TW201830863A - Power-on control circuit and input/output control circuit - Google Patents

Power-on control circuit and input/output control circuit Download PDF

Info

Publication number
TW201830863A
TW201830863A TW106104366A TW106104366A TW201830863A TW 201830863 A TW201830863 A TW 201830863A TW 106104366 A TW106104366 A TW 106104366A TW 106104366 A TW106104366 A TW 106104366A TW 201830863 A TW201830863 A TW 201830863A
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
coupled
control signal
control
Prior art date
Application number
TW106104366A
Other languages
Chinese (zh)
Other versions
TWI641219B (en
Inventor
黃紹璋
莊榮圳
莊介堯
陳宏維
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106104366A priority Critical patent/TWI641219B/en
Publication of TW201830863A publication Critical patent/TW201830863A/en
Application granted granted Critical
Publication of TWI641219B publication Critical patent/TWI641219B/en

Links

Abstract

A power-on control circuit for generating a first control signal to control an output-stage circuit. The power-on control circuit comprises first and second power terminal, an inverter chain circuit, a switch circuit, and a capacitor. The switch circuit has a control terminal receiving the first control signal, an input terminal coupled to the second power terminal, and an output terminal coupled to a first node. The inverter chain circuit is coupled to the first power terminal and has an input terminal coupled to the first node. The inverter chain circuit is coupled for generating the first control signal. The capacitor is coupled between the first node and a ground terminal. When the first power terminal receives a first voltage and the second power terminal does not receive a second voltage, the switch circuit is turned on according to the first control signal. When the first power terminal receives the first voltage and the second power terminal receives the second voltage, the switch circuit is turned off according to the first control signal.

Description

電源啟動控制電路以及輸入/出控制電路  Power start control circuit and input/output control circuit  

本發明係有關於一種電源啟動控制電路,特別是有關於一種具有較低漏電流的電源啟動控制電路。 The present invention relates to a power start control circuit, and more particularly to a power start control circuit having a lower leakage current.

在一些積體電路中,其輸出端電路可能同時由兩個不同的電壓來供電。舉例來說,耦接一輸入/出墊的輸出級電路由電壓3.3V來供電,而用來控制輸出級初端電路的控制電路由電壓1.8V來供電。當電壓3.3V已被提供而電壓1.8V尚未被提供時,由於控制電路不動作而使得輸出級電路的輸入端處於浮接狀態,這導致在輸出級電路中具有一漏電流。為了解決輸出級電路的漏電流,則利用電源啟動電路來截斷此漏電流的路徑。然而,一般的電源啟動電路在電壓3.3V與1.8V皆已被提供的情況下,也會有漏電流的產生,造成不必要的功率消耗。 In some integrated circuits, the output circuit may be powered by two different voltages simultaneously. For example, an output stage circuit coupled to an input/output pad is powered by a voltage of 3.3V, and a control circuit for controlling the initial stage circuit of the output stage is powered by a voltage of 1.8V. When a voltage of 3.3V has been supplied and a voltage of 1.8V has not been supplied, the input of the output stage circuit is in a floating state due to the inoperative operation of the control circuit, which results in a leakage current in the output stage circuit. In order to solve the leakage current of the output stage circuit, the power start circuit is used to cut off the path of the leakage current. However, in the case where a general power supply starting circuit has been supplied with voltages of 3.3V and 1.8V, leakage current is also generated, resulting in unnecessary power consumption.

本發明提供一種電源啟動控制電路,用以產生第一控制信號來控制輸出級電路。電源啟動控制電路包括第一電源端、第二電源端、開關電路、反向器鏈電路、以及電容器。第一電源端用以接收第一電壓。第二電源端用以接收第二電壓。開關電路具有接收第一控制信號的控制端、耦接第二電源端的輸入端、以及耦接第一節點的輸出端。反向器鏈電路耦接 第一電源端,且具有耦接第一節點的輸入端,用以產生第一控制信號。電容器耦接於第一節點與接地端之間。當第一電源端接收第一電壓而第二電源端尚未接收到第二電壓時,開關電路根據第一控制信號而導通。當第一電源端接收第一電壓且第二電源端接收第二電壓時,開關電路根據第一控制信號而關閉。 The invention provides a power start control circuit for generating a first control signal to control an output stage circuit. The power start control circuit includes a first power terminal, a second power terminal, a switching circuit, an inverter chain circuit, and a capacitor. The first power terminal is configured to receive the first voltage. The second power terminal is configured to receive the second voltage. The switch circuit has a control end that receives the first control signal, an input that is coupled to the second power supply end, and an output that is coupled to the first node. The inverter chain circuit is coupled to the first power terminal and has an input coupled to the first node for generating a first control signal. The capacitor is coupled between the first node and the ground. When the first power terminal receives the first voltage and the second power terminal has not received the second voltage, the switching circuit is turned on according to the first control signal. When the first power terminal receives the first voltage and the second power terminal receives the second voltage, the switching circuit is turned off according to the first control signal.

本發明又提供一種輸入/出控制電路,耦接輸入/出接墊。輸入/出控制電路包括第一電源端、第二電源端、輸出級電路、以及電源啟動控制電路。第一電源端用以接收第一電壓。第二電源端用以接收第二電壓。輸出級電路耦接輸入/出接墊以及第一電源端,且受控於第一控制信號。電源啟動控制電路耦接輸出級電路,用以產生第一控制信號。電源啟動控制電路包括開關電路、反向器鏈電路、以及電容器。開關電路具有接收第一控制信號的控制端、耦接第二電源端的輸入端、以及耦接第一節點的輸出端。反向器鏈電路耦接第一電源端,且具有耦接第一節點的輸入端,用以產生第一控制信號。電容器耦接於第一節點與接地端之間。當該第一電源端接收第一電壓而第二電源端尚未接收到第二電壓時,開關電路根據第一控制信號而導通。當第一電源端接收第一電壓且第二電源端接收第二電壓時,開關電路根據該第一控制信號而關閉。 The invention further provides an input/output control circuit coupled to the input/outlet pad. The input/output control circuit includes a first power terminal, a second power terminal, an output stage circuit, and a power start control circuit. The first power terminal is configured to receive the first voltage. The second power terminal is configured to receive the second voltage. The output stage circuit is coupled to the input/outlet pad and the first power terminal, and is controlled by the first control signal. The power start control circuit is coupled to the output stage circuit for generating the first control signal. The power start control circuit includes a switch circuit, an inverter chain circuit, and a capacitor. The switch circuit has a control end that receives the first control signal, an input that is coupled to the second power supply end, and an output that is coupled to the first node. The inverter chain circuit is coupled to the first power terminal and has an input coupled to the first node for generating a first control signal. The capacitor is coupled between the first node and the ground. When the first power terminal receives the first voltage and the second power terminal has not received the second voltage, the switch circuit is turned on according to the first control signal. When the first power terminal receives the first voltage and the second power terminal receives the second voltage, the switch circuit is turned off according to the first control signal.

1‧‧‧輸入/出控制電路 1‧‧‧Input/Output Control Circuit

10‧‧‧電源啟動控制電路 10‧‧‧Power start control circuit

11‧‧‧輸出級電路 11‧‧‧Output stage circuit

12‧‧‧閘極控制電路 12‧‧‧ gate control circuit

13、14‧‧‧電源端 13, 14‧‧‧ power terminal

20…22‧‧‧反向電路 20...22‧‧‧reverse circuit

23‧‧‧NMOS電晶體 23‧‧‧ NMOS transistor

24‧‧‧緩衝電路 24‧‧‧ buffer circuit

25‧‧‧PMOS電晶體 25‧‧‧ PMOS transistor

30、40‧‧‧傳輸閘 30, 40‧‧‧ transmission gate

100‧‧‧開關電路 100‧‧‧Switch circuit

101‧‧‧電阻器 101‧‧‧Resistors

102‧‧‧電容器 102‧‧‧ capacitor

103‧‧‧反向器鏈電路 103‧‧‧Inverter chain circuit

104‧‧‧回授電路 104‧‧‧Return circuit

110、112‧‧‧PMOS電晶體 110, 112‧‧‧ PMOS transistor

111、113‧‧‧NMOS電晶體 111, 113‧‧‧ NMOS transistor

200、210、220‧‧‧PMOS電晶體 200, 210, 220‧‧‧ PMOS transistors

201、211、221‧‧‧NMOS電晶體 201, 211, 221‧‧‧ NMOS transistors

240、242‧‧‧NMOS電晶體 240, 242‧‧‧ NMOS transistor

241、243‧‧‧PMOS電晶體 241, 243‧‧‧ PMOS transistor

300、400‧‧‧PMOS電晶體 300, 400‧‧‧ PMOS transistor

301、401‧‧‧NMOS電晶體 301, 401‧‧‧ NMOS transistor

GND‧‧‧接地端 GND‧‧‧ ground terminal

N10…N13、N20…N23‧‧‧節點 N10...N13, N20...N23‧‧‧ nodes

PAD‧‧‧輸入/出墊 PAD‧‧‧Input/Output

POC0…POC3‧‧‧控制信號 POC0...POC3‧‧‧ control signal

第1圖表示根據本發明一實施例的輸入/出控制電路。 Figure 1 shows an input/output control circuit in accordance with an embodiment of the present invention.

