WO2006067859A1 - Interface circuit - Google Patents

Interface circuit Download PDF

Info

Publication number
WO2006067859A1
WO2006067859A1 PCT/JP2004/019396 JP2004019396W WO2006067859A1 WO 2006067859 A1 WO2006067859 A1 WO 2006067859A1 JP 2004019396 W JP2004019396 W JP 2004019396W WO 2006067859 A1 WO2006067859 A1 WO 2006067859A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
input terminal
external input
level
inverter
Prior art date
Application number
PCT/JP2004/019396
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Ueno
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to PCT/JP2004/019396 priority Critical patent/WO2006067859A1/en
Priority to US11/792,993 priority patent/US7750705B2/en
Publication of WO2006067859A1 publication Critical patent/WO2006067859A1/en
Priority to US12/794,434 priority patent/US7986162B2/en
Priority to US12/797,123 priority patent/US8018264B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • H03K3/0375Bistable circuits provided with means for increasing reliability; for protection; for ensuring a predetermined initial state when the supply voltage has been applied; for storing the actual state when the supply voltage fails

Definitions

  • the present invention relates to an interface circuit that is applied to various electronic devices and stabilizes the electrical state of an external input / output terminal.
  • a signal transmitted by a device in a digital system basically has two states except for a floating state.
  • the first state is a state designed to transmit an event corresponding to a logic high level (also called logic high, high, 1, on, H level), and the second state is It is a state designed to transmit events corresponding to logic low levels (also called logic low, low, 0, off, L level).
  • C MOS logic ICs and transistor-transistor-logic (TTL) ICs are the most common circuit configurations used to generate digital signals.
  • the logic low signal is generally in the range where the potential force applied to the low voltage terminal is up to about 0.6V.
  • the potential applied to the high voltage terminal is Vcc
  • the logic high signal is generally in the range of Vcc to Vcc – 0.6V. Since it is a well-known technical matter that the relationship between the signal potential and the logic level is determined depending on the device in this way, it will not be described in detail in the following description.
  • Various information processing apparatuses as digital systems are generally provided with a plurality of external input terminals (connectors) for signal input.
  • a semiconductor integrated circuit such as a CPU incorporated in an information processing apparatus is also provided with a plurality of input terminals (pins) for signal input, and may further be provided with a control terminal for switching the operation mode of the CPU or the like.
  • the external input terminal has a function as an interface that inputs an H level or L level logic signal given from an external device and gives it to an internal circuit such as a CPU or a memory.
  • the above control terminal outputs the control information given to the internal circuit depending on, for example, whether or not the grounding force is high.
  • the external input terminal Z control terminal for this type of logic circuit has a high input impedance, so its potential changes due to the influence of external noise in the floating state. Therefore, in order to prevent the external input terminal from being affected by external noise even when the potential of the external input terminal is in a floating state, conventionally, as shown in FIGS. 13A and 13B, a pull-up resistor Rpu or a pull-down resistor Rpd is generally used.
  • the external input terminal 1 is connected to the power supply voltage Vcc or grounded.
  • An input buffer 2 having an external input terminal 1 includes, for example, a p-channel MOS transistor (abbreviated as PMOS) 3 and an n-channel MOS transistor (abbreviated as NMOS) 4 as shown in FIGS. 13A and 13B. It is comprised by the inverter circuit which consists of. If a pull-up resistor Rpu or pull-down resistor Rpd is connected to the external input pin 1 while applying force, leakage current may flow to the external input pin 1 using these resistors Rpu and Rpd as current paths.
  • a pull-up resistor Rpu or pull-down resistor Rpd is connected to the external input pin 1 while applying force, leakage current may flow to the external input pin 1 using these resistors Rpu and Rpd as current paths.
  • a latch circuit composed of an NMOS transistor 6 and a PMOS transistor 7 gate-controlled by an NMOS transistor 5 is connected to an input node of an input buffer composed of two-stage inverter circuits 2a and 2b. It is shown that the leakage current can be reduced by providing 8 (see, for example, Patent Document 1).
  • This latch circuit 8 latches according to the output level of the input buffer (two-stage inverter circuits 2a and 2b) that operates according to this signal when an external input terminal 1 is given an H-level or L-level signal (potential). As a result, the external input terminal 1 is forcibly fixed to H level or L level.
  • the latch circuit 8 turns off the NMOS transistor 5 by the external signal S, while conducting the NMOS transistor 6 by the pull-up resistor R pu (hereinafter referred to as “transistor”). It turns on and turns off the PMOS transistor 7 (hereinafter referred to as “off”) to maintain the external input terminal 1 at the H level.
  • bus hold circuit provided for the purpose of preventing abnormal phenomena such as leakage current, oscillation, and data error of a semiconductor element caused when an external input terminal is opened.
  • This bus hold circuit has a function of holding the previous logical level given to the external input terminal when the external input terminal is in a floating state.
  • this type of bus hold circuit may be used in place of a bull-up resistor or a pull-down resistor in order to prevent the bus from becoming unstable.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-161486
  • Patent Document 2 US Pat. No. 5,432,462
  • Patent Document 3 US Patent No. 6150845
  • Non-Patent Document 1 “AN—Designed with 5006J Bus Hold Circuit”, Fairchild Semiconductor Company, Application Note, March 1999 First Edition (revised September 1999), p. 1-3 Disclosure of Invention
  • the interface circuit has a dedicated circuit for determining whether the external input terminal 1 is in a floating state (open state) or a dedicated circuit for generating the external signal S to control the operation of the latch circuit 8. A circuit is required.
  • a bus hold circuit applied to a multi-drop node has a problem of leakage current as described in Non-Patent Document 1. Furthermore, when the logic level of the external input terminal is changed, the above-described bus hold circuit has a problem that current consumption is large.
  • a bus hold circuit provided for the purpose of preventing the bus from becoming unstable may cause the input to become unstable when the power supply to the bus hold circuit rises. That Therefore, in order to stabilize the bus potential at the rise of the power supply, it is necessary to provide, for example, a pull-up resistor in addition to the noshold circuit.
  • the present invention has been made in view of such circumstances, and its purpose is to set the external input terminal in advance without using an external signal when the external input terminal is in a floating state (open state). It is possible to provide an interface circuit with a simple configuration that can be automatically stabilized to the H level or the L level and has noise resistance and no leakage current from an external input terminal.
  • an interface circuit includes a high voltage terminal and a low voltage terminal forming a pair of power supply terminals, and an external input terminal, and the logic level of the external input terminal is set to H It is an interface circuit that stabilizes the voltage at the level (logic high signal) or the L level (logic low signal).
  • a first inverter circuit configured using a transistor and inverting and outputting a logic level of an input signal applied to the external input terminal
  • the potential of the input signal which is configured by using a transistor and is obtained by inverting the logical level of the output signal in the first inverter circuit and applied to the first inverter circuit via the external input terminal.
  • a second inverter circuit that generates an output signal of higher or lower potential
  • a feedback path for positively feeding back the output signal of the second inverter circuit to the external input terminal is provided.
  • the interface circuit according to the present invention basically has a logic level having the above-described H level potential (logic high signal) or L level potential (logic low signal) applied to the external input terminal.
  • a first inverter circuit for inverting, and a second inverter circuit for inverting the logic level of the output signal of the first inverter circuit, the logic level of the output signal of the second inverter circuit being 1 is configured to provide positive feedback to the input node (external input terminal) of the inverter circuit,
  • the external input terminal is in a floating state by positively feeding back the output signal of the output node of the second inverter circuit to the first input node (external input terminal).
  • the logic level of the external input terminal is automatically maintained at the H level potential (logic high signal) or maintained at the L level potential (logic low signal) due to the positive feedback action. It is a feature. Note that the input signal potential and the output signal potential need only be slightly different.
  • the interface circuit configured as described above has an output signal with a potential higher or lower than the potential applied to the input node of the first inverter circuit. Is output positively to the input node of the first inverter circuit. For this reason, the potential of the output signal in the second inverter circuit is gradually shifted to the H level potential or the L level potential by the positive feedback action, and becomes stable when the potential becomes the H level potential or the L level potential. .
  • the interface circuit according to the present invention even when the external input terminal is in a floating state (open state), the potential of the external input terminal is automatically stabilized to the H level potential or the L level potential. I will do it.
  • the external input terminal potential is electrically fixed to the H level potential.
  • the first and second inverter circuits allow the external input terminal to Since the high-voltage terminal and the low-voltage terminal force are separated, leakage current does not occur as in the case of using a bull-up resistor or pull-down resistor.
  • the second inverter circuit is preferably
  • Second and third transistors inserted in series between the low voltage terminal and the external input terminal, wherein at least one of the second and third transistors is an output of the first inverter circuit. It is turned off (non-conducting state) when the signal level is at a potential, and at least one of the second and third transistors is turned off when the output signal of the first inverter circuit is at an H level potential.
  • the potential of the input signal applied to the external input terminal is an H level potential
  • an output signal having a potential equal to or higher than the potential of the input signal is output
  • the input signal is other than an H level potential
  • the second and third transistors are configured to output an output signal having a potential higher than that of the input signal.
  • one of the second and third transistors is turned off when it is at the potential of the output signal power level of the first inverter circuit, and the output signal of the first inverter circuit is at the potential of H level. It may be turned off when Alternatively, one or both of the second and third transistors may be turned off regardless of whether the output signal of the first inverter circuit is an H level potential or a ZL level potential.
  • These second and third transistors have a voltage shift function that raises the potential of the output signal of the second inverter circuit by a predetermined potential above the potential of the external input terminal in the floating state. become.
  • the first inverter circuit receives the input signal having an L-level potential supplied from the external input terminal with respect to the H level.
  • voltage shift means is provided that lowers the potential of the output signal of the first inverter circuit to such an extent that the first transistor in the second inverter circuit is not turned on. Since the first inverter circuit includes the voltage shift means described above, it is possible to increase the convergence speed to the H level potential by the positive feedback action described above.
  • the second inverter circuit is
  • Second and third transistors inserted in series between the high voltage terminal and the external input terminal, wherein at least one of the second and third transistors is the first inverter circuit.
  • the potential of the output signal of the first inverter circuit is off, and at least one of the second and third transistors is at the H level of the potential of the output signal of the first inverter circuit.
  • an output signal equal to or lower than the potential of the input signal is output. It can also be composed of second and third transistors that output an output signal having a potential lower than that of the input signal.
  • one of the second and third transistors is turned off when the output signal of the first inverter circuit is at an H level potential, and the other is the output signal power level of the first inverter circuit. It may be turned off when the potential is. Alternatively, one or both of the second and third transistors may be turned off regardless of whether the output signal of the first inverter circuit is an H level potential or a ZL level potential.
  • These second and third transistors have a voltage shift function that lowers the potential of the output signal of the second inverter circuit by a predetermined potential from the potential of the external input terminal in the floating state.
  • the first inverter circuit uses the first inverter for an input signal having an L level potential applied via the external input terminal. It is preferable to provide voltage shift means for making the potential of the output signal of the circuit higher than the potential of the L level so that the first transistor in the second inverter circuit is not turned on.
  • the output node of the second inverter circuit configured to automatically set the potential of the external input terminal to the H level potential.
  • the high voltage terminal force further comprises a current supply means for supplying a constant current toward the external input terminal.
  • the second inverter circuit configured to automatically set the potential of the external input terminal to the L level potential. In this case, it is preferable to provide a current supply means for supplying a constant current from the external input terminal to the low voltage terminal at the output node.
  • the current supply means described above reduces the MOS transistor OFF operation time, although the external input terminal force also leaks current. In addition to shortening, it exhibits the effect of increasing the convergence speed to the H level potential or L level potential by the positive feedback action described above.
  • the current supplied to the output node of the second inverter circuit has a voltage drop in the MOS transistor that forms the voltage shift function of the second inverter circuit when the external input terminal is in a floating state. Since it only occurs, the leakage current can be kept much lower than the leakage current when pull-up or pull-down resistors are used.
  • a resistor as a current limiting element that is inserted in series in the feedback path and limits the current flowing through the feedback path.
  • a current limiting element for example, a resistor provided in the feedback path limits the current flowing into the external input terminal via the feedback path. For this reason, the above-described interface circuit can transition the external input terminal, which is stable at the H level potential, to the L level potential with a low driving current.
  • the interface circuit described above is an interface circuit connectable to a power source, and includes an external input terminal, a first inverter to which the potential of the external input terminal is input, and an output of the first inverter.
  • a second inverter to which a potential is input and a feedback path for returning the potential of the output of the second inverter to the input of the first inverter are assumed, and this feedback path is assumed to be in a state,
  • the potential of the external input terminal is substantially lower than the potential of the high-potential power line, and the output potential of the second inverter is always substantially higher than the potential of the external input terminal.
  • the above-described interface circuit is an interface circuit connectable to a power source, and includes an external input terminal, a first inverter to which a potential of the external input terminal is input, and a first inverter.
  • the potential of the output of the second inverter is always substantially higher than the potential of the external input terminal in the range where the potential of the external input terminal is substantially higher than the potential of the low potential power line. It is desirable to take the state low.
  • the external input terminal in the interface circuit of the present invention outputs a preset H level or L level signal in the floating state, so to speak, it functions as an output terminal. I have it. However, for convenience of explanation, the term “external input terminal” will be used consistently.
  • the potential of the external input terminal in a floating state can be set to the H level potential or the L level potential, and the leakage current of the external input terminal can be sufficiently suppressed.
  • the interface circuit of the present invention can be used in various electronic devices and semiconductor integrated circuits. It has a great effect as an interface circuit for an external input terminal in a circuit or the like.
  • the interface circuit of the present invention has an advantage that it can be easily incorporated into a semiconductor integrated circuit because the circuit configuration itself is simple.
  • FIG. 1 is a configuration diagram of an interface circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing input / output characteristics when the second inverter circuit force in the interface circuit shown in FIG. 1 stops positive feedback to the first inverter circuit;
  • FIG. 3 is a configuration diagram of an interface circuit according to Embodiment 2 of the present invention.
  • FIG. 4 is a configuration diagram of an interface circuit according to Embodiment 3 of the present invention.
  • FIG. 5 is a diagram showing input / output characteristics when the second inverter circuit force in the interface circuit shown in FIG. 4 is stopped from positive feedback to the first inverter circuit;
  • FIG. 6 is a configuration diagram of an interface circuit according to Embodiment 4 of the present invention.
  • FIG. 7 is a configuration diagram of an interface circuit according to Embodiment 5 of the present invention.
  • FIG. 8A A diagram showing an example of using a PMOS transistor as a switch.
  • FIG. 8C Diagram showing an example of using a MOS transistor with a p-channel resistor by connecting the gate and source of a PMOS transistor.
  • FIG. 8D A diagram showing an example of using an NMOS transistor as a switch.
  • FIG. 8F A diagram showing an example of using a MOS transistor with an n-channel resistor by connecting the gate and source of an NMOS transistor
  • FIG. 9 is a diagram showing a configuration example of an interface circuit for verifying the configuration example of the second inverter circuit
  • FIG. 10 is a diagram showing a verification result of the second inverter circuit shown in FIG.
  • FIG. 11 is a diagram showing another configuration example of the interface circuit for verifying the configuration example of the second inverter circuit
  • FIG. 12 is a diagram showing a verification result of the second inverter circuit shown in FIG.
  • FIG. 13A is a block diagram showing an example of processing of an external input terminal using a pull-up resistor Rpu.
  • FIG. 13B is a block diagram showing an example of processing of an external input terminal using a pull-down resistor Rpd.
  • FIG. 14 is a diagram showing a configuration example of a conventional interface circuit
  • FIG. 15 is a configuration diagram of an interface circuit according to Example 8 of the present invention.
  • a high voltage terminal and a low voltage terminal forming a pair of power supply terminals will be described as a power supply node supplying a positive power supply voltage Vcc and a ground node defined as a zero potential.
  • a circuit in which the voltage terminal is grounded and the low voltage terminal supplies a negative (minus) potential may be used.
  • a circuit that supplies a positive (plus) power supply voltage to the high voltage terminal and a negative (minus) potential to the low voltage terminal may be used. In short, it is sufficient that the potential V supplied to the high voltage terminal and the potential V supplied to the low voltage terminal satisfy the relationship V> V.
  • the conductive state and non-conductive state of a transistor are These are referred to as on and off, respectively.
  • FIG. 1 shows a configuration of the interface circuit according to the first embodiment.
  • 10 is a first inverter circuit composed of a PMOS transistor 11 and an NMOS transistor 12
  • 20 is a second inverter circuit composed of two PMOS transistors 21, 22 and an NMOS transistor 23. is there.
  • the drain electrodes of the PMOS transistor 11 and the NMOS transistor 12 are connected to each other.
  • the first inverter circuit 10 is connected in series between a power supply node (high voltage terminal) and a ground node (low voltage terminal).
  • Each gate electrode of the first inverter circuit 10 is commonly connected to the external input terminal 1 via the input node A.
  • the interconnected drain electrodes are configured as output node B.
  • the PMOS transistor 11 is turned off and the NMOS transistor 12 is turned on when the input signal applied from the external input terminal 1 to the input node A is at the H level potential.
  • the output node B potential is set to L level.
  • the PMOS transistor 11 is turned on and the NMOS transistor 12 is turned off, so that the potential of the output node B is changed to the H level potential.
  • the second inverter circuit 20 connects two PMOS transistors 21 and 22 and an NMOS transistor 23 connected in series between a power supply node and a ground node.
  • the second inverter circuit 20 is connected to the output node B of the first inverter circuit 10 by connecting the gate electrodes of these transistors 21, 22, and 23 together as an input node.
  • the second inverter circuit 20 uses the connection point between the drain electrode of the PMOS transistor 21 and the source electrode of the PMOS transistor 22 as an output node C.
  • This output node C is the first mentioned above. Is connected to the input node A of the inverter circuit 10 to form a feedback path. Thus, the output of the second inverter circuit 20 is positively fed back to the first inverter circuit 10.
  • the PMOS transistors 21 and 22 and the NMOS transistor 23 constituting the second inverter circuit 20 basically receive the output signal of the first inverter circuit 10 at the input node (gate electrode) and are complementary. In this case, it functions as a level reversal function that obtains an output signal having a potential obtained by inverting the logic level of the output node B of the first inverter circuit 10 at the output node C.
  • the PMOS transistor 22 and the NMOS transistor 23 are voltages that increase the potential of the node C by applying a signal of a predetermined potential generated between the source and drain electrodes to the output node C when the PMOS transistor 22 and the NMOS transistor 23 are not completely turned on. It plays a role as a shift function.
  • the PMOS transistor 21 , 22 are turned on, and the NMOS transistor 23 is turned off. At this time, the NMOS transistor 23 is off, so that no leakage current occurs through the NMOS transistor 23 at the external input terminal 1.
  • the external input terminal 1 is grounded (L level) force is also in a floating state (open state), the potential of the nodes A and C is not regulated by the external input terminal 1.
  • the potential of the node C is positively fed back to the input node A of the first inverter circuit 10, and the potential of the node C gradually increases.
  • the output potential of the first inverter circuit 10 gradually decreases as the potential of the node C increases.
  • the PMOS transistors 21 and 22 are turned on as the potential of the input signal applied to the input node of the second inverter circuit 20 decreases.
  • the NMOS transistor 23 is turned off, the potential of the output node C is forcibly fixed to the H level potential.
  • the external input terminal 1 potential is Determine. In other words, when the external input terminal 1 is in a floating state (open state), the potential of the external input terminal 1 is automatically set to the H level potential.
