WO2006069585A1 - Pompe anti maree noire et de desenvasement - Google Patents

Pompe anti maree noire et de desenvasement Download PDF

Info

Publication number
WO2006069585A1
WO2006069585A1 PCT/DZ2004/000005 DZ2004000005W WO2006069585A1 WO 2006069585 A1 WO2006069585 A1 WO 2006069585A1 DZ 2004000005 W DZ2004000005 W DZ 2004000005W WO 2006069585 A1 WO2006069585 A1 WO 2006069585A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
chamber
chambers
bell
trumpet
Prior art date
Application number
PCT/DZ2004/000005
Other languages
English (en)
Inventor
Idir Ou-Otmane
Original Assignee
Idir Ou-Otmane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idir Ou-Otmane filed Critical Idir Ou-Otmane
Priority to PCT/DZ2004/000005 priority Critical patent/WO2006069585A1/fr
Publication of WO2006069585A1 publication Critical patent/WO2006069585A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0042Piston machines or pumps characterised by having positively-driven valving with specific kinematics of the distribution member
    • F04B7/0046Piston machines or pumps characterised by having positively-driven valving with specific kinematics of the distribution member for rotating distribution members
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/10Devices for removing the material from the surface
    • E02B15/106Overflow skimmers with suction heads; suction heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Definitions