第2A圖表示根據本發明另一實施例的輸入/出控制電路。 Fig. 2A shows an input/output control circuit in accordance with another embodiment of the present invention.

第2B圖表示第2A圖的輸入/出控制電路操作在電源啟動控 制階段的示意圖。 Fig. 2B is a view showing the operation of the input/output control circuit of Fig. 2A in the power-on control phase.

第2C圖表示第2A圖的輸入/出控制電路操作在穩定階段的示意圖。 Fig. 2C is a view showing the operation of the input/output control circuit of Fig. 2A in the stabilization phase.

第3圖表示根據本發明另一實施例的輸入/出控制電路。 Figure 3 shows an input/output control circuit in accordance with another embodiment of the present invention.

第4圖表示根據本發明又一實施例的輸入/出控制電路。 Fig. 4 shows an input/output control circuit according to still another embodiment of the present invention.

第5圖表示根據本發明一實施例的輸入/出控制電路。 Figure 5 shows an input/output control circuit in accordance with an embodiment of the present invention.

第6圖表示根據本發明另一實施例的輸入/出控制電路。 Figure 6 shows an input/output control circuit in accordance with another embodiment of the present invention.

第7圖表示根據本發明又一實施例的輸入/出控制電路。 Figure 7 shows an input/output control circuit in accordance with still another embodiment of the present invention.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.

第1圖是表示根據本發明一實施例的輸入/出控制電路。參閱第1圖,輸入/出控制電路1屬於一積體電路的輸出端電路的一部分,且耦接此積體電路的一輸入/出墊PAD。輸入/出控制電路1包括電源啟動控制電路10、輸出級電路11、以及閘極控制電路12。電源啟動控制電路10包括開關電路100、電阻器101、電容器102、反向器鏈電路103、以及回授電路104。輸出級電路11包括P型金氧半(p-type metal-oxide-semiconductor,PMOS)電晶體110與112以及N型金氧半(N-type metal-oxide-semiconductor,NMOS)電晶體111與113。開關電路100的控制端接收一控制信號POC2,其輸入端耦接電源端13,其輸出端耦接節點N10。開關電路100的導通/關閉狀態是由控制信號POC2所控制。電阻器101耦接於節點N10與N11 之間。電容器102耦接於節點N11與接地端GND之間。反向器鏈電路103耦接於電源端14與接地端GND,且具有複數個串接的反向器。反向器鏈電路103的輸入端耦接節點N10,且根據節點N10上的電壓來產生互為反向的控制信號POC2與POC3。回授電路104耦接於反向器鏈電路103與節點N11之間,其可根據控制信號POC2來改變節點N11上控制信號POC0的電壓位準。 Fig. 1 is a diagram showing an input/output control circuit according to an embodiment of the present invention. Referring to FIG. 1, the input/output control circuit 1 is part of an output circuit of an integrated circuit and is coupled to an input/output pad PAD of the integrated circuit. The input/output control circuit 1 includes a power start control circuit 10, an output stage circuit 11, and a gate control circuit 12. The power start control circuit 10 includes a switch circuit 100, a resistor 101, a capacitor 102, an inverter chain circuit 103, and a feedback circuit 104. The output stage circuit 11 includes p-type metal-oxide-semiconductor (PMOS) transistors 110 and 112 and N-type metal-oxide-semiconductor (NMOS) transistors 111 and 113. . The control terminal of the switch circuit 100 receives a control signal POC2, the input end of which is coupled to the power supply terminal 13, and the output end of which is coupled to the node N10. The on/off state of the switch circuit 100 is controlled by the control signal POC2. The resistor 101 is coupled between the nodes N10 and N11. The capacitor 102 is coupled between the node N11 and the ground GND. The inverter chain circuit 103 is coupled to the power terminal 14 and the ground GND, and has a plurality of inverters connected in series. The input end of the inverter chain circuit 103 is coupled to the node N10, and generates mutually inverted control signals POC2 and POC3 according to the voltage on the node N10. The feedback circuit 104 is coupled between the inverter chain circuit 103 and the node N11, and can change the voltage level of the control signal POC0 on the node N11 according to the control signal POC2.

PMOS電晶體110的閘極接收控制信號POC2,其源極耦接電壓端14,且其汲極耦接節點N12。NMOS電晶體111的閘極接收控制信號POC3,其汲極耦接節點N13,且其源極耦接接地端GND。PMOS電晶體112的閘極耦接節點N12,其源極耦接電壓端14,且其汲極耦接輸入/出墊PAD。NMOS電晶體113的閘極耦接節點N13,其汲極耦接輸入/出墊PAD,且其源極耦接接地端GND。閘極控制電路12耦接電源端13與電源端14。閘極控制電路12也耦接節點N12與N13,其可分別提供閘極控制信號至PMOS電晶體112的閘極與NMOS電晶體114的閘極。 The gate of the PMOS transistor 110 receives the control signal POC2, the source of which is coupled to the voltage terminal 14, and the drain of which is coupled to the node N12. The gate of the NMOS transistor 111 receives the control signal POC3, the drain of which is coupled to the node N13, and the source of which is coupled to the ground GND. The gate of the PMOS transistor 112 is coupled to the node N12, the source of which is coupled to the voltage terminal 14, and the drain of which is coupled to the input/output pad PAD. The gate of the NMOS transistor 113 is coupled to the node N13, the drain of which is coupled to the input/output pad PAD, and the source of which is coupled to the ground GND. The gate control circuit 12 is coupled to the power terminal 13 and the power terminal 14. The gate control circuit 12 is also coupled to nodes N12 and N13, which can respectively provide a gate control signal to the gate of the PMOS transistor 112 and the gate of the NMOS transistor 114.

電源端13與14係用來接收不同的電壓。舉例來說,電源端13係用來接收1.8伏(V)的電壓,而電源端14係用來接收3.3V的電壓。在一些情況下,電源端14已接收到3.3V電壓,但是電源端13尚未接收到1.8V電壓。舉例來說,1.8V電壓係由一電壓轉換器對3.3V電壓進行降壓後所產生。因此,電源端13會比電源端14接收到電壓。在本發明實施例中,當電源端14接收到3.3V電壓而電源端13尚未接收到1.8V電壓(即電源端13具有0V)時,輸入/出控制電路1操作在一電源啟動控制階段。在輸入/出控制電路1進入電源啟動控制階段的瞬間,節點N11上的控 制信號POC0的電壓位準為0V,且反向器鏈電路103根據節點N11上的控制信號POC0(0V)產生具有0V電壓位準的控制信號POC2以及具有3.3V電壓位準的控制信號POC3。因此可知,控制信號POC2具有低電壓位準,而控制信號POC3具有高電壓位準,也就是,控制信號POC2與POC3的電壓位準互為反向。此時,開關電路100根據具有0V電壓位準的控制信號POC2而導通。PMOS電晶體110以及NMOS電晶體11N1分別根據控制信號POC2與POC3而導通。因此,節點N12與N13分別具有3.3V電壓與0V電壓,以分別關閉PMOS電晶體112與NMOS電晶體113。此外,由於電源端13尚未接收到1.8V電壓使得閘極控制電路12不操作,因此PMOS電晶體112與NMOS電晶體113導通/關閉狀態不受閘極控制電路12的控制。如此一來,在電源啟動控制階段中,由於PMOS電晶體112與NMOS電晶體113皆關閉,在輸出級電路11中介於電源端14與接地端GND的漏電流路徑則被截斷,避免了驅動漏電流的產生。此外,在電源啟動控制階段,回授電路104不根據控制信號POC2來改變節點N11上的電壓位準。 Power terminals 13 and 14 are used to receive different voltages. For example, power terminal 13 is used to receive a voltage of 1.8 volts (V) and power terminal 14 is used to receive a voltage of 3.3V. In some cases, power supply terminal 14 has received a 3.3V voltage, but power supply terminal 13 has not received a 1.8V voltage. For example, the 1.8V voltage is generated by a voltage converter that steps down the 3.3V voltage. Therefore, the power supply terminal 13 receives a voltage than the power supply terminal 14. In the embodiment of the present invention, when the power supply terminal 14 receives the 3.3V voltage and the power supply terminal 13 has not received the 1.8V voltage (ie, the power supply terminal 13 has 0V), the input/output control circuit 1 operates in a power supply start control phase. At the instant when the input/output control circuit 1 enters the power-on startup control phase, the voltage level of the control signal POC0 on the node N11 is 0V, and the inverter chain circuit 103 generates 0V according to the control signal POC0 (0V) on the node N11. Voltage level control signal POC2 and control signal POC3 with 3.3V voltage level. Therefore, it can be seen that the control signal POC2 has a low voltage level, and the control signal POC3 has a high voltage level, that is, the voltage levels of the control signals POC2 and POC3 are opposite each other. At this time, the switch circuit 100 is turned on in accordance with the control signal POC2 having a voltage level of 0V. The PMOS transistor 110 and the NMOS transistor 11N1 are turned on in accordance with the control signals POC2 and POC3, respectively. Therefore, the nodes N12 and N13 have a voltage of 3.3 V and a voltage of 0 V, respectively, to turn off the PMOS transistor 112 and the NMOS transistor 113, respectively. In addition, since the power supply terminal 13 has not received the 1.8V voltage so that the gate control circuit 12 does not operate, the on/off states of the PMOS transistor 112 and the NMOS transistor 113 are not controlled by the gate control circuit 12. In this way, in the power-on control phase, since both the PMOS transistor 112 and the NMOS transistor 113 are turned off, the leakage current path between the power terminal 14 and the ground GND in the output stage circuit 11 is cut off, thereby avoiding driving leakage. The generation of current. Further, in the power-on control phase, the feedback circuit 104 does not change the voltage level on the node N11 in accordance with the control signal POC2.

