459A1 (fr)
EP (1) EP2182212B1 (fr)
AT (1) ATE547627T1 (fr)
FR (1) FR2937690B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
DE102011115622A1 (de) * 2010-12-20 2012-06-21 Technische Universität Ilmenau Mikropumpe sowie Vorrichtung und Verfahren zur Erzeugung einer Fluidströmung
RU2578262C2 (ru) * 2011-08-31 2016-03-27 Джонсон Энд Джонсон Вижн Кэа, Инк. Жидкостные менисковые линзы с улучшенным составом на основе физиологического раствора

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007503A1 (fr) 2000-07-25 2002-01-31 The Regents Of The University Of California Micropompage par electromouillage
WO2002100559A1 (fr) 2001-06-12 2002-12-19 Biocoat Incorporated Revetements adaptes aux dispositifs medicaux
WO2006007162A2 (fr) 2004-06-22 2006-01-19 Intel Corporation Module thermoelectrique
WO2006070162A1 (fr) 2004-12-23 2006-07-06 Commissariat A L'energie Atomique Dispositif de dispense de gouttes
WO2006083598A2 (fr) * 2005-01-25 2006-08-10 The Regents Of The University Of California Procede et dispositif destines a pomper des liquides au moyen d'une croissance directionnelle et d'une elimination de bulles
WO2006086620A2 (fr) * 2005-02-10 2006-08-17 Applera Corporation Procede d'echantillonnage de fluide
WO2007053326A2 (fr) 2005-10-28 2007-05-10 Ppg Industries Ohio, Inc. Compositions contenant un polymere a fonction silanol et films de revetement hydrophiles associes
WO2007088187A1 (fr) 2006-02-01 2007-08-09 Commissariat A L'energie Atomique Nouveaux composés silanes et leur utilisation pour fonctionnaliser des supports solides et immobiliser sur ces supports des molécules biologiques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US6911132B2 (en) * 2002-09-24 2005-06-28 Duke University Apparatus for manipulating droplets by electrowetting-based techniques
US20080135411A1 (en) * 2004-06-16 2008-06-12 Whitehead Lorne A Microfluidic Transport By Electrostatic Deformation of Fluidic Interfaces
DE602005024418D1 (de) * 2004-08-26 2010-12-09 Life Technologies Corp Elektrobenetzende abgabevorrichtungen und dazugehörige verfahren
JP4593507B2 (ja) * 2005-03-30 2010-12-08 ナノフュージョン株式会社 電気浸透流ポンプ及び液体供給装置
FR2887305B1 (fr) * 2005-06-17 2011-05-27 Commissariat Energie Atomique Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
KR100781739B1 (ko) * 2005-09-28 2007-12-03 삼성전자주식회사 전기습윤에서 액적의 접촉각 변위 및 변화속도 증가방법 및상기 방법에 의해 형성된 액적을 적용한 액적제어장치
US20080186801A1 (en) * 2007-02-06 2008-08-07 Qisda Corporation Bubble micro-pump and two-way fluid-driving device, particle-sorting device, fluid-mixing device, ring-shaped fluid-mixing device and compound-type fluid-mixing device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007503A1 (fr) 2000-07-25 2002-01-31 The Regents Of The University Of California Micropompage par electromouillage
WO2002100559A1 (fr) 2001-06-12 2002-12-19 Biocoat Incorporated Revetements adaptes aux dispositifs medicaux
WO2006007162A2 (fr) 2004-06-22 2006-01-19 Intel Corporation Module thermoelectrique
WO2006070162A1 (fr) 2004-12-23 2006-07-06 Commissariat A L'energie Atomique Dispositif de dispense de gouttes
WO2006083598A2 (fr) * 2005-01-25 2006-08-10 The Regents Of The University Of California Procede et dispositif destines a pomper des liquides au moyen d'une croissance directionnelle et d'une elimination de bulles
WO2006086620A2 (fr) * 2005-02-10 2006-08-17 Applera Corporation Procede d'echantillonnage de fluide
WO2007053326A2 (fr) 2005-10-28 2007-05-10 Ppg Industries Ohio, Inc. Compositions contenant un polymere a fonction silanol et films de revetement hydrophiles associes
WO2007088187A1 (fr) 2006-02-01 2007-08-09 Commissariat A L'energie Atomique Nouveaux composés silanes et leur utilisation pour fonctionnaliser des supports solides et immobiliser sur ces supports des molécules biologiques