  • the object of the present invention is a black anti-tide pump and desiccation for the recovery of hydrocarbon products in all their forms (liquid, pasty or clods) at the surface or at the depth of the water, as well as the recovery of the mud or mud in dams or seaports without the use of water.
  • the pump consists mainly (Drawing 1) of two chambers 2 and 4, in which respectively oscillate trumpet axes 1 and 3 which ensure the opening and closing of these two chambers.
  • the first chamber 2 known as the intake chamber is determined by the drawing 4, it comprises a conical inner recess of 90 ° angle at the top, crossed by two orifices, the first of which is the inlet orifice situated in the upper part of the chamber and the second is the product outlet located in the lower part of the chamber.
  • the lower orifice of the first chamber 2 communicates with the inlet orifice of the second discharge chamber 4 which is determined by the drawing 5.
  • the latter comprises a single orifice which is the inlet orifice produced and characterized by an obviously tapered inner corner at the top of 90 ° like that of the first chamber 2.
  • the trumpet axes 1 and 3 are determined by drawing 6 giving three types of axes may be used.
  • On the first chamber 2 is mounted the cylinder and piston assembly 7 and 6 through the manifold 5. The sealing of the assembly is provided by the seal 28.
  • On the second chamber 4 is mounted the outlet manifold 14 , their sealing is provided by the seal 25.
  • the trumpet axes 1 and 3 have the same taper as their respective chambers (angle at the top of the cone 90 °) see the drawings relating to them.
  • the closing and opening of the chambers by the trumpet axes are given in the drawing (7).
  • the 90 ° apex angle of the chambers and trumpet shafts is an optimum angle, greater than 90 ° it disadvantage the orifice of the chambers and smaller than 90 °, it causes the jamming of the axes in their rooms.
  • the seal between the first chamber and the second chamber is provided by the seal 27.
  • first chamber and the second chamber can be designed in the same single block regardless of the orientation of their respective horizontal axis.
  • the trumpet shafts are kept in contact in their chamber by means of the springs 10 and 20 and the nuts and counter-nuts 11 and 21.
  • the thrust bearings 9 and 19 absorb the friction of the springs between the connecting rods and the chambers.
  • the oscillation of the trumpet shafts in their respective chambers is achieved by the control cylinders 17 and 16 by means of the connecting rods 8 and 18 which are integral with their respective axes via the keys 12 and 23. In others case they can be secured to their axis by the aid of flutings or flats.
  • the trumpet axes undergo a burn-in operation in their respective chambers, it is called a wedding operation.
  • the constitution of the pump is in fact the combination of two valves mounted in series, if l ⁇ is considered that the chamber assembly with its trumpet axis and the control elements relating thereto to cause its closure or its opening make the role of valve as exactly the entire chamber and its elements mounted on the bell of drawing 8 as a valve or strainer.
  • valve mounted on the bell of the drawing 8 There are two possibilities of design of the valve mounted on the bell of the drawing 8. According to the type of use of the valve chamber given in the detail drawings 4 and 5. This valve is essential for the use of the bell of the fact its repetitive change of water surface locations during suction operations of hydrocarbon or other products in the liquid state, pasty or motte.
  • the inlet or discharge ports of the chambers should preferably have a surface area equal to that of the inner sections of the suction and discharge pipes and that of the inner cylinders of the pistons.
  • the trapezoidal shape of the orifices of the chambers as given in the corresponding detail drawings is an optimum section, it may be circular or other shape but the orifice must be inscribed in the prescribed angle ⁇ .
  • This set of bells can be linked to a single large power pump or each individually to its own pump in this case the output pipes are connected by a collector.
  • Table 2 gives for certain parts and accessories of the pump the process and the possible material of manufacture and this without limitation.
  • the value of 90 ° of the angle at the top of the cone of the internal cavity of the chambers is a minimum value, it can possibly be greater and to cause a modification of the positions of the axes of the orifices of arrival and exit produced to avoid have a constriction at their connection with the corresponding orifice of the chambers. It is also of course the cone angles trumpet axes of the drawing 6 which must have the same value as the corresponding angle of their room.
  • the drawings 4 and 5 of the chambers are intended to represent the internal cavity of the chambers and the positions of the orifices. Ribs on the outer surfaces of the chambers will be provided in large pump models to reinforce the walls.
  • the pressurized control oil of the cylinders is sent into the circuit by a hydraulic pump actuated by electric or thermal motors.
  • the operating cycle of the pump is as follows: (see drawing 1) Considering the drawing 1, the first chamber 2 and the second chamber 4 have their product inlet closed by the respective trumpet axes 1 and 3. Assuming that the piston 6 is in the discharge position, that is to say that the rod of the cylinder 7 is output therefore, the following sequence will be the opening of the orifice of the first chamber 2 caused by the action of the cylinder 17 which prints an oscillation movement to the trumpet axis 1 via the connecting rod 8 and, the end of stroke of the cylinder 17 causes the inlet of the rod of the cylinder 7 and, therefore, the admission of the product by the piston 6 and, the end of stroke of the cylinder 7 will cause the closing of the orifice of the first chamber 2 by the trumpet axis 1 under the action of the cylinder 17 on the connecting rod 8 and, the end of stroke of the cylinder 17 will cause the opening of the orifice of the second chamber 4 by the trumpet pin 3 under the action of the cylinder 16 on the rod 18 which imparts an oscillation movement to the trumpet axis 3
  • the control and distribution elements obey and contribute to the respect of the operating cycle.
  • the main commands of the cycle are as follows: (Drawing 1).
  • the inlet of the product corresponds to the rod inlet of the cylinder 7.
  • the discharge of the product corresponds to the rod outlet of the cylinder 7.
  • the opening and closing of the first chamber 2 is obtained by the oscillations of the trumpet axis 1 under the action of the cylinder 17 on the connecting rod 8.
  • the opening and closing of the second chamber 4 is obtained by the oscillations of the trumpet axis 3 under the action of the jack 16 on the connecting rod 18.
  • the product arrives through the manifold 13 and exits through the manifold 15.
  • the present invention aims to remedy all its disadvantages. In terms of recovery of hydrocarbon products on the surface of the water or the shore whatever their physical states (liquid, pasty, clods)
  • the pump and the bell will be carried on boat or bank for the recovery of pollutants on the surface of the water.
  • the version of the pump with two pistons as given in the drawing 3 is the most recommended for the surface recovery of water pollutants due to the excessive change of the locations of the bell on the surface of the water, inducing primers repetitive pump to release the air contained in 1'évidence of 'the bell.
  • This version of the pump minimizes the priming time and the suction of the pollutants is done as the bell and placed on the surface of the water.
  • the flotation of the bell will be replaced by a rubber seal or other intended to ensure the seal between the bell and the shore plan, so as to allow the sucking of the pollutant.