當電源端14接收到3.3V電壓且電源端13也接收到1.8V電壓時,輸入/出控制電路1操作在一穩定階段。在輸入/出控制電路1由電源啟動控制階段進入穩定階段的瞬間,控制信號POC2仍為0V,且開關電路100根據控制信號POC2而導通。此時,節點N11上控制信號POC0的電壓位準變為1.8V,且反向器鏈電路103根據節點N11上的控制信號POC0(1.8V)來產生電壓位準為3.3V的控制信號POC2以及電壓位準為1.8V的控制信 號POC3。因此可知,控制信號POC2具有高電壓位準,而控制信號POC3具有低電壓位準。此時,具有3.3V電壓位準的控制信號POC2關閉了開關電路100,且回授電路104提供回授路徑以根據控制信號POC2來改變節點N11上控制信號POC0的電壓位準使其變為控制信號POC2的電壓位準,即3.3V。由於控制信號POC0的電壓位準由1.8V變為3.3V,反向器鏈電路103的輸入端也處於3.3V,藉此截斷反向器鏈電路103中介於電源端14與接地端GND之間的漏電流路徑。此外,在穩定階段中,PMOS電晶體110以及NMOS電晶體111分別根據控制信號POC2與POC3而關閉。此時,由於閘極控制器12透過電源端13由1.8V供電且透過電源端14由3.3V供電而操作,PMOS電晶體112與NMOS電晶體113導通/關閉狀態則由閘極控制電路12來控制。 When the power supply terminal 14 receives the 3.3V voltage and the power supply terminal 13 also receives the 1.8V voltage, the input/output control circuit 1 operates in a stable phase. At the instant when the input/output control circuit 1 enters the steady phase from the power-on control phase, the control signal POC2 is still 0V, and the switch circuit 100 is turned on according to the control signal POC2. At this time, the voltage level of the control signal POC0 on the node N11 becomes 1.8V, and the inverter chain circuit 103 generates the control signal POC2 having a voltage level of 3.3V according to the control signal POC0 (1.8V) on the node N11 and The voltage level is 1.8V control signal POC3. Therefore, it can be seen that the control signal POC2 has a high voltage level and the control signal POC3 has a low voltage level. At this time, the control signal POC2 having a voltage level of 3.3V turns off the switching circuit 100, and the feedback circuit 104 provides a feedback path to change the voltage level of the control signal POC0 on the node N11 according to the control signal POC2 to make it control. The voltage level of signal POC2, which is 3.3V. Since the voltage level of the control signal POC0 is changed from 1.8V to 3.3V, the input terminal of the inverter chain circuit 103 is also at 3.3V, thereby intercepting the inverter chain circuit 103 between the power supply terminal 14 and the ground terminal GND. Leakage current path. Further, in the stabilization phase, the PMOS transistor 110 and the NMOS transistor 111 are turned off according to the control signals POC2 and POC3, respectively. At this time, since the gate controller 12 is powered by 1.8V through the power supply terminal 13 and is powered by 3.3V through the power supply terminal 14, the PMOS transistor 112 and the NMOS transistor 113 are turned on/off by the gate control circuit 12. control.

根據上述,在電源啟動控制階段與穩定階段中,透過截斷漏電流路徑來避免漏電流的產生,藉此減少不必要的功率消耗。以下將透過各種實施例來詳細說明本案輸入/出控制電路1的操作。 According to the above, in the power-on startup control phase and the stabilization phase, the leakage current is prevented from being generated by intercepting the leakage current path, thereby reducing unnecessary power consumption. The operation of the input/output control circuit 1 of the present invention will be described in detail below through various embodiments.

第2A圖係表示根據本發明另一實施例的輸入/出控制電路。參閱第2A圖,開關電路100包括PMOS電晶體25。PMOS電晶體24的閘極耦接開關電路100的控制端以接收控制信號POC2,其汲極耦接開關電路100的輸入端(即耦接電源端13),且其源極耦接開關電路100的輸出端(即耦接節點N10)。PMOS電晶體24的井區耦接電源端14。反向器鏈電路103包括反向電路20~22以及NMOS電晶體23。反向電路20包括PMOS電晶體200以及NMOS電晶體201。反向電路21包括PMOS電晶體210以及 NMOS電晶體211。反向電路22包括PMOS電晶體220以及NMOS電晶體221。PMOS電晶體200的閘極耦接反向器鏈電路103的輸入端(即,耦接節點N11),其源極耦接電源端14,且其汲極端耦接節點N20。NMOS電晶體201的閘極耦接反向器鏈電路103的輸入端(即,耦接節點N11),其汲極耦接節點N20,且其源極耦接接地端GND。根據反向電路20的架構可知,節點N11可作為反向電路20的輸入端,而節點20可作為反向電路20的輸出端。NMOS電晶體23的閘極耦接節點N20,且其汲極耦接電源端14,且其源極耦接接地端GND。PMOS電晶體210的閘極耦接節點N20,其源極耦接電源端14,且其汲極端耦接節點N21。NMOS電晶體211的閘極耦接節點N20,其汲極耦接節點N21,且其源極耦接接地端GND。根據反向電路21的架構可知,節點N20可作為反向電路21的輸入端,而節點21可作為反向電路21的輸出端。PMOS電晶體220的閘極耦接節點N21,其源極耦接電源端14,且其汲極端耦接節點N22。NMOS電晶體221的閘極耦接節點N21,其汲極耦接節點N22,且其源極耦接接地端GND。根據反向電路22的架構可知,節點N21可作為反向電路22的輸入端,而節點22可作為反向電路22的輸出端。反向器鏈電路103於節點N20上產生控制信號POC1,於節點N21上產生控制信號POC2,且於節點N22上產生控制信號POC3。NMOS電晶體23係用於當發生靜電放電事件時,用來提供一靜電放電路徑。 Fig. 2A shows an input/output control circuit in accordance with another embodiment of the present invention. Referring to FIG. 2A, the switching circuit 100 includes a PMOS transistor 25. The gate of the PMOS transistor 24 is coupled to the control terminal of the switch circuit 100 to receive the control signal POC2, the drain of which is coupled to the input end of the switch circuit 100 (ie, coupled to the power supply terminal 13), and the source thereof is coupled to the switch circuit 100. The output (ie, coupled to node N10). The well region of the PMOS transistor 24 is coupled to the power terminal 14. The inverter chain circuit 103 includes reverse circuits 20 to 22 and an NMOS transistor 23. The reverse circuit 20 includes a PMOS transistor 200 and an NMOS transistor 201. The reverse circuit 21 includes a PMOS transistor 210 and an NMOS transistor 211. The reverse circuit 22 includes a PMOS transistor 220 and an NMOS transistor 221. The gate of the PMOS transistor 200 is coupled to the input end of the inverter chain circuit 103 (ie, the coupling node N11), the source of which is coupled to the power terminal 14 and the terminal of which is coupled to the node N20. The gate of the NMOS transistor 201 is coupled to the input end of the inverter chain circuit 103 (ie, coupled to the node N11), the drain of which is coupled to the node N20, and the source of which is coupled to the ground GND. According to the architecture of the reverse circuit 20, the node N11 can serve as the input of the inverting circuit 20, and the node 20 can serve as the output of the inverting circuit 20. The gate of the NMOS transistor 23 is coupled to the node N20, and the drain is coupled to the power terminal 14 and the source thereof is coupled to the ground GND. The gate of the PMOS transistor 210 is coupled to the node N20, the source of which is coupled to the power terminal 14 and the terminal of which is coupled to the node N21. The gate of the NMOS transistor 211 is coupled to the node N20, the drain of the node is coupled to the node N21, and the source thereof is coupled to the ground GND. According to the architecture of the inverting circuit 21, the node N20 can serve as the input of the inverting circuit 21, and the node 21 can serve as the output of the inverting circuit 21. The gate of the PMOS transistor 220 is coupled to the node N21, the source of which is coupled to the power terminal 14 and the terminal of which is coupled to the node N22. The gate of the NMOS transistor 221 is coupled to the node N21, the drain of the node is coupled to the node N22, and the source thereof is coupled to the ground GND. According to the architecture of the reverse circuit 22, the node N21 can serve as the input of the inverting circuit 22 and the node 22 can serve as the output of the inverting circuit 22. The inverter chain circuit 103 generates a control signal POC1 at the node N20, a control signal POC2 at the node N21, and a control signal POC3 at the node N22. The NMOS transistor 23 is used to provide an electrostatic discharge path when an electrostatic discharge event occurs.