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Dynamics of droplet transport induced by electrowetting actuation", MICROFLUID NANOFLUID, vol. 4, 2008, pages 287 - 294
BARET: "Electrowetting: from basics to applications", J. PHYS. CONDENS. MATTER, vol. 17, 2005, pages R705 - R774
BERGE: "Electrocapillarité et mouillage de films isolants par l'eau", C.R. ACAD. SCI., vol. 317, 1993, pages 157 - 163
D.J. LASER; J.G. SANTIAGO: "A review of micropumps", J. MICROMECH. MICROENG., vol. 14, 2004, pages R35 - R64
F. DURMAZ ET AL.: "New phosphates/phosphonates; A modular approach to functional sams", EUROPEAN CELLS AND MATERIALS, vol. 6, no. 1, 2003, pages 55
J. BICO ET AL.: "Wetting of textured surfaces", COLLOIDS AND SURFACES A, PHYSICOCHEM. ENG. ASPECTS, vol. 206, 2002, pages 41 - 46
M. CALLIES REYSSAT, SPLENDEUR ET MISÈRE DE L'EFFET LOTUS, 2007
P.-G. DE GENNES ET AL., GOUTTES, BULLES, PERLES ET ONDES, 2002

Also Published As

Publication number Publication date
FR2937690B1 (fr) 2010-12-31
US20100104459A1 (en) 2010-04-29
FR2937690A1 (fr) 2010-04-30
EP2182212B1 (fr) 2012-02-29
ATE547627T1 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2318136A1 (fr) Procede et dispositif de manipulation et d'observation de gouttes de liquide
EP2143948A2 (fr) Dispositif microfluidique de déplacement de liquide
EP1827694B1 (fr) Dispositif de dispense de gouttes
WO2006134307A1 (fr) Dispositif de pompage par electromouillage et application aux mesures d'activite electrique
EP2161449B1 (fr) Micropompe pour microfluidique continue.
EP1376846B1 (fr) Dispositif de déplacement de petits volumes de liquide le long d'un micro-catenaire par des forces électrostatiques
EP2609993B1 (fr) Dispositif nano et micro fluidique pour la séparation et concentration de particules présentes dans un fluide
EP2282827B1 (fr) Dispositif de séparation de biomolécules d'un fluide
EP1567269B1 (fr) Dispositif microfluidique dans lequel l'interface liquide/fluide est stabilisee
FR2887030A1 (fr) Dispositif planaire avec adressage de puits automatise par electromouillage dynamique
FR2866493A1 (fr) Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
EP2182212B1 (fr) Micropompe à actionnement par gouttes
FR2933316A1 (fr) Dispositif microfluide de deplacement controle de liquide
EP2268404A1 (fr) Procede de fabrication de microcanaux reconfigurables
EP1711955A1 (fr) Laboratoire sur puce comprenant un reseau micro-fluidique et un nez d'electronebulisation coplanaires
CN113070113B (zh) 芯片结构、成膜方法、纳米孔测序装置及应用
WO2003097238A1 (fr) Dispositif de depot localise et controle activement d'au moins une solution biologique.
FR3055429A1 (fr) Dispositif a actionnement electrostatique
FR2978437A1 (fr) Dispositif microfluidique comportant une chambre pour stocker un liquide
FR2887705A1 (fr) Dispositif de pompage ou de centrifugation des gouttes deplacees par electromouillage
FR2884243A1 (fr) Dispositif et procede de commutation par electromouillage
WO2014207183A1 (fr) Dispositif de separation d'une suspension
WO2005123257A1 (fr) Microdispositif et procede de separation d’emulsion
FR2853565A1 (fr) Microdispositif de transfert collectif d'une pluralite de liquide
Hsu et al. Formation, transportation, and evaporation of encapsulated droplets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20101011

17Q First examination report despatched

Effective date: 20110617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 547627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009005602

Country of ref document: DE

Effective date: 20120426

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120229

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 547627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121011

Year of fee payment: 4

Ref country code: FR

Payment date: 20121205

Year of fee payment: 4

26N No opposition filed

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009005602

Country of ref document: DE

Effective date: 20121130

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120529

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121022

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091022

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131022

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009005602

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229