  • the second inverter circuit 20 when the second inverter circuit 20 itself does not positively feed back the output of this circuit to the input node A of the first inverter circuit 10, it corresponds to the potential of the input signal supplied to the external input terminal 1. Thus, an output signal having a potential always higher than the potential applied to the node A is output. Specifically, the second inverter circuit 20 outputs an output signal having a potential as shown by the characteristic X in FIG. In other words, when the external input terminal 1 is grounded and is not fixed at the potential level potential that can be supplied to the node A, the potential of the node A is the potential of the output signal of the second inverter circuit 20.
  • the interface circuit configured as described above, when the potential of the external input terminal 1 is set to the H level potential or the L level potential, the input of the external input terminal 1 that causes no leakage current is generated. The state can be kept stable. In particular, when the external input terminal 1 is in the floating state (open state), the potential of the external input terminal 1 can be automatically set to the H level potential. It is not necessary. When the force is forcibly fixed to the potential of the potential level of the external input terminal 1, the PMOS transistor 21 is turned off as described above, so that no leakage current occurs through the external input terminal 1. Therefore, the interface circuit of the present invention can stabilize the potential of the external input terminal 1 to the H level potential or the L level potential when various electronic devices are connected to the external input terminal 1.
  • FIG. 3 is a block diagram of the interface circuit showing the embodiment. The same parts as those of the interface circuit shown in FIG.
  • This interface circuit has a second inverter circuit 20 connected in series to a PMOS transistor 24 and two NMOS transistors 25 and 26 connected in series between a power supply node and a ground node. , 25, and 26 are connected to the output node B of the first inverter circuit 10 as an input node connected in common.
  • the connection point between the source electrode of the NMOS transistor 25 and the drain electrode of the NMOS transistor 26 is defined as an output node C.
  • the output node C is connected to the input node A of the first inverter circuit 10 described above. In this way, the output of the second inverter circuit 20 is configured to be positively fed back to the first inverter circuit 10.
  • the PMOS transistor 24 and the NMOS transistors 25 and 26 constituting the second inverter circuit 20 are basically complementary to each other by receiving the output signal of the first inverter circuit 10 at the input node (gate electrode).
  • it functions as a level inversion function that obtains a signal having a potential obtained by inverting the logic level of the output node B of the first inverter circuit 10 at the output node C.
  • the NMOS transistor 25 and the PMOS transistor 24 have a voltage shift function that lowers the potential of the node C by covering the output node C with a predetermined voltage drop generated between the source and drain electrodes when the transistor does not completely turn on. Play the role of
  • the interface circuit configured as described above, when the external input terminal 1 is in the floating state (open state), the potentials of the nodes A and C are not defined by the external input terminal 1, so that the node C Is gradually fed back to the input node A of the first inverter circuit 10 and gradually decreases. As the potential decreases, the output potential of the first inverter circuit 10 gradually increases.
  • the PMOS transistor 24 includes a second inverter circuit 2
  • the interface circuit of the present invention when the external input terminal 1 is in a floating state (open state), the potential of the external input terminal 1 can be automatically set to the L level potential. For this reason, the interface circuit of the present invention does not need to lower the potential of the external input terminal 1 by connecting the pull-down resistor Rpd as in the prior art.
  • the NMOS transistor 26 when the potential of the external input terminal 1 is forcibly fixed to the H level potential, the NMOS transistor 26 is turned off as described above, so that no leakage current through the external input terminal 1 occurs. Therefore, the interface circuit of the present invention is connected to the external input terminal 1 in various electronic devices, and has the great effect that the potential of the external input terminal 1 can be stabilized to the H level potential or the L level potential. Obtainable.
  • the interface circuit has the potential of the output signal output from the first inverter circuit 10 when it is one of the potential level potential or the H level potential applied to the input node A. It is also useful to incorporate in the first inverter circuit 10 a MOS transistor having a diode connection that shifts the second inverter circuit 20 to such an extent that the second inverter circuit 20 does not turn on and off.
  • a diode-connected PMOS transistor 13 is provided between the power supply node and the source electrode of the PMOS transistor 11 as shown in FIG. The potential of the output node B is lowered by the operation threshold voltage of the PMOS transistor 13 connected in series.
  • the interface circuit configured as described above, when the external input terminal 1 is grounded, the PMOS transistor 11 is turned on and the NMOS transistor 12 is turned off. For this reason, the potential of the source electrode of the PMOS transistor 11 and the potential of the node B are substantially equal. At this time, the potential of the node B is higher than the resistance between the source and the drain of the NMOS transistor 12 and the resistance between the source and the drain of the PMOS transistor 13, and therefore is lower than the voltage Vcc of the power supply node by about the operating threshold voltage of the PMOS transistor 13. Become. P in the second inverter circuit 20 The potential difference between the gate and the source of the MOS transistor 21 The potential difference between the gate and the source of the PMOS transistor 13 in the first inverter circuit 10 is substantially equal. Therefore, the PMOS transistor 21 is turned off. As a result, the interface circuit can keep the potential of the external input terminal 1 at the L level without causing leakage current.
  • the PMOS transistor 13 forms an equivalent current mirror circuit with the PMOS transistor 21 of the second inverter circuit 20.
  • the potential applied to the gate electrode of the PMOS transistor 21 (the potential of the node B). Due to the presence of the PMOS transistor 13, the operating threshold voltage of the PMOS transistor 21 is lower than the power supply voltage Vcc of the PMOS transistor 21. It is kept. Therefore, the external input terminal 1 enters a floating state and the potential of the external input terminal 1 rises. Then, the potential of the signal applied to the gate electrode of the PMOS transistor 21 decreases, and the time until the operation threshold voltage of the PMOS transistor 21 is exceeded is shortened. As a result, the PMOS transistor 21 is turned on quickly, so that the time required for the potential of the external input terminal 1 to transition to the potential of the floating state force H level can be extremely shortened.
  • the potential of the output signal output from the second inverter circuit 20 changes with respect to the potential of the signal supplied to the external input terminal 1 as shown by the characteristic Y in FIG. 5, for example, and is always higher than the potential supplied to the node A. Therefore, when the potential applied to the node A is not fixed at the potential level or the H level, the output signal of the second inverter circuit 20 is positively fed back to the input node A of the first inverter circuit 10. Then, the potential of the output signal of the second inverter circuit 20 quickly becomes V-level potential.
  • a second inverter circuit 20 is connected by connecting a diode-connected NMOS transistor 14 between the source electrode of the NMOS transistor 12 and the ground node as shown in FIG.
  • the potential applied to the gate electrode of the NMOS transistor 26 (the potential of the node B) may be set to be approximately equal to the operating threshold voltage of the NMOS transistor 26 and higher than the ground potential of the NMOS transistor 26.
  • the interface circuit of the present invention uses such an NMOS transistor 14 to reduce the potential of the external input terminal 1 when the potential of the external input terminal 1 becomes a floating state.
  • the time required for the potential applied to the gate electrode of the NMOS transistor 26 to rise and exceed the operating threshold voltage of the NMOS transistor 26 can be shortened.
  • the NMOS transistor 26 since the NMOS transistor 26 is turned on quickly, the time required for the potential of the external input terminal 1 to transition to the potential of the floating state force L level can be greatly shortened. It becomes possible.
  • the interface circuit of the present invention when the interface circuit is used to set the potential of the external input terminal 1 to the H level potential or the L level potential as described above, External power supply It is also useful to supply a constant current. That is, in the above-described interface circuit shown in FIG. 1, when the external input terminal 1 is in a floating state, the power supply voltage Vcc is applied to the external input terminal 1 by the PMOS transistor 21 in the second inverter circuit 20, and the external input terminal 1 is externally connected. The potential at input terminal 1 rises. However, the PMOS transistor 21 has a sufficiently high resistance value at the time of turning off to suppress a leakage current when the external input terminal 1 is grounded.
  • the external input terminal 1 when the external input terminal 1 enters the ground state force floating state, the external input terminal 1 is It may take a long time for the potential at the input terminal 1 to transition to the H level potential.
  • the resistance value when the PMOS transistor 21 is turned off varies depending on the ambient temperature. Therefore, the time from when the PMOS transistor 21 is turned on until the potential of the external input terminal 1 transitions to the H level potential also has temperature dependence.
  • the interface circuit of the present invention may further include a current mirror circuit 30 as a current source for supplying a constant current to the external input terminal 1 as shown in FIG.
  • a current discharge type current mirror circuit 30 driven by a constant current source 31 is constituted by two PMOS transistors 32 and 33.
  • the constant current source 31 supplies a constant current from the current mirror circuit 30 to the external input terminal 1.
  • the potential of the external input terminal 1 is quickly raised to the H level potential.
  • the PMOS transistor 21 is turned on, and the impedance of the external input terminal 1 with respect to the ground node is supported by the impedance of the NMOS transistor 23. For this reason, almost no current flows from the current mirror circuit 30 to the external input terminal 1.
  • the impedance of the external input terminal 1 with respect to the power supply node is governed by the impedance of the PMOS transistor 21. Therefore, the current supplied from the current mirror circuit 30 to the external input terminal 1 can be made much smaller than the leakage current caused by the conventional pull-up resistor Rpu. Therefore, the operating current of the interface circuit shown in FIG. 7 is slightly higher than that of the interface circuit configured as shown in FIG. 1, but the potential of the external input terminal 1 in the floating state is quickly changed to the H level potential. But it can. For this reason, the interface circuit of the present invention has an effect that the operation speed of the interface circuit can be increased while reducing the leakage current.
  • Such a current mirror circuit can be similarly applied to an interface circuit that automatically sets the potential of the external input terminal 1 in a floating state to an L level potential.
  • the interface circuit shown in FIG. 3 described above may be configured as a current sink type current mirror circuit so that a constant current is sucked from the external input terminal 1.
  • the above-described interface circuit has the same effect as the interface circuit shown in FIG. 7 because the time until the aforementioned NMOS transistor 26 is turned on is shortened.
  • the interface circuit of the present invention is a second inverter circuit 20 as an example in which the potential of the external input terminal 1 in the floating state is automatically set to the H level potential. Is composed of two PMOS transistors 21 and 22 and an NMOS transistor 23.
  • the interface circuit of the present invention has an example in which the potential of the external input terminal 1 in the floating state is automatically set to the L level potential, the second inverter circuit 20 is connected to the PMOS transistor 24 and the two NMOS transistors 25, It consisted of 26.
  • the second inverter circuit 20 may satisfy the following points.
  • the second inverter circuit includes at least one main MOS transistor that performs an on-Z operation according to the potential of the output signal output from the first inverter circuit 10, and a potential at which the potential of the output node C is applied to the external input terminal 1. It is sufficient to provide at least one auxiliary MOS transistor that is higher than
  • the second inverter circuit 20 is the first inverter
  • the potential of the output node C is set to the external input terminal 1 described above. It is sufficient to provide at least one auxiliary MOS transistor that lowers the potential of the applied signal.
  • the MOS transistor has a function of a switch diode resistance as shown in FIGS. 8A, 8B, 8C, 8D, 8E and 8F, respectively. That is, as shown in FIGS. 8A and 8D, the PMOS and NMOS having a three-terminal structure having a gate as an input terminal functions as a switch for turning on and off between the source and the drain in accordance with the potential of the input terminal. As shown in Fig. 8B and Fig. 8E, PMOS and NMOS with two-terminal structure with gate and drain connected are p-channel diode (PD) and n-channel diode (ND). Each functions. Furthermore, as shown in Fig. 8C and Fig. 8F, the PMOS and NMOS with a two-terminal structure in which the gate and source are connected function as a p-channel resistor (PR) and an n-channel resistor (NR), respectively. To do.
  • PR p-channel resistor
  • NR n-channel resistor
  • the resistance values and operating threshold voltages of the three-terminal PMOS and NMOS with the gate as the input terminal are defined by the channel width of these MOS transistors. Therefore, if the input / output characteristics without the positive feedback of the first and second inverter circuits 10 and 20 in the interface circuit have characteristics as shown in Fig. 2 or 5, respectively, Select a MOS transistor according to the requirements, so that at least one MOS transistor is turned on and off as described above, and at least one other MOS transistor has a level shift function that shifts the potential of the output signal. I should do it.
  • the first-stage MOS transistor on the power supply node side in the second inverter circuit 20 is the PMOS transistor 21, and is output from the first inverter circuit 10.
  • the MOS transistor with what function is used as the second and third stage MOS transistors. It was verified whether it was possible. However, this verification is based on an external input in which the transistors of the first inverter circuit 10 and the second inverter circuit 20 are equal in size to the third stage MOS transistors and in the floating state. It is assumed that terminal 1 is at the H level potential.
  • FIG. 10 summarizes the verification results.
  • “ ⁇ ” indicates that it functions effectively as the second inverter circuit 20 described above.
  • “X” indicates that it does not function as the second inverter circuit 20.
  • “ ⁇ ” indicates that the sizes of the first to third MOS transistors are all equal, and sometimes does not function as the second inverter circuit 20, but the first to third MOS transistors It is shown that it functions as the second inverter circuit 20 by adjusting the size of.
  • the verification result shown in FIG. 10 shows that when the first-stage MOS transistor is composed of PMOS transistors that are turned on and off, at least one of the second-stage and third-stage MOS transistors has a P resistance. Or N resistor or 3-terminal NMOS transistor, and if at least one of the second-stage and third-stage MOS transistors is selected other than the 3-terminal NMOS transistor, it can be designed as the second inverter 20. And
  • the inventor similarly applies the configuration of the second inverter circuit 20 in the case where the first inverter circuit 10 itself has a PMOS transistor 13 for shifting the potential of the output signal as shown in FIG. Verified.
  • the verification results shown in FIG. 12 were obtained.
  • this verification shows that the characteristics of the transistors constituting the first inverter circuit 10 and the second inverter circuit 20 are equal to each other in the characteristics of the third stage MOS transistors and are in a floating state.
  • An external input terminal 1 is set to H level potential.
  • At least one of the second and third transistors 22 and 23 is turned off when the potential of the output signal of the first inverter circuit 10 is at the potential level, and at least one of the first and second transistors 22 and 23 is turned off.
  • the second inverter circuit 20 is constructed with the second and third transistors 22 and 23 whose operating conditions are set so that the output signal of the inverter circuit 10 is turned off when the potential of the output signal is at the H level.
  • FIG. 10 and FIG. 12 show that the interface circuit shown in FIG. 9 and FIG. 11 pulls the external input terminal 1 in the floating state to the H level potential as described above. This is an example of a configuration.
  • the selection criteria for selecting the second and third MOS transistors in the interface circuit that maintains the external input terminal 1 at the L level potential are as follows.
  • the ground node side in the second inverter circuit 20 is a first-stage MOS transistor.
  • the external input terminal 1 when an H level potential signal is input to the external input terminal 1 or when the external input terminal 1 is in a floating state, the external input terminal 1 is at the H level potential.
  • the external input terminal 1 potential may not transition to the H level potential force L level potential in a circuit with low current drive capability.
  • the second inverter circuit 20 uses the PMOS transistor 21 having a low on-resistance. That is, when the external input terminal 1 is at the H level potential, the PMOS transistor 21 constituting the second inverter circuit 20 is turned on.
  • PM The OS transistor 21 supplies a power supply voltage Vcc for driving the PMOS transistor 21 to the external input terminal 1 through the low ON resistance of the PMOS transistor 21 itself. Therefore, the element connected to the external input terminal 1 needs to have a current driving ability to overcome the current flowing into the node C force external input terminal 1 and transition to the H level potential force L level potential.
  • FIG. 15 is a block diagram of the interface circuit showing the embodiment 8. The same parts as those of the interface circuit shown in FIG.
  • the current limiting element R limits the current that also flows into the external input terminal 1 at the node C force when the potential of the external input terminal 1 is transitioned from the H level potential to the L level potential.
  • the current limiting element R may be a resistor, a p-channel resistor (PR) shown in FIG. 8C, and an n-channel resistor (NR) shown in FIG. 8F. It doesn't matter.
  • the element that drives the external input terminal 1 changes the potential of the external input terminal 1 to the H level potential switch.
  • the current limiting element R acts as a general pull-up resistor that not only limits the current flowing from the power supply. Therefore, the interface circuit of the present invention can reliably transition the potential of the external input terminal 1 from the H level potential to the L level potential even when an element having only a low current driving capability drives the external input terminal 1.
  • the interface circuit of the present invention does not require an external signal as in the other embodiments described above, and the potential of the external input terminal 1 is set. It can be automatically set to H level potential or L level potential, and the effect of preventing leakage current is maintained.
  • the interface circuit of the present invention is applied to a bus hold circuit applied to a multi-drop bus, the problem of leakage current can be solved, and furthermore, the logic level of the external input terminal can be changed. Even if it is, less current consumption is required.
  • the interface of the present invention In the face circuit, the potential of the external input terminal 1 is automatically set to the H level potential or the L level potential, so that the problem that the external input terminal 1 becomes unstable at the rise can be solved. Further, the interface circuit of the present invention does not require a pull-up resistor or a pull-down resistor, and can reduce the chip area of the semiconductor element.
  • a general bus hold circuit has an overvoltage protection circuit that blocks current flowing from the external input terminal when a signal having a potential higher than the differential voltage is applied to the external input terminal of the bus hold circuit. It has been incorporated.
  • the interface circuit of the present invention should be provided with overvoltage input countermeasures like the bus hold circuit described in Patent Document 3 and the like.
  • the current limiting element R in FIG. 15 of the eighth embodiment has an effect of limiting the current flowing from the external input terminal 1 to the node.
  • the interface circuit of the present invention is extremely effective, for example, an anisotropic resistance element can be used as the current limiting element R to effectively prevent a current flowing from the external input terminal 1 to the node C. is there.
  • the interface circuit of the present invention has shown the configuration example using only the MOS transistor as the transistor.
  • the integrated circuit (LSI) using only MOS transistors as transistors in the circuit by incorporating the interface circuit of the present invention
  • all the transistors in the interface circuit of the present invention are also composed of only MOS transistors.
  • the manufacturing process for forming the transistor on the substrate is not complicated.
  • the use of MES transistors instead of MOS transistors in the interface circuit of the present invention is not denied.
  • any type of transistor used in an LSI can be applied to the embodiments of the present invention.
  • the interface circuit according to the present invention can set the potential of the external input terminal 1 to the H level potential or the L level potential when the external input terminal 1 is in the floating state. it can.
  • the interface circuit according to the present invention does not require the pull-up resistor Rpu and the pull-down resistor Rpd as in the prior art.
  • the interface circuit according to the present invention determines the potential of the external input terminal 1 without determining whether or not the external input terminal 1 is in a floating state and giving a control signal as in the circuit shown in FIG. It can be set to the H level potential or L level potential (the power to make the H level L level to be selected beforehand).
  • the interface circuit according to the present invention effectively prevents leakage current by a MOS transistor having high resistance when the potential of the external input terminal 1 is set to H level potential or L level potential. be able to. Therefore, the interface circuit according to the present invention is an interface circuit for an external input terminal in various electronic devices, semiconductor integrated circuits, etc., when the potential of the external input terminal 1 is determined using the pull-up resistor Rpu or the pull-down resistor Rpd.
  • the practical advantages of are enormous. However, since the interface circuit according to the present invention has a simple circuit configuration, it can be easily applied to a semiconductor integrated circuit such as a CPU or a memory.
  • the interface circuit of the present invention in an independent package and connecting it to the external input terminal Z control terminal of the existing digital circuit, the logic level of the external input terminal Z control terminal is set to the H level and the L level. ! /, Deviation force This can be set.
  • the present invention is not limited to the above-described embodiment.
  • the second inverter circuit 20 is realized using three MOS transistors.
  • the present invention may be realized with two or four or more MOS transistors.
  • the present invention provides a MOS transistor having a two-terminal structure in which a gate and a source having a sufficiently high resistance value are connected to the second and third stages of a MOS transistor having a two-terminal structure by connecting a gate and a source, for example. You may replace it.
  • the interface circuit of the present invention may be devised to increase the switching operation speed by configuring it with a plurality of MOS transistors in which the first-stage MOS transistors are connected in parallel.