參與2A圖,回授電路104包括緩衝電路24。緩衝電路24的輸入端耦接於節點N21,且其輸出端耦接節點N11。緩衝電路24透過節點N21接收控制信號POC2,以將其緩衝至節點 N11,藉此控制控制信號POC0的電壓位準。緩衝電路24包括NMOS電晶體240與242以及PMOS電晶體241與243。PMOS電晶體241的閘極耦接緩衝電路24的輸入端,其源極耦接電源端14,且其汲極端耦接節點N23。NMOS電晶體240的閘極耦接緩衝電路24的輸入端,其汲極耦接節點N23,且其源極耦接接地端GND。PMOS電晶體243的閘極耦接節點N23,其源極耦接電源端14,且其汲極端耦接緩衝電路24的輸出端。NMOS電晶體242的閘極耦接節點N23,其汲極耦接緩衝電路23的輸出端,且其源極耦接接地端GND。NMOS電晶體240與242以及PMOS電晶體241與243共同操作來對節點N23上的電壓或信號進行緩衝。以下將說明第2A圖實施例中輸入/出控制電路的詳細操作。 In the 2A diagram, the feedback circuit 104 includes a buffer circuit 24. The input end of the buffer circuit 24 is coupled to the node N21, and the output end thereof is coupled to the node N11. The buffer circuit 24 receives the control signal POC2 through the node N21 to buffer it to the node N11, thereby controlling the voltage level of the control signal POC0. The buffer circuit 24 includes NMOS transistors 240 and 242 and PMOS transistors 241 and 243. The gate of the PMOS transistor 241 is coupled to the input end of the buffer circuit 24, the source of which is coupled to the power supply terminal 14, and the other end of which is coupled to the node N23. The gate of the NMOS transistor 240 is coupled to the input end of the buffer circuit 24, the drain of which is coupled to the node N23, and the source of which is coupled to the ground GND. The gate of the PMOS transistor 243 is coupled to the node N23, the source of which is coupled to the power terminal 14 and the terminal of which is coupled to the output of the buffer circuit 24. The gate of the NMOS transistor 242 is coupled to the node N23, the drain of which is coupled to the output of the buffer circuit 23, and the source of which is coupled to the ground GND. NMOS transistors 240 and 242 and PMOS transistors 241 and 243 operate in conjunction to buffer the voltage or signal on node N23. The detailed operation of the input/output control circuit in the embodiment of Fig. 2A will be described below.

參閱第2B圖,當電源端14接收到3.3V電壓而電源端13尚未接收到1.8V電壓(即電源端13具有0V)時,輸入/出控制電路1操作在電源啟動控制階段。在輸入/出控制電路1進入電源啟動控制階段的瞬間,節點N11上的控制信號POC0的電壓位準為0V。透過反向電路20~22執行的反向操作,反向電路20於節點N20上產生具有3.3V電壓位準的控制信號POC1,反向電路21於節點N21上產生具有0V電壓位準的控制信號POC2,且反向電路22於節點N22上產生具有3.3V電壓位準的控制信號POC3。此時,PMOS電晶體25根據具有0V電壓位準的控制信號POC2而導通,以使節點N11上的控制信號POC0的電壓位準維持在0V。PMOS電晶體110以及NMOS電晶體111分別根據控制信號POC2與POC3而導通。此時,節點N12與N13分別具有3.3V電壓與0V電壓,以分別關閉PMOS電晶體112與NMOS電晶體113。此外, 由於電源端13尚未接收到1.8V電壓使得閘極控制電路12不操作,因此PMOS電晶體112與NMOS電晶體113的導通/關閉狀態在電源啟動控制階段中不受閘極控制電路12的控制。如此一來,在電源啟動控制階段中,由於PMOS電晶體112與NMOS電晶體113皆關閉,在輸出級電路11中介於電源端14與接地端GND的漏電流路徑則被截斷,避免了驅動漏電流的產生。 Referring to Fig. 2B, when the power supply terminal 14 receives the 3.3V voltage and the power supply terminal 13 has not received the 1.8V voltage (i.e., the power supply terminal 13 has 0V), the input/output control circuit 1 operates in the power supply start control phase. At the instant when the input/output control circuit 1 enters the power-on control phase, the voltage level of the control signal POC0 on the node N11 is 0V. Through the reverse operation performed by the inverting circuits 20 to 22, the inverting circuit 20 generates a control signal POC1 having a voltage level of 3.3 V at the node N20, and the inverting circuit 21 generates a control signal having a voltage level of 0 V at the node N21. POC2, and the inverting circuit 22 generates a control signal POC3 having a voltage level of 3.3V on the node N22. At this time, the PMOS transistor 25 is turned on in accordance with the control signal POC2 having a voltage level of 0 V, so that the voltage level of the control signal POC0 on the node N11 is maintained at 0V. The PMOS transistor 110 and the NMOS transistor 111 are turned on in accordance with the control signals POC2 and POC3, respectively. At this time, the nodes N12 and N13 have a voltage of 3.3 V and a voltage of 0 V, respectively, to turn off the PMOS transistor 112 and the NMOS transistor 113, respectively. In addition, since the power supply terminal 13 has not received the 1.8V voltage so that the gate control circuit 12 does not operate, the on/off states of the PMOS transistor 112 and the NMOS transistor 113 are not affected by the gate control circuit 12 in the power supply start control phase. control. In this way, in the power-on control phase, since both the PMOS transistor 112 and the NMOS transistor 113 are turned off, the leakage current path between the power terminal 14 and the ground GND in the output stage circuit 11 is cut off, thereby avoiding driving leakage. The generation of current.

此外,參閱第2B圖,在電源啟動控制階段,回授電路104的緩衝電路24接收0V電壓位準的控制信號POC2。透過緩衝電路24的緩衝操作,緩衝電路24的輸出端也維持在0V的電壓位準。因此可知,節點N11上的控制信號POC0仍維持在0V。換句話說,回授電路104不改變節點N11上的電壓位準。 Further, referring to FIG. 2B, in the power-on control phase, the buffer circuit 24 of the feedback circuit 104 receives the control signal POC2 of the 0V voltage level. Through the buffering operation of the buffer circuit 24, the output terminal of the buffer circuit 24 is also maintained at a voltage level of 0V. Therefore, it can be seen that the control signal POC0 on the node N11 is still maintained at 0V. In other words, the feedback circuit 104 does not change the voltage level on the node N11.