  • the pump and the bell will be worn on wheeled vehicles or caterpillars or on carts handled manually by operators for reduced models of pumps and bells.
  • valve 1 of drawing 8 the opening of the orifice of the chamber called valve 1 of drawing 8. This it is in turn conditioned by the installation of the bell on the surface of the water that is to say the opening of the opening of the valve chamber 1 of the drawing 8 will be done once only that the bell is well in floating on the water.
  • the reinforced hose or rigid pipe will include an end anchor which is only a segment of metal tube provided a slatted grating or filtering grid of sludge and heavy enough weight to sink into the mud, so that will remove only the mud without water supply contrary to the known pumping means. Add to this that it is no longer necessary with this present pump to stir the vessel to be able to suck it.
  • the anchor is connected by cable or chain to an arrow carried on bank or boat or directly connected to a vehicle or vehicle for its manipulation.
  • the extracted vase is of fairly pasty consistency which therefore facilitates its storage in free areas or in containers for transfer to specific locations.
  • the ideal is to respond to large landfills to cause the asphyxiation of waste and thus limit the fumes of bad odors and to accelerate the process of their degradation now that we can put it in containers and thus transport it).
  • the removal operation is fast because of the simplicity of the manipulations of the anchor and the pump can remain on the shore whatever the depth of exhaustion of the mud.
  • the pump can be used to clear stranded boats whose hulls are buried in sand as a result of a storm or in the hydraulic fracturing of oil deposits (stimulation by injection of pressurized water and bauxite)
  • FIG. 1 represents an overall drawing of the pump of which the first chamber 2 comprises two orifices as given in the drawing 4 and the second chamber 4 with a single orifice as represented in the drawing 5.
  • FIG. 2 represents an overall drawing of the pump, the first and second chambers of which are identical to a single orifice as given in drawing 5.
  • FIG. 3 represents an overall drawing of a variant of the pump as given in drawing 1 but with two pistons and this variant is also possible for the version given in drawing 2.
  • FIG. 4 represents the first chamber 2 of FIG. overall drawing 1 having two orifices. It gives a front view and a right sectional view (AA) as well as a section (aa) of the inlet orifice, where is the angle of the output orifice produces its value is: ( ⁇ l > ⁇ )
  • FIG. 5 gives an example of representation of the chamber 4 of the drawing 1, comprising a single orifice. It gives a front view and a right section view (AA) and a section (aa) of the orifice.
  • Figure 6 shows three types of trumpet axes and their different functional angles.
  • the value of the angle ⁇ is: ⁇ > ⁇ .
  • the angle ⁇ is equal to: ⁇ > ( ⁇ + 2 ⁇ )
  • FIG. 8 represents an overall drawing of a bell 3 with its valve formed of a chamber 1 identical to that given in drawing 5 with a single orifice and its trumpet axis identical to those given in drawing 6 as well as the control elements of the trumpet axis (cylinder, connecting rod etc.). It also gives the hose 4 which connects the bell assembly to the pump described here in its different versions. 10 represents the buoyancy of the bell.
  • FIG. 9 gives two examples of implementation of the bell with its pump described in this description during the surface recovery of water pollutants.
  • the pump 5 is mounted on bank or boat 7 the bell 1 is connected to the pump 5 by armed hose 2 only in the examples figure (9-b) and by flexible 2 and rigid pipe 4 with sealed joints in the example of Figure (9-a).
  • the manipulation of the bell is done by arrow 6.
  • the angle (X) of oscillation of the control rods of the trumpet axes is determined as follows: (see drawing 7) To reduce the axial forces on the trumpet axis, it is necessary to provide a starting angle ⁇ of the connecting rods of the trumpets. control of the trumpet axes with respect to the axis of their control cylinder. The larger ⁇ , the lower the axial forces on the trumpet axis. The angle ⁇ is approximately (5 ° to 15 °).
  • the oscillation angle X of the control rods of the trumpet axes is equal to:
  • the angle ⁇ of the orifice of the chambers can not be of the same value as the angle X of oscillation of the connecting rods, its value must always be smaller than that of the angle X. If the angle ⁇ has the same value that the angle X, the closing and the opening of the opening of the chambers is done without complete security of the opening and closing of the intake ports, ie according to the type of trumpet axis used, the closing of the openings of the rooms can be obtained only if closing safety angles are provided.
  • closure safety angles called ⁇ of approximately 5 ° to 10 ° are provided.
  • the orifices of the two chambers are identical.
  • the value of the angle ⁇ of the closing sector must be greater than or equal to ⁇ plus two values of the closing safety angle ⁇ . So ⁇ > ( ⁇ + 2 ⁇ ).
  • the bell shown in drawing 8 is indispensable in the recovery of hydrocarbons in all their forms on the surface of the water. It can be circular square or rectangular.
  • the section of the recess can be circular, square, rectangular or triangular. As well as it can be integral with the bell, ie designed in the same block or be as attached piece with seal on the parts of contact with the bell.
  • a chamber called "chamber valve” composed mainly of a chamber according to the drawing 4 or 5 with its trumpet axis among the three given in the drawing 6 which is secured to a control rod actuated by a jack 9.
  • valve chamber The operation of the so-called valve chamber is similar to the operation of the pump chambers of drawings 1 and 2.
  • the bell will replace the flotation of a rubber seal or other intended to ensure the seal between the bell and the shore plan.
  • the pump and the bell can be carried on wheeled or tracked machines with bell handling arrow or trolley maneuvered manually by the operator for reduced models of the pump and the bell.
  • the pipe segment on the side of the bell will be rigid to serve as the handling arm of the bell.
  • the pump or pump unit is connected to the bell by means of a reinforced flexible hose supporting the vacuum produced by the suction of the pump (in this case the hose must have enough slack to arrow does not force on the hose) or through a rigid pipe with waterproof joints (see drawing 9)
  • the manipulation of the bell is done by the help of an arrow connected to it by two cables or chains or ropes.
  • the pressurized oil supply hoses of the control cylinder of the trumpet shaft of the valve chamber mounted on bell are rigid pipes at the boom segments and flexible hoses for pressure on the moving parts of the boom that is to say at the joints and between the boom and the bell.
  • the volume of the hollow of the bell or (recess) is proportional to the flow rate of the pump or pump unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Ensemble pompe et cloche uniques en leur genre destiné à la récupération des produits hydrocarbures sous toutes leurs formes (liquides, pâteux ou en mottes) en surface ou en profondeur des eaux ou sur le rivage, ainsi que pour la récupération de la vase au fond des barrages d'eaux et des ports maritimes. Sa conception intérieure lui permet de travailler sans l'utilisation de crépine ou de clapet anti-retour même avec des arrêts répétitifs ou prolongés. Elle permet l'extraction de la vase dans les barrages sans apport d'eau ; c'est à dire il ne sera retiré du barrage d'eau que la vase. La pompe peut se présenter sur plusieurs versions. Elle trouve aussi sa place de choix dans la fracturation hydraulique des gisements de pétrole pour les stimuler. La pompe est dite aspirante et refoulante.

