WO2006064100A1 - Enchainement de procedes d’hydroconversion et de reformage a la vapeur en vue d’optimiser la production d’hydrogene sur des champs de production - Google Patents

Enchainement de procedes d’hydroconversion et de reformage a la vapeur en vue d’optimiser la production d’hydrogene sur des champs de production Download PDF

Info

Publication number
WO2006064100A1
WO2006064100A1 PCT/FR2005/003008 FR2005003008W WO2006064100A1 WO 2006064100 A1 WO2006064100 A1 WO 2006064100A1 FR 2005003008 W FR2005003008 W FR 2005003008W WO 2006064100 A1 WO2006064100 A1 WO 2006064100A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
hydrogen
hydroconversion
reaction
feedstock
Prior art date
Application number
PCT/FR2005/003008
Other languages
English (en)
Inventor
Mathieu Pinault
Thierry Gauthier
Stéphane Kressmann
Arnault Selmen
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to CN200580043278.6A priority Critical patent/CN101080481B/zh
Priority to MX2007007031A priority patent/MX2007007031A/es
Priority to EP05824636A priority patent/EP1828353B1/fr
Priority to BRPI0515796-0A priority patent/BRPI0515796B1/pt
Priority to CA2589673A priority patent/CA2589673C/fr
Publication of WO2006064100A1 publication Critical patent/WO2006064100A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/063Refinery processes
    • C01B2203/065Refinery processes using hydrotreating, e.g. hydrogenation, hydrodesulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects

Definitions

  • the invention relates to the fields of conversion and / or treatment of residues from the distillation of petroleum, liquid hydrocarbon feeds from the liquefaction of coal and crude oils.
  • the present invention relates to a sequence of two hydrocarbon treatment processes:
  • the first (hydroconversion) comprising at least one reaction chamber and preferably a succession of reaction chambers, the reaction or reactions occurring inside said chambers and involving at least one solid phase, at least one liquid phase and at least one gaseous phase,
  • the second comprising at least one reaction chamber and preferably a succession of reaction chambers, the reaction or reactions occurring inside said chambers make it possible to produce a reagent necessary for the chemical reactions of the first.
  • US Pat. No. 4,526,676 uses as a feedstock of the gasification unit a combination of light hydrocarbons in gaseous form, as well as the heavier part produced by the process (bottom of the vacuum column).
  • gasification is necessary.
  • a dedicated oxygen purification unit is necessary, which makes it more complex to install such a complex on the extraction site of the crudes which, it will be remembered, are generally in difficult locations. access, away from industrial centers and communication nodes.
  • GB 1 092 420 discloses a process for the conversion of hydrocarbon distillate to recoverable gases. The process combines at least one hydrocracking stage with two gasification stages, these two gasification stages being hydrogen-producing vapor reforming stages.
  • the effluent leaving the hydrocracking zone is separated into two fractions: a first lighter fraction passes into a first vapor reforming zone to give a gas rich in methane and the second heavier fraction passes into a second vapor reforming zone to give a gas rich in H2, part of which is recycled in the hydrocracking zone.
  • U.S. Patent 3,552,924 discloses a process for producing hydrogen from an excess refining stream having compounds having a carbon number of greater than 6 to heavy oils.
  • the feedstock is hydrocracked by adding hydrogen to a hydrocracking zone.
  • the hydrocracking effluent is cooled to condense hydrocarbons having a carbon number greater than 6.
  • the resulting vapor fraction is passed over a reforming steam catalyst through a vapor reforming zone to produce carbon monoxide. , carbon dioxide and hydrogen, this effluent then passes through a conversion step which converts the carbon monoxide to carbon dioxide and hydrogen and the gaseous effluent from the conversion reaction is separated into a stream hydrogen and a stream of carbon dioxide, a portion of the hydrogen stream being recycled to the hydrocracking step.
  • the hydrogen necessary for the treatment of the charges is manufactured in the steam reformer by a contribution of natural gas generally present at the site where the charges are extracted.
  • This natural gas can be expensive because of the market or by transport to the relocated heavy oil production site.
  • the invention overcomes at least partially this disadvantage by using some or all of the light gases produced during the hydroconversion to produce hydrogen or part of the necessary hydrogen. These gases are produced in the reactors and can be extracted downstream of the different reaction capacities or just after each reaction capacity.
  • the invention describes a sequence of processes for treating hydrocarbons as described at the beginning of the text completely independently. This invention is particularly suitable for deposits located in hard-to-reach geographical areas.
  • the present invention relates to a sequence of two hydrocarbon treatment processes:
  • the first hydrocarbon hydroconversion treatment process (upstream) comprising at least one reaction chamber and preferably a succession of reaction chambers, the reaction or reactions occurring inside said chambers and involving at least one solid phase, at least one liquid phase and at least one gaseous phase, said upstream process being implemented in a "slurry" mode and / or bubbling bed.
  • the second process (downstream) of steam reforming comprising at least one reaction chamber and preferably a succession of reaction chambers, the reaction or reactions occurring inside said chambers which make it possible to produce a reagent, hydrogen, necessary for chemical reactions of the first.
  • the second downstream process comprises a first so-called pre-reforming step which makes it possible to convert at least partially, and preferably with a conversion greater than 95% by weight, hydrocarbons heavier than methane to methane, which increases the efficiency of the whole.
  • the sequence of these two processes allows the complex to be self-sufficient in hydrogen, with a low input of natural gas (generally less than 3% by weight relative to the feedstock for conversions of about 60% by weight of the 540 ° compounds. C + and generally less than 1% by weight relative to the feedstock for conversions of about 90% by weight of the compounds 540 ° C +), or even without external input of natural gas (other than for furnace burners).
  • the upstream hydrocarbon conversion process comprises a zone for contacting a liquid feedstock, a gaseous feedstock and solid particles constituting the solid phase, the said particles preferably having a catalytic activity.
  • Said solid particles may be dispersed in a suspension immersed in a liquid phase in a lower zone of the enclosure, then generally referred to as the Anglo-Saxon "slurry" reactor.
  • the catalytic agent then passes through the reaction zone without being separated from the liquid in the reactor.
  • the size of the particles of the catalytic phase formed in this type of process remains small enough that it is difficult to fluidize these particles in the reaction zone without drawing them with the liquid (generally the order of 100 microns, preferably less than 10 microns).
  • the catalyst (catalytic solid particles) is generally introduced continuously with the fresh feedstock into the reactor and consists of a soluble element containing one or more metals which can be sulphurated under the conditions of the feedstock. process.
  • Said solid particles may also be present in a bubbling bed.
  • the bubbling bed process employs a supported catalyst containing at least one metallic element: the catalytic action of which is in the form of sulphide, the size of which is such that the catalyst remains generally in the reactor.
  • the liquid velocity in the reactor makes it possible to fluidize this catalyst but does not make it possible to drive it outside the reaction zone with the liquid effluents. Continuous addition and removal of catalyst is possible and makes it possible to compensate for deactivation of the catalyst.
  • the upstream hydroconversion process is also implemented by combining the "slurry" mode and the bubbling bed by injecting the fine particles or precursors of fine particles at the level of the liquid feedstock upstream of the reactor and passing them through the reactor operating in a bubbling bed.
  • the catalyst contains molybdenum.
  • reactors operating according to the principles of slurry beds and bubbling beds and their main applications are for example described in "Chemical reagents, P. Trambouze, H. Van Landeghem and J. P. Wauquier, ed. Technip (1988) ".
  • the present invention finds, for example, its application in the conversion of a feed introduced into said chamber in the liquid form and containing hydrocarbons, said conversion being effected by reaction with a gaseous phase, comprising hydrogen (hydroconversion) in the presence of a solid phase which most often has a catalytic activity.
  • the sequence relates to a hydroconversion process, preferably carried out in a bubbling bed, followed by steam reforming of the purge gases at the level of the hydrogen purification included in the process. hydroconversion.
  • liquid charges resulting from a hydroconversion in a fixed bed such as those resulting from the HYV AHL® processes for the treatment of heavy materials developed by the Applicant;
  • liquid charges resulting from hydrotreating processes for ebullated bedloaders such as those resulting from the H-OIL® processes
  • solvent deasphalted oils for example propane, butane or pentane
  • decanted oils DO according to the initials of the English-language naming decanted OII
  • 3 residual tractions cracking processes which may contain catalyst fines suspensions (called “slurry” in English) and gas oils tractions particularly those obtained by vacuum distillation called according to the English terminology VGO (Vacuum Gas OiI).
  • They may also contain: - gas oil and heavy gas oil cuts from catalytic cracking generally having a distillation range of about 150 0 C to about 370 ° C or at 600 0 C or more than 600 0 C;
  • the fillers can also be formed by mixing these various fractions in any proportions.
  • the charges that are treated are atmospheric residues or residues under vacuum, or mixtures of these residues.
  • the treated feedstocks are crude oils (especially extra-heavy oils) or bitumens extracted from shale or oil sands deposits, or mixtures thereof.
  • fillers are characterized by the fact that they contain a significant content of heavy metals such as nickel or vanadium, the metal content being typically greater than 5 ppm and preferably between 20 and 1000 ppm and very preferably preferred between 50 and 500 ppm.
  • a charge containing such a heavy metal content is characteristic of a charge consisting of residues. Thus, given their property, these charges are called residues.
  • the residues are characterized by the fact that a fraction sludges at a temperature above 565 ° C, which can be evidenced by vacuum distillation of the residue or by modern techniques of simulated distillation by chromatography.
  • the fraction boiling at temperatures above 565 ° C. is generally greater than 10% by weight of the total fraction, preferably greater than 50% by weight.
  • these metals are deposited on the catalysts, accumulate on them and deactivate It must therefore regularly add catalyst fresh (without metals) to maintain catalytic activity.
  • This catalyst addition is easily effected if the reaction is carried out in a bubbling bed and / or in slurry. Indeed, the method in "slurry" mode and / or bubbling bed allows the addition of fresh catalyst containing no metals and the withdrawal of catalyst containing metals continuously.