參閱第2C圖,當電源端14接收到3.3V電壓且電源端13也接收到1.8V電壓時,輸入/出控制電路1操作在一穩定階段。在輸入/出控制電路1由電源啟動控制階段進入穩定階段的瞬間,控制信號POC2仍為0V,且PMOS電晶體25根據具有0V電壓位準的控制信號POC2而持續導通。此時,節點N11上控制信號POC0的電壓位準變為1.8V。透過反向電路20~22執行的反向操作,反向電路20於節點N20上產生具有0V電壓位準的控制信號POC1,反向電路21於節點N21上產生具有3.3V電壓位準的控制信號POC2,且反向電路22於節點N22上產生具有0V電壓位準的控制信號POC3。因此可得知,在輸入/出控制電路1由電源啟動控制階段進入穩定階段的瞬間,由於PMOS電晶體200的閘極的電壓為1.8V而其源極的電壓為3.3V,PMOS電晶體200無法完全地關閉,導致在一漏電流路徑形成於電源端14與接地端GND 之間且通過電晶體200與201。PMOS電晶體25根據具有3.3V電壓位準的控制信號POC2而關閉。在本發明實施例中,透過回授電路104的操作,可截斷上述的漏電流路徑,說明書如下。參閱第4C圖,回授電路104的緩衝電路24接收3.3V電壓位準的控制信號POC2。透過緩衝電路24的緩衝操作,節點N11的電壓位準由1.8V提高至3.3V。換句話說,在穩定階段,回授電路104此時提供了一回授路徑,以根據控制信號POC2來改變節點N11上控制信號POC0的電壓位準使其變為控制信號POC2的電壓位準,即3.3V。由於PMOS電晶體200的閘極與源極的的電壓都為3.3V,因此PMOS電晶體200關閉,藉以截斷介於電源端14與接地端GND之間且通過電晶體200與201的漏電流路徑。 Referring to Fig. 2C, when the power supply terminal 14 receives a voltage of 3.3 V and the power supply terminal 13 also receives a voltage of 1.8 V, the input/output control circuit 1 operates in a stable phase. At the instant when the input/output control circuit 1 enters the stabilization phase from the power-on control phase, the control signal POC2 is still 0V, and the PMOS transistor 25 is continuously turned on according to the control signal POC2 having the 0V voltage level. At this time, the voltage level of the control signal POC0 on the node N11 becomes 1.8V. Through the reverse operation performed by the inverting circuits 20-22, the inverting circuit 20 generates a control signal POC1 having a voltage level of 0 V at the node N20, and the inverting circuit 21 generates a control signal having a voltage level of 3.3 V at the node N21. POC2, and the inverting circuit 22 generates a control signal POC3 having a voltage level of 0V on the node N22. Therefore, it can be seen that at the moment when the input/output control circuit 1 enters the stabilization phase from the power-on startup control phase, since the voltage of the gate of the PMOS transistor 200 is 1.8 V and the voltage of its source is 3.3 V, the PMOS transistor 200 It cannot be completely turned off, resulting in a leakage current path being formed between the power supply terminal 14 and the ground GND and through the transistors 200 and 201. The PMOS transistor 25 is turned off in accordance with the control signal POC2 having a voltage level of 3.3V. In the embodiment of the present invention, the leakage current path can be cut off by the operation of the feedback circuit 104, and the description is as follows. Referring to Fig. 4C, the buffer circuit 24 of the feedback circuit 104 receives the control signal POC2 of the 3.3V voltage level. Through the buffering operation of the buffer circuit 24, the voltage level of the node N11 is increased from 1.8V to 3.3V. In other words, in the stabilization phase, the feedback circuit 104 provides a feedback path at this time to change the voltage level of the control signal POC0 on the node N11 to the voltage level of the control signal POC2 according to the control signal POC2. That is 3.3V. Since the voltages of the gate and the source of the PMOS transistor 200 are both 3.3V, the PMOS transistor 200 is turned off, thereby cutting off the leakage current path between the power terminal 14 and the ground GND and passing through the transistors 200 and 201. .

此外,參閱第2C圖,在穩定階段中,PMOS電晶體110以及NMOS電晶體111分別根據控制信號POC2與POC3而關閉。由於閘極控制器12在穩定階段中透過電源端13由1.8V供電且由透過電源端14由3.3V供電而操作,PMOS電晶體112與NMOS電晶體113導通/關閉狀態則由閘極控制電路12來控制。 Further, referring to FIG. 2C, in the stabilization phase, the PMOS transistor 110 and the NMOS transistor 111 are turned off according to the control signals POC2 and POC3, respectively. Since the gate controller 12 is powered by 1.8V through the power supply terminal 13 and is powered by 3.3V through the power supply terminal 14 during the stabilization phase, the PMOS transistor 112 and the NMOS transistor 113 are turned on/off by the gate control circuit. 12 to control.

根據上述,藉由電源啟動控制電路10的操作,不僅可截斷在電源啟動階段在輸出級電路11的漏電流路徑,也可在穩定階段中截斷在反向器鏈電路103中的漏電流路徑,藉此減少不必要的功率消耗。 According to the above, by the operation of the power-on control circuit 10, not only the leakage current path in the output stage circuit 11 during the power-start phase but also the leakage current path in the inverter chain circuit 103 can be cut off in the stabilization phase. Thereby reducing unnecessary power consumption.

在第2A-2C圖的實施例中,回授電路104僅包括緩衝電路24。在其他實施例中,回授電路104還可包括一傳輸閘,其至少受控於控制信號POC2。在一實施例中,參閱第3圖,回授電路104還包括傳輸閘30,其耦接於緩衝電路24的輸出端與 節點N11之間。傳輸閘30包括PMOS電晶體300與NMOS電晶體301。PMOS電晶體300的閘極接收控制信號POC3,其源極耦接緩衝電路24的輸出端(即耦接電晶體242與243的源極),且其汲極耦接節點N11。NMOS電晶體301的閘極接收控制信號POC2,其汲極耦接緩衝電路24的輸出端(即耦接電晶體242與243的源極),且其源極耦接耦接節點N11。在第3圖的實施例中,具有與第2A-2C圖的實施例中相同符號的電路與元件在電源啟動控制階段與穩定階段的操作如同上述的第2A-2C的實施例,在此將省略敘述。下文僅說明傳輸閘30的操作。在電源啟動控制階段,PMOS電晶體300與NMOS電晶體301分別根據具有3.3V電壓位準的控制信號POC3與具有0V電壓位準的控制信號POC2而關閉。因此,回授電路104不提供介於節點N21與N11之間的回授路徑,如此一來,回授電路104不根據控制信號POC2來改變節點N11上的電壓位準。在穩定階段,PMOS電晶體300與NMOS電晶體301分別根據具有0V電壓位準的控制信號POC3與具有3.3V電壓位準的控制信號POC2而導通。因此,回授電路104提供了介於節點N21與N11之間的回授路徑,以根據控制信號POC2來改變節點N11上控制信號POC0的電壓位準使其變為控制信號POC2的電壓位準,即3.3V。 In the embodiment of the 2A-2C diagram, the feedback circuit 104 includes only the buffer circuit 24. In other embodiments, the feedback circuit 104 can also include a transmission gate that is at least controlled by the control signal POC2. In an embodiment, referring to FIG. 3, the feedback circuit 104 further includes a transfer gate 30 coupled between the output of the buffer circuit 24 and the node N11. The transfer gate 30 includes a PMOS transistor 300 and an NMOS transistor 301. The gate of the PMOS transistor 300 receives the control signal POC3, the source of which is coupled to the output of the buffer circuit 24 (ie, the source of the transistors 242 and 243), and the drain is coupled to the node N11. The gate of the NMOS transistor 301 receives the control signal POC2, the drain of which is coupled to the output of the buffer circuit 24 (ie, the source of the transistors 242 and 243), and the source of the transistor 301 is coupled to the node N11. In the embodiment of Fig. 3, the circuits and elements having the same reference numerals as in the embodiment of the second A-2C diagram operate in the power-start control phase and the stabilization phase as in the above-described embodiment of the second embodiment A-2C, The description is omitted. Only the operation of the transfer gate 30 will be described below. In the power-on control phase, the PMOS transistor 300 and the NMOS transistor 301 are turned off according to a control signal POC3 having a voltage level of 3.3 V and a control signal POC2 having a voltage level of 0 V, respectively. Therefore, the feedback circuit 104 does not provide a feedback path between the nodes N21 and N11, and thus, the feedback circuit 104 does not change the voltage level on the node N11 according to the control signal POC2. In the stabilization phase, the PMOS transistor 300 and the NMOS transistor 301 are turned on according to the control signal POC3 having a voltage level of 0 V and the control signal POC2 having a voltage level of 3.3 V, respectively. Therefore, the feedback circuit 104 provides a feedback path between the nodes N21 and N11 to change the voltage level of the control signal POC0 on the node N11 to the voltage level of the control signal POC2 according to the control signal POC2. That is 3.3V.