Description

POMPE ANTI MAREE NOIRE ET DE DESENVASEMENT
La présente invention a pour Objet une pompe anti-marée noir et de désenvasement pour la récupération des produits hydrocarbures sous toutes leur formes (liquide, pâteux ou en mottes) en surface ou en profondeur des eaux ainsi que la récupération de la vase ou boue dans les barrages d' eau ou ports maritimes sans utilisation de l'eau. La pompe est constituée principalement (Dessin 1) de deux chambres 2 et 4, dans lesquelles oscillent respectivement des axes trompettes 1 et 3 qui assurent l'ouverture et la fermeture de ces deux chambres.
La première chambre 2 dite chambre d'admission est déterminée par le dessin 4, elle comporte un évidemment intérieur conique de 90° d'angle au sommet, traversé par deux orifices dont le premier est l'orifice d'admission situé dans la partie supérieur de la chambre et le second est l'orifice de sortie produit situé dans la partie inférieur de la chambre. L'orifice inférieur de la première chambre 2 communique avec l'orifice d'admission de la deuxième chambre 4 de refoulement qui est déterminée par le dessin 5. Celle ci comporte un seul orifice qui est celui d'entrée produit et caractérisée par un évidemment intérieur conique d'angle au sommet de 90° comme celui de la première chambre 2. Les axes trompettes 1 et 3 sont déterminés par le dessin 6 donnant trois types d'axes susceptibles d'être utilisé. Sur la première chambre 2 est monté l'ensemble vérin et piston 7 et 6 par l'intermédiaire du collecteur 5. L'étanchéité de l'ensemble est assurée par le joint 28. Sur la deuxième chambre 4 est monté le collecteur de sortie 14, leur étanchéité est assurée par le joint 25.
Les axes trompettes 1 et 3 ont la même conicité que leur chambre respective (angle au sommet du cône de 90°) voir les dessins se rapportant à eux. La fermeture et l'ouverture des chambres par les axes trompettes sont données dans le dessin (7) .
L'angle au sommet de 90° des chambres et des axes trompettes est un angle optimum, plus grand que 90° il désavantage l'orifice des chambres et plus petit que 90°, il provoque le coincement des axes dans leurs chambres .
L'étanchéité entre la première chambre et la deuxième chambre est assurée par le joint 27.
Toutefois la première chambre et la deuxième chambre peuvent être conçues dans un même bloc unique quelque soit l'orientation de leur axe horizontal respectif.
Les axes trompettes sont maintenus en contact dans leur chambre par l'intermédiaire des ressorts 10 et 20 et des écrous et contre-écrous 11 et 21.
Les butés à billes 9 et 19 absorbent les frottements des ressorts entre les bielles et les chambres.
L'oscillation des axes trompettes dans leur chambre respective est réalisé par les vérins de commande 17 et 16 par l'intermédiaire des bielles 8 et 18 qui sont solidaires de leur axe respectif par l'intermédiaire des clavettes 12 et 23. Dans d'autres cas elles peuvent être solidaire de leur axe par l'aide de cannelures ou de méplats .
Pour éviter le bruit pendant l'oscillation des bielles celles- ci doivent être de préférence dotées d'un alésage conique sur lequel sera taillé la rainure de clavette. Le graissage des axes trompettes se fait par les graisseurs 30 et 26.
Au montage, les axes trompettes subissent une opération de rodage dans leur chambre respective, elle est appelée opération de mariage. La constitution de la pompe est en fait la combinaison de deux clapets montés en série, si lλon considère que l'ensemble chambre avec son axe trompette et les éléments de commande qui s'y rapportent pour provoquer sa fermeture ou son ouverture font le rôle de clapet comme exactement l'ensemble de la chambre et ses éléments montés sur la cloche du dessin 8 en guise de clapet ou de crépine.
Il existe deux possibilités de conception du clapet monté sur la cloche du dessin 8. Selon le type d'utilisation de la chambre de clapet données dans les dessins de détail 4 et 5. Ce clapet est indispensable pour l'utilisation de la cloche du fait de son changement répétitif des emplacements en surface de l'eau pendant les opérations de succion des produits hydrocarbures ou autres à l'état liquide, pâteux ou en motte.
Les orifices d'admission ou de refoulement des chambres doivent être de préférence de surface égale à celle des sections intérieures des canalisations d'aspiration et de refoulement et de celle des cylindres intérieurs des pistons.
La forme trapézoïdale des orifices des chambres telle que donnée dans les dessins de détail correspondants est une section optimale, elle peut être de forme circulaire ou autre mais l'orifice doit être inscrit dans l'angle prescrit α. Pour augmenter la surface de succion de la cloche, il est possible de jumeler deux ou plus entre elles sur un même plan horizontale et de relier leur orifice par un collecteur. Cet ensemble de cloches peut être lié à une seule pompe de puissance conséquente ou chacune individuellement à sa propre pompe dans ce cas les canalisations de sortie sont reliées par un collecteur. Le tableau 2 ci-joint donne pour certaines pièces et accessoires de la pompe le procédé et la matière éventuels de fabrication et cela à titre non limitatif. La valeur de 90° de l'angle au sommet du cône de l' évidemment intérieur des chambres est une valeur minimale, elle peut éventuellement être supérieure et engendrer une modification des positions des axes des orifices d' arrivée et de sorties produits pour éviter d'avoir un étranglement au niveau de leur connection avec l'orifice correspondant des chambres. Il est de même bien sûr des angles de cône des axes trompettes du dessin 6 qui doivent avoir la même valeur que l'angle correspondant de leur chambre. Les dessins 4 et 5 des chambres ont pour but de représenter l'évidemment intérieur des chambres et les positions des orifices. Des nervures sur les faces extérieures des chambres seront prévues dans les grands models de pompes pour renforcer les parois. L'huile sous pression de commande des vérins est envoyée dans le circuit par une pompe hydraulique actionnée par moteurs électriques ou thermiques.
Le cycle de fonctionnement de la pompe se déroule comme suit : (voir dessin 1) Considérant le dessin 1, la première chambre 2 et la deuxième chambre 4 ont leur orifice d'entrée produit fermés par les axes trompettes respectifs 1 et 3. Supposant que le piston 6 est en position refoulement c'est à dire que la tige du vérin 7 est sortie donc, la séquence qui va suivre sera l'ouverture de l'orifice de la première chambre 2 provoquée par l'action du vérin 17 qui imprime un mouvement d'oscillation à l'axe trompette 1 par l'intermédiaire de la bielle 8 et, la fin de course du vérin 17 provoque l'entrée de la tige du vérin 7 et, donc l'admission du produit par le piston 6 et, la fin de course du vérin 7 provoquera la fermeture de l'orifice de la première chambre 2 par l'axe trompette 1 sous l'action du vérin 17 sur la bielle 8 et, la fin de course du vérin 17 provoquera l'ouverture de l'orifice de la deuxième chambre 4 par l'axe trompette 3 sous l'action du vérin 16 sur la bielle 18 qui imprime un mouvement d'oscillation à l'axe trompette 3 et, la fin de course du vérin 16 provoquera la sortie de la tige du vérin 7 et, donc le refoulement du produit par la sortie du piston 6 et, la fin de course du vérin 7 provoquera la fermeture de l'orifice de la deuxième chambre 4 par l'oscillation de l'axe trompette 3 sous l'action du vérin 16 et, la fin de course du vérin 16 provoquera l'ouverture de la première chambre 2 sous l'action du vérin 17 sur la bielle 8 qui imprimera un mouvement d'oscillation à l'axe trompette 1 et, le cycle va reprendre de nouveau avec l'enclenchement des phases du cycle comme décrit ci-dessus .