Abstract

An interface circuit comprises a first inverter circuit for outputting an input signal applied to an external input terminal while inverting its logical level, a second inverter circuit for outputting the output signal from the first inverter circuit while inverting its logical level at a potential higher or lower, by a predetermined level, than the logical level of the input signal applied to the first inverter circuit, and a feedback circuit performing positive feedback of the output signal from the second inverter circuit to the external input terminal. The interface circuit performs positive feedback of the output signal from the second inverter circuit and elevates or lowers the potential at the external input terminal under floating state to H level or L level.

Description

明 細 書  Specification
インターフェース回路  Interface circuit
技術分野  Technical field
[0001] 本発明は、各種電子機器に適用され、外部入出力端子の電気的な状態を安定さ せるインターフェース回路に関する。  The present invention relates to an interface circuit that is applied to various electronic devices and stabilizes the electrical state of an external input / output terminal.
背景技術  Background art
[0002] 一般に、ディジタルシステムにお ヽてデバイスで伝送される信号は、フローティング 状態を除けば基本的には 2つの状態をとる。第 1の状態は、論理高準位 (logic high, ハイ、 1、オン、 Hレベルとも称される)に相当する事象を伝送するように設計された状 態であり、第 2の状態は、論理低準位 (logic low,ロー、 0、オフ、 Lレベルとも称される )に相当する事象を伝送するように設計された状態である。  [0002] In general, a signal transmitted by a device in a digital system basically has two states except for a floating state. The first state is a state designed to transmit an event corresponding to a logic high level (also called logic high, high, 1, on, H level), and the second state is It is a state designed to transmit events corresponding to logic low levels (also called logic low, low, 0, off, L level).
[0003] これらの論理ハイ信号と論理ロー信号とのどちらが伝送されて!ヽるのかを決定する 特定の信号電位は、その伝送に関連する回路を形成する半導体素子に依存する。  [0003] The specific signal potential that determines which of these logic high and logic low signals is transmitted depends on the semiconductor element that forms the circuit associated with the transmission.
[0004] 例えばディジタル信号を生じさせるのに用いられる最も一般的な回路構成として、 C MOSロジック ICやトランジスタ ·トランジスタ ·ロジック(TTL) ICがある。 CMOSロジッ ク ICの場合は、論理ロー信号は、低電圧端子に加えられる電位力も約 0.6V高い電 位までの範囲とするのが一般的である。一方、論理ハイ信号は、高電圧端子に加え られる電位を Vccとすれば、 Vccから Vcc— 0.6Vの範囲とするのが一般的である。こ のように信号電位と論理準位との関係がデバイスに依存して決定されることは周知の 技術的事項であるので、以下の説明にお 、ては特に詳述しな 、。  [0004] For example, C MOS logic ICs and transistor-transistor-logic (TTL) ICs are the most common circuit configurations used to generate digital signals. In the case of CMOS logic ICs, the logic low signal is generally in the range where the potential force applied to the low voltage terminal is up to about 0.6V. On the other hand, if the potential applied to the high voltage terminal is Vcc, the logic high signal is generally in the range of Vcc to Vcc – 0.6V. Since it is a well-known technical matter that the relationship between the signal potential and the logic level is determined depending on the device in this way, it will not be described in detail in the following description.
[0005] さて、ディジタルシステムとしての各種の情報処理装置には、一般的に信号入力用 の複数の外部入力端子 (コネクタ)が設けられる。また情報処理装置に組み込まれる CPU等の半導体集積回路にも信号入力用の複数の入力端子 (ピン)が設けられ、更 に CPU等の動作モードを切り換えるための制御端子が設けられることもある。外部入 力端子は、外部機器から与えられる Hレベルまたは Lレベルの論理信号を入力して C PUやメモリ等の内部回路に与えるインターフェースとしての機能を備える。また上記 制御端子は、例えば接地される力否かによって内部回路に与える制御情報を Hレべ ルまたは Lレベルに切り換える機能を備える。 [0005] Various information processing apparatuses as digital systems are generally provided with a plurality of external input terminals (connectors) for signal input. A semiconductor integrated circuit such as a CPU incorporated in an information processing apparatus is also provided with a plurality of input terminals (pins) for signal input, and may further be provided with a control terminal for switching the operation mode of the CPU or the like. The external input terminal has a function as an interface that inputs an H level or L level logic signal given from an external device and gives it to an internal circuit such as a CPU or a memory. In addition, the above control terminal outputs the control information given to the internal circuit depending on, for example, whether or not the grounding force is high. A function to switch to the L or L level.
[0006] ところでこの種の論理回路用の外部入力端子 Z制御端子は、入力インピーダンス が高いので、フローティング状態のとき外部ノイズの影響を受けて、その電位が変化 しゃす 、。そこで外部入力端子の電位がフローティング状態にあっても外部ノイズの 影響を受けないようにするために、従来、一般的に、図 13A、図 13Bに示すようにプ ルアップ抵抗 Rpuまたはプルダウン抵抗 Rpdを介して外部入力端子 1を電源電圧 Vcc に接続したり、或いは接地するようにしている。  [0006] By the way, the external input terminal Z control terminal for this type of logic circuit has a high input impedance, so its potential changes due to the influence of external noise in the floating state. Therefore, in order to prevent the external input terminal from being affected by external noise even when the potential of the external input terminal is in a floating state, conventionally, as shown in FIGS. 13A and 13B, a pull-up resistor Rpu or a pull-down resistor Rpd is generally used. The external input terminal 1 is connected to the power supply voltage Vcc or grounded.
[0007] 尚、外部入力端子 1を有する入力バッファ 2は、例えば図 13A、図 13Bに示すよう に pチャネル MOSトランジスタ(PMOSと略記する) 3と nチャネル MOSトランジスタ( NMOSと略記する) 4とからなるインバータ回路により構成される。し力しながら外部 入力端子 1にプルアップ抵抗 Rpuまたはプルダウン抵抗 Rpdが接続された場合、これ らの抵抗 Rpu,抵抗 Rpdを電流経路として外部入力端子 1に漏れ電流が流れることが ある。  An input buffer 2 having an external input terminal 1 includes, for example, a p-channel MOS transistor (abbreviated as PMOS) 3 and an n-channel MOS transistor (abbreviated as NMOS) 4 as shown in FIGS. 13A and 13B. It is comprised by the inverter circuit which consists of. If a pull-up resistor Rpu or pull-down resistor Rpd is connected to the external input pin 1 while applying force, leakage current may flow to the external input pin 1 using these resistors Rpu and Rpd as current paths.
[0008] 例えば、図 14に示すように 2段のインバータ回路 2a,2bからなる入力バッファの入 力ノードに、 NMOSトランジスタ 5によってゲート制御される NMOSトランジスタ 6およ び PMOSトランジスタ 7からなるラッチ回路 8を設けることで、漏れ電流が減少できるこ とが示されている (例えば、特許文献 1を参照)。このラッチ回路 8は、外部入力端子 1 に Hレベルまたは Lレベルの信号 (電位)が与えられたとき、この信号により動作する 入力バッファ(2段のインバータ回路 2a,2b)の出力レベルに従ってラッチ動作するこ とで前記外部入力端子 1を Hレベルまたは Lレベルに強制的に固定する役割を担う。 同時にラッチ回路 8は前記外部入力端子 1がフローティング状態(開放状態)であると きには、外部信号 Sにより NMOSトランジスタ 5をオフさせる一方、プルアップ抵抗 R puにより NMOSトランジスタ 6を導通状態(以下オンと 、う)させると共に PMOSトラン ジスタ 7を非導通状態 (以下オフという)させることで外部入力端子 1を Hレベルに保 つ役割を担う。  For example, as shown in FIG. 14, a latch circuit composed of an NMOS transistor 6 and a PMOS transistor 7 gate-controlled by an NMOS transistor 5 is connected to an input node of an input buffer composed of two-stage inverter circuits 2a and 2b. It is shown that the leakage current can be reduced by providing 8 (see, for example, Patent Document 1). This latch circuit 8 latches according to the output level of the input buffer (two-stage inverter circuits 2a and 2b) that operates according to this signal when an external input terminal 1 is given an H-level or L-level signal (potential). As a result, the external input terminal 1 is forcibly fixed to H level or L level. At the same time, when the external input terminal 1 is in the floating state (open state), the latch circuit 8 turns off the NMOS transistor 5 by the external signal S, while conducting the NMOS transistor 6 by the pull-up resistor R pu (hereinafter referred to as “transistor”). It turns on and turns off the PMOS transistor 7 (hereinafter referred to as “off”) to maintain the external input terminal 1 at the H level.
[0009] 或いは、同種の技術として外部入力端子がオープンになったとき、それに起因して 生じる半導体素子のリーク電流や発振、データエラー等の異常現象を防止する目的 で設けられるバスホールド回路が知られている(例えば、特許文献 2、非特許文献 1を 参照)。このバスホールド回路は、外部入力端子がフローティング状態になったとき、 この外部入力端子に与えられて 、た直前の論理レベルを保持する機能を備えて!/、る 。また、この種のバスホールド回路は、バスが不定になることを防止する目的でブルア ップ抵抗またはプルダウン抵抗の代わりとして用いられることもある。 [0009] Alternatively, as a similar technology, there is a known bus hold circuit provided for the purpose of preventing abnormal phenomena such as leakage current, oscillation, and data error of a semiconductor element caused when an external input terminal is opened. (For example, Patent Document 2 and Non-Patent Document 1 reference). This bus hold circuit has a function of holding the previous logical level given to the external input terminal when the external input terminal is in a floating state. In addition, this type of bus hold circuit may be used in place of a bull-up resistor or a pull-down resistor in order to prevent the bus from becoming unstable.
[0010] ちなみに、この種のバスホールド回路には、バスホールド回路の作動電圧より高い 電位の信号がバスホールド回路の外部入力端子に与えられたとき、この外部入力端 子から流れ込む電流を阻止する過電圧保護回路が組み込まれている(例えば、特許 文献 3を参照)。 [0010] Incidentally, in this type of bus hold circuit, when a signal having a potential higher than the operating voltage of the bus hold circuit is applied to the external input terminal of the bus hold circuit, current flowing from the external input terminal is blocked. An overvoltage protection circuit is incorporated (see, for example, Patent Document 3).
[0011] 尚、上述したバスホールド回路を実現した汎用ロジック ICとしては、 74VCXシリー ズ等が市販されている。  [0011] As a general-purpose logic IC that realizes the above-described bus hold circuit, the 74VCX series and the like are commercially available.
特許文献 1:特開平 9— 161486号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-161486
特許文献 2:米国特許第 5432462号明細書  Patent Document 2: US Pat. No. 5,432,462
特許文献 3 :米国特許第 6150845号明細書  Patent Document 3: US Patent No. 6150845
非特許文献 1 :「AN— 5006Jバスホールド回路による設計」、フェアチャイルドセミコン ダクタ一社、アプリケーションノート、 1999年 3月初版(1999年 9月改訂)、 p. 1—3 発明の開示  Non-Patent Document 1: “AN—Designed with 5006J Bus Hold Circuit”, Fairchild Semiconductor Company, Application Note, March 1999 First Edition (revised September 1999), p. 1-3 Disclosure of Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] し力しながら特許文献 1に示されるようなラッチ回路 8がインターフェース回路に設 けられた場合、外部入力端子 1がフローティング状態(開放状態)である力否かによつ て外部信号 Sにより NMOSトランジスタ 5をオン Zオフ制御する必要がある。これ故、 インターフェース回路には、外部入力端子 1がフローティング状態(開放状態)である か否かを判断する専用回路や、外部信号 Sを発生してラッチ回路 8の動作を制御す るための専用回路が必要となる。  [0012] However, when the latch circuit 8 as shown in Patent Document 1 is provided in the interface circuit, the external signal depends on whether or not the external input terminal 1 is in a floating state (open state). The NMOS transistor 5 needs to be on / off controlled by S. Therefore, the interface circuit has a dedicated circuit for determining whether the external input terminal 1 is in a floating state (open state) or a dedicated circuit for generating the external signal S to control the operation of the latch circuit 8. A circuit is required.
[0013] またマルチドロップノ スに適用されるバスホールド回路にあっては、非特許文献 1に 記載されるように漏れ電流の問題がある。更には外部入力端子の論理レベルを変化 させる場合、上述したバスホールド回路では、消費電流が大きいという問題もある。  [0013] In addition, a bus hold circuit applied to a multi-drop node has a problem of leakage current as described in Non-Patent Document 1. Furthermore, when the logic level of the external input terminal is changed, the above-described bus hold circuit has a problem that current consumption is large.
[0014] 一方、バスが不定になることを防止する目的で設けられたバスホールド回路は、バ スホールド回路への電源供給の立ち上がり時に入力が不定になる懸念がある。それ 故、電源供給の立ち上がり時のバスの電位を安定させるためには、ノ スホールド回 路以外に、例えばプルアップ抵抗等を設ける必要があった。 On the other hand, a bus hold circuit provided for the purpose of preventing the bus from becoming unstable may cause the input to become unstable when the power supply to the bus hold circuit rises. That Therefore, in order to stabilize the bus potential at the rise of the power supply, it is necessary to provide, for example, a pull-up resistor in addition to the noshold circuit.
[0015] 本発明はこのような事情を考慮してなされたもので、その目的は、外部入力端子が フローティング状態(開放状態)であるとき、外部信号を用いることなく上記外部入力 端子を予め設定された Hレベルまたは Lレベルに自動的に安定させることができ、し 力も耐ノイズ性を備え、外部入力端子からの漏れ電流がな 、簡易な構成のインター フェース回路を提供することにある。  [0015] The present invention has been made in view of such circumstances, and its purpose is to set the external input terminal in advance without using an external signal when the external input terminal is in a floating state (open state). It is possible to provide an interface circuit with a simple configuration that can be automatically stabilized to the H level or the L level and has noise resistance and no leakage current from an external input terminal.
課題を解決するための手段  Means for solving the problem
[0016] 上述の目的を達成するべく本発明に係るインターフェース回路は、一対の電源端 子をなす高電圧端子および低電圧端子と外部入力端子とを備え、上記外部入力端 子の論理レベルを Hレベルの電位(論理ハイ信号)または Lレベルの電位(論理ロー 信号)に安定させるインターフェース回路であって、  In order to achieve the above object, an interface circuit according to the present invention includes a high voltage terminal and a low voltage terminal forming a pair of power supply terminals, and an external input terminal, and the logic level of the external input terminal is set to H It is an interface circuit that stabilizes the voltage at the level (logic high signal) or the L level (logic low signal).
トランジスタを用いて構成され、前記外部入力端子に与えられる入力信号の論理レ ベルを反転して出力する第 1のインバータ回路と、  A first inverter circuit configured using a transistor and inverting and outputting a logic level of an input signal applied to the external input terminal;
トランジスタを用いて構成され、上記第 1のインバータ回路における出力信号の論 理レベルを反転した電位であって、前記外部入力端子を介して前記第 1のインバー タ回路に加えられた入力信号の電位よりも高い電位または低い電位の出力信号を生 成する第 2のインバータ回路と、  The potential of the input signal, which is configured by using a transistor and is obtained by inverting the logical level of the output signal in the first inverter circuit and applied to the first inverter circuit via the external input terminal. A second inverter circuit that generates an output signal of higher or lower potential,
この第 2のインバータ回路の出力信号を前記外部入力端子に正帰還する帰還路と を具備したことを特徴として ヽる。  A feedback path for positively feeding back the output signal of the second inverter circuit to the external input terminal is provided.
[0017] 即ち、本発明に係るインターフェース回路は、基本的には外部入力端子に加わつ た上記 Hレベルの電位 (論理ハイ信号)または Lレベルの電位 (論理ロー信号)を有 する論理レベルを反転する第 1のインバータ回路と、この第 1のインバータ回路の出 力信号の論理レベルを反転する第 2のインバータ回路とを備え、この第 2のインバー タ回路の出力信号の論理レベルを前記第 1のインバータ回路の入力ノード (外部入 力端子)に正帰還するように構成したものであって、  That is, the interface circuit according to the present invention basically has a logic level having the above-described H level potential (logic high signal) or L level potential (logic low signal) applied to the external input terminal. A first inverter circuit for inverting, and a second inverter circuit for inverting the logic level of the output signal of the first inverter circuit, the logic level of the output signal of the second inverter circuit being 1 is configured to provide positive feedback to the input node (external input terminal) of the inverter circuit,
[0018] 特に前記第 1のインバータ回路の入力ノードに加えられる入力信号の電位と、前記 第 2のインバータ回路の出力ノードから出力される出力信号の電位とが [入力信号の電位] < [出力信号の電位] In particular, the potential of the input signal applied to the input node of the first inverter circuit and the potential of the output signal output from the output node of the second inverter circuit [Input signal potential] <[Output signal potential]
または  Or
[入力信号の電位] > [出力信号の電位]  [Input signal potential]> [Output signal potential]
となるように設定しておき、この第 2のインバータ回路の出力ノードの出力信号を前記 第 1の入力ノード (外部入力端子)に正帰還することで、前記外部入力端子がフロー ティング状態であるとき、正帰還作用により外部入力端子の論理レベルを自動的に H レベルの電位 (論理ハイ信号)に維持したり、または Lレベルの電位 (論理ロー信号) に維持したりするようにしたことを特徴としている。尚、上述の入力信号の電位と出力 信号の電位とは僅かに大きさが異なってさえすれば良い。  The external input terminal is in a floating state by positively feeding back the output signal of the output node of the second inverter circuit to the first input node (external input terminal). The logic level of the external input terminal is automatically maintained at the H level potential (logic high signal) or maintained at the L level potential (logic low signal) due to the positive feedback action. It is a feature. Note that the input signal potential and the output signal potential need only be slightly different.
[0019] このように構成されたインターフェース回路は、外部入力端子がフローティング状態 であるとき、第 1のインバータ回路の入力ノードに加わる電位よりも所定電位だけ高い 電位の出力信号または低い電位の出力信号が前記第 2のインバータ回路の出カノ ード力 第 1のインバータ回路の入力ノードに正帰還される。このため、正帰還作用 により第 2のインバータ回路における出力信号の電位は、次第に Hレベルの電位また は Lレベルの電位にシフトされ、 Hレベルの電位または Lレベルの電位になったときに 安定する。 [0019] When the external input terminal is in a floating state, the interface circuit configured as described above has an output signal with a potential higher or lower than the potential applied to the input node of the first inverter circuit. Is output positively to the input node of the first inverter circuit. For this reason, the potential of the output signal in the second inverter circuit is gradually shifted to the H level potential or the L level potential by the positive feedback action, and becomes stable when the potential becomes the H level potential or the L level potential. .
[0020] この結果、本発明に係るインターフェース回路は、外部入力端子がフローティング 状態(開放状態)であっても、外部入力端子の電位が自動的に Hレベルの電位また は Lレベルの電位に安定ィ匕することになる。また本発明に係るインターフェース回路 は、外部入力端子の電位が自動的に Hレベルの電位または Lレベルの電位に安定 化するとき、外部入力端子の電位を Hレベルの電位に電気的に固定したとき、或い は外部入力端子の電位を Lレベルの電位に電気的に固定したときのいずれの場合 であっても、このインターフェース回路によれば、第 1および第 2のインバータ回路に よって外部入力端子が高電圧端子および低電圧端子力 切り離されるので、ブルア ップ抵抗やプルダウン抵抗を用いた場合のように漏れ電流が生じることがな 、。  As a result, in the interface circuit according to the present invention, even when the external input terminal is in a floating state (open state), the potential of the external input terminal is automatically stabilized to the H level potential or the L level potential. I will do it. In the interface circuit according to the present invention, when the potential of the external input terminal is automatically stabilized to the H level potential or the L level potential, the external input terminal potential is electrically fixed to the H level potential. In any case where the potential of the external input terminal is electrically fixed to the L level potential, according to this interface circuit, the first and second inverter circuits allow the external input terminal to Since the high-voltage terminal and the low-voltage terminal force are separated, leakage current does not occur as in the case of using a bull-up resistor or pull-down resistor.
[0021] 外部入力端子の電位を自動的に Hレベルの電位に設定する場合には、好ましくは 前記第 2のインバータ回路は、  [0021] When the potential of the external input terminal is automatically set to the H level potential, the second inverter circuit is preferably
(a) 高電圧端子と外部入力端子との間に接続されて前記第 1のインバータ回路の出 力信号が Hレベルの電位のときにオフとなり、前記第 1のインバータ回路の出力信号 力 SLレベルの電位のときにオン (導通状態)となる第 1のトランジスタと、 (a) Connected between the high voltage terminal and the external input terminal to output the first inverter circuit. A first transistor that is turned off when the power signal is at the H level potential and turned on (conductive state) when the output signal force SL level potential of the first inverter circuit;