在另一實施例中,參閱第4圖,回授電路104還包括傳輸閘40,其耦接於節點21與緩衝電路24的輸入端之間。傳輸閘40包括PMOS電晶體400與NMOS電晶體401。PMOS電晶體400的閘極接收控制信號POC3,其源極耦接節點N21,且其汲極耦接緩衝電路24的輸入端(即耦接電晶體240與241的閘極)。NMOS 電晶體401的閘極接收控制信號POC2,其汲極耦接節點N21,且其源極耦接緩衝電路24的輸入端(即耦接電晶體240與241的閘極)。在第4圖的實施例中,具有與第2A-2C圖的實施例中相同符號的電路與元件在電源啟動控制階段與穩定階段的操作如同上述的第2A-2C的實施例,在此將省略敘述。下文僅說明傳輸閘40的操作。在電源啟動控制階段,PMOS電晶體400與NMOS電晶體401分別根據具有3.3V電壓位準的控制信號POC3與具有0V電壓位準的控制信號POC2而關閉。因此,回授電路104不提供介於節點N21與N11之間的回授路徑,如此一來,回授電路104不根據控制信號POC2來改變節點N11上的電壓位準。在穩定階段,PMOS電晶體400與NMOS電晶體401分別根據具有0V電壓位準的控制信號POC3與具有3.3V電壓位準的控制信號POC2而導通。因此,回授電路104提供了介於節點N21與N11之間的回授路徑,以根據控制信號POC2來改變節點N11上控制信號POC0的電壓位準使其變為控制信號POC2的電壓位準,即3.3V。 In another embodiment, referring to FIG. 4, the feedback circuit 104 further includes a transfer gate 40 coupled between the node 21 and the input of the buffer circuit 24. The transfer gate 40 includes a PMOS transistor 400 and an NMOS transistor 401. The gate of the PMOS transistor 400 receives the control signal POC3, the source of which is coupled to the node N21, and the drain of which is coupled to the input terminal of the buffer circuit 24 (ie, the gates of the transistors 240 and 241). The gate of the NMOS transistor 401 receives the control signal POC2, the drain of which is coupled to the node N21, and the source thereof is coupled to the input terminal of the buffer circuit 24 (ie, the gates of the transistors 240 and 241 are coupled). In the embodiment of Fig. 4, the circuits and elements having the same reference numerals as in the embodiment of the second A-2C diagram operate in the power-start control phase and the stabilization phase as in the above-described embodiment of the second embodiment A-2C, The description is omitted. Only the operation of the transfer gate 40 will be described below. In the power-on control phase, the PMOS transistor 400 and the NMOS transistor 401 are turned off according to a control signal POC3 having a voltage level of 3.3 V and a control signal POC2 having a voltage level of 0 V, respectively. Therefore, the feedback circuit 104 does not provide a feedback path between the nodes N21 and N11, and thus, the feedback circuit 104 does not change the voltage level on the node N11 according to the control signal POC2. In the stabilization phase, the PMOS transistor 400 and the NMOS transistor 401 are turned on according to the control signal POC3 having a voltage level of 0 V and the control signal POC2 having a voltage level of 3.3 V, respectively. Therefore, the feedback circuit 104 provides a feedback path between the nodes N21 and N11 to change the voltage level of the control signal POC0 on the node N11 to the voltage level of the control signal POC2 according to the control signal POC2. That is 3.3V.

在上述的第2A、3、與4圖的實施例中,電源啟動控制電路10包括電阻器101。在其他實施例中,電源啟動控制電路10不具有第2A、3、與4圖的實施例中電阻器101,而以開關電路100的PMOS電晶體25所提供電阻來做為第2A、3、與4圖的實施例中的電阻器101。參閱第5圖,與第2A圖的實施例比較起來,電源啟動控制電路10不具有第2A圖的實施例中電阻器101。參閱第6圖,與第3圖的實施例比較起來,電源啟動控制電路10不具有第3圖的實施例中電阻器101。參閱第7圖,與第4圖的實施例比較起來,電源啟動控制電路10不具有第4圖的實 施例中電阻器101。 In the above embodiments of FIGS. 2A, 3, and 4, the power source start control circuit 10 includes the resistor 101. In other embodiments, the power-on control circuit 10 does not have the resistor 101 in the embodiments of FIGS. 2A, 3, and 4, but the resistors provided by the PMOS transistor 25 of the switch circuit 100 are used as the 2A, 3, Resistor 101 in the embodiment of Figure 4. Referring to Fig. 5, in comparison with the embodiment of Fig. 2A, the power-on control circuit 10 does not have the resistor 101 of the embodiment of Fig. 2A. Referring to Fig. 6, in comparison with the embodiment of Fig. 3, the power-on control circuit 10 does not have the resistor 101 of the embodiment of Fig. 3. Referring to Fig. 7, in comparison with the embodiment of Fig. 4, the power-on control circuit 10 does not have the resistor 101 of the embodiment of Fig. 4.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art can make a few changes without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

Claims (30)