Les éléments de commande et de distribution (vérins, distributeurs ou séquenceurs etc.) obéissent et concourent au respect du cycle de fonctionnement. Les commandes principales du cycle se résument comme suit : (Dessin 1) .
L'admission et le refoulement du produit se fait par le piston 6 sous l'action du vérin 7.
L'admission du produit correspond à l'entrée de tige du vérin 7. Le refoulement du produit correspond à la sortie de tige du vérin 7.
L'ouverture et la fermeture de la première chambre 2 est obtenue par les oscillations de l'axe trompette 1 sous l'action du vérin 17 sur la bielle 8. L' ouverture et la fermeture de la deuxième chambre 4 est obtenue par les oscillations de l'axe trompette 3 sous l'action du vérin 16 sur la bielle 18.
Le produit arrive par le collecteur 13 et ressort par le collecteur 15.
On connaît déjà plusieurs sortes de pompes et, celle qui a été introduite dans le domaine de la récupération des hydrocarbures l'hors d'une marée noire est la pompe centrifuge et le résultat de son utilisation dans ce domaine reste largement insuffisant voir même confrontée à des impossibilités d'exécution quant par exemple le pétrole de la marée noire se présente sous forme pâteuse ou en mottes en surface ou en profondeur de l'eau ou sur le rivage. II est de même pour l'extraction de la vase dans les barrages d'eaux ou le dessablement des ports maritimes où jusqu'à maintenant les moyens d'extraction de la vase nécessitent l'utilisation de l'eau du barrage à proportion de trois à six mètres cube d' eau pour extraire un seul mètre cube de vase ce qui donc constitue une hémorragie du barrage en se vidant de son eau et plus grave encore est la dégradation des espaces envahis par la vase rejetée parce que trop diluée elle s'étend facilement et est difficile à mettre en stock. De même qu'il est nécessaire d'agiter la vase en profondeur pour permettre à la pompe de l'aspirer ce qui engendre des moyens encombrants lourds et difficilement manipulables avec des pertes de temps considérables pour un rendement insatisfaisant.
La présente invention a pour but de remédier à tous ses inconvénients . En matière de récupération des produits hydrocarbures en surface de l'eau ou du rivage quelque soit leurs états physiques (liquides , pâteux, mottes)
Dans ce cas précis, il faut utiliser impérativement la cloche et son clapet donnés dans le dessin 8. Le flexible 4 du dessin 8 sera raccordé au collecteur 13 du dessin 1.
La pompe et la cloche seront portées sur bateau ou berge pour la récupération des polluants en surface de l'eau. La version de la pompe à deux pistons telle donnée dans le dessin 3 est la plus conseillée pour la récupération en surface de l'eau des polluants du fait du changement excessif des emplacements de la cloche sur la surface de l'eau, induisant des amorces répétitifs de la pompe pour dégager l'air contenu dans 1'évidemment de 'la cloche. Cette version de la pompe minimise le temps d' amorçage et la succion des polluants se fait dés que la cloche et posée en surface de l'eau.
Pour la récupération des polluants sur le rivage, l' évidemment de flottaison de la cloche sera remplacé par un joint en caoutchouc ou autre destiné à assurer l'étanchéité entre la cloche et le plan du rivage, de façon à permettre la succion du polluant. Dans ce cas la pompe et la cloche seront portées sur véhicules à roues ou chenilles ou sur chariots manipulés manuellement par des opérateurs pour des models réduits de pompes et de cloches.
Pour les models manuels, le dernier segment de canalisation reliant la pompe à la cloche sera de type rigide pour servir de bras de manipulation de la cloche.
Pendant les opérations de récupération des produits hydrocarbures en surface de l'eau, le fonctionnement de l'ensemble pompe et cloche est conditionné dans ce cas précis par l'ouverture de l'orifice de la chambre dite clapet 1 du dessin 8. Celle-ci est à son tour conditionné par la pose de la cloche sur la surface de l'eau c'est à dire l'ouverture de l'orifice de la chambre clapet 1 du dessin 8 se fera une fois seulement que la cloche est bien en flottaison sur l'eau.
Il est bien entendu que cette commande automatique peut être remplacé par l'intervention directe de l'opérateur sur des moyens de commande manuels. La pompe doit s'arrêter dés que la cloche est remontée et n'est plus en flottaison sur l'eau, il s'en suit immédiatement la fermeture de l'orifice de la chambre de clapet de la cloche provoquée par le contacteur de commande du vérin 9 du dessin 8. Une grille de protection en guise de filtre est prévue dans l'orifice supérieur de la cloche pour stopper les grosses impuretés (bouteilles, chiffons, bois ...) . Dés la relevée de la cloche sur l'eau la succion laisse une surface propre et dépourvue de polluants .
La récupération des produites hydrocarbures sous toutes leur formes (liquides, pâteux ou en mottes) en profondeur des eaux ne nécessite plus l'utilisation de crépines ou de clapets antiretour contrairement aux moyens de pompage connus jusqu'à maintenant. La pompe est directement reliée par flexibles armés (supportant la dépression) ou canalisation rigides au point de puisement sans crépines ou clapets anti-retour et il y' a impossibilité de retour de pression ou de produit même avec des arrêts répétitifs ou prolongés de la pompe.
La récupération de la vase ou boue au fond des eaux (barrages d'eaux ou ports maritimes) se fera aussi sans crépines ni clapets le flexible armé ou canalisation rigide comportera en bout une ancre qui n'est qu'un segment de tube métallique pourvu d'un caillebotis ou grille de filtration des boues et de poids suffisamment lourd pour s'enfoncer dans la vase, de cette sorte en ne retirera que la vase sans apport d'eaux contrairement aux moyens de pompage connus. Ajouter à cela qu'il n'est plus nécessaire avec cette présente pompe d'agiter la vase pour pouvoir l'aspirer.
L'ancre est reliée par câble ou chaîne à une flèche portée sur berge ou bateau ou directement reliée à un engin ou véhicule pour sa manipulation. Dans ce cas la vase extraite est de consistance assez pâteuse ce qui donc facilite son entreposage dans des aires libres ou dans des contenants pour son transfert dans des endroits déterminés . (L' idéal est de la répondre sur les grandes décharges publiques pour provoquer l'asphyxie des déchets et donc de limiter les émanations de mauvaises odeurs et d'accélérer le processus de leur dégradation maintenant que l'on peut la mettre dans des contenants et donc la transporter) . Ici l'opération de désenvasement est rapide du fait de la simplicité des manipulations de l'ancre et la pompe peut rester sur le rivage quelque soit la profondeur d'épuisement de la vase.
On peut dans des cas échéants utiliser la pompe pour dégager des bateaux échoués dont la coque est enfouis dans du sable des suites d'une tempête ou dans la fracturation hydraulique des gisements de pétrole (stimulation par injection d'eau sous pression et de billes de bauxite)
L'invention est exposée ci-après plus en détail à l'aide de dessins représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de cette pompe et de certains de ses accessoires.
La figure 1 représente un dessin d'ensemble de la pompe dont la première chambre 2 comporte deux orifices telle que donnée dans le dessin 4 et la seconde chambre 4 à un seul orifice comme représentée dans le dessin 5.
La figure 2 représente un dessin d' ensemble de la pompe dont la première et la seconde chambre sont identiques à un seul orifice telle que donnée dans le dessin 5.