(b) 低電圧端子と外部入力端子との間に直列に挿入された第 2および第 3のトランジ スタであって、少なくとも第 2および第 3のトランジスタの一方は前記第 1のインバータ 回路の出力信号カ^レベルの電位のときにオフ (非導通状態)し、且つ少なくとも第 2 および第 3のトランジスタの一方は前記第 1のインバータ回路の出力信号が Hレベル の電位のときにオフして、前記外部入力端子に加えられた入力信号の電位が Hレべ ルの電位のときには、この入力信号の電位以上の電位の出力信号を出力し、前記入 力信号が Hレベルの電位以外のときには、この入力信号の電位よりも高い電位の出 力信号を出力する第 2および第 3のトランジスタとにより構成される。  (b) Second and third transistors inserted in series between the low voltage terminal and the external input terminal, wherein at least one of the second and third transistors is an output of the first inverter circuit. It is turned off (non-conducting state) when the signal level is at a potential, and at least one of the second and third transistors is turned off when the output signal of the first inverter circuit is at an H level potential. When the potential of the input signal applied to the external input terminal is an H level potential, an output signal having a potential equal to or higher than the potential of the input signal is output, and when the input signal is other than an H level potential, The second and third transistors are configured to output an output signal having a potential higher than that of the input signal.
[0022] ちなみに上記第 2および第 3のトランジスタの一方は、前記第 1のインバータ回路の 出力信号力 レベルの電位であるときオフし、他方前記第 1のインバータ回路の出力 信号が Hレベルの電位であるときにオフするものであっても良い。或いは上記第 2お よび第 3のトランジスタの一方または双方が前記第 1のインバータ回路の出力信号が Hレベルの電位 ZLレベルの電位に拘わらずオフするものであっても良い。そしてこ れらの第 2および第 3のトランジスタは、フローティング状態にある外部入力端子の電 位よりも、第 2のインバータ回路の出力信号の電位を所定電位だけ高くする電圧シフ ト機能を担うことになる。  [0022] Incidentally, one of the second and third transistors is turned off when it is at the potential of the output signal power level of the first inverter circuit, and the output signal of the first inverter circuit is at the potential of H level. It may be turned off when Alternatively, one or both of the second and third transistors may be turned off regardless of whether the output signal of the first inverter circuit is an H level potential or a ZL level potential. These second and third transistors have a voltage shift function that raises the potential of the output signal of the second inverter circuit by a predetermined potential above the potential of the external input terminal in the floating state. become.
[0023] また第 2のインバータ回路が上述の如く構成される場合、前記第 1のインバータ回 路は、前記外部入力端子から与えられた Lレベルの電位を有する入力信号に対して 、前記 Hレベルの電位よりも前記第 2のインバータ回路における第 1のトランジスタが オンしない程度に第 1のインバータ回路の出力信号の電位を下げる電圧シフト手段 を備えることが好ましい。第 1のインバータ回路は、上述の電圧シフト手段を備えるこ とで、前述した正帰還作用による Hレベルの電位への収束速度を速くすることが可能 となる。  [0023] When the second inverter circuit is configured as described above, the first inverter circuit receives the input signal having an L-level potential supplied from the external input terminal with respect to the H level. Preferably, voltage shift means is provided that lowers the potential of the output signal of the first inverter circuit to such an extent that the first transistor in the second inverter circuit is not turned on. Since the first inverter circuit includes the voltage shift means described above, it is possible to increase the convergence speed to the H level potential by the positive feedback action described above.
[0024] また外部入力端子の電位を自動的に Lレベルの電位に設定する場合、好ましくは 前記第 2のインバータ回路を、  [0024] When the potential of the external input terminal is automatically set to the L-level potential, preferably the second inverter circuit is
(c) 低電圧端子と外部入力端子との間に接続されて前記第 1のインバータ回路の出 力信号の電位力 SLレベルの電位のときにオフとなり、 Hレベルの電位のときにオンとな る第 1のトランジスタと、 (c) Connected between the low voltage terminal and the external input terminal to output the first inverter circuit. A first transistor that is turned off when the potential force S L level potential of the force signal is turned on, and turned on when the potential is H level;
(d) 高電圧端子と外部入力端子との間に直列に挿入された第 2および第 3のトランジ スタであって、少なくとも第 2および第 3のトランジスタの一方は、前記第 1のインバー タ回路の出力信号の電位力 レベルの電位のときにオフし、且つ少なくとも第 2およ び第 3のトランジスタの一方は前記第 1のインバータ回路の出力信号の電位が Hレべ ルの電位のときにオフして、前記外部入力端子に加えられた入力信号の電位力 レ ベルの電位のときには、この入力信号の電位以下の出力信号を出力し、前記入力信 号力 レベルの電位以外のときには、この入力信号の電位よりも低い電位の出力信 号を出力する第 2および第 3のトランジスタとにより構成することも可能である。  (d) Second and third transistors inserted in series between the high voltage terminal and the external input terminal, wherein at least one of the second and third transistors is the first inverter circuit. When the potential of the output signal of the first inverter circuit is off, and at least one of the second and third transistors is at the H level of the potential of the output signal of the first inverter circuit. When the potential is at the potential level of the input signal applied to the external input terminal, an output signal equal to or lower than the potential of the input signal is output. It can also be composed of second and third transistors that output an output signal having a potential lower than that of the input signal.
[0025] ちなみに上記第 2および第 3のトランジスタの一方は、前記第 1のインバータ回路の 出力信号が Hレベルの電位であるときにオフし、他方前記第 1のインバータ回路の出 力信号力 レベルの電位であるときにオフするものであっても良い。或いは第 2およ び第 3のトランジスタは、その一方または双方が前記第 1のインバータ回路の出力信 号が Hレベルの電位 ZLレベルの電位に拘わらずオフするものであっても良!、。そし てこれらの第 2および第 3のトランジスタは、フローティング状態にある外部入力端子 の電位よりも、第 2のインバータ回路の出力信号の電位を所定電位だけ低くする電圧 シフト機能を担うことになる。  [0025] Incidentally, one of the second and third transistors is turned off when the output signal of the first inverter circuit is at an H level potential, and the other is the output signal power level of the first inverter circuit. It may be turned off when the potential is. Alternatively, one or both of the second and third transistors may be turned off regardless of whether the output signal of the first inverter circuit is an H level potential or a ZL level potential. These second and third transistors have a voltage shift function that lowers the potential of the output signal of the second inverter circuit by a predetermined potential from the potential of the external input terminal in the floating state.
[0026] そして前記第 1のインバータ回路は、第 2のインバータ回路が上述の如く構成され た場合、前記外部入力端子を介して加えられた Lレベルの電位の入力信号に対して 第 1のインバータ回路の出力信号の電位を、前記 Lレベルの電位よりも前記第 2のィ ンバータ回路における第 1のトランジスタがオンしない程度に高くする電圧シフト手段 を備えることが好ましい。  [0026] Then, when the second inverter circuit is configured as described above, the first inverter circuit uses the first inverter for an input signal having an L level potential applied via the external input terminal. It is preferable to provide voltage shift means for making the potential of the output signal of the circuit higher than the potential of the L level so that the first transistor in the second inverter circuit is not turned on.
[0027] 更には上述した如く構成されたインターフェース回路において、具体的には外部入 力端子の電位を自動的に Hレベルの電位に設定するように構成した前記第 2のイン バータ回路の出力ノードに、前記高電圧端子力 前記外部入力端子に向けて一定 電流を供給する電流供給手段を備えることも好まし 、。また外部入力端子の電位を 自動的に Lレベルの電位に設定するように構成した前記第 2のインバータ回路にお いては、出力ノードに前記外部入力端子から前記低電圧端子に向けて一定電流を 供給する電流供給手段を備えることも好まし ヽ。 Furthermore, in the interface circuit configured as described above, specifically, the output node of the second inverter circuit configured to automatically set the potential of the external input terminal to the H level potential. In addition, it is preferable that the high voltage terminal force further comprises a current supply means for supplying a constant current toward the external input terminal. In addition, in the second inverter circuit configured to automatically set the potential of the external input terminal to the L level potential. In this case, it is preferable to provide a current supply means for supplying a constant current from the external input terminal to the low voltage terminal at the output node.
[0028] 上述の電流供給手段は、外部入力端子の電位が Lレベルの電位または Hレベルの 電位に固定されたとき、外部入力端子力も電流の漏れがあるものの、 MOSトランジス タのオフ動作時間を短くするとともに、前述の正帰還作用による Hレベルの電位また は Lレベルの電位への収束速度を速める作用を呈する。  [0028] When the potential of the external input terminal is fixed to the L level potential or the H level potential, the current supply means described above reduces the MOS transistor OFF operation time, although the external input terminal force also leaks current. In addition to shortening, it exhibits the effect of increasing the convergence speed to the H level potential or L level potential by the positive feedback action described above.
[0029] 尚、第 2のインバータ回路の出力ノードに供給する電流は、外部入力端子がフロー ティング状態になったときに、第 2のインバータ回路の電圧シフト機能をなす MOSトラ ンジスタに電圧降下が生じるだけなので、プルアップ抵抗またはプルダウン抵抗が用 いられたときの漏れ電流より漏れ電流をはるかに小さく抑えることができる。  [0029] Note that the current supplied to the output node of the second inverter circuit has a voltage drop in the MOS transistor that forms the voltage shift function of the second inverter circuit when the external input terminal is in a floating state. Since it only occurs, the leakage current can be kept much lower than the leakage current when pull-up or pull-down resistors are used.
[0030] 好ましくは、上述のインターフェース回路において、更に前記帰還路に直列に介挿 されて該帰還路に流れる電流を制限する電流制限素子として、例えば抵抗器を備え ることが望ましい。  [0030] Preferably, in the above-described interface circuit, it is desirable to further include, for example, a resistor as a current limiting element that is inserted in series in the feedback path and limits the current flowing through the feedback path.
[0031] 上述のインターフェース回路は、帰還路に設けられた電流制限素子 (例えば抵抗 器)によって、この帰還路を介して外部入力端子に流れ込む電流を制限している。こ のため、上述のインターフェース回路は、 Hレベルの電位で安定している外部入力端 子を低い駆動電流で外部入力端子の電位を Lレベルの電位に遷移できる。  [0031] In the above-described interface circuit, a current limiting element (for example, a resistor) provided in the feedback path limits the current flowing into the external input terminal via the feedback path. For this reason, the above-described interface circuit can transition the external input terminal, which is stable at the H level potential, to the L level potential with a low driving current.
[0032] また、上述のインターフェース回路は、電源に接続可能なインターフェース回路で あって、外部入力端子と、この外部入力端子の電位が入力される第一のインバータと 、第一のインバータの出力の電位が入力される第二のインバータと、第二のインバー タの出力の電位を第一のインバータの入力へと帰還する帰還路とを有し、この帰還 路が無 、状態を仮定したとき、外部入力端子の電位が高電位電力線の電位よりも実 質的に低 、範囲にぉ 、て、常に第二のインバータの出力の電位が外部入力端子の 電位よりも実質的に高い状態をとるものとして構成される。  [0032] Further, the interface circuit described above is an interface circuit connectable to a power source, and includes an external input terminal, a first inverter to which the potential of the external input terminal is input, and an output of the first inverter. When a second inverter to which a potential is input and a feedback path for returning the potential of the output of the second inverter to the input of the first inverter are assumed, and this feedback path is assumed to be in a state, The potential of the external input terminal is substantially lower than the potential of the high-potential power line, and the output potential of the second inverter is always substantially higher than the potential of the external input terminal. Configured as
[0033] 好ましくは上述のインターフェース回路は、電源に接続可能なインターフェース回 路であって、外部入力端子と、この外部入力端子の電位が入力される第一のインバ ータと、第一のインバータの出力の電位が入力される第二のインバータと、第二のィ ンバータの出力の電位を第一のインバータの入力へと帰還する帰還路とを有し、この 帰還路が無 、状態を仮定したとき、外部入力端子の電位が低電位電力線の電位より も実質的に高い範囲において、常に第二のインバータの出力の電位が外部入力端 子の電位よりも実質的に低 、状態をとることが望まし 、。 [0033] Preferably, the above-described interface circuit is an interface circuit connectable to a power source, and includes an external input terminal, a first inverter to which a potential of the external input terminal is input, and a first inverter. A second inverter to which the output potential of the second inverter is input, and a feedback path for returning the potential of the output of the second inverter to the input of the first inverter. Assuming that there is no feedback path, the potential of the output of the second inverter is always substantially higher than the potential of the external input terminal in the range where the potential of the external input terminal is substantially higher than the potential of the low potential power line. It is desirable to take the state low.
[0034] なお、厳密に言えば、本発明のインターフェース回路における外部入力端子は、フ ローテイング状態のときには予め設定された Hレベル又は Lレベルの信号を出力する 、いわば出力端子としての機能をも有するものである。し力しながら、説明の簡便のた めに「外部入力端子」 、う名称を統一して使用する。 Strictly speaking, the external input terminal in the interface circuit of the present invention outputs a preset H level or L level signal in the floating state, so to speak, it functions as an output terminal. I have it. However, for convenience of explanation, the term “external input terminal” will be used consistently.
発明の効果  The invention's effect
[0035] このように本発明によれば、フローティング状態にある外部入力端子の電位を Hレ ベルの電位または Lレベルの電位に設定することができ、また外部入力端子の漏れ 電流も十分に抑えることができ、更に加えて外部入力端子の電源電圧端子あるいは 接地端子に対してインピーダンスを低く抑えることで耐ノイズ性を高める事ができるの で、本発明のインターフェース回路は、各種電子機器や半導体集積回路等における 外部入力端子用のインターフェース回路として多大なる効果を奏する。しかも本発明 のインターフェース回路は、回路構成自体が簡単なので、半導体集積回路に組み込 むことも容易である等の利点がある。  As described above, according to the present invention, the potential of the external input terminal in a floating state can be set to the H level potential or the L level potential, and the leakage current of the external input terminal can be sufficiently suppressed. In addition, since the noise resistance can be enhanced by keeping the impedance low with respect to the power supply voltage terminal or the ground terminal of the external input terminal, the interface circuit of the present invention can be used in various electronic devices and semiconductor integrated circuits. It has a great effect as an interface circuit for an external input terminal in a circuit or the like. Moreover, the interface circuit of the present invention has an advantage that it can be easily incorporated into a semiconductor integrated circuit because the circuit configuration itself is simple.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]本発明の実施例 1に係るインターフェース回路の構成図、 FIG. 1 is a configuration diagram of an interface circuit according to Embodiment 1 of the present invention.
[図 2]図 1に示すインターフェース回路における第 2のインバータ回路力 第 1のイン バータ回路への正帰還を停止したときの入出力特性を示す図、  FIG. 2 is a diagram showing input / output characteristics when the second inverter circuit force in the interface circuit shown in FIG. 1 stops positive feedback to the first inverter circuit;
[図 3]本発明の実施例 2に係るインターフェース回路の構成図、  FIG. 3 is a configuration diagram of an interface circuit according to Embodiment 2 of the present invention.
[図 4]本発明の実施例 3に係るインターフェース回路の構成図、  FIG. 4 is a configuration diagram of an interface circuit according to Embodiment 3 of the present invention.
[図 5]図 4に示すインターフェース回路における第 2のインバータ回路力 第 1のイン バータ回路への正帰還を停止したときの入出力特性を示す図、  FIG. 5 is a diagram showing input / output characteristics when the second inverter circuit force in the interface circuit shown in FIG. 4 is stopped from positive feedback to the first inverter circuit;
[図 6]本発明の実施例 4に係るインターフェース回路の構成図、  FIG. 6 is a configuration diagram of an interface circuit according to Embodiment 4 of the present invention.
[図 7]本発明の実施例 5に係るインターフェース回路の構成図、  FIG. 7 is a configuration diagram of an interface circuit according to Embodiment 5 of the present invention.
[図 8A]PMOSトランジスタをスィッチとして使用した使用例を示す図、  [FIG. 8A] A diagram showing an example of using a PMOS transistor as a switch.
[図 8B]PMOSトランジスタのゲートとドレインを接続して pチャネル形ダイオードとした MOSトランジスタの使用例を示す図、 [Figure 8B] Connecting the gate and drain of a PMOS transistor to form a p-channel diode The figure which shows the usage example of MOS transistor,
[図 8C]PMOSトランジスタのゲートとソースを接続して pチャネル形抵抗とした MOSト ランジスタの使用例を示す図、  [Fig. 8C] Diagram showing an example of using a MOS transistor with a p-channel resistor by connecting the gate and source of a PMOS transistor.
[図 8D]NMOSトランジスタをスィッチとして使用した使用例を示す図、  [FIG. 8D] A diagram showing an example of using an NMOS transistor as a switch.
[図 8E]NMOSトランジスタのゲートとドレインを接続して nチャネル形ダイオードとした [Figure 8E] NMOS transistor gate and drain connected to form an n-channel diode
MOSトランジスタの使用例を示す図、 The figure which shows the usage example of MOS transistor,
[図 8F]NMOSトランジスタのゲートとソースを接続して nチャネル形抵抗とした MOSト ランジスタの使用例を示す図、  [FIG. 8F] A diagram showing an example of using a MOS transistor with an n-channel resistor by connecting the gate and source of an NMOS transistor,
[図 9]第 2のインバータ回路の構成例を検証する上でのインターフェース回路の構成 例を示す図、  FIG. 9 is a diagram showing a configuration example of an interface circuit for verifying the configuration example of the second inverter circuit;
[図 10]図 9に示す第 2のインバータ回路の検証結果を示す図、  FIG. 10 is a diagram showing a verification result of the second inverter circuit shown in FIG.
[図 11]第 2のインバータ回路の構成例を検証する上でのインターフェース回路の別の 構成例を示す図、  FIG. 11 is a diagram showing another configuration example of the interface circuit for verifying the configuration example of the second inverter circuit;
[図 12]図 11に示す第 2のインバータ回路の検証結果を示す図、  FIG. 12 is a diagram showing a verification result of the second inverter circuit shown in FIG.
[図 13A]プルアップ抵抗 Rpuを用いた外部入力端子の処理例を示す構成図、  FIG. 13A is a block diagram showing an example of processing of an external input terminal using a pull-up resistor Rpu.
[図 13B]プルダウン抵抗 Rpdを用いた外部入力端子の処理例を示す構成図、  FIG. 13B is a block diagram showing an example of processing of an external input terminal using a pull-down resistor Rpd.
[図 14]従来のインターフェース回路の構成例を示す図、  FIG. 14 is a diagram showing a configuration example of a conventional interface circuit;
[図 15]本発明の実施例 8に係るインターフェース回路の構成図である。  FIG. 15 is a configuration diagram of an interface circuit according to Example 8 of the present invention.
発明を実施するため最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、図面を参照して本発明の実施形態に係るインターフェース回路について説 明する。 Hereinafter, an interface circuit according to an embodiment of the present invention will be described with reference to the drawings.
[0038] 尚、ここでは一対の電源端子をなす高電圧端子および低電圧端子を、正 (プラス) の電源電圧 Vccを供給する電源ノードとゼロ電位に規定された接地ノードとして説明 するが、高電圧端子が接地され、低電圧端子が負(マイナス)の電位を供給する回路 としても良い。また高電圧端子に正 (プラス)の電源電圧、低電圧端子に負(マイナス )の電位を供給する回路としても良い。要するに、高電圧端子に供給される電位 Vと 低電圧端子に供給される電位 Vとが、 V >Vなる関係を満たしていれば良い。  [0038] Here, a high voltage terminal and a low voltage terminal forming a pair of power supply terminals will be described as a power supply node supplying a positive power supply voltage Vcc and a ground node defined as a zero potential. A circuit in which the voltage terminal is grounded and the low voltage terminal supplies a negative (minus) potential may be used. Alternatively, a circuit that supplies a positive (plus) power supply voltage to the high voltage terminal and a negative (minus) potential to the low voltage terminal may be used. In short, it is sufficient that the potential V supplied to the high voltage terminal and the potential V supplied to the low voltage terminal satisfy the relationship V> V.
2 1 2  2 1 2
[0039] ちなみに本明細書中においてトランジスタの導通状態および非導通状態は、それ ぞれオンおよびオフと称する。 [0039] By the way, in this specification, the conductive state and non-conductive state of a transistor are These are referred to as on and off, respectively.
実施例 1  Example 1
[0040] 図 1は第 1の実施形態に係るインターフェース回路の構成を示すものである。ここで は、トランジスタとして MOSトランジスタを用いた構成例を示す。具体的に 10は PMO Sトランジスタ 11と NMOSトランジスタ 12とで構成された第 1のインバータ回路、 20は 2つの PMOSトランジスタ 21, 22と NMOSトランジスタ 23とで構成された第 2のインバ ータ回路である。  FIG. 1 shows a configuration of the interface circuit according to the first embodiment. Here, a configuration example using a MOS transistor as a transistor is shown. Specifically, 10 is a first inverter circuit composed of a PMOS transistor 11 and an NMOS transistor 12, and 20 is a second inverter circuit composed of two PMOS transistors 21, 22 and an NMOS transistor 23. is there.