一種電源啟動控制電路,用以產生一第一控制信號來控制一輸出級電路,包括:一第一電源端,用以接收一第一電壓;一第二電源端,用以接收一第二電壓;一開關電路,具有接收該第一控制信號的控制端、耦接該第二電源端的輸入端、以及耦接一第一節點的輸出端;一反向器鏈電路,耦接該第一電源端,且具有耦接該第一節點的輸入端,用以產生該第一控制信號;以及一電容器,耦接於該第一節點與一接地端之間;其中,當該第一電源端接收該第一電壓而該第二電源端尚未接收到該第二電壓時,該開關電路根據該第一控制信號而導通;以及其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該開關電路根據該第一控制信號而關閉。  A power start control circuit for generating a first control signal for controlling an output stage circuit includes: a first power terminal for receiving a first voltage; and a second power terminal for receiving a second voltage a switching circuit having a control terminal for receiving the first control signal, an input coupled to the second power terminal, and an output coupled to the first node; an inverter chain circuit coupled to the first power source And having an input coupled to the first node for generating the first control signal; and a capacitor coupled between the first node and a ground; wherein, when the first power terminal receives The switching circuit is turned on according to the first control signal when the second voltage is not received by the second power terminal; and wherein the first power source receives the first voltage and the second power source When the terminal receives the second voltage, the switch circuit is turned off according to the first control signal.   如申請專利範圍第1項所述之電源啟動控制電路,其中,該第一電壓相異於該第二電壓。  The power start control circuit of claim 1, wherein the first voltage is different from the second voltage.   如申請專利範圍第2項所述之電源啟動控制電路,其中,該第一電壓高於該第二電壓。  The power start control circuit of claim 2, wherein the first voltage is higher than the second voltage.   如申請專利範圍第1項所述之電源啟動控制電路,其中,該開關電路包括一P型電晶體,該P型電晶體的井區耦接該第一電源端,且該P型電晶體的閘極、源極、與汲極分別耦接該開關電路的控制端、輸入端、與輸出端。  The power-on-control circuit of claim 1, wherein the switch circuit comprises a P-type transistor, the well region of the P-type transistor is coupled to the first power terminal, and the P-type transistor The gate, the source, and the drain are respectively coupled to the control end, the input end, and the output end of the switch circuit.   如申請專利範圍第1項所述之電源啟動控制電路,更包括: 一回授電路,耦接該反向器鏈電路與該第一節點,且接收該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該回授電路根據該第一控制信號來改變該第一節點上的電壓位準,且該反向器鏈電路根據該第一節點上改變後的電壓位準來截斷一漏電流路徑。  The power-on control circuit of claim 1, further comprising: a feedback circuit coupled to the inverter chain circuit and the first node, and receiving the first control signal; wherein, when the first When a power terminal receives the first voltage and the second power terminal receives the second voltage, the feedback circuit changes a voltage level on the first node according to the first control signal, and the inverter chain circuit A leakage current path is intercepted according to the changed voltage level on the first node.   如申請專利範圍第5項所述之電源啟動控制電路,其中,該回授電路包括:一緩衝電路,耦接該第一電源端,具有耦接該反向器鏈電路以接收該第一控制信號的輸入端以及耦接該第一節點的輸出端;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該第一節點上的電壓位準等於該第一控制信號的電壓位準。  The power-on control circuit of claim 5, wherein the feedback circuit comprises: a buffer circuit coupled to the first power terminal, coupled to the inverter chain circuit to receive the first control An input end of the signal and an output coupled to the first node; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the voltage level on the first node Equal to the voltage level of the first control signal.   如申請專利範圍第6項所述之電源啟動控制電路,其中,該回授電路更包括:一傳輸閘,耦接於該緩衝電路的輸出端與該第一節點之間,且受控於該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該傳輸閘導通。  The power-start control circuit of claim 6, wherein the feedback circuit further comprises: a transmission gate coupled between the output end of the buffer circuit and the first node, and controlled by the a first control signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the transmission gate is turned on.   如申請專利範圍第7項所述之電源啟動控制電路,其中,當該第一電源端接收該第一電壓且該第二電源端尚未接收到該第二電壓時,該傳輸閘關閉。  The power-on control circuit of claim 7, wherein the transmission gate is turned off when the first power terminal receives the first voltage and the second power terminal has not received the second voltage.   如申請專利範圍第6項所述之電源啟動控制電路,其中,該回 授電路更包括:一傳輸閘,耦接於該反向器鏈電路與該緩衝電路的輸入端之間,且受控於該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該傳輸閘導通。  The power-on control circuit of claim 6, wherein the feedback circuit further comprises: a transmission gate coupled between the inverter chain circuit and the input end of the buffer circuit, and controlled And the first control signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the transmission gate is turned on.   如申請專利範圍第9項所述之電源啟動控制電路,其中,當該第一電源端接收該第一電壓且該第二電源端尚未接收到該第二電壓時,該傳輸閘關閉。  The power-on control circuit of claim 9, wherein the transmission gate is turned off when the first power terminal receives the first voltage and the second power terminal has not received the second voltage.   如申請專利範圍第1項所述之電源啟動控制電路,其中,該反向器鏈電路包括串接的一第一反向電路以及一第二反向電路;以及其中,該第一反向電路的輸入端耦接該第一節點,且該第二反向電路的輸出端產生該第一控制信號。  The power-start control circuit of claim 1, wherein the inverter chain circuit comprises a first reverse circuit and a second reverse circuit connected in series; and wherein the first reverse circuit The input end is coupled to the first node, and the output end of the second reverse circuit generates the first control signal.   如申請專利範圍第11項所述之電源啟動控制電路,其中,該反向器鏈電路更包括一第三反向電路,耦接該第二反向電路的輸出端,該第三反向電路的輸出端產生一第二控制信號以控制該輸出級電路,且該第一控制信號與該第二控制信號互為反向。  The power-start control circuit of claim 11, wherein the inverter chain circuit further includes a third reverse circuit coupled to an output of the second reverse circuit, the third reverse circuit The output terminal generates a second control signal to control the output stage circuit, and the first control signal and the second control signal are opposite to each other.   如申請專利範圍第12項所述之電源啟動控制電路,更包括:一回授電路,耦接該反向器鏈電路與該第一節點,且接收該第一控制信號與該第二控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該回授電路受控於該第一控制信號與該第二控制信號以根據該第一控制信號來改變該第一節點上 的電壓位準,且該反向器鏈電路根據該第一節點上改變後的電壓位準來截斷一漏電流路徑。  The power-on control circuit of claim 12, further comprising: a feedback circuit coupled to the inverter chain circuit and the first node, and receiving the first control signal and the second control signal Wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the feedback circuit is controlled by the first control signal and the second control signal according to the first The control signal changes the voltage level on the first node, and the inverter chain circuit intercepts a leakage current path according to the changed voltage level on the first node.   如申請專利範圍第1項所述之電源啟動控制電路,更包括:一電阻器,耦接於該開關電路與該第一節點之間。  The power-on-control circuit of claim 1, further comprising: a resistor coupled between the switch circuit and the first node.   一種輸入/出控制電路,耦接一輸入/出接墊,包括:一第一電源端,用以接收一第一電壓;一第二電源端,用以接收一第二電壓;一輸出級電路,耦接該輸入/出接墊以及該第一電源端,且受控於一第一控制信號;以及一電源啟動控制電路,耦接該輸出級電路,用以產生該第一控制信號,包括:一開關電路,具有接收該第一控制信號的控制電極、耦接該第二電源端的輸入端、以及耦接一第一節點的輸出端;一反向器鏈電路,耦接該第一電源端,且具有耦接該第一節點的輸入端,用以產生該第一控制信號;以及一電容器,耦接於該第一節點與一接地端之間;其中,當該第一電源端接收該第一電壓而該第二電源端尚未接收到該第二電壓時,該開關電路根據該第一控制信號而導通;以及其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該開關電路根據該第一控制信號而關閉。  An input/output control circuit coupled to an input/output pad includes: a first power terminal for receiving a first voltage; a second power terminal for receiving a second voltage; and an output stage circuit And the first power supply terminal is coupled to the first power control terminal and controlled by a first control signal; and a power start control circuit coupled to the output stage circuit for generating the first control signal, including a switching circuit having a control electrode for receiving the first control signal, an input coupled to the second power terminal, and an output coupled to the first node; an inverter chain circuit coupled to the first power source And having an input coupled to the first node for generating the first control signal; and a capacitor coupled between the first node and a ground; wherein, when the first power terminal receives The switching circuit is turned on according to the first control signal when the second voltage is not received by the second power terminal; and wherein the first power source receives the first voltage and the second power source Receiving the second voltage The switching circuit being closed by the first control signal.   如申請專利範圍第15項所述之輸入/出控制電路,其中,該第一電壓相異於該第二電壓。  The input/output control circuit of claim 15, wherein the first voltage is different from the second voltage.   如申請專利範圍第16項所述之輸入/出控制電路,其中,該 第一電壓高於該第二電壓。  The input/output control circuit of claim 16, wherein the first voltage is higher than the second voltage.   如申請專利範圍第15項所述之輸入/出控制電路,其中,該開關電路包括一P型電晶體,該P型電晶體的井區耦接該第一電源端,且該P型電晶體的閘極、源極、與汲極分別耦接該開關電路的控制端、輸入端、與輸出端。  The input/output control circuit of claim 15, wherein the switch circuit comprises a P-type transistor, the well region of the P-type transistor is coupled to the first power terminal, and the P-type transistor The gate, the source, and the drain are respectively coupled to the control terminal, the input terminal, and the output terminal of the switch circuit.   如申請專利範圍第15項所述之輸入/出控制電路,其中,該電源啟動控制電路,更包括:一回授電路,耦接該反向器鏈電路與該第一節點,且接收該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該回授電路根據該第一控制信號來改變該第一節點上的電壓位準,且該反向器鏈電路根據該第一節點上改變後的電壓位準來截斷一漏電流路徑。  The input/output control circuit of claim 15, wherein the power-on control circuit further includes: a feedback circuit coupled to the inverter chain circuit and the first node, and receiving the first a control signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the feedback circuit changes a voltage bit on the first node according to the first control signal And the inverter chain circuit intercepts a leakage current path according to the changed voltage level on the first node.   如申請專利範圍第19項所述之輸入/出控制電路,其中,該回授電路包括:一緩衝電路,耦接該第一電源端,具有耦接該反向器鏈電路以接收該第一控制信號的輸入端以及耦接該第一節點的輸出端;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該第一節點上的電壓位準等於該第一控制信號的電壓位準。  The input/output control circuit of claim 19, wherein the feedback circuit comprises: a buffer circuit coupled to the first power terminal, and having the inverter chain coupled to receive the first An input end of the control signal and an output coupled to the first node; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the voltage bit on the first node It is quasi-equal to the voltage level of the first control signal.   如申請專利範圍第20項所述之輸入/出控制電路,其中,該回授電路更包括: 一傳輸閘,耦接於該緩衝電路的輸出端與該第一節點之間,且受控於該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該傳輸閘導通。  The input/output control circuit of claim 20, wherein the feedback circuit further comprises: a transmission gate coupled between the output end of the buffer circuit and the first node, and controlled by The first control signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the transmission gate is turned on.   如申請專利範圍第21項所述之輸入/出控制電路,其中,當該第一電源端接收該第一電壓且該第二電源端尚未接收到該第二電壓時,該傳輸閘關閉。  The input/output control circuit of claim 21, wherein the transmission gate is turned off when the first power terminal receives the first voltage and the second power terminal has not received the second voltage.   如申請專利範圍第20項所述之輸入/出控制電路,其中,該回授電路更包括:一傳輸閘,耦接於該反向器鏈電路與該緩衝電路的輸入端之間,且受控於該第一控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該傳輸閘導通。  The input/output control circuit of claim 20, wherein the feedback circuit further comprises: a transmission gate coupled between the inverter chain circuit and an input end of the buffer circuit, and Controlling the first control signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the transmission gate is turned on.   如申請專利範圍第23項所述之輸入/出控制電路,其中,當該第一電源端接收該第一電壓且該第二電源端尚未接收到該第二電壓時,該傳輸閘關閉。  The input/output control circuit of claim 23, wherein the transmission gate is turned off when the first power terminal receives the first voltage and the second power terminal has not received the second voltage.   如申請專利範圍第15項所述之輸入/出控制電路,其中,該反向器鏈電路包括串接的一第一反向電路以及一第二反向電路;以及其中,該第一反向電路的輸入端耦接該第一節點,且該第二反向電路的輸出端產生該第一控制信號。  The input/output control circuit of claim 15, wherein the inverter chain circuit comprises a first reverse circuit and a second reverse circuit connected in series; and wherein the first reverse The input end of the circuit is coupled to the first node, and the output end of the second reverse circuit generates the first control signal.   如申請專利範圍第25項所述之輸入/出控制電路,其中,該反向器鏈電路更包括一第三反向電路,且該第三反向電路耦接該第二反向電路的輸出端; 其中,該第三反向電路級的輸出端產生一第二控制信號,且該第一控制信號與該第二控制信號互為反向;以及其中,該輸出級電路更受控於該第二控制電路。  The input/output control circuit of claim 25, wherein the inverter chain circuit further comprises a third reverse circuit, and the third reverse circuit is coupled to the output of the second reverse circuit The output end of the third reverse circuit stage generates a second control signal, and the first control signal and the second control signal are mutually opposite; and wherein the output stage circuit is more controlled by the Second control circuit.   如申請專利範圍第26項所述之輸入/出控制電路,更包括:一回授電路,耦接該反向器鏈電路與該第一節點,且接收該第一控制信號與該第二控制信號;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該回授電路受控於該第一控制信號與該第二控制信號以根據該第一控制信號來改變該第一節點上的電壓位準,且該反向器鏈電路根據該第一節點上改變後的電壓位準來截斷一漏電流路徑。  The input/output control circuit of claim 26, further comprising: a feedback circuit coupled to the inverter chain circuit and the first node, and receiving the first control signal and the second control a signal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the feedback circuit is controlled by the first control signal and the second control signal according to the first A control signal is used to change the voltage level on the first node, and the inverter chain circuit intercepts a leakage current path according to the changed voltage level on the first node.   如申請專利範圍第15項所述之輸入/出控制電路,其中,電源啟動控制電路更包括:一電阻器,耦接於該開關電路與該第一節點之間。  The input/output control circuit of claim 15, wherein the power-on control circuit further includes: a resistor coupled between the switch circuit and the first node.   如申請專利範圍第15項所述之輸入/出控制電路,其中,該反向器鏈電路更產生一第二控制信號,且該第一控制信號與該第二控制信號互為反向;以及其中,該輸出級電路包括:一第一第一型電晶體,具有接收該第一控制信號的控制電極、耦接該第一電源端的輸入電極、以及耦接一第二節點的輸出電極;一第一第二型電晶體,具有接收該第二控制信號的控制電極、耦接一第三節點的輸入電極、以及耦接該接地端的輸出電極; 一第二第一型電晶體,具有耦接該第二節點的控制電極、耦接該第一電源端的輸入電極、以及耦接該輸入/出墊的輸出電極;以及一第二第二型電晶體,具有耦接該第三節點的控制電極、耦接該輸入/出墊的輸入電極、以及耦接該接地端的輸出電極。  The input/output control circuit of claim 15, wherein the inverter chain circuit further generates a second control signal, and the first control signal and the second control signal are opposite to each other; The output stage circuit includes: a first first type transistor, a control electrode for receiving the first control signal, an input electrode coupled to the first power terminal, and an output electrode coupled to a second node; a first type of transistor having a control electrode for receiving the second control signal, an input electrode coupled to a third node, and an output electrode coupled to the ground; a second first type transistor having a coupling a control electrode of the second node, an input electrode coupled to the first power terminal, and an output electrode coupled to the input/output pad; and a second second type transistor having a control electrode coupled to the third node And an input electrode coupled to the input/outlet pad and an output electrode coupled to the ground.   如申請專利範圍第29項所述之輸入/出控制電路,更包括:一閘極控制電路,耦接該第二第一型電晶體的控制電極以及該第二第二型電晶體的控制電極,以及耦接該第二電源端;其中,當該第一電源端接收該第一電壓且該第二電源端接收該第二電壓時,該第一第一型電晶體與該第一第二型電晶體關閉,且該第二第一型電晶體以及該第二第二型電晶體由該閘極控制電路所控制。  The input/output control circuit of claim 29, further comprising: a gate control circuit coupled to the control electrode of the second first type transistor and the control electrode of the second second type transistor And coupling the second power terminal; wherein, when the first power terminal receives the first voltage and the second power terminal receives the second voltage, the first first type transistor and the first second The type transistor is turned off, and the second first type transistor and the second second type transistor are controlled by the gate control circuit.  
TW106104366A 2017-02-10 2017-02-10 Power-on control circuit and input/output control circuit TWI641219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106104366A TWI641219B (en) 2017-02-10 2017-02-10 Power-on control circuit and input/output control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106104366A TWI641219B (en) 2017-02-10 2017-02-10 Power-on control circuit and input/output control circuit