La figure 3 représente un dessin d'ensemble d'une variante de la pompe telle donnée dans le dessin 1 mais avec deux pistons et cette variante est aussi possible pour la version donnée dans le dessin 2. La figure 4 représente la première chambre 2 du dessin d'ensemble 1 comportant deux orifices. Elle donne une vue de face et une vue de droite en coupe (A-A) ainsi qu'une section (a-a) de l'orifice d'admission, ocl est l'angle de l'orifice de sortie produit sa valeur est : ( αl > α ) La figure 5 donne un exemple de représentation de la chambre 4 du dessin 1, comportant un seul orifice. Elle donne une vue de face et une vue de droite en coupe (A-A) ainsi qu'une section (a-a) de l'orifice. La figure 6 représente trois types d'axes trompettes et leurs différents angles fonctionnels. Dans les figures (6-a) et (6-b) la valeur de l'angle β est : β > α . Dans la figure (6-c) l'angle β est égale : β > (α + 2φ)
La figure 7 représente en position d'ouverture et de fermeture les orifices des chambres avec les trois types d' axes trompettes donnés dans le dessin 6. Elle donne aussi les angles fonctionnels et les positions extrêmes de fermeture et d'ouverture des axes trompettes. Ainsi l'angle (x = α+φ) , (φ > 5°) , (θ > 5°) et (d > 5mm) .
La figure 8 représente un dessin d'ensemble d'une cloche 3 avec son clapet formé d'une chambre 1 identique à celle donnée dans le dessin 5 avec un seul orifice et son axe trompette identique à ceux donnés dans le dessin 6 ainsi que les éléments de commande de l'axe trompette (vérin, bielle etc.) . Elle donne aussi le flexible 4 qui relie l'ensemble cloche à la pompe décrite ici dans ses différentes versions. 10 représente 1'évidemment de flottaison de la cloche.
La figure 9 donne deux exemples de mise en œuvre de la cloche avec sa pompe décrite dans la présente description pendant la récupération en surface de l'eau des polluants. La pompe 5 est montée sur berge ou bateau 7 la cloche 1 est reliée à la pompe 5 par flexible armé 2 seul dans l' exemples figure (9-b) et par flexible 2 et canalisation rigide 4 avec articulations étanches dans l'exemple de la figure (9-a) . La manipulation de la cloche se fait par flèche 6. L'angle (X) d'oscillation des bielles de commande des axes trompettes est déterminé comme suit : (voir dessin 7) Pour réduire les efforts axiaux sur l'axe trompette, il est nécessaire de prévoir un angle de démarrage θ des bielles de commande des axes trompettes par rapport à l'axe de leur vérin de commande. Plus θ est grand, plus les efforts axiaux sur l'axe trompette sont faibles. L'angle θ est de (5° à 15°) environ. L' angle X d' oscillation des bielles de commande des axes trompettes est égale :
X = 180° - (2Θ ) (supposant que θ =10°)
X = 180° - (2x10°) ^ X = 180° - 20° = 160° X = 160° La détermination de l'angle α de l'orifice d'admission des chambres se fait comme suit : (voir dessin 7)
L'angle α de l'orifice des chambres ne peut être de même valeur que l'angle X d'oscillation des bielles, sa valeur doit être toujours inférieure à celle de l'angle X. Si l'angle α a la même valeur que l'angle X, la fermeture et l'ouverture de l'orifice des chambres se fait sans sécurité complète de l'ouverture et de la fermeture des orifices d'admission c'est à dire selon le type d'axe trompette utilisé, la fermeture des orifices des chambres ne peut s'obtenir que si l'on prévoit des angles de sécurité de fermeture.
Dans cette étude il est prévu des angles de sécurité de fermeture appelés φ de valeur comprise entre 5° et 10° environ. Pour que l'orifice d'admission des chambres s'ouvre complètement, l'angle α de l'orifice des chambres doit être égale à l'angle X moins une valeur de l'angle φ de sécurité de fermeture, c'est à dire que l'angle α est égale : (α = X -φ) De cette sorte l'ouverture et la fermeture des chambres est absolue il y'a impossibilité de retour de pression et c'est cette disposition qui nous permettra de nous dispenser de l'utilisation des crépines et des clapets anti-retour. Les orifices des deux chambres sont identiques.
La détermination de l'angle β du secteur des axes trompettes se fait comme suit : (voir dessin 7)
Quelque soit le type d'axe trompette considéré donné dans le dessin 6 la valeur de l'angle β du secteur de fermeture doit être plus grande ou égale à α plus deux valeurs de l'angle φ de sécurité de fermeture. Donc β > (α + 2 φ) .
II est possible de grouper deux et plus ensembles de pompes dans le but d'augmenter le débit et d'uniformiser le flux de sortie produit.
Dans le cas de deux pompes jumelées, c'est à dire liées entre elles par les collecteurs d'admission et de refoulement; les caler de façon à équilibrer et rendre symétrique au mieux les séquences de commande et de distribution afin de limiter la discontinuité entre les phases de refoulement.
Les combinaisons de deux groupes qui offrent une meilleure symétrie dans le flux de refoulement sont : (selon tableau 1)
(1 - 4), (2 - 5), (3 - 6)
La cloche représentée dans le dessin 8 est indispensable dans la récupération des hydrocarbures sous toutes leurs formes en surface de l'eau. Elle peut être de forme circulaire carrée ou rectangulaire.
Elle comporte sur son périmètre un évidemment étanche lui permettant d'assurer sa flottaison sur l'eau malgré le poids de l'ensemble du clapet. La section de l'évidement peut être de forme circulaire, carrée, rectangulaire ou triangulaire. De même qu'il peut être solidaire de la cloche c'est à dire conçu dans le même bloc ou être comme pièce rapportée fixée avec joint d' étanchéité sur les parties de contacte avec la cloche.
Sur la partie supérieure externe de la cloche est monté une chambre dite « chambre clapet » composée principalement d'une chambre selon le dessin 4 ou 5 avec son axe trompette parmi les trois donnés dans le dessin 6 lequel est solidaire d'une bielle de commande actionné par un vérin 9.
Le fonctionnement de la chambre dite clapet est analogue au fonctionnement des chambres de pompes des dessins 1 et 2.
Dans le cas de la récupération des mottes de pétrole ou autres déchets sur le rivage, la cloche comportera en remplacement de l'évidemment de flottaison un joint en caoutchouc ou autre destiné à assurer l'étanchéité entre la cloche et le plan du rivage. Dans ce cas la pompe et la cloche peuvent être portées sur engins à roues ou à chenilles avec flèche de manipulation de la cloche ou sur chariot manœuvré manuellement par l'opérateur pour des models réduits de la pompe et de la cloche. Dans ce cas le segment de canalisation du coté de la cloche sera rigide pour servir de bras de manipulation de la cloche.
La pompe ou le groupe de pompe est relié à la cloche par le biais d'un tuyau flexible armé supportant la dépression produite sous l'effet de l'aspiration de la pompe (dans ce cas le flexible doit comporté suffisamment de mou pour que la flèche ne force pas sur le flexible) ou par le biais d'une canalisation rigide pourvue d'articulations étanches (voir dessin 9)
La manipulation de la cloche se fait par l'aide d'une flèche reliée à elle par deux câbles ou chaînes ou cordes. Les flexibles d'alimentation en huile sous pression du vérin de commande de l'axe trompette de la chambre clapet monté sur cloche sont en tuyaux rigides au niveau des segments de flèche et en tuyaux flexibles pour pression sur les parties mobiles de la flèche c'est à dire au niveau des articulations et entre la flèche et la cloche. Le volume du creux de la cloche ou (évidure) est proportionnel au débit de la pompe ou du groupe de pompe.
Procédés et matières éventuelles de fabrication des éléments principaux de l'ensemble Pompe et cloche
Figure imgf000017_0001
SEQUENCES DU CYCLE DE FONCTIONNEMENT D' UNE POMPE ET GROUPAGE DE SIX POMPES
Figure imgf000018_0002
Légende: c\ Chambre A Ouverte Chambre A Fermée
Figure imgf000018_0001
P a -* Piston en position Admission
P r - Piston en position Refoulement
B o - Chambre B Ouverte
B f - Chambre B Fermée
||A f ||P r ||B o II -* Séquence de Refoulement Combinaison de deux groupes donnant une meilleure symétrie dans le refoulement
Groupe N° 1 et groupe N° 4 |
Combinaisons Groupe 2 et groupe N0 5
Groupe N° 3 et groupe N" 6 I

Claims

REVENDICATIONS
1 - Pompe selon le dessin 1 comportant une chambres 2 et une autre chambre 4 définies respectivement dans les dessins 4 et 5, à l'intérieur desquelles oscillent respectivement les axes trompettes 1 et 3 qui assurent la fermeture et l'ouverture des orifices d'admission des chambres sous l'action des vérins respectifs 17 et 16 par l'intermédiaire des bielles respectives 8 et 18.
Sur la première chambre 2 est monté un ensemble piston 6 (fixe ou basculant) d'admission et de refoulement du produit actionné par un vérin 7. L' ensemble des éléments de commande et de distribution (distributeurs, vérins, pompe hydraulique pour huile sous pression etc.) obéissent à la réalisation du cycle de fonctionnement de la pompe défini dans la description et résumé dans le tableau 1.
2 - Pompe selon la revendication précédente mais comportant deux ou plus ensembles pistons et vérins montés sur le couvercle 35 de la première chambre 2 du dessin 1 tel que représentés dans le dessin 3.
3 - Pompe selon la première revendication mais dont les deux chambres sont identiques à un seul orifice telles que représentées dans le dessin de 5 et reliées entre elles par le couvercle 38.
4 - Pompe selon la revendication précédente mais dont le couvercle 38 porte deux ou plus ensembles piston et vérin.
5 - Pompe selon l'une ou l'autre des revendications précédentes multipliées ou groupées en deux ou plus et reliées entre elles à l'admission par le collecteur d'arrivée produits 13 et au refoulement par le collecteur de sortie produits 15 du dessin 1.
6 - Pompe ou groupe de Pompe selon l'une ou l'autre des revendications précédentes et dont les premières chambres d'admission et les deuxièmes chambres de refoulement sont conçues dans un même bloc en une seul pièce ou monobloc.
7 - Groupes de Pompe selon l'une ou l'autre des revendications précédentes exceptée la revendication 6 et dont les premières chambres d'admission sont conçues dans un même bloc ou pièce et les deuxièmes chambres de refoulement sont conçues dans un même bloc ou pièce.
8 - Tous clapets formés d'une chambre à axe trompette tels que définies dans les dessins 4 et 5 et dont l'une de ses utilisations et représentée dans le dessin 8.
9 - Toute cloche telle que définie dans le dessin 8 et décrite dans la présente description destinée à la récupération des produits hydrocarbures ou autres polluants sous toutes leurs formes (liquides, pâteux ou en mottes) en surface de l'eau.
PCT/DZ2004/000005 2004-12-29 2004-12-29 Pompe anti maree noire et de desenvasement WO2006069585A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/DZ2004/000005 WO2006069585A1 (fr) 2004-12-29 2004-12-29 Pompe anti maree noire et de desenvasement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DZ2004/000005 WO2006069585A1 (fr) 2004-12-29 2004-12-29 Pompe anti maree noire et de desenvasement

Publications (1)

Publication Number Publication Date
WO2006069585A1 true WO2006069585A1 (fr) 2006-07-06

Family

ID=34959932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2004/000005 WO2006069585A1 (fr) 2004-12-29 2004-12-29 Pompe anti maree noire et de desenvasement

Country Status (1)

Country Link
WO (1) WO2006069585A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1006514B (el) * 2008-06-30 2009-09-02 Παντελης Παναγιωτου Σακελλαριαδης Συστημα αντλησης απο την θαλασσα διαρρευσαντος πετρελαιου και λοιπων καυσιμων

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB588785A (en) * 1945-03-07 1947-06-03 Wilfred Hanson Elvis An improved reciprocatory pump for delivery from bulk of predetermined quantities of edible substances
DE3211594A1 (de) * 1982-03-30 1983-10-13 KBI Klöckner-Becorit Industrietechnik GmbH, 4224 Hünxe Vorrichtung zum einspeisen von schuettgut in eine pneumatische druckfoerderanlage
DE3909417A1 (de) * 1989-03-22 1990-09-27 Edgar Kalbantner Verfahren und vorrichtung zum beseitigen von gegenueber wasser spezifisch leichteren fluessigkeiten aus offenen gewaessern
FR2703983A1 (fr) * 1993-04-12 1994-10-21 Ou Otmane Mohand Idir Système de refoulement automatique, pendulaire à pistons et axes trompettes, pour le transfert de produits (poudres, liquides, granulés, bétons etc...).
WO2002016699A1 (fr) * 2000-08-22 2002-02-28 Larsen, Bent Appareil de collection de petrole et procede de collection de petrole ou d'un autre fluide similaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB588785A (en) * 1945-03-07 1947-06-03 Wilfred Hanson Elvis An improved reciprocatory pump for delivery from bulk of predetermined quantities of edible substances
DE3211594A1 (de) * 1982-03-30 1983-10-13 KBI Klöckner-Becorit Industrietechnik GmbH, 4224 Hünxe Vorrichtung zum einspeisen von schuettgut in eine pneumatische druckfoerderanlage
DE3909417A1 (de) * 1989-03-22 1990-09-27 Edgar Kalbantner Verfahren und vorrichtung zum beseitigen von gegenueber wasser spezifisch leichteren fluessigkeiten aus offenen gewaessern
FR2703983A1 (fr) * 1993-04-12 1994-10-21 Ou Otmane Mohand Idir Système de refoulement automatique, pendulaire à pistons et axes trompettes, pour le transfert de produits (poudres, liquides, granulés, bétons etc...).
WO2002016699A1 (fr) * 2000-08-22 2002-02-28 Larsen, Bent Appareil de collection de petrole et procede de collection de petrole ou d'un autre fluide similaire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1006514B (el) * 2008-06-30 2009-09-02 Παντελης Παναγιωτου Σακελλαριαδης Συστημα αντλησης απο την θαλασσα διαρρευσαντος πετρελαιου και λοιπων καυσιμων

Similar Documents

Publication Publication Date Title
US10094091B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
CA2833650C (fr) Dispositif d'extraction de materiau solide sur le fond d'une etendue d'eau et procede associe
EP2024109A1 (fr) Systeme de nettoyage d'une cuve de petrole et procede de nettoyage d'une cuve de petrole
KR20200079798A (ko) 타원형 회전구조를 이루며 수중의 수초나 오니퇴적물을 제거하는 수중 오니퇴적물 제거장치 및 이를 이용한 수중 오니퇴적물 제거방법
CA2971370A1 (fr) Systeme de prelevement de sediments sur un fond d'un milieu liquide
US9816240B1 (en) Sediment suction sink and method for sediment control in rivers, streams, and channels
EP3276159A1 (fr) Installation pour produire de l'électricité
NO313596B1 (no) Fremgangsmåte ved hydraulisk mudring av masse fra sjöbunn
JP4195214B2 (ja) 屈曲部に開口部を有するパイプを用いた浚渫装置
CN213204269U (zh) 一种用于港口航道泥沙清理装置
WO2006069585A1 (fr) Pompe anti maree noire et de desenvasement
EP1722039A1 (fr) Dispositif de stockage des eaux pluviales
FR2640698A1 (fr) Pompe peristaltique
KR100650111B1 (ko) 준설장치
FR3030318B1 (fr) Dispositif de pretraitement de sediments preleves sur un fond d'un milieu liquide comprenant des etages de tamisage successifs
JPH08158397A (ja) ヘドロなどの除去方法及び除去装置
FR2808496A1 (fr) Dispositif permettant la recuperation des nappes de fioul flottant a la surface de la mer ou en faible immersion
KR102495693B1 (ko) 어항 내의 퇴적 갯벌 제거 및 갯벌 퇴적 방지 시스템
FR3102999A1 (fr) Dispositif de récupération de produits liquides et/ou solides surnageant à la surface d'un plan d'eau.
FR3071382A1 (fr) Installation d’irrigation
JP3716311B2 (ja) 水底土砂除去工法、及び水底土砂除去装置
KR100960728B1 (ko) 항내매몰 및 해안침식 방지를 위한 모래이송장치
CA2362710C (fr) Pompe a lixiviat et de depollution, pneumatique, a vanne a manchon
KR101602788B1 (ko) 어항 준설용 밸브 및 그를 이용한 어항 준설방법
FR2615910A1 (fr) Pompe hydraulique pour les puits et forages de moyenne et grande profondeur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04803081

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4803081

Country of ref document: EP