[0041] 第 1のインバータ回路 10には、 PMOSトランジスタ 11および NMOSトランジスタ 12 の各ドレイン電極が相互に接続される。この第 1のインバータ回路 10は、電源ノード( 高電圧端子)と接地ノード (低電圧端子)との間に直列になるよう接続される。また第 1 のインバータ回路 10の各ゲート電極は、入力ノード Aを介して外部入力端子 1に共 通に接続される。この相互に接続したドレイン電極は、出力ノード Bとして構成される 。そして第 1のインバータ回路 10は、外部入力端子 1に所定電位の信号を受けると P MOSトランジスタ 11と NMOSトランジスタ 12とを相補的にオン Zオフ動作させる。こ れによって第 1のインバータ回路 10は、外部入力端子 1 (入力ノード A)の論理レベル を反転した電位の出力信号を出力ノード Bに出力する。  [0041] In the first inverter circuit 10, the drain electrodes of the PMOS transistor 11 and the NMOS transistor 12 are connected to each other. The first inverter circuit 10 is connected in series between a power supply node (high voltage terminal) and a ground node (low voltage terminal). Each gate electrode of the first inverter circuit 10 is commonly connected to the external input terminal 1 via the input node A. The interconnected drain electrodes are configured as output node B. When the first inverter circuit 10 receives a signal having a predetermined potential at the external input terminal 1, the PMOS transistor 11 and the NMOS transistor 12 are complementarily turned on and off. As a result, the first inverter circuit 10 outputs to the output node B an output signal having a potential obtained by inverting the logic level of the external input terminal 1 (input node A).
[0042] 具体的には第 1のインバータ回路 10は、外部入力端子 1から入力ノード Aに加わる 入力信号が Hレベルの電位のとき、 PMOSトランジスタ 11がオフし、 NMOSトランジ スタ 12がオンすることで出力ノード Bの電位を Lレベルの電位にする。逆に外部入力 端子 1から入力ノード Aに加わる信号の電位力 レベルの電位のとき、 PMOSトラン ジスタ 11がオンし、 NMOSトランジスタ 12がオフすることで出力ノード Bの電位を Hレ ベルの電位にする。  Specifically, in the first inverter circuit 10, the PMOS transistor 11 is turned off and the NMOS transistor 12 is turned on when the input signal applied from the external input terminal 1 to the input node A is at the H level potential. The output node B potential is set to L level. Conversely, when the potential of the signal applied from the external input terminal 1 to the input node A is at the potential level, the PMOS transistor 11 is turned on and the NMOS transistor 12 is turned off, so that the potential of the output node B is changed to the H level potential. To do.
[0043] 一方、第 2のインバータ回路 20は、直列に接続された 2つの PMOSトランジスタ 21, 22と NMOSトランジスタ 23を、電源ノードと接地ノードとの間に接続する。第 2のイン バータ回路 20は、これらのトランジスタ 21, 22,23の各ゲート電極を共通に接続して 入力ノードとし、前記第 1のインバータ回路 10の出力ノード Bに接続される。そして第 2のインバータ回路 20は、 PMOSトランジスタ 21のドレイン電極と PMOSトランジスタ 22のソース電極との接続点を出力ノード Cとする。この出力ノード Cは、前述した第 1 のインバータ回路 10の入力ノード Aに接続されて帰還路を形成する。このように第 2 のインバータ回路 20の出力は、前記第 1のインバータ回路 10に正帰還される。 On the other hand, the second inverter circuit 20 connects two PMOS transistors 21 and 22 and an NMOS transistor 23 connected in series between a power supply node and a ground node. The second inverter circuit 20 is connected to the output node B of the first inverter circuit 10 by connecting the gate electrodes of these transistors 21, 22, and 23 together as an input node. The second inverter circuit 20 uses the connection point between the drain electrode of the PMOS transistor 21 and the source electrode of the PMOS transistor 22 as an output node C. This output node C is the first mentioned above. Is connected to the input node A of the inverter circuit 10 to form a feedback path. Thus, the output of the second inverter circuit 20 is positively fed back to the first inverter circuit 10.
[0044] ちなみに第 2のインバータ回路 20を構成する PMOSトランジスタ 21, 22および NM OSトランジスタ 23は、基本的には入力ノード (ゲート電極)に第 1のインバータ回路 1 0の出力信号を受けて相補的にオン Zオフ動作し、上記第 1のインバータ回路 10の 出力ノード Bの論理レベルを反転した電位の出力信号を出力ノード Cに得るレベル反 転機能としての役割を担う。特に PMOSトランジスタ 22および NMOSトランジスタ 23 は、完全にはオンしていない状態にあるとき、ソース'ドレイン電極間に生じる所定電 位の信号を出力ノード Cに加えることで、ノード Cの電位を高める電圧シフト機能とし ての役割を担う。 [0044] Incidentally, the PMOS transistors 21 and 22 and the NMOS transistor 23 constituting the second inverter circuit 20 basically receive the output signal of the first inverter circuit 10 at the input node (gate electrode) and are complementary. In this case, it functions as a level reversal function that obtains an output signal having a potential obtained by inverting the logic level of the output node B of the first inverter circuit 10 at the output node C. In particular, the PMOS transistor 22 and the NMOS transistor 23 are voltages that increase the potential of the node C by applying a signal of a predetermined potential generated between the source and drain electrodes to the output node C when the PMOS transistor 22 and the NMOS transistor 23 are not completely turned on. It plays a role as a shift function.
[0045] 具体的には前記外部入力端子 1の電位が Hレベルの電位であり、これを受けた第 1 のインバータ回路 10が Lレベルの電位の出力信号を出力しているときには、 PMOS トランジスタ 21, 22はオン動作し、また NMOSトランジスタ 23はオフ動作する。このと き NMOSトランジスタ 23は、オフしているので、外部入力端子 1に NMOSトランジス タ 23を介した漏れ電流が生じな 、。  Specifically, when the potential of the external input terminal 1 is an H level potential, and the first inverter circuit 10 receiving the potential outputs an output signal having an L level potential, the PMOS transistor 21 , 22 are turned on, and the NMOS transistor 23 is turned off. At this time, the NMOS transistor 23 is off, so that no leakage current occurs through the NMOS transistor 23 at the external input terminal 1.
[0046] 一方、前記外部入力端子 1の電位力 レベルの電位であり、これを受けた第 1のィ ンバータ回路 10が Hレベルの電位の出力信号を出力しているとき、 PMOSトランジス タ 21, 22は、オフ動作し、また NMOSトランジスタ 23は、オン動作する。そしてこのと き、 PMOSトランジスタ 21はオフしているので、外部入力端子 1に PMOSトランジスタ 21を介する漏れ電流が生じない。  On the other hand, when the first inverter circuit 10 receiving the potential of the potential level of the external input terminal 1 outputs an H level potential output signal, the PMOS transistor 21, 22 is turned off, and the NMOS transistor 23 is turned on. At this time, since the PMOS transistor 21 is off, no leakage current flows through the PMOS transistor 21 at the external input terminal 1.
[0047] また、外部入力端子 1が接地された状態 (Lレベル)力もフローティング状態(開放状 態)になったとすると、ノード A,Cの電位は、外部入力端子 1による規定がなくなる。す るとノード Cの電位は、第 1のインバータ回路 10の入力ノード Aに正帰還されてノード Cの電位が次第に高くなる。このため、第 1のインバータ回路 10の出力の電位は、ノ ード Cの電位上昇に伴って次第に低下する。このとき第 2のインバータ回路 20の入力 ノードに与えられる入力信号の電位の低下に伴って PMOSトランジスタ 21, 22はオン する。また NMOSトランジスタ 23がオフすることで出力ノード Cの電位は強制的に H レベルの電位に固定される。そうして外部入力端子 1の電位は Hレベルの電位に安 定する。換言すれば外部入力端子 1がフローティング状態 (開放状態)である場合、 外部入力端子 1の電位は自動的に Hレベルの電位に設定される。 [0047] If the external input terminal 1 is grounded (L level) force is also in a floating state (open state), the potential of the nodes A and C is not regulated by the external input terminal 1. As a result, the potential of the node C is positively fed back to the input node A of the first inverter circuit 10, and the potential of the node C gradually increases. For this reason, the output potential of the first inverter circuit 10 gradually decreases as the potential of the node C increases. At this time, the PMOS transistors 21 and 22 are turned on as the potential of the input signal applied to the input node of the second inverter circuit 20 decreases. Further, when the NMOS transistor 23 is turned off, the potential of the output node C is forcibly fixed to the H level potential. The external input terminal 1 potential is Determine. In other words, when the external input terminal 1 is in a floating state (open state), the potential of the external input terminal 1 is automatically set to the H level potential.
[0048] 即ち、第 2のインバータ回路 20自体は、この回路の出力を第 1のインバータ回路 10 の入力ノード Aに正帰還しないとき、外部入力端子 1にカ卩えられる入力信号の電位に 対して、ノード Aに加えられる電位よりも常に高い電位の出力信号を出力する。具体 的に第 2のインバータ回路 20は、図 2の特性 Xに示すような電位の出力信号を出力 する。つまり、外部入力端子 1が接地されてノード Aにカ卩えられる電位力 レベルの電 位に固定されていないときを例示すると、ノード Aの電位は、第 2のインバータ回路 20 の出力信号の電位を第 1のインバータ回路 10の入力ノード Aに正帰還したとき、第 2 のインバータ回路 20から正帰還される上記外部入力端子 1の電位よりも高い電位の 信号によって次第に高くなる。その結果、ノード Aの電位は、 Hレベルの電位に自動 的に収束して安定する。このためノード Aの電位は、外部入力端子 1がフローティング 状態(開放状態)である場合には、ノード Aの電位が自動的に Hレベルの電位に設定 されること〖こなる。 That is, when the second inverter circuit 20 itself does not positively feed back the output of this circuit to the input node A of the first inverter circuit 10, it corresponds to the potential of the input signal supplied to the external input terminal 1. Thus, an output signal having a potential always higher than the potential applied to the node A is output. Specifically, the second inverter circuit 20 outputs an output signal having a potential as shown by the characteristic X in FIG. In other words, when the external input terminal 1 is grounded and is not fixed at the potential level potential that can be supplied to the node A, the potential of the node A is the potential of the output signal of the second inverter circuit 20. Is positively fed back to the input node A of the first inverter circuit 10 and is gradually increased by a signal having a higher potential than the potential of the external input terminal 1 fed back positively from the second inverter circuit 20. As a result, the potential at node A automatically converges to the H level potential and stabilizes. For this reason, the potential of node A is automatically set to the H level potential when the external input terminal 1 is in a floating state (open state).
[0049] このように構成されたインターフェース回路によれば、外部入力端子 1の電位が Hレ ベルの電位または Lレベルの電位に設定されたとき、漏れ電流を生じることなぐ外部 入力端子 1の入力状態を安定に保持することができる。特に外部入力端子 1がフロー ティング状態(開放状態)であるときには、外部入力端子 1の電位を自動的に Hレべ ルの電位に設定することができるので、従来のようなプルアップ抵抗 Rpuが不要であ る。し力も外部入力端子 1の電位力 レベルの電位に強制的に固定されたときには、 前述したように PMOSトランジスタ 21がオフしているので、外部入力端子 1を介する 漏れ電流が生じない。したがって本発明のインターフェース回路は、各種電子機器 が外部入力端子 1に接続されたとき、外部入力端子 1の電位を Hレベルの電位また は Lレベルの電位に安定化することができる。  [0049] According to the interface circuit configured as described above, when the potential of the external input terminal 1 is set to the H level potential or the L level potential, the input of the external input terminal 1 that causes no leakage current is generated. The state can be kept stable. In particular, when the external input terminal 1 is in the floating state (open state), the potential of the external input terminal 1 can be automatically set to the H level potential. It is not necessary. When the force is forcibly fixed to the potential of the potential level of the external input terminal 1, the PMOS transistor 21 is turned off as described above, so that no leakage current occurs through the external input terminal 1. Therefore, the interface circuit of the present invention can stabilize the potential of the external input terminal 1 to the H level potential or the L level potential when various electronic devices are connected to the external input terminal 1.
実施例 2  Example 2
[0050] ところで上述の実施形態は、外部入力端子 1がフローティング状態(開放状態)であ るとき、上記外部入力端子 1の電位を自動的に Hレベルの電位に設定するように構 成されたものである。しかし本発明のインターフェース回路は、逆に外部入力端子 1 の電位を自動的に Lレベルの電位に設定するようにインターフェース回路を構成する ことも可能である。図 3はその実施形態を示すインターフェース回路の構成図であり、 図 1に示すインターフェース回路と同一部分には同一符号を付して示してある。 By the way, the embodiment described above is configured to automatically set the potential of the external input terminal 1 to the H level potential when the external input terminal 1 is in a floating state (open state). Is. However, the interface circuit of the present invention, on the contrary, has an external input terminal 1 It is also possible to configure the interface circuit to automatically set the potential at the L level. FIG. 3 is a block diagram of the interface circuit showing the embodiment. The same parts as those of the interface circuit shown in FIG.
[0051] このインターフェース回路は、第 2のインバータ回路 20を、直列に接続した PMOS トランジスタ 24および 2つの NMOSトランジスタ 25, 26を電源ノードと接地ノードとの 間に直列に接続し、これらのトランジスタ 24,25,26の各ゲート電極が共通に接続され た入力ノードとして、前記第 1のインバータ回路 10の出力ノード Bに接続して構成さ れる。そして NMOSトランジスタ 25のソース電極と NMOSトランジスタ 26のドレイン 電極との接続点は出力ノード Cとする。この出力ノード Cは、前述した第 1のインバー タ回路 10の入力ノード Aに接続される。このようにして第 2のインバータ回路 20の出 力は、前記第 1のインバータ回路 10に正帰還されるように構成されている。  [0051] This interface circuit has a second inverter circuit 20 connected in series to a PMOS transistor 24 and two NMOS transistors 25 and 26 connected in series between a power supply node and a ground node. , 25, and 26 are connected to the output node B of the first inverter circuit 10 as an input node connected in common. The connection point between the source electrode of the NMOS transistor 25 and the drain electrode of the NMOS transistor 26 is defined as an output node C. The output node C is connected to the input node A of the first inverter circuit 10 described above. In this way, the output of the second inverter circuit 20 is configured to be positively fed back to the first inverter circuit 10.
[0052] ちなみに第 2のインバータ回路 20を構成する PMOSトランジスタ 24および NMOS トランジスタ 25,26は、基本的には入力ノード (ゲート電極)に第 1のインバータ回路 1 0の出力信号を受けて相補的にオン Zオフ動作し、上記第 1のインバータ回路 10の 出力ノード Bの論理レベルを反転した電位の信号を出力ノード Cに得るレベル反転機 能としての役割を担う。特に NMOSトランジスタ 25と PMOSトランジスタ 24は、完全 にオン動作しないとき、ソース'ドレイン電極間に生じる所定の電圧降下を出力ノード Cにカ卩えることで、ノード Cの電位を低くする電圧シフト機能としての役割を担う。  [0052] Incidentally, the PMOS transistor 24 and the NMOS transistors 25 and 26 constituting the second inverter circuit 20 are basically complementary to each other by receiving the output signal of the first inverter circuit 10 at the input node (gate electrode). In addition, it functions as a level inversion function that obtains a signal having a potential obtained by inverting the logic level of the output node B of the first inverter circuit 10 at the output node C. In particular, the NMOS transistor 25 and the PMOS transistor 24 have a voltage shift function that lowers the potential of the node C by covering the output node C with a predetermined voltage drop generated between the source and drain electrodes when the transistor does not completely turn on. Play the role of
[0053] このように構成されたインターフェース回路によれば、外部入力端子 1がフローティ ング状態(開放状態)であるとき、ノード A,Cの電位が外部入力端子 1によって規定さ れないのでノード Cの電位は、第 1のインバータ回路 10の入力ノード Aに正帰還され て次第に低下する。そしてこの電位の低下に伴って第 1のインバータ回路 10の出力 の電位が次第に上昇する。一方、 PMOSトランジスタ 24は、第 2のインバータ回路 2 [0053] According to the interface circuit configured as described above, when the external input terminal 1 is in the floating state (open state), the potentials of the nodes A and C are not defined by the external input terminal 1, so that the node C Is gradually fed back to the input node A of the first inverter circuit 10 and gradually decreases. As the potential decreases, the output potential of the first inverter circuit 10 gradually increases. On the other hand, the PMOS transistor 24 includes a second inverter circuit 2
0の入力ノードに与えられる信号の電位上昇に伴ってオフする。また NMOSトランジ スタ 25,26がオンすることで出力ノード Cの電位が強制的に Lレベルに固定され、外 部入力端子 1の電位は Lレベルの電位に安定する。換言すれば外部入力端子 1がフ ローテイング状態(開放状態)である場合には、外部入力端子 1の電位が自動的に L レベルの電位に設定される。 [0054] したがってこのように構成されたインターフェース回路は、前述した図 1に示すインタ 一フェース回路と同様に、外部入力端子 1の電位が Hレベルの電位または Lレベル の電位に設定されたとき、漏れ電流を生じることなぐ外部入力端子 1の電位の状態 を安定に保持することができる。特にこのインターフェース回路においては、外部入 力端子 1がフローティング状態(開放状態)であるとき、外部入力端子 1の電位を自動 的に Lレベルの電位に設定することができる。このため、本発明のインターフェース回 路は、従来のようにプルダウン抵抗 Rpdを接続して外部入力端子 1の電位を引き下げ る必要がない。しかも外部入力端子 1の電位が Hレベルの電位に強制的に固定され たときには、前述したように NMOSトランジスタ 26がオフしているので、外部入力端 子 1を介する漏れ電流を生じない。したがって本発明のインターフェース回路は、各 種電子機器における外部入力端子 1に接続して、この外部入力端子 1の電位を Hレ ベルの電位または Lレベルの電位に安定ィ匕できるという多大なる効果を得ることがで きる。 It turns off as the potential of the signal applied to the 0 input node rises. When NMOS transistors 25 and 26 are turned on, the potential at output node C is forcibly fixed at L level, and the potential at external input terminal 1 is stabilized at the L level. In other words, when the external input terminal 1 is in the floating state (open state), the potential of the external input terminal 1 is automatically set to the L level potential. Therefore, in the interface circuit configured in this way, like the interface circuit shown in FIG. 1 described above, when the potential of the external input terminal 1 is set to the H level potential or the L level potential, The state of the potential of external input terminal 1 that does not cause leakage current can be maintained stably. In particular, in this interface circuit, when the external input terminal 1 is in a floating state (open state), the potential of the external input terminal 1 can be automatically set to the L level potential. For this reason, the interface circuit of the present invention does not need to lower the potential of the external input terminal 1 by connecting the pull-down resistor Rpd as in the prior art. In addition, when the potential of the external input terminal 1 is forcibly fixed to the H level potential, the NMOS transistor 26 is turned off as described above, so that no leakage current through the external input terminal 1 occurs. Therefore, the interface circuit of the present invention is connected to the external input terminal 1 in various electronic devices, and has the great effect that the potential of the external input terminal 1 can be stabilized to the H level potential or the L level potential. Obtainable.
実施例 3  Example 3
[0055] ところで本発明に係るインターフェース回路は、入力ノード Aに加わる電位カ^レべ ルの電位または Hレベルの電位の一方であるとき、第 1のインバータ回路 10から出力 される出力信号の電位を前記第 2のインバータ回路 20がオン Zオフ動作しない程度 にシフトするダイオード接続をした MOSトランジスタを第 1のインバータ回路 10に組 み込むことも有用である。具体的には、例えば図 1に示すインターフェース回路の場 合には、図 4にその構成を示すように電源ノードと PMOSトランジスタ 11のソース電 極との間に、ダイオード接続された PMOSトランジスタ 13が直列に接続されて該 PM OSトランジスタ 13の動作閾値電圧程度だけ出力ノード Bの電位を低くする。  By the way, the interface circuit according to the present invention has the potential of the output signal output from the first inverter circuit 10 when it is one of the potential level potential or the H level potential applied to the input node A. It is also useful to incorporate in the first inverter circuit 10 a MOS transistor having a diode connection that shifts the second inverter circuit 20 to such an extent that the second inverter circuit 20 does not turn on and off. Specifically, in the case of the interface circuit shown in FIG. 1, for example, a diode-connected PMOS transistor 13 is provided between the power supply node and the source electrode of the PMOS transistor 11 as shown in FIG. The potential of the output node B is lowered by the operation threshold voltage of the PMOS transistor 13 connected in series.
[0056] このように構成されたインターフェース回路は、外部入力端子 1が接地された場合、 PMOSトランジスタ 11がオンし、 NMOSトランジスタ 12がオフする。このため PMOS トランジスタ 11のソース電極の電位とノード Bの電位はほぼ等しくなる。このときノード Bの電位は、 NMOSトランジスタ 12のソース'ドレイン間抵抗力 PMOSトランジスタ 13 のソース'ドレイン間抵抗よりも大きいので、電源ノードの電圧 Vccよりも該 PMOSトラ ンジスタ 13の動作閾値電圧程度低くなる。そして第 2のインバータ回路 20における P MOSトランジスタ 21のゲート'ソース間の電位差力 第 1のインバータ回路 10におけ る PMOSトランジスタ 13のゲート'ソース間の電位差とほぼ等しくなる。それ故、 PMO Sトランジスタ 21はオフ動作する。この結果、インターフェース回路は、漏れ電流を生 じることなぐ外部入力端子 1の電位を Lレベルの電位に保つことが可能となる。 In the interface circuit configured as described above, when the external input terminal 1 is grounded, the PMOS transistor 11 is turned on and the NMOS transistor 12 is turned off. For this reason, the potential of the source electrode of the PMOS transistor 11 and the potential of the node B are substantially equal. At this time, the potential of the node B is higher than the resistance between the source and the drain of the NMOS transistor 12 and the resistance between the source and the drain of the PMOS transistor 13, and therefore is lower than the voltage Vcc of the power supply node by about the operating threshold voltage of the PMOS transistor 13. Become. P in the second inverter circuit 20 The potential difference between the gate and the source of the MOS transistor 21 The potential difference between the gate and the source of the PMOS transistor 13 in the first inverter circuit 10 is substantially equal. Therefore, the PMOS transistor 21 is turned off. As a result, the interface circuit can keep the potential of the external input terminal 1 at the L level without causing leakage current.