Publications (2)

Publication Number Publication Date
TW201830863A true TW201830863A (en) 2018-08-16
TWI641219B TWI641219B (en) 2018-11-11

Family

ID=63960627

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106104366A TWI641219B (en) 2017-02-10 2017-02-10 Power-on control circuit and input/output control circuit

Country Status (1)

Country Link
TW (1) TWI641219B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659618B (en) * 2017-08-29 2019-05-11 台灣積體電路製造股份有限公司 Circuits coupled to input/output pad and preventing glitch method thereof
CN112578890A (en) * 2019-09-29 2021-03-30 佛山市顺德区顺达电脑厂有限公司 Server device capable of remotely controlling node power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908550B1 (en) * 2006-10-31 2009-07-20 주식회사 하이닉스반도체 Power-on reset circuit
US8963590B2 (en) * 2007-06-13 2015-02-24 Honeywell International Inc. Power cycling power on reset circuit for fuse initialization circuitry
US8754679B2 (en) * 2009-09-29 2014-06-17 Texas Instruments Incorporated Low current power-on reset circuit and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659618B (en) * 2017-08-29 2019-05-11 台灣積體電路製造股份有限公司 Circuits coupled to input/output pad and preventing glitch method thereof
CN112578890A (en) * 2019-09-29 2021-03-30 佛山市顺德区顺达电脑厂有限公司 Server device capable of remotely controlling node power supply

Also Published As

Publication number Publication date
TWI641219B (en) 2018-11-11

Similar Documents

Publication Publication Date Title
JP2007026337A (en) Voltage regulator
US11677400B2 (en) Level shifter circuit and method of operating the same
JP2006311201A (en) Buffer circuit
JP2010010920A (en) Semiconductor integrated circuit
TWI528718B (en) Output buffers
TWI641219B (en) Power-on control circuit and input/output control circuit
US9660651B2 (en) Level shift circuit
US7068074B2 (en) Voltage level translator circuit
US10514742B2 (en) Power down signal generating circuit
TW202040303A (en) Voltage regulation circuit
JP7465200B2 (en) Delay Circuit
US9722579B1 (en) Semiconductor device
US4996446A (en) Semiconductor device having a reverse bias voltage generator
US11070206B2 (en) Logic circuit
TWM576366U (en) Level conversion circuit with auxiliary circuit
TWM565921U (en) Voltage level shifter
JP2000194432A (en) Power source circuit for cmos logic
US11073856B2 (en) Input circuit having hysteresis without power supply voltage dependence
KR100529385B1 (en) Circuit for generation of internal voltage
KR960009952B1 (en) Operation-error-proofing circuit in power on operation
JP2009182572A (en) Power supply circuit
KR100243263B1 (en) Schmitt trigger circuit for rc oscillator
KR20010081400A (en) Power up circuit for dram by using internal power source
KR920008258B1 (en) Power-up detection circuit
KR100311039B1 (en) Buffer circuit capable of minimizing switching skew