  • These fillers are also characterized by the fact that they contain significant quantities of asphaltene, that is to say a content by weight greater than "0.5%, preferably a content of between 2 and 20% and of very preferably, between 3 and 15%.
  • First treatment zone (upstream) The operating conditions of the process operated in the first hydrocarbon treatment zone (upstream) are favorable conditions for hydroconversion, ie at a total pressure ranging from 80 to 500, bars, preferably from 100 to 500 bars, and very preferably from 100 to 200 bars with a hydrogen partial pressure ranging from 10 to 500 bars, preferably from 20 to 300 bars, with a temperature of 300 to 600 ° C. and preferably from 350 to 500 ° C, the contact taking place for a certain time necessary for the conversion of the residue, ranging from 5 min to 20 h, and preferably between 1 and 10 h.
  • the operating conditions of the process operated in the second zone of vapor-reforming downstream treatment are those conventionally used, that is to say generally a pressure of 10 to 50 bar absolute (preferably 25 bar) and a temperature increasing as and when required. as far as the conversion furnace is concerned, that is to say, in the case of vapor reforming, of 350 ° C. in the hydrogenation of the sulfur compounds, at 550 ° C. in the pre-reforming stage. and 850 ° C at the reforming furnace.
  • the invention relates to a method for treating a hydrocarbon feedstock comprising the sequencing of a first upstream hydroconversion process, comprising at least one reaction chamber, the reaction (s) occurring inside said chambers and involving at least one solid phase, at least one liquid phase and at least one gaseous phase, and a second downstream vapor-reforming process, comprising at least one reaction chamber.
  • the upstream process is carried out either in a "slurry" mode, or in a bubbling bed process, or in combination of the two modes.
  • said second downstream process comprises a first so-called pre-reforming step which allows to convert at least partially, and preferably with a conversion greater than 95% by weight, hydrocarbons heavier than methane to methane which increases the efficiency of the whole.
  • the upstream process comprises a zone for contacting a liquid feedstock, a gaseous feedstock and solid particles.
  • the solid particles are then dispersed in a suspension immersed in a liquid phase in a lower zone of the contacting zone (slurry reactor) or may be present in a bubbling bed, or are used by the combination of these two modes.
  • the method uses a supported catalyst containing at least one metal element.
  • the catalyst (catalytic solid particles) is generally introduced continuously with the fresh feedstock into the reactor and consists of a soluble element containing one or more metals which can be sulphurized in the process conditions.
  • the solid catalyst particles contain molybdenum.
  • the hydrocarbon feedstock is generally chosen from atmospheric residues, direct distillation vacuum residues, deasphalted residues, residues resulting from conversion processes, liquid hydrocarbon charges resulting from the liquefaction of coal, crude oils, bitumens extracted from shale or sand deposits bitumen, liquid feedstock from a fixed bed hydroconversion, liquid feedstock from ebullated bed hydrotreating processes, solvent deasphalted oil, single asphalt or diluted with a hydrocarbon fraction or a mixture of fractions hydrocarbons selected from the group consisting of light cutting oils, heavy cutting oils, decanted oils, residual fractions of cracking processes that may contain suspensions of catalyst fines (called "slurry” in English) and gasoil fractions -, gasoil cuts and heavy gas oils from catalytic cracking, the aromatic extracts obtained in the context of the manufacture of lubricating oils, the effluents of the biomass treatment process, alone or as a mixture
  • the operating conditions of the second hydrocarbon treatment zone (downstream) are generally a pressure of 10 to 50 bar absolute and a temperature increasing as one approaches the conversion furnace.
  • the part of the residual fractions of the effluents is recycled with the feedstock by fractionation by distillation of the effluent downstream of the last reaction zone of the upstream process, the recycling being then constituted of a part of the liquid obtained in bottom of column.
  • Figure 1 schematically illustrates an exemplary embodiment of the invention comprising the sequence of a bubbling bed hydroconversion unit and a vapor reforming purge gas from the hydrogen purification unit.
  • This vapo-reforming of the purge gases as well as a supplement of natural gas makes it possible to be in self-consumption of hydrogen on the hydroconversion / vapor-reforming complex. Depending on the level of conversion, the complex may even be self-sufficient in natural gas.
  • FIG. 1 illustrates the particular but non-limiting case of a hydroconversion unit 12 of a heavy hydrocarbon charge 10 in the presence of hydrogen (H 2 ) and of catalytic particles in one or more bubbling beds.
  • the effluent from the last reactor is separated into a liquid phase and a vapor phase into a separator tank.
  • the liquid phase containing the heavier compounds is then relaxed, cooled and sent to a train of separation not shown in Figure 1 (stream 14).
  • the vapor phase is relaxed, cooled and separated at several levels of successive pressures and temperatures.
  • the liquid flows recovered at each separation are grouped together in stream 14 mentioned above.
  • Part of the vapor phase is recycled to the reactors generally after an amine treatment to decrease the H2S content, while the remaining vapor phase is relaxed to about 30 bar absolute and purified to remove PH2S present (generally by an amine wash). Then, this gas is purified to obtain a gas with a hydrogen purity of about 99.5 mol% generally by an absorption-desorption process. The unpurified portion of this gas (stream 13) is sent to a vapor reforming process (16, 22, 21). This
  • the stream comprises light hydrocarbons, hydrogen, but also sulfur compounds.
  • the sulfur of these sulfur compounds are poisons for the vapor reforming catalyst and are transformed into H2S and then captured at level 16.
  • the quantity of hydrogen contained in the stream 13 is generally sufficient to transform these sulfur compounds, but an addition is possible if necessary.
  • Typical compounds contained in this stream 13 are
  • the furnaces of unit 22 are supplied with natural gas (stream 15) available on the site as well as air necessary for combustion (stream 19).
  • the outgoing vapor-reforming stream contains hydrogen in large amounts, but also carbon monoxide, carbon dioxide and light unprocessed hydrocarbons. It is therefore necessary to purify this stream 20 in a
  • Hydrogen purification unit (absorption-desorption type), unit 21.
  • the stream leaving the unit 21 consists of hydrogen with a purity of about 99.5 mol% which is then compressed and returned to the inlet. of the hydroconversion unit (stream 11, charge-hydrogen mixture).
  • stream 11 charge-hydrogen mixture
  • the stream 23 resulting from the purification of the hydrogen is returned to the level of the steam reforming furnaces in the unit 22.
  • This series of units makes it possible to treat the charges described by a hydroconversion process by being self-sufficient in hydrogen which is very advantageous for units installed on or near the production fields.
  • Example 1 illustrates the results obtained for a unit
  • Example 2 illustrates the application of the invention to a unit operating in hydroconversion at a conversion level of 90%.
  • Example 3 also illustrates a unit operating in 95% hydroconversion.
  • Example 1 unit operating at 60% conversion of 540 ° C +
  • RSV heavy vacuum residue
  • This Safaniya vacuum residue is treated in a pilot unit comprising two reactors in series operating in bubbling beds. Each reactor has a total volume of 2.24 liters.
  • This pilot unit simulates an industrial unit for the hydrotreating of vacuum residues in H-Oil® bubbling. Fluid flow is upward in this reactor as in the case of an industrial unit. Internal recycling of the liquid makes it possible to keep the catalyst boiling in the reactor.
  • composition of natural gas sent as a booster charge to the vapor reforming unit (operating at a pressure of 30 bar absolute) (% mol): Methane 96.0 Ethane 4.0
  • the natural gas flow rate represents 2.2% by weight of the fresh feed of the hydroconversion unit, ie approximately 35% by weight of the gas required for the production of hydrogen.
  • Example 2 Unit operating at 90% conversion of 540 ° C + The fuel gas from the hydroconversion unit represents, at this conversion level
  • This fuel gas contains hydrogen which is used during the conversion of sulfur compounds (and their capture) upstream of the pre-reformer and the reformer. A very small amount of natural gas is added.
  • composition of the gas mixture sent to the pre-reformer (purified gas fuel + natural gas + steam) is as follows (in% mol):
  • the amount of water vapor introduced before the pre-reformer is such that the molar ratio H2O / C before the reforming furnace is at least equal to 3.1.
  • the pressure of the steam reforming unit is 30 bar absolute.
  • composition of the gas at the pre reformer outlet (in% mol):
  • the gas is then introduced at the reforming furnace at a temperature of 840 ° C., the gas leaving the furnace has the following composition (mol%):
  • the fuel gas from the hydroconversion unit represents, at this conversion level, 11.8% by weight of the fresh feedstock.
  • This fuel gas contains hydrogen which is used during the conversion of sulfur compounds (and their uptake) upstream of the pre-reformer and the reformer.
  • composition of the gas mixture sent to the pre-reformer (purified gas oil + steam) is as follows (in% mol):
  • the amount of water vapor introduced before the pre-reformer is such that the molar ratio H2O / C before the reforming furnace is at least equal to 3.1.
  • the unit inlet pressure is 30 bar absolute.
  • the gas leaving the furnace has the following composition (% mol):
  • the vapor reforming of the fuel gas resulting from the hydroconversion process allows the complex to be self-sufficient in hydrogen without the external input of natural gas (other than for furnace burners).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