[0057] 但し、本発明のインターフェース回路は、実際には PMOSトランジスタ 13と PMOS トランジスタ 21の動作閾値電圧やトランジスタサイズのばらつきにより微少な漏れ電 流が生じる事もある。し力しながら、このことによって本発明の効果が損なわれるもの ではない。 However, in the interface circuit of the present invention, a slight leakage current may actually occur due to variations in the operation threshold voltage and transistor size of the PMOS transistor 13 and the PMOS transistor 21. However, this does not impair the effects of the present invention.
[0058] これに対して外部入力端子 1が上述した接地状態力 開放されてフローティング状 態になると、前述した第 2のインバータ回路 20からの正帰還作用によりノード Aの電 位が上昇する。するとノード Aの電位の上昇に伴って第 1のインバータ回路 10の出力 信号の電位が低下し、前述したように外部入力端子 1の電位が自動的に Hレベルの 電位に設定される。  On the other hand, when the external input terminal 1 is released from the above-mentioned ground state force and becomes in a floating state, the potential of the node A rises due to the positive feedback action from the second inverter circuit 20 described above. Then, the potential of the output signal of the first inverter circuit 10 decreases as the potential of the node A increases, and the potential of the external input terminal 1 is automatically set to the H level potential as described above.
[0059] PMOSトランジスタ 11がオンしているとき、前記 PMOSトランジスタ 13は、第 2のィ ンバータ回路 20の PMOSトランジスタ 21との間で等価的なカレントミラー回路を構成 する。そして上述したように PMOSトランジスタ 21のゲート電極に加えられる電位(ノ ード Bの電位)力 上記 PMOSトランジスタ 13の存在により PMOSトランジスタ 21の 動作閾値電圧程度、 PMOSトランジスタ 21の電源電圧 Vccよりも低く保たれている。 したがって外部入力端子 1はフローティング状態となって外部入力端子 1の電位が上 昇する。すると PMOSトランジスタ 21のゲート電極に加えられる信号の電位が低下し て PMOSトランジスタ 21の動作閾値電圧を超えるまでの時間が短くなる。この結果、 PMOSトランジスタ 21がいち早くオン動作するので、外部入力端子 1の電位がフロー ティング状態力 Hレベルの電位に遷移するのに要する時間を極めて短縮すること が可能となる。  When the PMOS transistor 11 is on, the PMOS transistor 13 forms an equivalent current mirror circuit with the PMOS transistor 21 of the second inverter circuit 20. As described above, the potential applied to the gate electrode of the PMOS transistor 21 (the potential of the node B). Due to the presence of the PMOS transistor 13, the operating threshold voltage of the PMOS transistor 21 is lower than the power supply voltage Vcc of the PMOS transistor 21. It is kept. Therefore, the external input terminal 1 enters a floating state and the potential of the external input terminal 1 rises. Then, the potential of the signal applied to the gate electrode of the PMOS transistor 21 decreases, and the time until the operation threshold voltage of the PMOS transistor 21 is exceeded is shortened. As a result, the PMOS transistor 21 is turned on quickly, so that the time required for the potential of the external input terminal 1 to transition to the potential of the floating state force H level can be extremely shortened.
[0060] この場合、第 2のインバータ回路 20の出力を第 1のインバータ回路 10の入力ノード Aに正帰還しないとすれば、第 2のインバータ回路 20から出力される出力信号の電 位 (ノード Cの電位)は外部入力端子 1にカ卩えられる信号の電位に対して、例えば図 5 の特性 Yに示すように変化し、常にノード Aにカ卩えられる電位より大きい電位となる。 これ故、ノード Aに加えられる信号の電位力 レベルの電位または Hレベルの電位に 固定されていないとき、第 2のインバータ回路 20の出力信号を第 1のインバータ回路 10の入力ノード Aに正帰還すると、第 2のインバータ回路 20の出力信号の電位は、 Vヽち早く Hレベルの電位になる。 [0060] In this case, if the output of the second inverter circuit 20 is not positively fed back to the input node A of the first inverter circuit 10, the potential of the output signal output from the second inverter circuit 20 (node C potential) changes with respect to the potential of the signal supplied to the external input terminal 1 as shown by the characteristic Y in FIG. 5, for example, and is always higher than the potential supplied to the node A. Therefore, when the potential applied to the node A is not fixed at the potential level or the H level, the output signal of the second inverter circuit 20 is positively fed back to the input node A of the first inverter circuit 10. Then, the potential of the output signal of the second inverter circuit 20 quickly becomes V-level potential.
実施例 4  Example 4
[0061] 尚、図 3に示すインターフェース回路の場合、図 6に示すように NMOSトランジスタ 12のソース電極と接地ノードとの間にダイオード接続された NMOSトランジスタ 14を 接続して第 2のインバータ回路 20における NMOSトランジスタ 26のゲート電極に加 える電位(ノード Bの電位)は、 NMOSトランジスタ 26の動作閾値電圧程度、 NMOS トランジスタ 26の接地電位よりも高く設定なるようにしておけばよい。  In the case of the interface circuit shown in FIG. 3, a second inverter circuit 20 is connected by connecting a diode-connected NMOS transistor 14 between the source electrode of the NMOS transistor 12 and the ground node as shown in FIG. In this case, the potential applied to the gate electrode of the NMOS transistor 26 (the potential of the node B) may be set to be approximately equal to the operating threshold voltage of the NMOS transistor 26 and higher than the ground potential of the NMOS transistor 26.
[0062] 本発明のインターフェース回路は、このような NMOSトランジスタ 14を用いることに より、外部入力端子 1の電位が Hレベルの電位の状態力 フローティング状態となつ て外部入力端子 1の電位が低下し、これに伴って NMOSトランジスタ 26のゲート電 極に加えられる電位が上昇して NMOSトランジスタ 26の動作閾値電圧を超えるまで の時間を短くすることができる。この結果、本発明のインターフェース回路は、 NMO Sトランジスタ 26がいち早くオン動作するので、外部入力端子 1の電位がフローテイン グ状態力 Lレベルの電位に遷移するのに要する時間を極めて短縮することが可能 となる。  The interface circuit of the present invention uses such an NMOS transistor 14 to reduce the potential of the external input terminal 1 when the potential of the external input terminal 1 becomes a floating state. As a result, the time required for the potential applied to the gate electrode of the NMOS transistor 26 to rise and exceed the operating threshold voltage of the NMOS transistor 26 can be shortened. As a result, in the interface circuit of the present invention, since the NMOS transistor 26 is turned on quickly, the time required for the potential of the external input terminal 1 to transition to the potential of the floating state force L level can be greatly shortened. It becomes possible.
実施例 5  Example 5
[0063] ところで本発明のインターフェース回路は、前述したようにインターフェース回路を 用いて外部入力端子 1の電位を Hレベルの電位または Lレベルの電位に設定する場 合、上記外部入力端子 1に対して外部電源力 一定電流を供給することも有用であ る。即ち、前述した図 1に示すインターフェース回路においては、外部入力端子 1が フローティング状態となったとき、第 2のインバータ回路 20における PMOSトランジス タ 21により外部入力端子 1に電源電圧 Vccが印加されて外部入力端子 1の電位が上 昇する。し力し上記 PMOSトランジスタ 21は、外部入力端子 1が接地されたときの漏 れ電流を抑えるベぐオフ時の抵抗値が十分に高いものとなっている。このため、外 部入力端子 1が接地状態力 フローティング状態となったとき、上述したようにして外 部入力端子 1の電位が Hレベルの電位に遷移するまでに長い時間が力かることがあ る。し力も PMOSトランジスタ 21のオフ時における抵抗値は周囲温度により変化する 。このため PMOSトランジスタ 21をオンさせて外部入力端子 1の電位が Hレベルの電 位に遷移するまでの時間も温度依存性を有することになる。 By the way, the interface circuit of the present invention, when the interface circuit is used to set the potential of the external input terminal 1 to the H level potential or the L level potential as described above, External power supply It is also useful to supply a constant current. That is, in the above-described interface circuit shown in FIG. 1, when the external input terminal 1 is in a floating state, the power supply voltage Vcc is applied to the external input terminal 1 by the PMOS transistor 21 in the second inverter circuit 20, and the external input terminal 1 is externally connected. The potential at input terminal 1 rises. However, the PMOS transistor 21 has a sufficiently high resistance value at the time of turning off to suppress a leakage current when the external input terminal 1 is grounded. For this reason, when the external input terminal 1 enters the ground state force floating state, the external input terminal 1 is It may take a long time for the potential at the input terminal 1 to transition to the H level potential. However, the resistance value when the PMOS transistor 21 is turned off varies depending on the ambient temperature. Therefore, the time from when the PMOS transistor 21 is turned on until the potential of the external input terminal 1 transitions to the H level potential also has temperature dependence.
[0064] そこで本発明のインターフェース回路は、図 7に示すように、外部入力端子 1に対し て一定電流を供給する電流源としてカレントミラー回路 30を更に設けるとよい。そうし て本発明のインターフェース回路は、 PMOSトランジスタ 21がオンするまでに要する 時間を短くすることが望ましい。具体的に本発明のインターフェース回路は、定電流 源 31により駆動される電流吐き出し型のカレントミラー回路 30を 2つの PMOSトラン ジスタ 32,33によって構成する。そして外部入力端子 1がフローティング状態となった とき、定電流源 31は上記カレントミラー回路 30から外部入力端子 1に一定電流を供 給する。 Therefore, the interface circuit of the present invention may further include a current mirror circuit 30 as a current source for supplying a constant current to the external input terminal 1 as shown in FIG. Thus, it is desirable for the interface circuit of the present invention to shorten the time required until the PMOS transistor 21 is turned on. Specifically, in the interface circuit of the present invention, a current discharge type current mirror circuit 30 driven by a constant current source 31 is constituted by two PMOS transistors 32 and 33. When the external input terminal 1 is in a floating state, the constant current source 31 supplies a constant current from the current mirror circuit 30 to the external input terminal 1.
[0065] このようなカレントミラー回路 30を備えたインターフェース回路は、外部入力端子 1 が接地されているとき、カレントミラー回路 30から外部入力端子 1に電流が流れる。一 方、外部入力端子 1がフローティング状態へと遷移したとき、本発明のインターフエ一 ス回路は、カレントミラー回路 30から供給される電流によって外部入力端子 1の電位 が速やかに上昇する。この結果、本発明のインターフェース回路は、第 2のインバー タ回路 20における PMOSトランジスタ 21がオンするまでに要する時間が短くなる。  In such an interface circuit including the current mirror circuit 30, a current flows from the current mirror circuit 30 to the external input terminal 1 when the external input terminal 1 is grounded. On the other hand, when the external input terminal 1 transitions to the floating state, the potential of the external input terminal 1 rises rapidly due to the current supplied from the current mirror circuit 30 in the interface circuit of the present invention. As a result, the time required for the interface circuit of the present invention to turn on the PMOS transistor 21 in the second inverter circuit 20 is shortened.
[0066] それ故、外部入力端子 1の電位は、いち早く Hレベルの電位に引き上げられる。そ して PMOSトランジスタ 21がオンし、外部入力端子 1の接地ノードに対するインピー ダンスは、 NMOSトランジスタ 23のインピーダンスにより支酉己される。このため、カレン トミラー回路 30から外部入力端子 1に流れる電流は殆どなくなる。  Therefore, the potential of the external input terminal 1 is quickly raised to the H level potential. The PMOS transistor 21 is turned on, and the impedance of the external input terminal 1 with respect to the ground node is supported by the impedance of the NMOS transistor 23. For this reason, almost no current flows from the current mirror circuit 30 to the external input terminal 1.
[0067] ちなみに外部入力端子 1の電源ノードに対するインピーダンスは、 PMOSトランジ スタ 21のインピーダンスにより支配される。このためカレントミラー回路 30から外部入 力端子 1に供給する電流は、従来のプルアップ抵抗 Rpuによる漏れ電流と比較すると 遙かに小さくすることができる。したがって図 7に示すインターフェース回路は、図 1に 示す構成のインターフェース回路と比較して若干動作電流が増加するが、フローティ ング状態にある外部入力端子 1の電位をいち早く Hレベルの電位に遷移することが できる。このため本発明のインターフェース回路は、漏れ電流を低減しながらインター フェース回路における動作の高速ィ匕を図り得ると言う効果を得る。 Incidentally, the impedance of the external input terminal 1 with respect to the power supply node is governed by the impedance of the PMOS transistor 21. Therefore, the current supplied from the current mirror circuit 30 to the external input terminal 1 can be made much smaller than the leakage current caused by the conventional pull-up resistor Rpu. Therefore, the operating current of the interface circuit shown in FIG. 7 is slightly higher than that of the interface circuit configured as shown in FIG. 1, but the potential of the external input terminal 1 in the floating state is quickly changed to the H level potential. But it can. For this reason, the interface circuit of the present invention has an effect that the operation speed of the interface circuit can be increased while reducing the leakage current.
実施例 6  Example 6
[0068] 尚、このようなカレントミラー回路には、フローティング状態にある外部入力端子 1の 電位を Lレベルの電位に自動設定するインターフェース回路についても同様に適応 が可能である。具体的には特に図示しないが、前述した図 3に示すインターフェース 回路は、電流吸い込み型のカレントミラー回路を構成し、外部入力端子 1から一定の 電流を吸い込むように構成すれば良い。上述のインターフェース回路は、前述した N MOSトランジスタ 26がオンするまでの時間が短くなるので、図 7に示すインターフエ ース回路と同様な効果を得る。  It should be noted that such a current mirror circuit can be similarly applied to an interface circuit that automatically sets the potential of the external input terminal 1 in a floating state to an L level potential. Although not specifically illustrated, the interface circuit shown in FIG. 3 described above may be configured as a current sink type current mirror circuit so that a constant current is sucked from the external input terminal 1. The above-described interface circuit has the same effect as the interface circuit shown in FIG. 7 because the time until the aforementioned NMOS transistor 26 is turned on is shortened.
実施例 7  Example 7
[0069] ところで上述した各実施形態において本発明のインターフェース回路は、フローテ イング状態にある外部入力端子 1の電位を Hレベルの電位に自動的に設定する例と して、第 2のインバータ回路 20を 2つの PMOSトランジスタ 21, 22および NMOSトラ ンジスタ 23により構成した。また本発明のインターフェース回路は、フローティング状 態にある外部入力端子 1の電位を Lレベルの電位に自動的に設定する例として、第 2 のインバータ回路 20を PMOSトランジスタ 24および 2つの NMOSトランジスタ 25, 26 により構成した。  Incidentally, in each of the above-described embodiments, the interface circuit of the present invention is a second inverter circuit 20 as an example in which the potential of the external input terminal 1 in the floating state is automatically set to the H level potential. Is composed of two PMOS transistors 21 and 22 and an NMOS transistor 23. In addition, the interface circuit of the present invention has an example in which the potential of the external input terminal 1 in the floating state is automatically set to the L level potential, the second inverter circuit 20 is connected to the PMOS transistor 24 and the two NMOS transistors 25, It consisted of 26.
[0070] し力し第 2のインバータ回路 20としては、基本的には、以下の点を満たせばよい。  [0070] Basically, the second inverter circuit 20 may satisfy the following points.
[0071] (a)第 1のインバータ回路 10から出力される出力信号の電位に応じてオン Zオフ動 作して論理レベルを反転する主 MOSトランジスタ(レベル反転機能)と、 [0071] (a) a main MOS transistor (level inversion function) that operates on and off according to the potential of the output signal output from the first inverter circuit 10 to invert the logic level;
(b)外部入力端子がフローティング状態であるとき、主 MOSトランジスタを通して流れ る電流によって、或いは第 1のインバータ回路 10から出力される出力信号の電位に よってオフして所定電位の出力信号を発生させ、前記主 MOSトランジスタからの出 力信号の電位をシフトする補助 MOSトランジスタ (電圧シフト機能)とを備えたもので あれば良い。  (b) When the external input terminal is in a floating state, it is turned off by the current flowing through the main MOS transistor or by the potential of the output signal output from the first inverter circuit 10 to generate an output signal of a predetermined potential. Any auxiliary MOS transistor (voltage shift function) that shifts the potential of the output signal from the main MOS transistor may be used.
[0072] 具体的に外部入力端子 1がフローティング状態であるときに外部入力端子 1の電位 を Hレベルの電位に設定するインターフェース回路の場合には、第 2のインバータ回 路 20は、第 1のインバータ回路 10から出力される出力信号の電位に応じてオン Zォ フ動作する少なくとも 1つの主 MOSトランジスタと、出力ノード Cの電位を上記外部入 力端子 1に加わる電位よりも高くする少なくとも 1つの補助 MOSトランジスタとを備え れば良い。 [0072] Specifically, in the case of an interface circuit that sets the potential of external input terminal 1 to an H level potential when external input terminal 1 is in a floating state, the second inverter circuit The path 20 includes at least one main MOS transistor that performs an on-Z operation according to the potential of the output signal output from the first inverter circuit 10, and a potential at which the potential of the output node C is applied to the external input terminal 1. It is sufficient to provide at least one auxiliary MOS transistor that is higher than
[0073] 逆に外部入力端子 1がフローティング状態であるときに外部入力端子 1の電位を L レベルの電位に設定するインターフェース回路の場合には、第 2のインバータ回路 2 0は、第 1のインバータ回路 10から出力される出力信号の電位に応じてオン Zオフ動 作する少なくとも 1つの主 MOSトランジスタと、外部入力端子 1がフローティング状態 であるとき、出力ノード Cの電位を上記外部入力端子 1に加わる信号の電位よりも低く する少なくとも 1つの補助 MOSトランジスタとを備えれば良い。  Conversely, in the case of an interface circuit that sets the potential of the external input terminal 1 to the L level potential when the external input terminal 1 is in a floating state, the second inverter circuit 20 is the first inverter When at least one main MOS transistor that operates on and off according to the potential of the output signal output from the circuit 10 and the external input terminal 1 are in a floating state, the potential of the output node C is set to the external input terminal 1 described above. It is sufficient to provide at least one auxiliary MOS transistor that lowers the potential of the applied signal.
[0074] ちなみに MOSトランジスタは、図 8A、図 8B、図 8C、図 8D、図 8Eおよび図 8Fにそ れぞれ示すようにスィッチ ·ダイオード '抵抗の機能を備える。即ち、図 8A、図 8Dに 示すようにゲートを入力端子とする 3端子構造の PMOSおよび NMOSは、入力端子 の電位に応じてソース'ドレイン間をオン Zオフするスィッチとして機能する。また図 8 B、図 8Eに示すようにゲートとドレインとが接続されて 2端子構造とした PMOSおよび NMOSは、 pチャネル形のダイオード(P-D)、および nチャネル形のダイオード(N- D)としてそれぞれ機能する。更に図 8C、図 8Fに示すようにゲートとソースとが接続さ れて 2端子構造とした PMOSおよび NMOSは、 pチャネル形の抵抗(P-R)、および nチャネル形の抵抗 (N-R)としてそれぞれ機能する。  Incidentally, the MOS transistor has a function of a switch diode resistance as shown in FIGS. 8A, 8B, 8C, 8D, 8E and 8F, respectively. That is, as shown in FIGS. 8A and 8D, the PMOS and NMOS having a three-terminal structure having a gate as an input terminal functions as a switch for turning on and off between the source and the drain in accordance with the potential of the input terminal. As shown in Fig. 8B and Fig. 8E, PMOS and NMOS with two-terminal structure with gate and drain connected are p-channel diode (PD) and n-channel diode (ND). Each functions. Furthermore, as shown in Fig. 8C and Fig. 8F, the PMOS and NMOS with a two-terminal structure in which the gate and source are connected function as a p-channel resistor (PR) and an n-channel resistor (NR), respectively. To do.
[0075] そして図 8A、図 8Dに示すようにゲートを入力端子とする 3端子構造の PMOSおよ び NMOSの抵抗値や動作閾値電圧等は、これら MOSトランジスタのチャネル幅等 によって規定される。したがってインターフェース回路における第 1および第 2のイン バータ回路 10,20自体力 正帰還がないときの入出力特性が図 2または図 5にそれ ぞれ示すような特性を持つようにするならば、その要求に合わせて MOSトランジスタ を選定し、上述したように少なくとも 1つの MOSトランジスタがオン Zオフ動作するよう にし、他の少なくとも 1つの MOSトランジスタが出力信号の電位をシフトするレベルシ フト機能を持つようにすれば良 、。  [0075] Then, as shown in FIGS. 8A and 8D, the resistance values and operating threshold voltages of the three-terminal PMOS and NMOS with the gate as the input terminal are defined by the channel width of these MOS transistors. Therefore, if the input / output characteristics without the positive feedback of the first and second inverter circuits 10 and 20 in the interface circuit have characteristics as shown in Fig. 2 or 5, respectively, Select a MOS transistor according to the requirements, so that at least one MOS transistor is turned on and off as described above, and at least one other MOS transistor has a level shift function that shifts the potential of the output signal. I should do it.
[0076] し力しながら図 8にそれぞれ示す MOSトランジスタの組合せによっては、インバータ 回路として機能しなくなることも事実である。 However, depending on the combination of MOS transistors shown in FIG. It is also true that it does not function as a circuit.
[0077] そこで本発明者は、図 9に示すように第 2のインバータ回路 20における電源ノード 側の 1段目の MOSトランジスタが PMOSトランジスタ 21であり、第 1のインバータ回 路 10から出力される出力信号の電位に従ってオン Zオフ動作する主 MOSトランジ スタ(第 1のトランジスタ)として機能するものとした場合、 2段目および 3段目の MOSト ランジスタとしてどのような機能をもつ MOSトランジスタが採用可能であるかを検証し た。但し、この検証は、第 1のインバータ回路 10を構成するトランジスタおよび第 2の インバータ回路 20の 1段目力も 3段目の MOSトランジスタの大きさが全て等しぐ且 つフローティング状態にある外部入力端子 1が Hレベルの電位にあるとした。  Therefore, the present inventor, as shown in FIG. 9, the first-stage MOS transistor on the power supply node side in the second inverter circuit 20 is the PMOS transistor 21, and is output from the first inverter circuit 10. When functioning as a main MOS transistor (first transistor) that operates on and off according to the potential of the output signal, the MOS transistor with what function is used as the second and third stage MOS transistors. It was verified whether it was possible. However, this verification is based on an external input in which the transistors of the first inverter circuit 10 and the second inverter circuit 20 are equal in size to the third stage MOS transistors and in the floating state. It is assumed that terminal 1 is at the H level potential.
[0078] 図 10はこの検証結果をまとめたものである。この図において「〇」は前述した第 2の インバータ回路 20として有効に機能することを示して 、る。また「 X」は第 2のインバ ータ回路 20として機能しな 、ことを示して 、る。更に「△」は 1段目から 3段目の MOS トランジスタの大きさが全て等し 、ときは第 2のインバータ回路 20として機能しな 、も のの、 1段目から 3段目の MOSトランジスタの大きさを調整することによって第 2のィ ンバータ回路 20として機能することを示して 、る。  FIG. 10 summarizes the verification results. In this figure, “◯” indicates that it functions effectively as the second inverter circuit 20 described above. “X” indicates that it does not function as the second inverter circuit 20. Furthermore, “△” indicates that the sizes of the first to third MOS transistors are all equal, and sometimes does not function as the second inverter circuit 20, but the first to third MOS transistors It is shown that it functions as the second inverter circuit 20 by adjusting the size of.
[0079] 即ち、この図 10に示す検証結果は、 1段目の MOSトランジスタがオン Zオフ動作 する PMOSトランジスタで構成される場合、 2段目および 3段目の MOSトランジスタ の少なくとも一方が P抵抗または N抵抗または 3端子の NMOSトランジスタであり、か つ 2段目および 3段目の MOSトランジスタの少なくとも一方が 3端子の NMOSトラン ジスタ以外を選択すれば、第 2のインバータ 20として設計できることを示して 、る。  That is, the verification result shown in FIG. 10 shows that when the first-stage MOS transistor is composed of PMOS transistors that are turned on and off, at least one of the second-stage and third-stage MOS transistors has a P resistance. Or N resistor or 3-terminal NMOS transistor, and if at least one of the second-stage and third-stage MOS transistors is selected other than the 3-terminal NMOS transistor, it can be designed as the second inverter 20. And
[0080] また発明者は、図 11に示したように第 1のインバータ回路 10自体に出力信号の電 位をシフトする PMOSトランジスタ 13を有する場合における第 2のインバータ回路 20 の構成についても同様に検証した。その結果、図 12に示す検証結果が得られた。伹 し、この検証は、第 1のインバータ回路 10を構成するトランジスタおよび第 2のインバ ータ回路 20の 1段目力も 3段目の MOSトランジスタの特¾が全て等しぐ且つフロー ティング状態にある外部入力端子 1を Hレベルの電位とした。  Further, the inventor similarly applies the configuration of the second inverter circuit 20 in the case where the first inverter circuit 10 itself has a PMOS transistor 13 for shifting the potential of the output signal as shown in FIG. Verified. As a result, the verification results shown in FIG. 12 were obtained. However, this verification shows that the characteristics of the transistors constituting the first inverter circuit 10 and the second inverter circuit 20 are equal to each other in the characteristics of the third stage MOS transistors and are in a floating state. An external input terminal 1 is set to H level potential.
[0081] これらの検証により、次の結果が得られた。  [0081] These verifications yielded the following results.
[0082] (a)電源ノード (高電圧端子)と外部入力端子 1との間に接続されて前記第 1のイン バータ回路 10の出力信号の電位が Hレベルの電位のときにオフとなり、 Lレベルの 電位のときにオンとなる第 1のトランジスタ 21と接地ノード (低電圧端子)と外部入力端 子 1との間に直列に挿入された第 2および第 3のトランジスタ 22,23であって、(A) Connected between the power supply node (high voltage terminal) and the external input terminal 1 to connect the first input The first transistor 21, which is turned off when the potential of the output signal of the barter circuit 10 is the H level potential, and turned on when the potential is the L level, the ground node (low voltage terminal), and the external input terminal 1 Second and third transistors 22,23 inserted in series between,
(b)少なくともた第 2および第 3のトランジスタ 22,23の一方は前記第 1のインバータ回 路 10の出力信号の電位力 レベルの電位のときにオフし、且つ少なくともその一方 は前記第 1のインバータ回路 10の出力信号の電位が Hレベルの電位のときにオフす るようにその動作条件を設定した第 2および第 3のトランジスタ 22, 23とで第 2のインバ ータ回路 20を構築することで、 (b) At least one of the second and third transistors 22 and 23 is turned off when the potential of the output signal of the first inverter circuit 10 is at the potential level, and at least one of the first and second transistors 22 and 23 is turned off. The second inverter circuit 20 is constructed with the second and third transistors 22 and 23 whose operating conditions are set so that the output signal of the inverter circuit 10 is turned off when the potential of the output signal is at the H level. With that
(c)前記外部入力端子 1に加えられた入力信号の電位が Hレベルの電位のときには 入力信号の電位以上の電位を出力し、前記入力信号の電位が Hレベルの電位以外 のときには入力信号の電位よりも高い電位の出力信号を出力する。  (c) When the potential of the input signal applied to the external input terminal 1 is an H level potential, a potential equal to or higher than the potential of the input signal is output, and when the input signal potential is other than the H level potential, An output signal having a potential higher than the potential is output.
[0083] 尚、図 10および図 12に示す検証結果は、前述したようにフローティング状態にある 外部入力端子 1を Hレベルの電位に引き上げるベぐ図 9および図 11に示されるイン ターフェース回路を構成する場合の例である。  Note that the verification results shown in FIG. 10 and FIG. 12 show that the interface circuit shown in FIG. 9 and FIG. 11 pulls the external input terminal 1 in the floating state to the H level potential as described above. This is an example of a configuration.
[0084] したがって外部入力端子 1を Lレベルの電位に維持するインターフェース回路の 2 段目および 3段目の MOSトランジスタの選定基準選定基準は次のようになる。  Accordingly, the selection criteria for selecting the second and third MOS transistors in the interface circuit that maintains the external input terminal 1 at the L level potential are as follows.
[0085] (a) 接地ノードと電源ノードの極性は、逆にする。  [0085] (a) The polarities of the ground node and the power supply node are reversed.
[0086] (b) 第 2のインバータ回路 20における接地ノード側は、 1段目の MOSトランジスタ とする。  (B) The ground node side in the second inverter circuit 20 is a first-stage MOS transistor.
[0087] (c) 全ての MOSトランジスタチャネルは、極性を逆にする。  (C) All MOS transistor channels are reversed in polarity.
実施例 8  Example 8
[0088] ところで本発明のインターフェース回路においては、外部入力端子 1に Hレベルの 電位の信号が入力されているとき、または外部入力端子 1がフローティングの状態で その外部入力端子 1が Hレベルの電位で安定しているとき、電流駆動能力が低い回 路では外部入力端子 1の電位を Hレベルの電位力 Lレベルの電位に遷移できない ことがある。これは、第 2のインバータ回路 20がオン抵抗の低い PMOSトランジスタ 2 1を用いているためである。つまり外部入力端子 1が Hレベルの電位にあるとき、第 2 のインバータ回路 20を構成する PMOSトランジスタ 21がオンしている。このとき、 PM OSトランジスタ 21は、 PMOSトランジスタ 21自身の低いオン抵抗を介して外部入力 端子 1に PMOSトランジスタ 21を駆動する電源電圧 Vccを与えている。したがって、 外部入力端子 1に接続する素子には、ノード C力 外部入力端子 1に流れ込む電流 に打ち勝って Hレベルの電位力 Lレベルの電位に遷移させる電流駆動能力を備え る必要がある。 By the way, in the interface circuit of the present invention, when an H level potential signal is input to the external input terminal 1 or when the external input terminal 1 is in a floating state, the external input terminal 1 is at the H level potential. When the current drive capability is low, the external input terminal 1 potential may not transition to the H level potential force L level potential in a circuit with low current drive capability. This is because the second inverter circuit 20 uses the PMOS transistor 21 having a low on-resistance. That is, when the external input terminal 1 is at the H level potential, the PMOS transistor 21 constituting the second inverter circuit 20 is turned on. At this time, PM The OS transistor 21 supplies a power supply voltage Vcc for driving the PMOS transistor 21 to the external input terminal 1 through the low ON resistance of the PMOS transistor 21 itself. Therefore, the element connected to the external input terminal 1 needs to have a current driving ability to overcome the current flowing into the node C force external input terminal 1 and transition to the H level potential force L level potential.
[0089] そこで本発明のインターフェース回路は、図 15に示すように、ノード Cとノード Aとの 間の帰還路に直列に電流制限素子 Rを挿入するとよい。ちなみに図 15は実施例 8を 示すインターフェース回路の構成図であり、図 1に示すインターフェース回路と同一 部分には同一符号を付して示してある。  Therefore, in the interface circuit of the present invention, it is preferable to insert a current limiting element R in series in the feedback path between the node C and the node A as shown in FIG. Incidentally, FIG. 15 is a block diagram of the interface circuit showing the embodiment 8. The same parts as those of the interface circuit shown in FIG.
[0090] さて、この電流制限素子 Rは、外部入力端子 1の電位を Hレベルの電位から Lレべ ルの電位に遷移させるとき、ノード C力も外部入力端子 1に流れ込む電流を制限する 。具体的には、電流制限素子 Rは、抵抗器であってもよいし、図 8Cに示す pチャネル 形の抵抗(P-R)、および、図 8Fに示す nチャネル形の抵抗(N-R)であってもかまわ ない。  The current limiting element R limits the current that also flows into the external input terminal 1 at the node C force when the potential of the external input terminal 1 is transitioned from the H level potential to the L level potential. Specifically, the current limiting element R may be a resistor, a p-channel resistor (PR) shown in FIG. 8C, and an n-channel resistor (NR) shown in FIG. 8F. It doesn't matter.
[0091] このような電流制限素子 Rが帰還路に直列に挿入されたインターフェース回路によ れば、外部入力端子 1を駆動する素子がこの外部入力端子 1の電位を Hレベルの電 位カゝら Lレベルの電位に遷移させるとき、電流制限素子 Rは電源から流れ込む電流 を制限するだけでなぐ一般的なプルアップ抵抗として作用する。このため本発明の インターフェース回路は、低い電流駆動能力しか有しない素子が外部入力端子 1を 駆動したとしても、外部入力端子 1の電位を Hレベルの電位から Lレベルの電位に確 実に遷移できる。  [0091] According to such an interface circuit in which the current limiting element R is inserted in series in the feedback path, the element that drives the external input terminal 1 changes the potential of the external input terminal 1 to the H level potential switch. In addition, when transitioning to an L level potential, the current limiting element R acts as a general pull-up resistor that not only limits the current flowing from the power supply. Therefore, the interface circuit of the present invention can reliably transition the potential of the external input terminal 1 from the H level potential to the L level potential even when an element having only a low current driving capability drives the external input terminal 1.
[0092] ちなみに本発明のインターフェース回路は、電流制限素子 Rが帰還路に直列に挿 入されたとしても、上述した他の実施例と同様に外部信号が不要で、外部入力端子 1 の電位を自動的に Hレベルの電位または Lレベルの電位に設定することができ、且 つ、漏れ電流を防止する効果は維持される。  Incidentally, even if the current limiting element R is inserted in series in the feedback path, the interface circuit of the present invention does not require an external signal as in the other embodiments described above, and the potential of the external input terminal 1 is set. It can be automatically set to H level potential or L level potential, and the effect of preventing leakage current is maintained.
[0093] 特にマルチドロップバスに適用されるバスホールド回路に本発明のインターフエ一 ス回路を適用すれば、漏れ電流の問題も解消され、更には外部入力端子の論理レ ベルを変化させる場合であっても消費電流は少なくてすむ。また、本発明のインター フェース回路は、外部入力端子 1の電位が自動的に Hレベルの電位または Lレベル の電位に設定されるので、立ち上がり時に外部入力端子 1が不定になるという問題も 解消できる。更に本発明のインターフェース回路は、プルアップ抵抗やプルダウン抵 抗が不要であり、半導体素子のチップ面積を小さくすることができる。 [0093] In particular, if the interface circuit of the present invention is applied to a bus hold circuit applied to a multi-drop bus, the problem of leakage current can be solved, and furthermore, the logic level of the external input terminal can be changed. Even if it is, less current consumption is required. In addition, the interface of the present invention In the face circuit, the potential of the external input terminal 1 is automatically set to the H level potential or the L level potential, so that the problem that the external input terminal 1 becomes unstable at the rise can be solved. Further, the interface circuit of the present invention does not require a pull-up resistor or a pull-down resistor, and can reduce the chip area of the semiconductor element.
[0094] ちなみに一般的なバスホールド回路には、差動電圧より高い電位の信号がバスホ 一ルド回路の外部入力端子に与えられたとき、この外部入力端子から流れ込む電流 を阻止する過電圧保護回路が組み込まれている。勿論、本発明のインターフェース 回路は、特許文献 3等に示されるバスホールド回路のように過電圧入力対策を施して ちょい。 [0094] Incidentally, a general bus hold circuit has an overvoltage protection circuit that blocks current flowing from the external input terminal when a signal having a potential higher than the differential voltage is applied to the external input terminal of the bus hold circuit. It has been incorporated. Of course, the interface circuit of the present invention should be provided with overvoltage input countermeasures like the bus hold circuit described in Patent Document 3 and the like.
[0095] また、実施例 8の図 15における電流制限素子 Rは、外部入力端子 1からノードじに 流れる電流を制限する効果を備える。本発明のインターフェース回路は、この電流制 限素子 Rに異方性抵抗素子を用いて外部入力端子 1からノード Cへ流れる電流を効 果的に防止することも可能である等、極めて効果的である。  Further, the current limiting element R in FIG. 15 of the eighth embodiment has an effect of limiting the current flowing from the external input terminal 1 to the node. The interface circuit of the present invention is extremely effective, for example, an anisotropic resistance element can be used as the current limiting element R to effectively prevent a current flowing from the external input terminal 1 to the node C. is there.
[0096] ちなみに上述した実施例 1乃至 8において、本発明のインターフェース回路は、トラ ンジスタとして MOSトランジスタのみを用いた構成例を示した。回路中のトランジスタ として MOSトランジスタのみを用いた集積回路 (LSI)に本発明のインターフェース回 路を組み込んで製造する場合、本発明のインターフェース回路における全てのトラン ジスタも同様に MOSトランジスタのみで構成されていれば、基板上にトランジスタを 形成するための製造工程を複雑ィ匕せずに済むという利点を得られる。しかしながら本 発明のインターフェース回路中の MOSトランジスタの代わりに MES型トランジスタを 用いることを否定するものではない。その他、 LSIに用いられる種類のトランジスタで あれば、本発明の実施例に適用可能である。  Incidentally, in the first to eighth embodiments described above, the interface circuit of the present invention has shown the configuration example using only the MOS transistor as the transistor. When manufacturing the integrated circuit (LSI) using only MOS transistors as transistors in the circuit by incorporating the interface circuit of the present invention, all the transistors in the interface circuit of the present invention are also composed of only MOS transistors. Then, there is an advantage that the manufacturing process for forming the transistor on the substrate is not complicated. However, the use of MES transistors instead of MOS transistors in the interface circuit of the present invention is not denied. In addition, any type of transistor used in an LSI can be applied to the embodiments of the present invention.
[0097] 以上説明したように本発明に係るインターフェース回路は、外部入力端子 1がフロ 一ティング状態であるとき、外部入力端子 1の電位を Hレベルの電位または Lレベル の電位に設定することができる。し力も本発明に係るインターフェース回路は、従来 のようにプルアップ抵抗 Rpuやプルダウン抵抗 Rpdが不要である。また本発明に係る インターフェース回路は、図 14に示す回路のように外部入力端子 1がフローティング 状態であるか否かを判断して制御信号を与えることなしに、外部入力端子 1の電位を Hレベルの電位または Lレベルの電位に設定する(Hレベルにする力 Lレベルにする かは予め選択しておく)ことができる。 As described above, the interface circuit according to the present invention can set the potential of the external input terminal 1 to the H level potential or the L level potential when the external input terminal 1 is in the floating state. it can. However, the interface circuit according to the present invention does not require the pull-up resistor Rpu and the pull-down resistor Rpd as in the prior art. Further, the interface circuit according to the present invention determines the potential of the external input terminal 1 without determining whether or not the external input terminal 1 is in a floating state and giving a control signal as in the circuit shown in FIG. It can be set to the H level potential or L level potential (the power to make the H level L level to be selected beforehand).
[0098] また本発明に係るインターフェース回路は、外部入力端子 1の電位を Hレベルの電 位または Lレベルの電位に定めたとき、高抵抗ィ匕した MOSトランジスタによって漏れ 電流を効果的に阻止することができる。したがって本発明に係るインターフェース回 路は、プルアップ抵抗 Rpuやプルダウン抵抗 Rpdを用いて外部入力端子 1の電位を 定める場合に対して各種電子機器や半導体集積回路等における外部入力端子用 のインターフェース回路としての実用的利点が多大である。し力も本発明に係るイン ターフェース回路は、回路構成自体が簡単なので、 CPUやメモリ等の半導体集積回 路に容易に適用できる。また、本発明のインターフェース回路を独立したパッケージ に形成し、これを既存のディジタル回路の外部入力端子 Z制御端子に接続すること で、その外部入力端子 Z制御端子の論理レベルを Hレベル及び Lレベルの!/、ずれ 力 こ設定することができる。  Further, the interface circuit according to the present invention effectively prevents leakage current by a MOS transistor having high resistance when the potential of the external input terminal 1 is set to H level potential or L level potential. be able to. Therefore, the interface circuit according to the present invention is an interface circuit for an external input terminal in various electronic devices, semiconductor integrated circuits, etc., when the potential of the external input terminal 1 is determined using the pull-up resistor Rpu or the pull-down resistor Rpd. The practical advantages of are enormous. However, since the interface circuit according to the present invention has a simple circuit configuration, it can be easily applied to a semiconductor integrated circuit such as a CPU or a memory. Also, by forming the interface circuit of the present invention in an independent package and connecting it to the external input terminal Z control terminal of the existing digital circuit, the logic level of the external input terminal Z control terminal is set to the H level and the L level. ! /, Deviation force This can be set.
[0099] 尚、本発明は上述の実施形態に限定されるものではない。各実施形態において、 第 2のインバータ回路 20は、 3つの MOSトランジスタを用いて実現するとした。しかし 、本発明は、 2つまたは 4つ以上の MOSトランジスタで実現してもよい。また本発明は 、例えばゲートとソースを接続して 2端子構造とした MOSトランジスタの 2段目および 3段目を十分抵抗値の高いゲートとソースを接続した 2端子構造の 1つの MOSトラン ジスタに置きかえてもよい。或いは本発明のインターフェース回路は、 1段目の MOS トランジスタを並列接続した複数の MOSトランジスタで構成することでスイッチング動 作速度を速める等の工夫を施しても良い。その他、本発明は、インバータ回路を実現 する種々の回路構成を適宜採用しながら、前述した動作特性を実現するように回路 を設計者等が設計すれば十分である。その他、本発明はその要旨を逸脱しない範囲 で種々変形して実施することができる。  Note that the present invention is not limited to the above-described embodiment. In each embodiment, the second inverter circuit 20 is realized using three MOS transistors. However, the present invention may be realized with two or four or more MOS transistors. In addition, the present invention provides a MOS transistor having a two-terminal structure in which a gate and a source having a sufficiently high resistance value are connected to the second and third stages of a MOS transistor having a two-terminal structure by connecting a gate and a source, for example. You may replace it. Alternatively, the interface circuit of the present invention may be devised to increase the switching operation speed by configuring it with a plurality of MOS transistors in which the first-stage MOS transistors are connected in parallel. In addition, in the present invention, it is sufficient that a designer or the like designs a circuit so as to realize the above-described operation characteristics while appropriately adopting various circuit configurations for realizing the inverter circuit. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.