L'invention concerne un procédé de traitement d'une charge d'hydrocarbures comprenant l'enchaînement d'un premier procédé amont de traitement d'hydroconversion d'hydrocarbures, comprenant au moins une enceinte réactionnelle, la ou les réactions se produisant à l'intérieur desdites enceintes et mettant enjeu au moins une phase solide, au moins une phase liquide et au moins une phase gazeuse, et d'un deuxième procédé aval de vaporéformage , comprenant au moins une enceinte réactionnelle, caractérisé en ce que ledit procédé amont est mis en oeuvre en mode 'slurry' et/ou en lit bouillonnant et en ce que ledit procédé aval comprend une première étape de conversion au moins partielle des hydrocarbures plus lourds que le méthane en méthane dite étape de pre-réformage et la ou les réactions se produisant à l'intérieur desdites enceintes du procédé aval permettent de fabriquer un réactif, l'hydrogène, nécessaire aux réactions chimiques du premier.

Description

ENCHAÎNEMENT DE PROCÉDÉS D'HYDROCONVERSION ET DE RÉFORMAGE A LA VAPEUR EN VUE D'OPTIMISER LA PRODUCTION D'HYDROGENE SUR DES CHAMPS DE PRODUCTION
Domaine de l'invention
L'invention concerne les domaines de la conversion et/ou du traitement des résidus issus de la distillation du pétrole, des charges liquides d'hydrocarbures issues de la liquéfaction du charbon et des pétroles bruts.
Objet de l'invention
La présente invention concerne un enchaînement de deux procédés de traitement d'hydrocarbures :
- le premier (hydroconversion ) comprenant au moins une enceinte réactionnelle et de préférence une succession d'enceintes réactionnelles, la ou les réactions, se produisant à l'intérieur desdites enceintes et mettant enjeu au moins une phase solide, au moins une phase liquide et au moins une phase gazeuse,
- le deuxième (vaporéformage ) comprenant au moins une enceinte réactionnelle et de préférence une succession d'enceintes réactionnelles, la ou les réactions se produisant à l'intérieur desdites enceintes permettent de fabriquer un réactif nécessaire aux réactions chimiques du premier.
État de la technique
L'exploitation des pétroles dits « non-conventionnels » est en plein développement et continuera de croître dans les futures années. Ces produits nécessitent d'être traités sur le lieu de ieur extraction. Ces lieux sont en général dans des zones éloignées de zones industrielles existantes, il est donc très recherché de proposer des enchaînements de procédés qui permettent de transformer ces matières sans apport externe de fluides induisant un coût de transport et la construction d'infrastructures. Pour valoriser ces ressources alternatives (sables bitumineux, bruts extra-lourds), c'est à dire soit produire des bruts dits synthétiques transportables par oléoducs, soit produire des produits finis, de fortes quantités d'hydrogène sont nécessaires. Cette production d'hydrogène nécessite non seulement des investissements en général coûteux, mais peut en plus consommer une partie de la charge exploitée, diminuant le rendement final du complexe.
Ainsi dans le brevet US 3972803, la partie la plus lourde produite après un procédé d'hydroconversion en lit bouillonnant (fond de la colonne sous vide) est envoyée à une unité de gaséification de résidu pour produire des hydrocarbures légers qui servent à alimenter les fours d'une unité de vaporéformage. Cette unité de vaporéformage est destinée à produire de l'hydrogène à partir des gaz de purge de l'unité d'hydroconversion. Bien que séduisant, cet enchaînement nécessite un investissement très lourd (gaséifîcation) et consomme une partie des produits liquides de l'unité d'hydroconversion comme charge du gaséifieur.
Le brevet US 4526676 emploie comme charge de l'unité de gaséifîcation une combinaison d'hydrocarbures légers sous forme gazeuse, ainsi que la partie la plus lourde produite par le procédé (fond de la colonne sous vide). Comme dans le brevet précédent, une gaséifîcation est nécessaire. Pour alimenter cette unité, une unité dédiée de purification d'oxygène est nécessaire, ce qui rend plus complexe l'installation d'un tel complexe sur le site d'extraction des bruts qui, rappelons-le, sont en général dans des lieux difficiles d'accès, éloignés des centres industriels et des nœuds de communication. Le brevet GB 1 092 420 décrit un procédé pour la conversion de distillât hydrocarboné en gaz valorisables. Le procédé combine au moins une étape d'hydrocraquage avec deux étapes de gazéification, ces deux étapes de gazéification étant des étapes de vapo-réformage productrice d'hydrogène. L'effluent sortant de la zone d'hydrocraquage est séparé en deux fractions : une première fraction plus légère passe dans une première zone de vapo reformage pour donner un gaz riche en méthane et la deuxième fraction plus lourde passe dans une deuxième zone de vaporéformage pour donner un gaz riche en H2 dont une partie est recyclé dans la zone d'hydrocraquage.
Le brevet US 3 552 924 décrit un procédé de production d'hydrogène à partir d'un courant de raffinage en excès comportant des composés ayant un nombre d'atome de carbone supérieur à 6 jusqu'à des huiles lourdes. La charge est hydrocraquée par ajout d'hydrogène dans une zone d'hydrocraquage. L'effluent d'hydrocraquage est refroidi de manière à condenser les hydrocarbures ayant un nombre d'atomes de carbone supérieur à 6. La fraction vapeur résultante passe sur un catalyseur de vapo reformage à travers une zone de vapo reformage pour produire du monoxyde de carbone, du dioxyde de carbone et de l'hydrogène, cet effluent passe alors à travers une étape de conversion qui transforme le monoxyde de carbone en dioxyde de carbone et en hydrogène et l'effluent gazeux issu de la réaction de conversion est séparé en un courant hydrogène et en un courant de dioxyde de carbone, une partie du courant d'hydrogène étant recyclé dans l'étape d'hydrocraquage.
Dans le cas d'autres solutions existantes décrites dans la littérature (par exemple Biswas A K3 Chem Eng World VlO N.4 98-100 APR 1975), l'hydrogène nécessaire au traitement des charges est fabriqué au niveau du vaporéformeur par un apport de gaz naturel généralement présent sur le site où les charges sont extraites. Ce gaz naturel peut être cher en raison du marché ou par le transport sur le site délocalisé de production d'huile lourde. L'invention permet de remédier au moins partiellement à cet inconvénient en utilisant une partie ou la totalité des gaz légers produits pendant l'hydroconversion pour fabriquer l'hydrogène ou une partie de l'hydrogène nécessaire. Ces gaz sont produits dans les réacteurs et peuvent être extraits en aval des différentes capacités réactionnelles ou juste après chaque capacité réactionnelle.
De manière surprenante, les travaux de recherche de la demanderesse l'ont en effet conduite à trouver qu'un enchaînement de procédés de traitement d'hydrocarbures, c'est-à-dire un enchaînement hydroconversion/vaporéformage, dans lequel la ou les réactions se produisant à l'intérieur des enceintes du deuxième procédé permettent de fabriquer un réactif, l'hydrogène, nécessaire aux réactions chimiques du premier procédé, permettait de réduire les coûts de traitement des résidus issus de la distillation du pétrole, des charges liquides d'hydrocarbures issues de la liquéfaction du charbon, des pétroles bruts en traitant les hydrocarbures de manière autonome.
L'enchaînement de ces deux procédés permet en effet au complexe d'être auto- suffisant en hydrogène, avec un faible apport de gaz naturel, voire sans apport extérieur de gaz naturel (autre que pour les brûleurs des fours).
Description détaillée du procédé selon l'invention
L'invention décrit un enchaînement de procédés permettant de traiter des hydrocarbures tels que décrit au début du texte de manière complètement autonome. Cette invention se prête particulièrement bien aux gisements situés dans des zones géographiques difficilement accessibles.
La présente invention concerne un enchaînement de deux procédés de traitements d'hydrocarbures :
- le premier procédé (amont) de traitement d'hydroconversion d'hydrocarbures comprenant au moins une enceinte réactionnelle et de préférence une succession d'enceintes réactionnelles, la ou les réactions se produisant à l'intérieur desdites enceintes et mettant en jeu au moins une phase solide, au moins une phase liquide et au moins une phase gazeuse, ledit procédé amont étant mis en oeuvre selon un mode "slurry" et/ou lit bouillonnant. Le deuxième procédé (aval) de vaporéformage, comprenant au moins une enceinte réactionnelle et de préférence une succession d'enceintes réactionnelles, la ou les réactions se produisant à l'intérieur desdites enceintes qui permettent de fabriquer un réactif, l'hydrogène, nécessaire aux réactions chimiques du premier. Le deuxième procédé aval comprend une première étape dite de pre-réformage qui permet de convertir au moins partiellement, et de préférence avec une conversion supérieure à 95 % poids, les hydrocarbures plus lourds que le méthane en méthane ce qui augmente l'efficacité de l'ensemble.
L'enchaînement de ces deux procédés permet au complexe d'être auto suffisant en hydrogène, avec un faible apport de gaz naturel (généralement inférieur à 3 % poids par rapport à la charge pour des conversions d'environ 60 % poids des composés 540°C+ et généralement inférieur à 1 % poids par rapport à la charge pour des conversions d'environ 90 % poids des composés 540°C+), voire sans apport extérieur de gaz naturel (autre que pour les brûleurs des fours).
Selon l'invention, le procédé amont de conversion d'hydrocarbures comprend une zone de mise en contact d'une charge liquide, d'une charge gazeuse et de particules solides constituant la phase solide, lesdites particules présentant de préférence une activité catalytique.
Lesdites particules solides pourront être dispersées au sein d'une suspension immergée dans une phase liquide dans une zone inférieure de l'enceinte, alors généralement appelée selon le terme anglo-saxon réacteur "slurry". L'agent catalytique traverse alors la zone réactionnelle sans être séparé du liquide dans le réacteur. Bien que cela ne soit pas connu avec précision, la taille des particules de la phase catalytique formées dans ce type de procédé reste suffisamment petite pour qu'il soit difficile de fiuidiser ces particules dans la zone réactionnelle sans les entraîner avec le liquide (généralement de l'ordre de 100 μm, de préférence inférieure à 10 μm). Dans ce mode de réalisation en réacteur « slurry », le catalyseur (particules solides catalytiques) est généralement introduit en continu avec la charge fraîche dans le réacteur et est constitué d'un élément soluble contenant un ou plusieurs métaux pouvant se sulfurer dans les conditions du procédé.
Lesdites particules solides pourront aussi être présentes au sein d'un lit bouillonnant. Le procédé en lit bouillonnant met en œuvre un catalyseur supporté, contenant au moins un élément métallique :dont l'action catalytique s'effectue sous la forme de sulfure, dont la taille est telle que le catalyseur reste globalement dans le réacteur. La vitesse liquide dans le réacteur permet de fiuidiser ce catalyseur mais ne permet pas d'entraîner celui ci à l'extérieur de la zone réactionnelle avec les effluents liquides. L'ajout et le soutirage de catalyseur en continu est possible et permet de compenser la désactivation du catalyseur.
Le procédé amont d'hydroconversion est aussi mis en oeuvre par la combinaison du mode "slurry" et du lit bouillonnant en injectant les particules fines ou précurseurs de particules fines au niveau de la charge liquide en amont du réacteur et en les faisant passer dans le réacteur fonctionnant en lit bouillonnant. De manière très préférée, le catalyseur contient du molybdène.
Des exemples de réacteurs fonctionnant selon les principes propres aux lits en suspension (slurry) et aux lits bouillonnants ainsi que leurs principales applications sont par exemple décrits dans « Chemical reactors, P. Trambouze, H. Van Landeghem et J.P. Wauquier, éd. Technip (1988) ».
Plus particulièrement mais non limitativement, la présente invention trouve par exemple son application dans la conversion d'une charge introduite dans ladite enceinte sous la forme liquide et contenant des hydrocarbures, ladite conversion s 'effectuant par réaction avec une phase gazeuse, comprenant de l'hydrogène (hydroconversion) en présence d'une phase solide qui présente le plus souvent une activité catalytique.
Selon un mode de réalisation très préféré, l'enchaînement concerne un procédé d'hydroconversion, réalisé de préférence en lit bouillonnant, suivi d'un réformage à la vapeur des gaz de purge au niveau de la purification d'hydrogène incluse dans le procédé d'hydroconversion.
Charges
Les charges que l'on traite dans le cadre de la présente invention sont choisies parmi :
- les résidus atmosphériques ;
- les résidus sous vide de distillation directe ; - les résidus désasphaltés ;
- les résidus issus de procédé de conversion tels que par exemple ceux provenant du coking ;
- les charges liquides d'hydrocarbures issues de la liquéfaction du charbon ;
- les pétroles bruts (notamment extra-lourds) ; - les bitumes extraits des gisements de schistes ou sables bitumineux ;
- les charges liquides issues d'une hydroconversion en lit fixe tels que celles issues des procédés HYV AHL® de traitement des lourds mis au point par la demanderesse ;
- les charges liquides issues des procédés d'hydrotraitement des lourds en lit bouillonnant tels que celles issues des procédés H-OIL® ; - les huiles désasphaltées au solvant par exemple au propane, au butane, ou au pentane ;
- les asphaltes (seuls ou en mélange) qui proviennent habituellement du désasphaltage de résidus sous vide de distillation directe ou de résidus sous vide des procédés H-OIL® ou HYV AHL®, seuls ou dilués par une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées choisies dans le groupe formé par les huiles de coupe légère (LCO selon les initiales de la dénomination anglo-saxonne de Light Cycle OiI), les huiles de coupe lourde (HCO selon les initiales de la dénomination anglo-saxonne de Heavy Cycle OiI)5 les huiles décantées (DO selon les initiales de la dénomination anglo-saxonne de Decanted OiI)3 les tractions résiduelles des procédés de craquage pouvant contenir des suspensions de fines de catalyseur (appelées « slurry » en anglais) et les tractions gazoles notamment celles obtenues par distillation sous vide dénommée selon la terminologie anglo-saxonne VGO (Vacuum Gas OiI).
Elles peuvent également contenir : - des coupes gazoles et gazoles lourds provenant du cracking catalytique ayant en général un intervalle de distillation d'environ 1500C à environ 370°C ou encore à 6000C ou à plus de 600 0C ;
- des extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes ; - des efrluents de procédé de traitement de biomasse.
Les charges peuvent aussi être formées par mélange de ces diverses fractions dans n'importe quelles proportions.
Selon la présente invention, les charges que l'on traite sont des résidus atmosphériques ou des résidus sous vide, ou des mélanges de ces résidus. Selon une autre préférence, les charges traitées sont des pétroles bruts (notamment pétroles extra-lourds) ou des bitumes extraits des gisements de schistes ou sables bitumineux, ou des mélanges de ces derniers.
Ces charges sont caractérisées par le fait qu'elles contiennent une teneur non négligeable en métaux lourds tels que le nickel ou le vanadium, la teneur en métaux étant typiquement supérieure à 5 ppm et de manière préférée comprise entre 20 et 1000 ppm et de manière très préférée comprise entre 50 et 500 ppm. Une charge contenant une telle teneur en métaux lourds est caractéristique d'une charge constituée de résidus. Ainsi, compte tenu de leur propriété, ces charges sont appelées résidus.
Les résidus sont caractérisés par le fait qu'une fraction boue à une température supérieure à 565°C, ce qui peut être mis en évidence par distillation sous vide du résidu ou par les techniques modernes de distillation simulée par chromatographie. La fraction bouillant à des températures supérieures à 565°C est généralement supérieure à 10% poids de la fraction totale, préférentiellement supérieure à 50% poids.
Lors du processus d'hydroconversion, ces métaux se déposent sur les catalyseurs, s'accumulent sur ceux ci et le désactivent II faut donc régulièrement ajouter du catalyseur frais (sans métaux) pour maintenir une activité catalytique. Cet ajout de catalyseur s'effectue facilement si la réaction s'effectue en lit bouillonnant et/ou en slurry. En effet, le procédé en mode "slurry" et/ou lit bouillonnant permet l'ajout de catalyseur frais ne contenant pas de métaux et le soutirage de catalyseur contenant des métaux en continu. Ces charges sont également caractérisées par le fait qu'elles contiennent des quantités non négligeables d'asphaltène, c'est-à-dire une teneur en poids supérieure à „0.5 %, de manière préférée une teneur comprise entre 2 et 20% et de manière très préférée, comprise entre 3 et 15%.
Il est donc important de prendre des précautions pour limiter les phénomènes de cokage du catalyseur qui conduisent également à sa désactivation. A ces fins, il est avantageux de limiter au maximum l'acidité du support catalytique en mettant en oeuvre des support d'acidité faible ou modéré telle que la majorité des alumines.
Conditions opératoires
Première zone de traitement (amont) Les conditions opératoires du procédé opéré dans la première zone de traitement d'hydrocarbures (amont) sont des conditions favorables à l'hydroconversion, c'est à dire à une pression totale pouvant aller de 80 à 500 , bars, préférentiellement de 100 à 500 bars, et de manière très préférée, de 100 à 200 bars avec une pression partielle d'hydrogène variant de 10 à 500 bars, préférentiellement de 20 à 300 bars, avec une température de 300 à 600°C, et préférentiellement de 350 à 500°C, le contact s'effectuant pendant un certain temps nécessaire à la conversion du résidu, allant de 5 min à 20 h, et préférentiellement compris entre 1 et 10 h . En fonction des applications, on pourra envisager de recycler avec la charge une partie des fractions lourdes des effluents ayant un point d'ébullition sensiblement égal ou supérieur à celui de la charge grâce à un fractionnement par distillation par exemple de l'effluent en aval de la zone réactionnelle ou du procédé (en aval de la dernière zone réactionnelle du premier procédé).
Deuxième zone de traitement (aval)
Les conditions opératoires du procédé opéré dans la deuxième zone de traitement aval de vapo-réformage sont celles classiquement utilisées, c'est à dire généralement une pression de l0 à 50 bars absolus (de préférence 25 bars) et une température augmentant au fur et à mesure que l'on se rapproche du four de conversion, c'est à dire, dans le cas du vapo- réformage, de 350 °C au niveau de l'hydrogénation des composés soufrés, à 550°C au niveau du pré-réformage et de 850°C au niveau du four de réformage. Résumé de l'invention
- L'invention concerne un procédé de traitement d'une charge d'hydrocarbures comprenant l'enchaînement d'un premier procédé amont d'hydroconversion, comprenant au moins une enceinte réactionnelle, la ou les réactions se produisant à l'intérieur desdites enceintes et mettant enjeu au moins une phase solide, au moins une phase liquide et au moins une phase gazeuse, et d'un deuxième procédé aval de vapo-réformage, comprenant au moins une enceinte réactionnelle. Le procédé amont est mis en oeuvre soit selon un mode "slurry", soit selon un procédé en lit bouillonnant, soit selon la combinaison des deux modes. Dans le procédé aval, la ou les réactions se produisant à l'intérieur desdites enceintes permettent de fabriquer un réactif nécessaire, l'hydrogène, aux réactions chimiques du premier, et ledit deuxième procédé aval comprend une première étape dite de pre-réformage qui permet de convertir au moins partiellement, et de préférence avec une conversion supérieure à 95 % poids, les hydrocarbures plus lourds que le méthane en méthane ce qui augmente l'efficacité de l'ensemble.
De préférence, le procédé amont comprend une zone de mise en contact d'une charge liquide, d'une charge gazeuse et de particules solides. Les particules solides sont alors dispersées au sein d'une suspension immergée dans une phase liquide dans une zone inférieure de la zone de mise en contact (réacteur slurry) ou peuvent être présentes au sein d'un lit bouillonnant, ou sont mises en oeuvre par la combinaison de ces deux modes.
De manière préférentielle, dans le mode de réalisation en lit bouillonnant, le procédé met en œuvre un catalyseur supporté et contenant au moins un élément métallique.
-X Dans le mode de réalisation en réacteur « slurry », le catalyseur (particules solides catalytiques) est généralement introduit en continu avec la charge fraîche dans le réacteur et est constitué d'un élément soluble contenant un ou plusieurs métaux pouvant se sulfurer dans les conditions du procédé.
De manière très préférée, les particules solides de catalyseur contiennent du molybdène. La charge d'hydrocarbures est généralement choisie parmi les résidus atmosphériques, les résidus sous vide de distillation directe, les résidus désasphaltés, les résidus issus de procédé de conversion, les charges liquides d'hydrocarbures issues de la liquéfaction du charbon, les pétroles bruts, les bitumes extraits des gisements de schistes ou sables bitumineux , les charges liquides issues d'une hydroconversion en lit fixe, les charges liquides issues des procédés d'hydrotraitement des lourds en lit bouillonnant, les huiles désasphaltées au solvant, les asphaltes -seuls ou dilués par une fraction hydrocarbonée ou un mélange de fractions hydrocarbonées choisies dans le groupe formé par les huiles de coupe légère, les huiles de coupe lourde, les huiles décantées, les fractions résiduelles des procédés de craquage pouvant contenir des suspensions de fines de catalyseur (appelées « slurry » en anglais) et les fractions gazoles-, les coupes gazoles et gazoles lourds provenant du cracking catalytique, les extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes, les effluents de procédé de traitement de biomasse, seuls ou en mélange Les conditions opératoires de la première zone de traitement d'hydrocarbures (amont) sont en général une pression totale de 80 à 500 bars, avec une pression partielle d'hydrogène variant de 10 à 500 bars, une température de 300 à 6000C, le contact s'effectuant pendant un temps allant de 5 min à 20h.
Les conditions opératoires de la deuxième zone de traitement d'hydrocarbures (aval) sont en général une pression de 10 à 50 bars absolus et une température augmentant au fur et à mesure que l'on se rapproche du four de conversion.
De manière avantageuse, on recycle avec la charge une partie des fractions résiduelles des effluents grâce à un fractionnement par distillation de l'effluent en aval de la dernière zone réactionnelle du procédé amont, le recyclage étant alors constitué d'une partie du liquide obtenu en fond de colonne.
Présentation des figures
La Figure 1 illustre schématiquement un exemple de réalisation de l'invention comprenant l'enchaînement d'une unité d'hydroconversion en lit bouillonnant et un vapo- réformage du gaz de purge issu de l'unité de purification d'hydrogène. Ce vapo-réformage des gaz de purge ainsi qu'un appoint de gaz naturel, permet d'être en autoconsommation d'hydrogène sur le complexe hydroconversion / vapo-réformage. En fonction du niveau de conversion, le complexe peut même être auto-suffisant en gaz naturel.
Description détaillée de la Figure 1
La Figure 1 illustre le cas particulier mais non limitatif d'une unité d'hydroconversion 12 d'une charge lourde d'hydrocarbures 10 en présence d'hydrogène (H2) et de particules catalytiques au sein de un ou plusieurs lits bouillonnants. L'effluent du dernier réacteur est séparé en une phase liquide et une phase vapeur dans un ballon séparateur. La phase liquide contenant les composés les plus lourds est ensuite détendue, refroidie et envoyée à un train de séparation non représenté sur la Figure 1 (flux 14). La phase vapeur est détendue, refroidie et séparée à plusieurs niveaux de pressions et de températures successifs. Les flux liquides récupérés au niveau de chaque séparation étant regroupés dans le flux 14 cité plus haut. Une partie de la phase vapeur est recyclée dans les réacteurs généralement après un traitement aux 5 aminés pour diminuer la teneur en H2S, tandis que la phase vapeur restant est détendue jusqu'à environ 30 bar absolus et purifiée pour enlever PH2S présent (en général par un lavage aux aminés). Puis, ce gaz est purifié pour obtenir un gaz d'une pureté d'hydrogène d'environ 99.5 % mol généralement par un procédé d'absorption-désorption. La partie non purifiée de ce gaz (flux 13) est envoyé vers un procédé de vapo-réformage (16, 22, 21). Ce
10 flux comporte des hydrocarbures légers, de l'hydrogène mais aussi des composés soufrés. Le soufre de ces composés soufrés sont des poisons pour le catalyseur de vapo-réformage et sont transformés en H2S puis captés au niveau 16 . La quantité d'hydrogène contenue dans le flux 13 est généralement suffisante pour transformer ces composés soufrés mais un ajout est possible si nécessaire. Les composés typiques contenus dans ce flux 13 sont des
15 hydrocarbures légers (Cl à C5, mais aussi des traces de composés soufrés par exemple des mercaptans de points d'ébullition voisins des composés hydrocarbonés majoritaires). Mais ce flux peut aussi n'être constitué que de composés Cl à C3 ou Cl à C2 voire même Cl seul.
Dans le cas décrit à la figure 1, les hydrocarbures légers débarrassés des composés soufrés (flux 17) sont envoyés au pré réformeur suivi du vapo-réformeur (inclus dans l'unité
20 22) ainsi que du gaz naturel (flux 18) et de la vapeur d'eau (flux 24). Les fours de l'unité 22 sont alimentés par du gaz naturel (flux 15) disponible sur le site ainsi que de l'air nécessaire à la combustion (flux 19). Le flux 20 sortant du vapo-réformage contient de l'hydrogène en grandes quantités, mais aussi du monoxyde de carbone, du dioxide de carbone et des hydrocarbures légers non transformés. Il est donc nécessaire de purifier ce flux 20 dans une
25 unité de purification d'hydrogène (type absorption-désorption), unité 21. Le flux 25 sortant de l'unité 21 est constitué d'hydrogène avec une pureté d'environ 99.5 % mol qui est alors comprimé puis renvoyé à l'entrée de l'unité d'hydroconversion (flux 11, mélange charge- hydrogène). Au niveau de l'unité 21, le flux 23 résultant de la purification de l'hydrogène est renvoyé au niveau des fours de vapo-réformage dans l'unité 22.
30. Cet enchaînement d'unités permet de traiter les charges décrites par un procédé d'hydroconversion en étant auto suffisant en hydrogène ce qui est très avantageux pour des unités installées sur ou près des champs de production.
La comparaison entre les trois exemples qui suivent permet de montrer les avantages liés à la présente invention. Ainsi, l'Exemple 1 illustre les résultats obtenus pour une unité
35 d'hydroconversion fonctionnant à un niveau de conversion des composés ayant un point de bulle supérieur à 54O0C sous pression atmosphérique de 60 %, l'Exemple 2 illustre l'application de l'invention à une unité fonctionnant en hydroconversion à un niveau de conversion de 90 %. L'Exemple 3 illustre aussi une unité fonctionnant en hydroconversion à 95 %. Ces exemples sont issus d'expérimentations réalisées dans des unités pilotes fonctionnant en lit bouillonnant. D'autres expérimentations ont été réalisées en réacteur de type slurry et les mêmes résultats ont été obtenus.
Exemple 1 : unité fonctionnant à 60 % de conversion des 540°C+
On traite un résidu sous vide (RSV) lourd d'origine du Golfe Persique. La densité à 15°C est de 1.048. Tous les rendements sont calculés à partir d'une base 100 (en masse) de RSV.
On traite ce résidu sous vide Safaniya dans une unité pilote comportant deux réacteurs en série fonctionnant en lits bouillonnants. Chaque réacteur à un volume total de 2,24 litres.
Cette unité pilote simule une unité industrielle d'hydrotraitement de résidu sous vide en ht bouillonnant H-Oil®. L'écoulement des fluides est ascendant dans ce réacteur comme dans le cas d'une unité industrielle. Un recyclage interne du liquide permet de maintenir le catalyseur en ébullition dans le réacteur.
Les conditions opératoires de mise en œuvre sont les suivantes :
- Débit de charge : 1.4 1/h - Pression totale : 156 bars absolus
- Débit d'hydrogène : 840 1/h (soit environ 13 1/h aux conditions)
- température dans les réacteurs : 410 0C
- Débit de liquide recyclé au réacteur : 30 1/h
Les résultats présentés ci-dessous sont exprimés en pourcentage massique par rapport à la charge fraîche :
Consommation d'hydrogène nécessaire à la conversion 1.6 %
Fuel gaz produit au niveau de l'unité d'hydroconversion 3.5 % Composition du fuel gaz (provenant de l'unité d'hydroconversion) envoyé à l'unité de vapo-réformage ( % mol) après purification et séparation des produits soufrés : Méthane 28.4 %
Ethane 13.3 % Propane 12.2 %
Butane 7.8 %
Hydrogène 38.3 %
TOTAL 100.0 %
Composition du gaz naturel envoyé comme charge d'appoint à l'unité de vapo- réformage (fonctionnant à une pression de 30 bars absolus) (% mol) : Méthane 96.0 Ethane 4.0
Pour assurer la production d'hydrogène nécessaire au niveau de conversion recherché, le débit de gaz naturel d'appoint représente 2.2 % poids de la charge fraîche de l'unité d'hydroconversion soit environ 35 % poids du gaz nécessaire à la production d'hydrogène.
La production d'hydrogène issue du vapo-réformage du fuel gaz provenant de Phydroconversion et d'un appoint de gaz naturel permet donc au complexe d'être auto- suffisant à ce niveau de conversion.
Exemple 2 : Unité fonctionnant à 90 % de conversion des 540°C+ Le fuel gaz issu de l'unité d'hydroconversion représente, à ce niveau de conversion
9.5 % poids de la charge fraîche de l'unité d'hydroconversion. Ce fuel gaz contient de l'hydrogène qui est utilisé lors de la conversion des composés soufrés (et leur captation) en amont du pre-réformeur et du réformeur. Il est ajouté une très faible quantité de gaz naturel.
La composition du mélange de gaz envoyés au pré-réformeur (fuel gaz purifié + gaz naturel + vapeur d'eau) est la suivante (en % mol) :
Méthane 6.7 %
Ethane 2.9 %
Propane 2.6 %
Butane 1.7 %
Vapeur d'eau 77.9 %
Hydrogène 8.2 %
TOTAL 100. % La quantité de vapeur d'eau introduite avant le pré-réformeur est telle que le rapport molaire H2O/C avant le four de réformage soit au moins égal à 3.1. La pression de l'unité de vapo-réformage est de 30 bar absolus.
La composition du gaz en sortie de pre réformeur (les réactions ont lieu à 550°C) est (en % mol) :
Méthane 20.0 %
Ethane Traces
Propane Traces
Butane Traces Vapeur d'eau 62.3 %
Hydrogène 13.3 %
CO2 . 4.4 %
TOTAL 100.0 %
Le gaz est ensuite introduit au niveau du four de réformage à une température de 8400C, le gaz en sortie de four présente la composition suivante (% mol) :
Méthane 3.7 %
Ethane Traces
Propane Traces
Butane Traces
Vapeur d'eau 33.7 %
Hydrogène 47.4 %
CO 9.7 %
CO2 5.5 %
TOTAL 100.0 % Après purification de l'effluent de sortie du four de réformage, l'hydrogène produit représente 2.7 % poids de la charge considérée assurant l'autoconsommation de l'hydro- conversion en hydrogène.
A 90 % de conversion des composés 5400C +, une consommation de seulement 0.5 % poids (par rapport à la charge fraîche à l'entrée de l'hydroconversion) de gaz naturel permet d'être auto suffisant en hydrogène au niveau du complexe (soit environ 3 % poids du gaz nécessaire à la production d'hydrogène).
Exemple 3 : Unité fonctionnant à 95 % de conversion des 54O0C+
Le fuel gaz issu de l'unité d'hydroconversion représente, à ce niveau de conversion 11.8 % poids de la charge fraîche. Ce fuel gaz contient de l'hydrogène qui est utilisé lors de la conversion des composés soufrés (et leur captation) en amont du pre-réformeur et du réformeur.
La composition du mélange de gaz envoyés au pre-réformeur (fuel gaz purifié + vapeur d'eau) est la suivante (en % mol) :
Méthane 6.2 %
Ethane 2.9 %
Propane 2.7 %
Butane 1.7 %
Vapeur d'eau 78.1 %
Hydrogène 8.4 %
TOTAL 100.0 %
La quantité de vapeur d'eau introduite avant le pré-réformeur est telle que le rapport molaire H2O/C avant le four de réformage soit au moins égal à 3.1. La pression en entrée d'unité est de 30 bars absolus.
La composition du gaz en sortie de pre réformeur (les réactions ont heu à 5500C) est
(en % mol) :
Méthane 20.0 %
Ethane Traces
Propane Traces
Butane Traces
Vapeur d'eau 62.2 %
Hydrogène 13.5 %
CO2 4.3 %
TOTAL 100.0 % Le gaz est ensuite introduit au niveau du four de réformage à une température de
84O0C, le gaz en sortie de four présente la composition suivante (% mol) :
Méthane 3.7 %
Ethane Traces
Propane Traces
Butane Traces
Vapeur d'eau 33.7 %
Hydrogène 47.4 %
CO 9.7 %
CO2 5.5 % TOTAL 100.0 % Après purification de l'effluent de sortie du four de réformage, l'hydrogène produit représente 3.2 % poids de la charge considérée assurant" l'autoconsommation de F hydroconversion en hydrogène.
A 95 % de conversion des composés 540°C +, le vapo-réformage du fuel gaz issu du procédé d'hydroconversion permet au complexe d'être auto suffisant en hydrogène sans apport extérieur de gaz naturel (autre que pour les brûleurs des fours).

Claims

REVENDICATIONS
1. Procédé de traitement d'une charge d'hydrocarbures comprenant l'enchaînement d'un premier procédé amont d'hydroconversion , comprenant au moins une enceinte réactionnelle, la ou les réactions se produisant à l'intérieur desdites enceintes et mettant en jeu au moins une phase solide, au moins une phase liquide et au moins une phase gazeuse, et d'un deuxième procédé aval de vapo-réformage, comprenant au moins une enceinte réactionnelle, caractérisé en ce que ledit procédé amont est mis en oeuvre en mode ''slurry'' et/pu en lit bouillonnant et en ce que ledit procédé aval comprend une première étape de conversion au moins partielle des hydrocarbures plus lourds que le méthane en méthane dite étape de pre-réformage et la ou les réactions se produisant à l'intérieur desdites enceintes du procédé aval permettent de fabriquer un réactif, l'hydrogène, nécessaire aux réactions chimiques du premier.
2. Procédé selon l'une des revendications précédentes dans lequel le procédé amont comprend une zone de mise en contact d'une charge liquide, d'une charge gazeuse et de particules solides.
3. Procédé selon les revendications 1 ou 2 selon lequel les particules solides mises en oeuvre en réacteur « slurry » sont des particules catalytiques introduites en continu avec la charge fraîche dans le réacteur et sont constituées d'un élément soluble contenant un ou plusieurs métaux pouvant se sulfurer dans les conditions du procédé.
4. Procédé selon les revendications 1 ou 2 fonctionnant en lit bouillonnant qui met en oeuvre un catalyseur supporté et contenant au moins un élément métallique.
5. Procédé selon l'une des revendications précédentes dans lequel les particules solides de catalyseur contiennent du molybdène.
6. Procédé selon l'une des revendications précédentes dans lequel la charge d'hydrocarbure contient une teneur en métaux lourds supérieure à 5 ppm.
7. Procédé selon la revendication 6 dans lequel la charge d'hydrocarbure contient une teneur en métaux lourds comprise entre 20 et 1000 ppm.
8. Procédé selon les revendications 6 ou 7 dans lequel la charge d'hydrocarbure contient une teneur en métaux lourds comprise entre 50 et 500 ppm.
9. Procédé selon l'une des revendications 7 à 8 dans lequel la charge d'hydrocarbures est choisie parmi les résidus atmosphériques, les résidus sous vide de distillation directe, les résidus désasphaltés, les résidus issus de procédé de conversion, les pétroles bruts, les bitumes extraits des gisements de schistes ou sables bitumineux, les charges liquides issues d'une hydroconversion en lit fixe, les charges liquides issues des procédés d'hydrotraitement des lourds en lit bouillonnant, les huiles désasphaltées au solvant, les asphaltes seuls ou dilués par une traction hydrocarbonée ou un mélange de fractions hydrocarbonées choisies dans le groupe formé par les huiles de coupe légère, les huiles de coupe lourde, les huiles décantées, les fractions résiduelles des procédés de craquage pouvant contenir des suspensions de fines de catalyseur (appelées « slurry » en anglais) et les fractions gazoles, les coupes gazoles et gazoles lourds provenant du cracking catalytique, les extraits aromatiques obtenus dans le cadre de la fabrication d'huiles lubrifiantes, les effluents de procédé de traitement de biomasse, seuls ou en mélange.
10. Procédé selon l'une des revendications 7 à 9 dans lequel la charge d'hydrocarbures est choisie parmi les charges liquides d'hydrocarbures issues de la liquéfaction du charbon.
11. Procédé selon l'une des revendications précédentes dans lequel les conditions opératoires de la première zone de traitement d'hydrocarbures (amont) sont une pression totale de 80 à 500 bars, avec une pression partielle d'hydrogène variant de 10 à 500 bars, une température de 300 à 600°C, le contact s'effectuant pendant un temps allant de 5 min à 2O h.
12. Procédé selon l'une des revendications précédentes dans lequel les conditions opératoires de la deuxième zone de traitement d'hydrocarbures (aval) sont une pression de 10 à 50 bars absolus et une température augmentant au fur et à mesure que l'on se rapproche du four de conversion.
13. Procédé selon l'une des revendications précédentes dans lequel on recycle avec la charge une partie des fractions résiduelles des effluents grâce à un fractionnement par distillation de l'effluent en aval de la dernière zone réactionnellé du procédé amont, le recyclage étant alors constitué d'une partie du liquide obtenu en fond de colonne.
PCT/FR2005/003008 2004-12-15 2005-11-29 Enchainement de procedes d’hydroconversion et de reformage a la vapeur en vue d’optimiser la production d’hydrogene sur des champs de production WO2006064100A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200580043278.6A CN101080481B (zh) 2004-12-15 2005-11-29 在生产领域中最优化氢生产的加氢转化序列和蒸汽重整方法
MX2007007031A MX2007007031A (es) 2004-12-15 2005-11-29 Serie de procesos de hidroconversion y reformacion al vapor para optimizar la produccion de hidrogeno en campos de produccion.
EP05824636A EP1828353B1 (fr) 2004-12-15 2005-11-29 Enchainement de procédés d'hydroconversion et de reformage à la vapeur en vue d'optimiser la production d'hydrogène sur des champs de production
BRPI0515796-0A BRPI0515796B1 (pt) 2004-12-15 2005-11-29 Processo para tratamento de carga de hidrocarbonetos compreendendo encadeamento de um primeiro processo de hidroconversão e um segundo processo de reforma a vapor
CA2589673A CA2589673C (fr) 2004-12-15 2005-11-29 Enchainement de procedes d'hydroconversion et de reformage a la vapeur en vue d'optimiser la production d'hydrogene sur des champs de production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413467 2004-12-15
FR0413467A FR2879213B1 (fr) 2004-12-15 2004-12-15 Enchainement de procedes d'hydroconversion et de reformage a la vapeur en vue d'optimiser la production d'hydrogene sur sur des champs de production

Publications (1)

Publication Number Publication Date
WO2006064100A1 true WO2006064100A1 (fr) 2006-06-22

Family

ID=34952902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/003008 WO2006064100A1 (fr) 2004-12-15 2005-11-29 Enchainement de procedes d’hydroconversion et de reformage a la vapeur en vue d’optimiser la production d’hydrogene sur des champs de production

Country Status (9)

Country Link
US (1) US7479217B2 (fr)
EP (1) EP1828353B1 (fr)
CN (1) CN101080481B (fr)
BR (1) BRPI0515796B1 (fr)
CA (1) CA2589673C (fr)
FR (1) FR2879213B1 (fr)
MX (1) MX2007007031A (fr)
RU (1) RU2395562C2 (fr)
WO (1) WO2006064100A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460473A (zh) 2006-04-03 2009-06-17 药物热化学品公司 热提取方法和产物
FR2904324B1 (fr) 2006-07-27 2012-09-07 Total France Procede d'hydrotraitement d'une charge gazole, reacteur d'hydrotraitement pour la mise en oeuvre dudit procede, et unite d'hydroraffinage correspondante.
US20080155984A1 (en) * 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
US7905990B2 (en) 2007-11-20 2011-03-15 Ensyn Renewables, Inc. Rapid thermal conversion of biomass
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
US8499702B2 (en) 2010-07-15 2013-08-06 Ensyn Renewables, Inc. Char-handling processes in a pyrolysis system
US9441887B2 (en) 2011-02-22 2016-09-13 Ensyn Renewables, Inc. Heat removal and recovery in biomass pyrolysis
US9347005B2 (en) 2011-09-13 2016-05-24 Ensyn Renewables, Inc. Methods and apparatuses for rapid thermal processing of carbonaceous material
US10400175B2 (en) 2011-09-22 2019-09-03 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US9044727B2 (en) 2011-09-22 2015-06-02 Ensyn Renewables, Inc. Apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material
US10041667B2 (en) 2011-09-22 2018-08-07 Ensyn Renewables, Inc. Apparatuses for controlling heat for rapid thermal processing of carbonaceous material and methods for the same
US9109177B2 (en) 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
US9670413B2 (en) 2012-06-28 2017-06-06 Ensyn Renewables, Inc. Methods and apparatuses for thermally converting biomass
WO2014210150A1 (fr) 2013-06-26 2014-12-31 Ensyn Renewables, Inc. Systèmes et procédés pour carburant renouvelable
EP3337966B1 (fr) 2015-08-21 2021-12-15 Ensyn Renewables, Inc. Système de chauffage à biomasse liquide
FR3053047B1 (fr) * 2016-06-23 2018-07-27 Axens Procede ameliore d'hydroconversion profonde au moyen d'une extraction des aromatiques et resines avec valorisation de l'extrait a l'hydroconversion et du raffinat aux unites aval.
EP3515859A1 (fr) * 2016-09-19 2019-07-31 SABIC Global Technologies B.V. Système et procédé de reformage à la vapeur
EP3565664A4 (fr) 2016-12-29 2020-08-05 Ensyn Renewables, Inc. Démétallisation de biomasse liquide
ES2831075T3 (es) * 2017-06-29 2021-06-07 Neste Oyj Método para aumentar la selectividad de destilado medio y gasolina en craqueo catalítico
CN108998092B (zh) * 2018-09-12 2020-08-25 山东齐创石化工程有限公司 加氢处理重交沥青馏分油生产润滑油基础油的工艺
IT201900008277A1 (it) * 2019-06-06 2020-12-06 Amec Foster Wheeler Italiana S R L Processo di produzione di idrogeno

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188179A (en) * 1961-04-10 1965-06-08 Consolidation Coal Co Process for producing high purity hydrogen from hydrocarbon gas and steam
GB1092420A (en) * 1964-10-13 1967-11-22 Chevron Res Improvements in or relating to the production of valuable gases
US3433732A (en) * 1967-05-17 1969-03-18 Mobil Oil Corp Catalytic hydrocracking process and steam regeneration of catalyst to produce hydrogen
US3552924A (en) * 1966-08-15 1971-01-05 Phillips Petroleum Co Hydrogen manufacture
US4297204A (en) * 1978-02-17 1981-10-27 Linde Aktiengesellschaft Thermal cracking with post hydrogenation and recycle of heavy fractions
EP0103948A1 (fr) * 1982-08-23 1984-03-28 British Gas Corporation Production de gaz riches en méthane
US6017441A (en) * 1996-10-02 2000-01-25 Institut Francais Du Petrole Multi-step catalytic process for conversion of a heavy hydrocarbon fraction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755137A (en) * 1971-03-24 1973-08-28 Hydrocarbon Research Inc Multi-stage ebullated bed coal-oil hydrogenation and hydrocracking process
US4338182A (en) * 1978-10-13 1982-07-06 Exxon Research & Engineering Co. Multiple-stage hydrogen-donor coal liquefaction
NZ194405A (en) * 1979-08-02 1982-05-25 Dut Pty Ltd Producing liquid hydrocarbon streams by hydrogenation of fossil-based feedstock
US4332666A (en) * 1980-05-06 1982-06-01 Exxon Research & Engineering Co. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered
US4345989A (en) * 1980-08-27 1982-08-24 Exxon Research & Engineering Co. Catalytic hydrogen-donor liquefaction process
US4400263A (en) * 1981-02-09 1983-08-23 Hri, Inc. H-Coal process and plant design
CA1240708A (fr) * 1983-11-15 1988-08-16 Johannes K. Minderhoud Preparation d'hydrocarbures
US5132007A (en) * 1987-06-08 1992-07-21 Carbon Fuels Corporation Co-generation system for co-producing clean, coal-based fuels and electricity
US6620313B1 (en) * 1997-07-15 2003-09-16 Exxonmobil Research And Engineering Company Hydroconversion process using bulk group VIII/Group VIB catalysts
US6436279B1 (en) * 2000-11-08 2002-08-20 Axens North America, Inc. Simplified ebullated-bed process with enhanced reactor kinetics
US7238273B2 (en) * 2004-09-10 2007-07-03 Chevron U.S.A. Inc Process for upgrading heavy oil using a highly active slurry catalyst composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3188179A (en) * 1961-04-10 1965-06-08 Consolidation Coal Co Process for producing high purity hydrogen from hydrocarbon gas and steam
GB1092420A (en) * 1964-10-13 1967-11-22 Chevron Res Improvements in or relating to the production of valuable gases
US3552924A (en) * 1966-08-15 1971-01-05 Phillips Petroleum Co Hydrogen manufacture
US3433732A (en) * 1967-05-17 1969-03-18 Mobil Oil Corp Catalytic hydrocracking process and steam regeneration of catalyst to produce hydrogen
US4297204A (en) * 1978-02-17 1981-10-27 Linde Aktiengesellschaft Thermal cracking with post hydrogenation and recycle of heavy fractions
EP0103948A1 (fr) * 1982-08-23 1984-03-28 British Gas Corporation Production de gaz riches en méthane
US6017441A (en) * 1996-10-02 2000-01-25 Institut Francais Du Petrole Multi-step catalytic process for conversion of a heavy hydrocarbon fraction

Also Published As

Publication number Publication date
BRPI0515796A (pt) 2008-08-05
CA2589673C (fr) 2013-06-25
US20060127305A1 (en) 2006-06-15
CA2589673A1 (fr) 2006-06-22
CN101080481B (zh) 2012-05-30
RU2395562C2 (ru) 2010-07-27
MX2007007031A (es) 2007-07-04
EP1828353A1 (fr) 2007-09-05
US7479217B2 (en) 2009-01-20
BRPI0515796B1 (pt) 2015-06-23
FR2879213A1 (fr) 2006-06-16
RU2007126831A (ru) 2009-01-27
FR2879213B1 (fr) 2007-11-09
CN101080481A (zh) 2007-11-28
EP1828353B1 (fr) 2012-01-11

Similar Documents

Publication Publication Date Title
CA2589673C (fr) Enchainement de procedes d'hydroconversion et de reformage a la vapeur en vue d'optimiser la production d'hydrogene sur des champs de production
RU2360944C2 (ru) Комплексный способ конверсии содержащего уголь сырья в жидкие продукты
WO2015091033A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
WO2015082314A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif en cascade avec recyclage d'une coupe desasphaltee
EP3237578A1 (fr) Procede et dispositif pour la reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
FR2964387A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recycle de l'huile desasphaltee
WO2016192891A1 (fr) Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
FR2969648A1 (fr) Procédé de conversion de charge hydrocarbonée comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion
FR3101082A1 (fr) Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec une séparation gaz/liquide améliorée
MX2014002623A (es) Proceso de mejoramiento parcial de aceite denso y betun.
WO2008017742A1 (fr) Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
EP2385094B1 (fr) Procédé de craquage catalytique avec recycle d'une coupe oléfinique prélevée en amont de la section de séparation des gaz afin de maximiser la production de propylène
CA1191805A (fr) Procede de conversion d'huiles lourdes ou de residus petroliers en hydrocarbures gazeux et distillables
WO2021069330A1 (fr) Procede de production d'olefines comprenant un desasphaltage, une hydroconversion, un hydrocraquage et un vapocraquage
EP3999613A1 (fr) Procede de production d'olefines comprenant un hydrotraitement, un desasphaltage, un hydrocraquage et un vapocraquage
WO2017108295A1 (fr) Procede de conversion d'une charge pour la production d'hydrocarbures par voie de synthese fischer-tropsch
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
EP3237577A1 (fr) Procede et dispositif de reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
FR3084371A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, un desasphaltage et un hydrocraquage en lit bouillonnant de l'asphalte
CA2774169A1 (fr) Procede d'hydroconversion de charges hydrocarbonees via une technologie en slurry permettant la recuperation des metaux du catalyseur et de la charge mettant en oeuvre une etape de gazeification
WO2023241930A1 (fr) Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta
EP3237576A1 (fr) Procede et dispositif de reduction des composes aromatiques polycycliques lourds dans les unites d'hydrocraquage
FR2909097A1 (fr) Procede de conversion de gaz en liquides a logistique simplifiee

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005824636

Country of ref document: EP

Ref document number: 2589673

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/007031

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200580043278.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A20070885

Country of ref document: BY

WWE Wipo information: entry into national phase

Ref document number: 2007126831

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005824636

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0515796

Country of ref document: BR