Claims

請求の範囲 The scope of the claims
[1] 一対の電源端子をなす高電圧端子および低電圧端子と外部入力端子とを備え、上 記外部入力端子の論理レベルを Hレベルの電位または Lレベルの電位に安定させる インターフェース回路であって、  [1] An interface circuit having a high voltage terminal and a low voltage terminal forming a pair of power supply terminals and an external input terminal, and stabilizing the logic level of the external input terminal to an H level potential or an L level potential. ,
トランジスタを用いて構成され、前記外部入力端子に与えられる入力信号の論理レ ベルを反転して出力する第 1のインバータ回路と、  A first inverter circuit configured using a transistor and inverting and outputting a logic level of an input signal applied to the external input terminal;
トランジスタを用いて構成され、上記第 1のインバータ回路における出力信号の論 理レベルを反転した電位であって、前記外部入力端子を介して前記第 1のインバー タ回路に加えられた入力信号の電位よりも高い電位または低い電位の出力信号を生 成する第 2のインバータ回路と、  The potential of the input signal, which is configured by using a transistor and is obtained by inverting the logical level of the output signal in the first inverter circuit and applied to the first inverter circuit via the external input terminal. A second inverter circuit that generates an output signal of higher or lower potential,
この第 2のインバータ回路の出力信号を前記外部入力端子に正帰還する帰還路と を具備したことを特徴とするインターフェース回路。  An interface circuit comprising: a feedback path that positively feeds back an output signal of the second inverter circuit to the external input terminal.
[2] 前記第 2のインバータ回路は、 [2] The second inverter circuit includes:
前記高電圧端子と前記外部入力端子との間に接続されて前記第 1のインバータ回 路の出力が Hレベルのときにオフとなり、 Lレベルのときにオンとなる第 1のトランジス タと、  A first transistor connected between the high voltage terminal and the external input terminal and turned off when the output of the first inverter circuit is at H level, and turned on when at the L level;
前記低電圧端子と前記外部入力端子との間に直列に介挿された第 2および第 3の トランジスタであって、少なくともその一方は前記第 1のインバータ回路の出力が Lレ ベルのときにオフし、且つ少なくともその一方は前記第 1のインバータ回路の出力が Hレベルのときにオフして、前記外部入力端子に加えられた入力信号の電位が Hレ ベルの電位のときには該入力信号の電位以上の電位を出力し、前記入力信号の電 位が Hレベルの電位以外のときには該入力信号の電位よりも高い電位を出力する第 2および第 3のトランジスタと  Second and third transistors inserted in series between the low voltage terminal and the external input terminal, at least one of which is OFF when the output of the first inverter circuit is at L level. And at least one of them is turned off when the output of the first inverter circuit is at the H level, and when the potential of the input signal applied to the external input terminal is at the H level, the potential of the input signal Second and third transistors that output the above potential and output a potential higher than the potential of the input signal when the potential of the input signal is other than an H level potential;
を力 なる請求項 1に記載のインターフェース回路。  The interface circuit according to claim 1, wherein
[3] 請求項 2に記載のインターフェース回路において、 [3] In the interface circuit according to claim 2,
更に前記第 1のインバータ回路は、前記外部入力端子を介して加えられた Lレベル の入力信号に対してその出力信号の電位を、前記 Hレベルよりも前記第 2のインバー タ回路における第 1のトランジスタがオンしない程度に低くする電圧シフト手段を備え ることを特徴とするインターフェース回路。 Further, the first inverter circuit sets the potential of the output signal to the L level input signal applied via the external input terminal, so that the first inverter circuit in the second inverter circuit has a potential higher than the H level. It has voltage shift means to make it low enough not to turn on the transistor An interface circuit characterized by that.
[4] 前記第 2のインバータ回路は、  [4] The second inverter circuit includes:
前記低電圧端子と前記外部入力端子との間に接続されて前記第 1のインバータ回 路の出力力 レベルのときにオフとなり、 Hレベルのときにオンとなる第 1のトランジス タと、  A first transistor connected between the low-voltage terminal and the external input terminal and turned off when the output power level of the first inverter circuit is on, and turned on when the output level is H level;
前記高電圧端子と前記外部入力端子との間に直列に介挿された第 2および第 3の トランジスタであって、少なくともその一方は前記第 1のインバータ回路の出力が Lレ ベルのときにオフし、且つ少なくともその一方は前記第 1のインバータ回路の出力が Hレベルのときにオフして、前記外部入力端子に加えられた入力信号の電位カ^レ ベルの電位のときには該入力信号の電位のレベル以下の電位の出力信号を出力し 、前記入力信号の電位力 レベルの電位以外のときには該入力信号の電位よりも低 い電位の出力信号を出力する第 2および第 3のトランジスタと  Second and third transistors inserted in series between the high voltage terminal and the external input terminal, at least one of which is off when the output of the first inverter circuit is at L level. And at least one of them is turned off when the output of the first inverter circuit is at H level, and at the potential level of the input signal applied to the external input terminal, the potential of the input signal Second and third transistors that output an output signal having a potential lower than that of the input signal and output an output signal having a potential lower than the potential of the input signal when the potential is not at the potential level of the input signal.
力もなる請求項 1に記載のインターフェース回路。  The interface circuit according to claim 1, wherein the interface circuit is also powerful.
[5] 請求項 4に記載のインターフェース回路において、 [5] The interface circuit according to claim 4,
更に前記第 1のインバータ回路は、前記外部入力端子を介して加えられた Hレべ ルの入力信号に対してその出力信号の電位を、前記 Lレベルよりも前記第 2のインバ ータ回路における第 1のトランジスタがオンしない程度に高くする電圧シフト手段を備 えることを特徴とするインターフェース回路。  Furthermore, the first inverter circuit sets the potential of the output signal to the H-level input signal applied via the external input terminal in the second inverter circuit rather than the L level. An interface circuit comprising voltage shift means for increasing the first transistor so that it does not turn on.
[6] 請求項 1一 5のいずれかに記載のインターフェース回路において、 [6] The interface circuit according to any one of claims 1 to 5,
更に前記高電圧端子から前記外部入力端子に向けて、或いは前記外部入力端子 力 前記低電圧端子に向けて一定電流を供給する電流供給手段を備えたことを特 徴とするインターフェース回路。  The interface circuit further comprises current supply means for supplying a constant current from the high voltage terminal to the external input terminal or to the external input terminal force to the low voltage terminal.
[7] 請求項 1一 6のいずれかに記載のインターフェース回路であって、 [7] The interface circuit according to any one of claims 1 to 6,
更に前記帰還路に直列に介挿されて該帰還路に流れる電流を制限する電流制限 素子を備えたことを特徴とするインターフェース回路。  An interface circuit comprising a current limiting element that is inserted in series in the feedback path and limits a current flowing through the feedback path.
[8] 電源に接続可能なインターフェース回路であって、 [8] An interface circuit connectable to a power source,
外部入力端子と、  An external input terminal,
この外部入力端子の電位が入力される第一のインバータと、 第一のインバータの出力の電位が入力される第二のインバータと、 A first inverter to which the potential of the external input terminal is input; A second inverter to which the potential of the output of the first inverter is input;
第二のインバータの出力の電位を第一のインバータの入力へと帰還する帰還路と を有し、  A feedback path for feeding back the output potential of the second inverter to the input of the first inverter;
この帰還路が無 、状態を仮定したとき、外部入力端子の電位が高電位電力線の電 位よりも実質的に低い範囲において、常に第二のインバータの出力の電位が外部入 力端子の電位よりも実質的に高い状態をとるインターフェース回路。  Assuming that this feedback path is not present, the output potential of the second inverter is always higher than the potential of the external input terminal in a range where the potential of the external input terminal is substantially lower than the potential of the high potential power line. Interface circuit that takes a substantially high state.
電源に接続可能なインターフェース回路であって、  An interface circuit connectable to a power supply,
外部入力端子と、  An external input terminal,
この外部入力端子の電位が入力される第一のインバータと、  A first inverter to which the potential of the external input terminal is input;
第一のインバータの出力の電位が入力される第二のインバータと、  A second inverter to which the potential of the output of the first inverter is input;
第二のインバータの出力の電位を第一のインバータの入力へと帰還する帰還路と を有し、  A feedback path for feeding back the output potential of the second inverter to the input of the first inverter;
この帰還路が無 、状態を仮定したとき、外部入力端子の電位が低電位電力線の電 位よりも実質的に高い範囲において、常に第二のインバータの出力の電位が外部入 力端子の電位よりも実質的に低い状態をとるインターフェース回路。  Assuming that this feedback path is not present, the output potential of the second inverter is always higher than the potential of the external input terminal in the range where the potential of the external input terminal is substantially higher than the potential of the low potential power line. Interface circuit that takes a substantially low state.
PCT/JP2004/019396 2003-06-30 2004-12-24 Interface circuit WO2006067859A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/019396 WO2006067859A1 (en) 2004-12-24 2004-12-24 Interface circuit
US11/792,993 US7750705B2 (en) 2003-06-30 2004-12-24 Interface circuit
US12/794,434 US7986162B2 (en) 2003-06-30 2010-06-04 Interface circuit
US12/797,123 US8018264B2 (en) 2003-06-30 2010-06-09 Interface circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/019396 WO2006067859A1 (en) 2004-12-24 2004-12-24 Interface circuit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US79299304A A-371-Of-International 2004-03-04 2004-03-04
US12/794,434 Continuation US7986162B2 (en) 2003-06-30 2010-06-04 Interface circuit

Publications (1)

Publication Number Publication Date
WO2006067859A1 true WO2006067859A1 (en) 2006-06-29

Family

ID=36601472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019396 WO2006067859A1 (en) 2003-06-30 2004-12-24 Interface circuit

Country Status (1)

Country Link
WO (1) WO2006067859A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389598A (en) * 2022-03-23 2022-04-22 武汉市聚芯微电子有限责任公司 Conversion device, interface circuit and chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592409A (en) * 1982-06-28 1984-01-09 Fujitsu Ltd Input circuit with feedback type latch
JPH05259880A (en) * 1992-03-10 1993-10-08 Nec Ic Microcomput Syst Ltd Input output buffer circuit
JPH09161486A (en) * 1995-12-13 1997-06-20 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPH11317656A (en) * 1998-05-06 1999-11-16 Oki Electric Ind Co Ltd Input circuit
JP2001042980A (en) * 1999-06-01 2001-02-16 Fairchild Semiconductor Corp Bus hold circuit with overvoltage resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592409A (en) * 1982-06-28 1984-01-09 Fujitsu Ltd Input circuit with feedback type latch
JPH05259880A (en) * 1992-03-10 1993-10-08 Nec Ic Microcomput Syst Ltd Input output buffer circuit
JPH09161486A (en) * 1995-12-13 1997-06-20 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPH11317656A (en) * 1998-05-06 1999-11-16 Oki Electric Ind Co Ltd Input circuit
JP2001042980A (en) * 1999-06-01 2001-02-16 Fairchild Semiconductor Corp Bus hold circuit with overvoltage resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389598A (en) * 2022-03-23 2022-04-22 武汉市聚芯微电子有限责任公司 Conversion device, interface circuit and chip

Similar Documents

Publication Publication Date Title
US7986162B2 (en) Interface circuit
KR100744861B1 (en) Fast high voltage level shifter with gate oxide protection
US6593795B2 (en) Level adjustment circuit and data output circuit thereof
US7605636B2 (en) Power gating structure, semiconductor including the same and method of controlling a power gating
US7486127B2 (en) Transistor switch with integral body connection to prevent latchup
US20080054982A1 (en) Low power level shifter and method thereof
EP1717955B1 (en) Buffer circuit
US6259299B1 (en) CMOS level shift circuit for integrated circuits
US7355447B2 (en) Level shifter circuit
JP4568096B2 (en) I / O circuit
US6169432B1 (en) High voltage switch for providing voltages higher than 2.5 volts with transistors made using a 2.5 volt process
JP4137118B2 (en) Semiconductor device
KR100759775B1 (en) Input/output buffer circuit
US20070236253A1 (en) Semiconductor integrated circuit
WO2006067859A1 (en) Interface circuit
US6630845B2 (en) Semiconductor integrated circuit and communication device for logic input-state control during and following power-up
KR100971990B1 (en) Logic circuit and semiconductor device
TW201830863A (en) Power-on control circuit and input/output control circuit
TW201611519A (en) Integrated circuit
JPH11317652A (en) Output circuit
JP4680423B2 (en) Output circuit
US7515392B2 (en) High voltage circuits implemented using low voltage transistors
KR100239717B1 (en) Data output buffer
JP3535811B2 (en) Pulse width control circuit
CN113572465A (en) Power supply switching device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11792993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04807752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP