WO2008017742A1 - Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique - Google Patents

Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique Download PDF

Info

Publication number
WO2008017742A1
WO2008017742A1 PCT/FR2007/001168 FR2007001168W WO2008017742A1 WO 2008017742 A1 WO2008017742 A1 WO 2008017742A1 FR 2007001168 W FR2007001168 W FR 2007001168W WO 2008017742 A1 WO2008017742 A1 WO 2008017742A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocracking
oil
typically
conversion
asphaltenic
Prior art date
Application number
PCT/FR2007/001168
Other languages
English (en)
Inventor
Eric Lenglet
Alexandre Rojey
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Priority to US12/376,522 priority Critical patent/US8431013B2/en
Publication of WO2008017742A1 publication Critical patent/WO2008017742A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range

Definitions

  • the present invention relates to the petroleum industry, and in particular the petroleum processing industry, typically in oil and gas production regions, for producing either a set of refined products or one or more oils known as synthetic oils. improved quality. It is also possible to use a co-production of refined product (s) and synthetic oil (s).
  • the invention relates to a method and an installation that makes it possible to reduce or even eliminate the asphaltenes, the heaviest products contained in petroleum, whose industrial outlets are reduced and the recovery is mediocre.
  • the main commercial end products that can be obtained in an installation according to the invention are:
  • one or more synthetic oils of asphaltenes content typically reduced or zero.
  • the applicant has already proposed in the patent application FR-04 / 02.088 to use relatively inexpensive deposit gas in the oil and gas production region, to pre-form a conventional oil, and typically to produce, on the one hand, a low sulfur sulfur oil substantially free of asphaltenes, and secondly a residual Pb oil (including the starting asphaltenes, partly converted by a hydrogenating treatment).
  • the oil Pa produces, after refining, very little or no sulfur fuel, and can have a high content of middle distillates increasingly demanded by the market. It is a high quality oil.
  • the oil Pb typically comprises lower quality fractions, and in particular the residual asphaltenes.
  • the process also plans to co-produce eventually commercial petroleum products: naphtha, diesel etc.
  • the invention provides a generally conventional refining or pre-refining process, or refinery, which substantially reduces, and preferably suppresses, the asphaltenes present in the end products obtained to produce only fractions high quality without asphaltenes.
  • the asphaltenes of a crude oil P are concentrated in a residue R1, which is gasified by partial oxidation to produce a synthesis gas SG1 of low H2 / CO ratio typically less than 1.
  • a secondary charge G is also used composed in particular of hydrocarbons having less than 5 carbon atoms (typically an external charge: natural gas and / or associated often supplemented with hydrocarbons C1-C2 recycled (the term C n denoting one or more hydrocarbons with n carbon atoms) or C1 to C4 derived from conversion units for the treatment of petroleum P or conversion of the synthesis gas obtained) which is converted by steam reforming into a second synthesis gas SG2 with a high H2 / CO ratio typically greater than 3.
  • the mixture of SG1 and SG2 chosen in appropriate quantities makes it possible to obtain a synthesis gas of H2 / CO ratio intermediate, between 1, 2 and 2.5 g. which is suitable for Fischer-Tropsch conversion to liquid and / or solid hydrocarbons at ambient temperature.
  • the heavy products, and in particular the waxes produced (solid paraffins at ambient temperature) are then typically hydrocracked at least partially with diesel fuel.
  • the process thus makes it possible to significantly or even completely convert the deficiency-producing asphaltenes into hydrogen (low H / C ratio) into noble products, thanks to a make-up of gas (of high H / C ratio), typically of natural gas and / or associated gas (oil) external. It advantageously uses a charge of light external hydrocarbons to increase, by generation and addition of a second synthesis gas, the H2 / CO ratio of the partial oxidation effluents of the residues, which are typically deficient in hydrogen.
  • the invention is not related to a particular Fischer-Tropsch process, either from the point of view of the technology of the reactor (s), from the point of view of the catalyst, or from the point of view of the process conditions: use a three-phase fixed bed reactor (also known as the trickle bed) that a reactor in suspension (called slurry).
  • a cobalt Fischer-Tropsch catalyst and an iron catalyst or any other type of Fischer-Tropsch catalyst can be used.
  • the relative amounts of SG1 and SG2 are suitable for producing a synthesis gas SG of H2 / CO ratio adapted to the catalyst used, typically between 1, 2 and 2 for an iron catalyst, and often between 1.8. and 2.5 for a cobalt catalyst, without these values being limiting.
  • the limited quantities of gas produced, typically C1-C2 or C1-C4 hydrocarbons (having 1 to 2 or 1 to 4 carbon atoms) produced during the Fischer-Tropsch step and during hydrocracking can advantageously be recycled by steam reforming.
  • the C1 / C2 fractions are recycled, the petroleum gases (LPG: C3 / C4) being easily liquefied for transport.
  • the mixture of paraffin waxes from the Fischer-Tropsch unit (non-sulfur, non-nitrogenous and high purity product) in the hydrocracking feedstock also makes it possible to extend the cycle time of the hydrocracking unit relative to operating on a VGO and / or DAO feed alone, which generally contains more compounds difficult to hydrocrack (especially polyaromatics) and impurities (including nitrogen).
  • the middle distillate fraction: kerosene / gas oil (typically boiling between about 150 ° C. and about 340 ° C. or 36 ° C.) of the Fischer-Tropsch effluents can also be hydrocracked under mild conditions favoring hydroisomerization, either separately or in admixture with Fischer-Tropsch effluents heavier.
  • the invention has a process for converting at least one crude oil P, preferably into an oil and gas production region, comprising: a preliminary treatment of P comprising at least one step of fractionating P by distillation (PRE-DIST) and / or deasphalting (SDA), to produce at least one asphaltenic residue R1 and at least one first non-asphaltenic stream E1;
  • a preliminary treatment of P comprising at least one step of fractionating P by distillation (PRE-DIST) and / or deasphalting (SDA), to produce at least one asphaltenic residue R1 and at least one first non-asphaltenic stream E1;
  • POX partial oxidation step
  • a Fischer-Tropsch conversion step of SG generally purified in a preliminary purification step (PUR-FT), to obtain mainly liquid fractions and paraffin waxes;
  • hydrocracking step of at least most of the paraffin waxes, in particular to produce at least one cut comprising liquid hydrocarbons boiling below 340 ° C.
  • At least one non-asphaltenic pre-refined oil Pa is produced from at least a portion of the non-asphaltenic cuts resulting from the preliminary treatment of P, optionally after catalytic treatment (s). hydrogenating agent (s), and at least part of the hydrocracking effluents.
  • a heavy cut from P is hydrocracked in mixture with the waxes.
  • a non-asphaltenic stream E1 boiling essentially above 340 ° C. and at least a part of the hydrocracking (HDK) of at least the paraffin waxes in mixture with E1 is carried out at least in part.
  • E1 consists essentially of vacuum distillate VGO and / or deasphalted oil DAO, resulting from the fractionation of P.
  • a hydrocracking typically hydrocracking partial by example with a conversion of between 25% and 70% by weight, or from 30% to 50% by weight of products boiling below 340 ° C.
  • High hydrocracking can also be carried out, to reach a conversion between 70% and approximately 90% or even 95% or more in some cases.
  • the hydrocracking can be carried out in single pass or with recycling.
  • only refined products are produced from, on the one hand, non-asphaltenic cuts resulting from or from the initial fractionation stages (for example atmospheric and vacuum distillates) and on the other hand hydrocracking.
  • the operations for obtaining the refined products are then the typical refining operations: typically hydrotreating of naphthas, kerosene and atmospheric distillation gas oil, catalytic reforming of hydrotreated naphtha, isomerization of light paraffins, possibly fluid catalytic cracking of heavy cuts, etc.
  • the process makes it possible to transform substantially all the crude oil P into gasoline, kerosene, diesel fuel, domestic fuel oil, possibly with a reduced amount of fuel generally with a low sulfur content.
  • one or more non-asphaltenic pre-refined oil (s) is produced and also one or more refined products.
  • the hydrogen used for the hydrocracking may advantageously be produced from a fraction of the steam reforming effluents. It can also come from a catalytic reforming unit of naphtha.
  • the invention also proposes a petroleum treatment plant, in particular for implementing the method previously described, comprising:
  • an initial petroleum distillation unit producing at least one distillate and a first residue AR; at least one secondary fractionation unit of AR to produce an asphaltenic residue R1 and at least a first non-asphaltenic stream E1; a partial oxidation unit (POX) of the residue R1 optionally diluent added to produce a first SG1 synthesis gas of H2 / CO ratio of less than 1; a steam reforming unit (SMR) connected to an external source G composed mainly of hydrocarbons having less than 5 carbon atoms to produce a second SG 1 synthesis gas of H2 / CO ratio greater than 3;
  • POX partial oxidation unit
  • SMR steam reforming unit
  • POX partial oxidation unit
  • SMR steam reforming unit
  • FT Fischer-Tropsch conversion unit
  • hydrocracking unit of at least the majority of the paraffin waxes, connected upstream to the Fischer-Tropsch conversion unit (FT) to produce in particular at least one cut comprising liquid hydrocarbons boiling essentially below 340 0 C.
  • FT Fischer-Tropsch conversion unit
  • This plant may also comprise a mixing zone of at least the majority of the paraffinic waxes and the non-asphaltenic stream E1, connected upstream to said secondary fractionation unit as well as to the Fischer-Tropsch conversion unit (FT). and connected downstream to the hydrocracking unit (HDK) for the hydrocracking (HDK) of said at least a majority of paraffin waxes in admixture with E1.
  • FT Fischer-Tropsch conversion unit
  • the plant comprises a unit (VD) for vacuum distillation of the first residue AR for the production of a vacuum distillate
  • VGO and a vacuum residue VR VGO and a vacuum residue VR
  • a unit (SDA) for deasphalting VR to produce a deasphalted oil DAO and an asphalt stream AS VGO and a vacuum residue VR
  • a unit (SDA) for deasphalting VR to produce a deasphalted oil DAO and an asphalt stream AS VGO and a vacuum residue VR
  • a unit (SDA) for deasphalting VR to produce a deasphalted oil DAO and an asphalt stream AS
  • a mixing zone of VGO and DAO and waxes derived from Fischer-Tropsch conversion unit to obtain the charge of the hydrocracking unit (typically VGO / DAO / wax mixture, and optionally Fischer-Tropsch diesel).
  • the flow rate of the hydrocracking charge is thus further increased.
  • the preliminary treatment of P can essentially comprise the series combination of an initial (so-called "atmospheric") distillation, vacuum distillation and deasphalting. vacuum residue.
  • the preliminary treatment and / or the subsequent treatments may also comprise one or more hydrogenating treatments, for example an HDT hydrotreating or HDC hydroconversion of vacuum distillate and / or deasphalted oil, a RHDT hydrotreatment or an RHDC hydroconversion of atmospheric residue, or vacuum, or asphalt etc.
  • a diluent for the formation of the residue R 1, which is the feedstock of the partial oxidation unit in a mixing zone of AS. with from 4% to 40%, and in particular from 4% to 30% by weight of diluent, for example 10% to 20% of gas oil or kerosene. It is also possible to advantageously use desalinated P oil as a diluent.
  • the invention is related to a combination of steps, and not to particular conditions (technology, catalysts, operating conditions) for implementing these different steps.
  • the treatment of petroleum P can in particular use one or more catalytic hydrogenating treatments.
  • hydrogenating catalytic treatment a treatment comprising at least one of the treatments defined below and symbolized by the following names: HDT, HDC, HDK (which covers M-HDK, MP-HDK and HP- HDK), RHDT, HRSDC.
  • a hydrogenating catalytic treatment may therefore comprise several of these treatments, for example HDT + HDC or HDC + HDT, etc.
  • Hydrotreatments of hydrocarbon distillates or deasphalted oil are methods well known in the state of the art. Their main purpose is the at least partial elimination of undesirable compounds, typically sulfur, nitrogen, possibly metals such as iron, nickel or vanadium, etc. They are also often used for the hydrogenation of aromatics, usually simultaneously with the desulfurization of the feedstock.
  • a process whose conversion of these compounds to compounds with a boiling point below 371 ° C. is less than or equal to 20 is called hydrotreatment.
  • % weight For processes treating the same loads, but with a conversion greater than 20% by weight, we will speak of hydroconversion (symbolically designated by the symbol HDC), or hydrocracking (symbolically noted HDK) 1 these processes being presented below.
  • the hydrotreating processes operate under hydrogen pressure, and use supported solid catalysts, typically granular solids or extrudates of characteristic size (diameter for balls or equivalent diameter (corresponding to the same section) for extrusions) between 0.4 and 5 mm, in particular between 1 and 3 mm, the operating conditions, and in particular the space velocity (WH) and the molar ratio hydrogen on hydrocarbon (H 2 / HC) vary according to the cuts treated, the impurities present and the final specifications sought.
  • supported solid catalysts typically granular solids or extrudates of characteristic size (diameter for balls or equivalent diameter (corresponding to the same section) for extrusions) between 0.4 and 5 mm, in particular between 1 and 3 mm
  • the operating conditions and in particular the space velocity (WH) and the molar ratio hydrogen on hydrocarbon (H 2 / HC) vary according to the cuts treated, the impurities present and the final specifications sought.
  • Hydrotreating catalysts typically comprise a metal, or a Group VIB metal compound and a metal or Group VIII metal compound, on a support.
  • the most common catalysts are composed of an oxide carrier and an active phase in the form of molybdenum sulfide or tungsten promoted by cobalt or nickel.
  • the formulas commonly used are the associations CoMo, NiMo and NiW for the active phase, and the alumina ⁇ large area specific for the support.
  • the metal contents are often of the order of 9 to 15% by weight of molybdenum and 2.5 to 5% by weight of cobalt or nickel.
  • Some of these catalytic formulas are sometimes doped with phosphorus.
  • Other oxide supports are employed, such as mixed oxides of silica-alumina or titanium-alumina type.
  • a catalytic support comprising a porosity adapted to the deposition of these metals is advantageously used.
  • HMC 841 sold by AXENS.
  • DAO deasphalted oil
  • Hydrocracking processes are also methods well known in the state of the art. They apply exclusively to charges substantially free of asphaltenes or metals such as nickel or vanadium.
  • the hydrocracking feedstock is typically composed of vacuum gas oil, sometimes supplemented with gas oil and / or deasphalted oil (deasphalted vacuum residue, typically with a solvent from the group formed by propane, butane, pentane and mixtures thereof, and preferably propane and butane). It is also possible to hydrocrack DAO deasphalted oil.
  • the DAO must then be of sufficient quality: typically, a hydrocracking feedstock comprises less than 400 ppm (parts per million by weight) of asphaltenes, preferably less than 200 ppm and most preferably less than 100 ppm.
  • the metal contents (typically nickel + vanadium) of a hydrocracking feedstock are typically less than 10 ppm, preferably less than 5 ppm, and most preferably less than 3 ppm. Conventionally, it is considered that a load is substantially without asphaltenes if its asphaltenes content is less than 400 ppm. (For a pre-refined oil, it is similarly considered to be asphaltene-free, or non-asphaltenic, if the fraction boiling above 524 ° C contains less than 400 ppm asphaltenes).
  • the hydrocracking feedstock is first pre-refined on a hydrotreatment catalyst, typically different from the hydrocracking catalyst.
  • This catalyst typically of acidity lower than that of the hycrocracking catalyst, is chosen to substantially eliminate the metals, reduce the traces of asphaltenes, and reduce the organic nitrogen, which inhibits the hydrocracking reactions, to a value of typically less than 100 ppm, preferably 50 ppm and very preferably less than 20 ppm.
  • Hydrocracking catalysts are typically bifunctional catalysts having a dual function: acid on the one hand and hydrogenating / dehydrogenating on the other hand.
  • the support has a relatively high acidity such that the ratio of hydrogenating activity on isomerizing activity H / A as defined in French Patent No. 2,805,276 pages 1 line 24 to page 3 line 5, is greater than 8, or preferably greater than 10 or very preferably greater than 12, or even greater than 15.
  • a hydrotreatment is carried out upstream of the reactor or the hydrocracking zone with a hydrotreatment catalyst whose aforementioned H / A ratio is less than 8, especially less than 7.
  • the hydrocracking catalysts typically comprise at least one Group VIB metal or metal compound (such as Mo 1 W) and a metal or Group VIII metal compound (such as Ni ...) deposited on a support.
  • the atomic ratio of the group VIII metal (Mvm) on the sum of the metals of groups VIII and Vl B>, that is to say the atomic ratio Mvm / (Mvm + M V ⁇ B ), in particular for the NiMo and NiW is often close to 0.25, for example between 0.22 and 0.28.
  • the metal content is often between 10 and 30% by weight.
  • the metal of group VIII may also be a noble metal such as palladium or platinum, at levels of the order of 0.5 to 1% by weight.
  • the acidic support may comprise a halogen-doped alumina, or a silica-alumina having a sufficient acidity, or a zeolite, for example a dealuminized Y or USY zeolite, which often has a double pore distribution with a double porosity network notably comprising micropores of size mainly between 4 to 10 ⁇ and mesopores of size mainly between 60 and 500 ⁇ .
  • the silica / alumina ratio of the structure of the zeolite is often between 6.5 and 12.
  • Examples of operating conditions for hydrocracking are typically:
  • the hydrogen partial pressure and the total pressure can vary significantly depending on the load and the desired conversion.
  • a conversion greater than or equal to 20% by weight and less than 42% by weight corresponds to a mild hydrocracking (symbolically denoted M-HDK);
  • a conversion greater than or equal to 42% by weight and less than 60% by weight corresponds to a medium pressure hydrocracking (symbolically denoted MP-HDK);
  • a conversion greater than or equal to 60% by weight (and typically less than 95% by weight corresponds to a high pressure hydrocracking (symbolically denoted HP-HDK).
  • the conversion is that of products with a boiling point greater than 371 ° C. in products boiling below 371 ° C.
  • the hydrogen partial pressure is, depending on the feedstock, often between about 2 MPa and 6 MPa for mild hydrocracking, between about 5 MPa and 10 MPa for medium pressure hydrocracking, and between about 9 MPa and 17 MPa.
  • MPa for high pressure hydrocracking.
  • the total pressure is often between 2.6 and 8 MPa for mild hydrocracking, between about 7 and 12 MPa for medium pressure hydrocracking, and between 12 and 20 MPa for high pressure hydrocracking.
  • the hydrocracking processes are typically operated in a fixed bed with granular solids or extrudates of characteristic dimension (diameter for balls or equivalent diameter (corresponding to the same section) for extrusions) of between 0.4 and 5 mm, in particular between 1 and 3 mm.
  • Such processes are known that make it possible to achieve conversions (with the same definition as for hydrocracking) of greater than 20% by weight and often much higher (for example from 20% to 50%, or from 50% to 85% by weight).
  • these processes may use variable hydrogen partial pressures, for example between 4 and 12 MPa, temperatures between 380 and 45 ° C., and hydrogen recycling for example between 300 and 1000.
  • nm 3 per m 3 of charge, the catalysts used are similar or close the type of hydrotreating catalysts or residue hydroconversion, defined below, and have a porosity allowing to have an appreciable demetallization capacity.
  • a catalyst of the HTS 358 type sold by AXENS can be used.
  • the processes for the hydrotreatment of residues are methods that are well known in the state of the art.
  • the operating conditions of these processes are typically: hourly space velocity (or WH) between 0.1 and 0 5.
  • Partial pressure H2 between 1 and 1.7 MPa
  • Hydrogen recycling between 600 and 1600 Nm 3 per m 3 of charge
  • Temperature between 340 and 450 ° C.
  • the catalysts of the processes in fixed, mobile or bubbling bed are most often supported macroscopic solids, for example beads or extrudates with a mean diameter of between 0.4 and 5 millimeters, typically supported catalysts comprising a metal or group VIB metal compound (Cr, Mo, W).
  • a hydroconversion e n fixed bed one can use for example a hydrodemetallization catalyst HMC 841, then hydroconversion and hydrocracking catalysts: HT 318, then HT 328 marketed by AXENS.
  • a catalyst of the HOC 458 type also marketed by AXENS.
  • the catalysts of the slurry processes are more diverse and may include particles of ground coal or lignite impregnated with iron sulphate or other metals, spent hydrotreating catalyst milled, molybdenum sulfide particles associated with a hydrocarbon matrix, obtained by in situ decomposition of precursors such as molybdenum naphthenate etc.
  • the particle sizes are typically less than 100 microns, or even much lower .
  • Other characteristics of the processes and catalysts 1 residue hydroconversion are given in general reference C: "Refining and conversion of heavy petroleum" by JF Le Page, SG Shatila M Davidson, Editions Technip Paris, 1990, in Chapter 4 (Catalytic conversion under hydrogen pressure), and Chapter 3, paragraph 3.2.3.
  • Hydrogen production for the implementation of these hydrogenating catalytic treatments can be carried out from purified gas, for example by steam reforming on nickel catalyst and conversion of CO to steam (shift conversion) and purification. This is a well known process, described in the general work of reference B cited above, p 451-502.
  • the method according to the invention also makes it possible to produce the hydrogen necessary for the various uses (hydrotreatment (s) , hydrocracking, etc.) from a fraction of the SG2 synthesis gas.
  • the separated CO2 can, when the process according to the invention is carried out on or near an oil production site (for example less than 100 km away), be reinjected at the level of oilfield wells, for CO2-assisted recovery (CO2 flooding) and / or CO2 sequestration, particularly in depleted wells (at the end of production).
  • an oil production site for example less than 100 km away
  • CO2 flooding CO2-assisted recovery
  • CO2 sequestration particularly in depleted wells (at the end of production).
  • the method according to the invention may optionally further comprise refining steps for obtaining refined products.
  • refining steps for obtaining refined products Reference may be made in particular to the aforementioned referenced work B for the description of the catalytic catalytic reforming naphtha, catalytic cracking isomerization unit processes, etc.
  • the partial oxidation step (POX) and the purification processes for the synthesis gas obtained are described in the general reference work B cited above, pages 480 - 491 and 575 - 593.
  • the process according to the invention generally comprises one or more synthesis gas purification steps, which are well known to those skilled in the art, in particular to eliminate the residual sulfur and nitrogen compounds, in particular H 2 S, HCN and often also CO2.
  • H 2 S and CO 2 are conventionally carried out by washing the gas with an aqueous solution of amines, for example monoethanolamine (MEA) or methyldiethanolamine (MDEA) as described in the general general reference work B cited above. 468-471 pages, or the reference E: "gas purification” (purification of gas), 2nd edition Riesenfeld FC and AL Kohl Guif Publishing Company; Houston, pages 22 to 81.
  • An option sometimes used is to carry out beforehand on the synthesis gas, after condensation of the water, a conversion of the sulfur compounds in H2S in particular on chromium catalyst on alumina or on copper / chromium on alumina such as described on pages 626-627 in the general reference work E.
  • the Fischer-Tropsch conversion step can be carried out, according to the invention, according to any one of the known processes, using any one of the known catalysts, in particular based on iron or cobalt, and is not limited. to a particular process or catalyst. It is carried out with a catalyst adapted to the ratio H2 / CO of the synthesis gas, for example a cobalt catalyst for a synthesis gas with an H2 / CO ratio of between about 1, 8 and 2.5, or an iron catalyst for a synthesis gas of H2 / CO ratio of between about 1, 2 and 2.
  • a catalyst adapted to the ratio H2 / CO of the synthesis gas for example a cobalt catalyst for a synthesis gas with an H2 / CO ratio of between about 1, 8 and 2.5, or an iron catalyst for a synthesis gas of H2 / CO ratio of between about 1, 2 and 2.
  • a three-phase fixed bed reactor or a triphasic reactor (in "slurry" according to the English terminology, ie a three-phase reactor with a liquid phase comprising a solid catalyst divided into suspension and a gaseous phase ( Here, the synthesis gas.)
  • the preferred option according to the invention corresponds to such a three-phase reactor comprising a Fischer-Tropsch catalyst in the form of fine particles in suspension comprising an inert support impregnated with iron or cobalt.
  • the triphasic mixture may comprise particles of average diameter of between 3 and 150 micrometers, preferably 10 to 120 micrometers, in suspension in a liquid essentially composed of reaction products, in particular paraffin waxes melted at the reaction temperature.
  • the weight percentage of catalyst may be generally between 10% and 40% by weight relative to the liquid suspension / solid catalyst.
  • the superficial gas velocity in the reactor may be between 0.05 m / s and 0.4 m / s, in particular between 0.12 and 0.3 m / s.
  • the pressure is often between 1, 5 and 4 MPa, in particular between 1, 8 and 2.8 MPa.
  • the temperature is usually between 215 ° C and 255 ° C, usually between 23O 0 C and 240 0 C. It may in particular for details concerning catalysts and / or Fischer-Tropsch processes refer to patents or patent applications: EP 450 860; US 5,961,933; US 6,060,524; US 6,921,778; PCT / FR05 / 02863.
  • FIG. 1 shows a non-limiting example of an installation scheme for carrying out the method according to the invention, representative of the preferred embodiment of the invention.
  • a typically conventional crude oil P for example a transportable oil at ambient temperature such as light Arabic
  • the desalinated oil feeds via line 2 a preliminary PRE-DIST distillation column (often called initial distillation or atmospheric distillation) typically operating at a pressure of between 0.1 and 0.5 MPa.
  • This column which can possibly produce a summary fractionation, produces a light stream via line 3a, typically comprising middle distillates: typically kerosene and diesel, as well as naphtha and lighter compounds.
  • the column also produces an atmospheric residue via line 4, which feeds a VAC-DIST vacuum distillation column.
  • This column which typically works under a pressure between 0.004 and 0.04 MPa, produces a vacuum distillate stream VGO through line 5, and a vacuum residue stream VR through line 6.
  • the vacuum residue VR is fed into a solvent deasphalting unit (SDA) (typically butane, or preferably pentane) to produce a deasphalted DAO oil circulating in the line 7 and a stream of asphalt AS discharged through the line 8.
  • SDA solvent deasphalting unit
  • the asphalt AS is mixed with a stream of DIL diluent supplied via line 9.
  • This stream comprises, for example, a desalinated petroleum stream supplied from line 2.
  • DIL may also comprise light hydrocarbons taken from line 3 .
  • This unit performs a partial oxidation with oxygen, under a pressure typically comprised between 1 and 4 MPa, to produce a stream SG1 of synthesis gas of H2 / CO ratio typically between 0.4 and 0.8 and often between 0, 45 and 0.7.
  • H2 / CO ratios are very low and poorly adapted to Fischer-Tropsch synthesis, not only for cobalt catalysts but also for iron catalysts.
  • a steam reforming unit is fed by another charge G, typically different from the oil P (external charge), comprising purified gas substantially free of H2S and added with water vapor.
  • This additional external charge (not derived from P) may be in particular natural gas, or associated, in particular with petroleum P.
  • G may also comprise recycled light fractions, for example C1 / C2 that have been produced during the treatment of P, in particular during the Fischer-Tropsch and / or hydrocracking steps fed by line 17.
  • a second synthesis gas SG2, circulating in line 12, of H2 / CO ratio greater than 3, for example between 4, is thus produced by steam reforming. , 5 and 7.
  • the two SG1 synthesis gases flowing in the line 10 and SG2 flowing in the line 12 are mixed to form the synthesis gas SG which feeds via line 13 the Fischer-Tropsch conversion unit (FT), which is generally preceded by a unit (PUR-FT) for purification of the synthesis gas, represented here in an integrated manner to the Fischer-Tropsch unit.
  • the synthesis gas is in fact typically purified beforehand to less than 0.1 ppmv (ppm volume) of sulfur and nitrogen impurities (and more particularly SG1, which contains more impurities, in particular I 2 S and traces of metals such as Ni, V which can also be purified upstream of the mixture).
  • a washing with ethanolamines for example according to the Rectisol method or other methods known to those skilled in the art.
  • the addition to the SG1 partial oxidation effluent of a hydrogen-rich SG2 synthesis gas produced from external light hydrocarbons, typically C1-C4 and preferably C1 / C2, makes it possible to increase notably the ratio H2 / CO to a value compatible with the Fischer-Tropsch catalyst used, for example between 1, 2 and 2 for an iron catalyst and between 1, 8 and 2.5 or between 2 and 2.3 for a catalyst cobalt.
  • the effluents of the Fischer-Tropsch step (FT) are fractionated into C1 / C2 recycled by steam reforming via line 15a, LPG (C3 / C4) discharged via line 15b, naphtha evacuated via line 15c, and a fraction boiling at above 150 0 C comprising kerosene, gas oil and heavier products rich in solid waxes at room temperature.
  • This stream feeds via line 14 a hydrocracking unit (HDK).
  • the hydrocracking feed E1 comprises, in addition to these Fischer-Tropsch products, the vacuum distillate VGO and the deasphalted oil DAO respectively fed via lines 5 and 7.
  • the hydrocracking effluents are fractionated into C1 / C2 recycled by steam reforming via line 16, LPG evacuated by line 18b Kerosene evacuated by line 18c, GO diesel evacuated by line 18d, naphtha and residual VGO.
  • This residual VGO (vacuum gas oil) and naphtha are removed via line 18a and mixed in line 3b with the light products of atmospheric distillation.
  • Syncrude very high quality synthetic oil
  • a CO conversion can be maintained, particularly to increase flexibility or as an adjustment variable of the H2 / CO ratio, but its importance is limited.
  • Tables 1 and 2 derived from a simulation show the different steps corresponding to the conversion of the vacuum residue VR, before and after partial conversion of the CO 1 as well as the final synthesis gas by Fischer-Tropsch synthesis and then hydrocracking (HDK). distillate and waxes obtained.
  • the water necessary for the partial conversion of the CO is provided in two stages during the cooling (called quench) of the high temperature effluent of the POX, in liquid form and / or finally in the vapor to obtain the appropriate temperature for said conversion. .
  • Example 2 According to the Invention: The same crude oil P is treated as that of Example 1 according to fractionation and partial oxidation of the vacuum residue analogous. On the other hand, CO conversion is not carried out but steam reforming of external gas, in a similar scheme to that of FIG. 1, but without deasphalting: The vacuum residue VR is sent directly to the partial oxidation. The addition of gas (external additional charge), for steam reforming, is an extra methane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé de raffinage ou de pré-raffinage d'un pétrole brut P dans lequel on fractionne P en plusieurs fractions, on réalise une oxydation partielle d'un résidu asphalténique R1 issu de P pour produire un gaz de synthèse SG 1 de rapport H2/C0 inférieur à 1, on réalise un vaporéformage d'une fraction légère d'hydrocarbures externes pour produire un gaz de synthèse SG2 de rapport H2/C0 supérieur à 3; on mélange SG1 et SG2 pour produire un gaz de synthèse SG de rapport H2/C0 compris entre 1,2 et 2,5, et l'on convertit SG par synthèse Fischer-Tropsch, puis on convertit les cires produites en distillats moyens; De préférence on hydrocraque en mélange avec les cires un distillat sous vide VGO et/ou une huile désasphaltée DAO issu(s) de P. L'invention se rapporte aussi à une installation de mise en oeuvre du procédé.

Description

PROCEDE ET INSTALLATION DE TRAITEMENT DE PETROLE BRUT AVEC CONVERSION DE
RÉSIDU ASPHALTÉNIQUE
Domaine de l'invention
La présente invention concerne l'industrie du pétrole, et en particulier l'industrie du traitement du pétrole, typiquement en région de production de pétrole et aussi de gaz, pour produire soit un ensemble de produits raffinés soit un ou plusieurs pétroles appelés pétroles synthétiques de qualité améliorée. On peut également mettre en oeuvre une co-production de produit(s) raffiné(s) et de pétrole(s) synthétique(s).
L'invention concerne un procédé et une installation permettant de réduire ou même supprimer les asphaltènes, produits les plus lourds contenus dans le pétrole, et dont les débouchés industriels sont réduits et la valorisation médiocre.
Les principaux produits finaux commerciaux pouvant être obtenus dans une installation selon l'invention sont:
- d'une part un ou plusieurs produits raffinés classiques parmi notamment: le naphta pétrochimique, l'essence, le kérosène, le gazole (appelé aussi carburant diesel), le fioul domestique, de gaz de pétrole liquéfiés, et parfois d'autres produits: huiles lubrifiantes, solvants, paraffine, combustible pour turbine à gaz, etc..
- d'autre part, optionnellement, un ou plusieurs pétroles synthétiques de teneur en asphaltènes typiquement réduite voire nulle.
Art antérieur
Le demandeur a déjà proposé dans la demande de brevet FR-04/02.088 d'utiliser du gaz de gisement, relativement peu onéreux en région de production de pétrole et de gaz, pour préraffiner un pétrole conventionnel, et produire typiquement d'une part un pétrole Pa à basse teneur en soufre et sensiblement exempt d'asphaltènes, et d'autre part un pétrole Pb résiduaire (comprenant les asphaltènes de départ, en partie convertis par un traitement hydrogénant). Le pétrole Pa produit donne, après raffinage, très peu ou pas du tout de fuel soufré, et peut avoir une teneur élevée en distillats moyens de plus en plus demandés par le marché. C'est un pétrole de grande qualité. Le pétrole Pb comprend typiquement des fractions de qualité inférieure, et notamment les asphaltènes résiduels.
Le procédé prévoit aussi de co-produire éventuellement des produits pétroliers finaux commerciaux: naphta, gazole etc..
Ce procédé de l'art antérieur produit donc un pétrole Pa de grande qualité demandé par le marché. Il demeure cependant un besoin pour améliorer encore le procédé, notamment pour réduire encore la quantité de produits lourds et asphaltènes résiduels, présents dans le pétrole pétrole résiduaire Pb. Il est aussi souhaitable de réduire l'investissement rapporté à la tonne de produits traités.
Résumé de l'invention
L'invention propose un procédé et une installation de raffinage, ou de pré-raffinage de pétrole brut, généralement conventionnel, permettant de réduire de façon importante, et de préférence de supprimer les asphaltènes présents dans les produits finaux obtenus pour ne produire que des fractions de haute qualité dépourvues d'asphaltènes.
Selon un premier aspect de l'invention, les asphaltènes d'un pétrole brut P sont concentrés dans un résidu R1 , qui est gazéifié par oxydation partielle pour produire un gaz de synthèse SG1 de rapport H2/CO faible typiquement inférieur à 1. Selon un second aspect de l'invention, on utilise également une charge secondaire G composée notamment d'hydrocarbures ayant moins de 5 atomes de carbone (typiquement une charge externe: gaz naturel et/ou associé souvent additionnée d'hydrocarbures recyclés C1-C2 (le terme Cn désignant un ou plusieurs hydrocarbures à n atomes de carbone) ou C1 à C4 issu d'unités de conversion pour le traitement du pétrole P ou de conversion du gaz de synthèse obtenu) que l'on convertit par vaporéformage en un second gaz de synthèse SG2 de rapport H2/CO élevé typiquement supérieur à 3. Le mélange de SG1 et SG2 choisis en quantités appropriées permet d'obtenir un gaz de synthèse de rapport H2/CO intermédiaire, compris entre 1 ,2 et 2,5 qui est adapté pour la conversion Fischer-Tropsch en hydrocarbures liquides et/ou solides à température ambiante. Les produits lourds, et en particulier les cires produites (paraffines solides à l'ambiante) sont alors typiquement hydrocraquées au moins partiellement en carburant diesel. Le procédé permet donc de convertir de façon importante ou même intégralement les asphaltènes déficitaires en hydrogène (rapport H/C faible) en produits nobles, grâce à un appoint de gaz (de rapport H/C élevé), typiquement de gaz naturel et/ou de gaz associé (au pétrole) externe. Il utilise avantageusement une charge d'hydrocarbures externes légers pour accroître, par génération et ajout d'un second gaz de synthèse, le rapport H2/CO des effluents d'oxydation partielle des résidus, qui sont typiquement déficitaires en hydrogène.
L'invention n'est pas liée à un procédé Fischer-Tropsch particulier, ni du point de vue de la technologie du ou des réacteurs, ni du point de vue du catalyseur, ni du point de vue des conditions de procédé: On peut notamment utiliser aussi bien un réacteur en lit fixe triphasique (connu aussi sous le nom anglais de trickle bed) qu'un réacteur en suspension (appelé slurry). De même, on peut utiliser aussi bien un catalyseur Fischer-Tropsch au cobalt qu'un catalyseur au fer, ou tout autre type éventuel de catalyseur Fischer-Tropsch. De préférence, les quantités relatives de SG1 et SG2 sont adaptées pour produire un gaz de synthèse SG de rapport H2/CO adapté au catalyseur utilisé, typiquement compris entre 1 ,2 et 2 pour un catalyseur au fer, et souvent compris entre 1 ,8 et 2,5 pour un catalyseur au cobalt, sans que ces valeurs soient limitatives.
Les quantités limitées de gaz produites, typiquement des hydrocarbures en C1-C2, ou en C1-C4 (ayant de 1 à 2 ou de 1 à 4 atomes de carbone) produits lors de l'étape Fischer- Tropsch et lors de l'hydrocraquage, peuvent avantageusement être recyclées au vaporéformage.
De façon préférée on ne recycle que les fractions en C1/C2, les gaz de pétrole (GPL: C3/C4) pouvant facilement être liquéfiés pour leur transport.
A partir d'un brut donné, on peut donc selon l'invention généralement transformer ce brut entièrement en produits liquides hautement valorisâmes (hors pertes de matières liées aux consommations énergétiques), comprenant notamment un brut synthétique exempt de fuel lourd, ou de la même façon en carburants et bases pétrochimiques: GPL, naphta + essence + kérosène + gazole (hors pertes de matières liées aux consommations énergétiques). Selon une variante caractéristique de l'invention, on hydrocraque non seulement les cires mais également, en mélange, une coupe non asphalténique issue du pétrole P, typiquement un distillât sous vide VGO et/ou une huile désasphaltée DAO. Ceci permet de réaliser l'hydrocraquage dans une unité unique de grande ou très grande capacité, et de réduire ainsi l'investissement par tonne de produit traité. Le mélange de cires paraffiniques provenant de l'unité Fischer-Tropsch (produit non soufré, non azoté, et de haute pureté) dans la charge d'hydrocraquage permet également d'allonger la durée de cycle de l'unité d'hydrocraquage par rapport à un fonctionnement sur une charge VGO et/ou DAO seule, qui contient en général plus de composés difficiles à hydrocraquer (notamment les polyaromatiques) et d'impuretés (notamment de l'azote). La fraction distillats moyens : kérosène / gasoil (typiquement bouillant entre environ 1500C et environ 34O0C ou 36O0C) des effluents Fischer-Tropsch peut également être hydrocraquée dans des conditions douces favorisant une hydroisomérisation, soit séparément, soit en mélange avec les effluents Fischer-Tropsch plus lourds. Description détaillée de l'invention
Sous sa forme la plus générale, l'invention présente un procédé de transformation d'au moins un pétrole brut P, de préférence en région de production de pétrole et de gaz, comprenant : - un traitement préliminaire de P comprenant au moins une étape de fractionnement de P par distillation (PRE-DIST) et/ou désasphaltage (SDA), pour produire au moins un résidu asphalténique R1 et au moins un premier courant non asphalténique E1 ;
- une étape d'oxydation partielle (POX) du résidu R1 éventuellement additionné de diluant pour produire un premier gaz de synthèse SG1 de rapport H2/CO inférieur à 1 ; - une étape de vaporéformage d'une coupe G comprenant des hydrocarbures ayant moins de 5 atomes de carbone, dont au moins 50% poids de ces hydrocarbures sont externes au pétrole P, pour produire un second gaz de synthèse SG2 de rapport H2/CO supérieur à 3
- le mélange d'une partie au moins de SG1 et d'une partie au moins de SG2 dans des proportions permettant d'obtenir un gaz de synthèse SG de rapport H2/CO compris entre 1 ,2 et 2,5;
- une étape de conversion Fischer-Tropsch de SG, généralement purifié dans une étape de purification préliminaire (PUR-FT), pour obtenir principalement des fractions liquides et des cires paraffiniques ;
- une étape d'hydrocraquage (HDK) au moins de la plus grande partie des cires paraffiniques , pour produire notamment au moins une coupe comprenant des hydrocarbures liquides bouillant en dessous de 3400C.
Ceci permet donc de transformer un résidu riche en asphaltènes en hydrocarbures liquides hautement valorisables.
Selon une première variante de l'invention, on produit au moins un pétrole pré-raffiné non asphalténique Pa à partir d'une partie au moins des coupes non asphalténiques issues du traitement préliminaire de P, optionnellement après traitement(s) catalytique(s) hydrogénant(s), et d'une partie au moins des effluents d'hydrocraquage.
On peut ainsi transformer un pétrole en pétrole synthétique (ou "pré-raffiné") dépourvu de produits lourds très peu valorisables. De préférence, selon cette première variante de l'invention, on hydrocraque en mélange avec les cires une coupe lourde issue de P. Ainsi, on produit pendant le traitement préliminaire de P un courant non asphalténique E1 bouillant essentiellement au dessus de 340°C, et l'on réalise un hydrocraquage (HDK) au moins partiel de la plus grande partie au moins des cires paraffiniques en mélange avec E1.
Typiquement, E1 est essentiellement constitué de distillât sous vide VGO et/ou d'huile désasphaltée DAO, issues du fractionnement de P. Dans cette première variante de l'invention, on peut réaliser un hydrocraquage typiquement partiel de la charge d'hydrocraquage, par exemple avec une conversion comprise entre 25% et 70% poids, ou de 30% à 50% poids en produits bouillant en dessous de 3400C. On peut également réaliser un hydrocraquage poussé, pour atteindre une conversion entre 70% et environ 90%, voire 95% et plus dans certains cas. L'hydrocraquage peut être réalisé en simple passe ou avec recyclage.
Selon une seconde variante de l'invention, on produit uniquement des produits raffinés à partir d'une part des coupes non asphalténiques issues de ou des étapes de fractionnement initial (par exemple distillats atmosphériques et sous vide) et d'autre part des effluents d'hydrocraquage. Les opérations pour l'obtention des produits raffinés sont alors les opérations typiques de raffinage: typiquement hydrotraitement des naphtas, kérosène et gazole de distillation atmosphérique, réformage catalytique de naphta hydrotraité, isomérisation de paraffines légères, éventuellement craquage catalytique fluide de coupes lourdes etc.... Le procédé permet de transformer sensiblement la totalité du brut P en essence, kérosène, gazole, fuel domestique avec éventuellement une quantité réduite de fuel généralement à basse teneur en soufre.
Selon une troisième variante de l'invention, on produit un ou plusieurs pétrole(s) pré- raffiné^) non asphalténique(s) et également un ou plusieurs produits raffinés.
L'hydrogène utilisé pour l'hydrocraquage peut avantageusement être produit à partir d'une fraction des effluents de vaporéformage. Il peut également provenir d'une unité de réformage catalytique de naphta.
L'invention propose également une installation de traitement de pétrole, en particulier pour mettre en oeuvre le procédé précédemment décrit, comprenant:
- une unité de distillation initiale de pétrole, produisant au moins un distillât et un premier résidu AR; - au moins une unité de fractionnement secondaire de AR pour produire un résidu asphalténique R1 et au moins un premier courant non asphalténique E1; - une unité d'oxydation partielle (POX) du résidu R1 éventuellement additionné de diluant pour produire un premier gaz de synthèse SG1 de rapport H2/CO inférieur à 1 ; une unité de vaporéformage (SMR) reliée à une source externe G composée principalement d'hydrocarbures ayant moins de 5 atomes de carbone pour produire un second gaz de synthèse SG 1 de rapport H2/CO supérieur à 3 ;
- une zone de mélange d'une partie au moins de SG1 et d'une partie au moins de SG2 reliée en amont à l'unité d'oxydation partielle (POX) et à l'unité de vaporéformage (SMR) pour l'obtention d'un gaz de synthèse SG de rapport H2/CO compris entre 1 ,2 et 2,5 ;
- une unité (FT) de conversion Fischer-Tropsch de SG reliée en amont à la zone de mélange, généralement via une unité de purification PUR-FT, pour obtenir principalement des fractions liquides et des cires paraffiniques ;
- une unité d'hydrocraquage (HDK) de la plus grande partie au moins des cires paraffiniques, reliée en amont à l'unité (FT) de conversion Fischer-Tropsch pour produire notamment au moins une coupe comprenant des hydrocarbures liquides bouillant essentiellement en dessous de 3400C.
Cette installation peut aussi comprendre une zone de mélange de la plus grande partie au moins des cires paraffiniques et du courant non asphalténique E1 , reliée en amont à ladite unité de fractionnement secondaire ainsi qu'à l'unité (FT) de conversion Fischer-Tropsch , et reliée en aval à l'unité d'hydrocraquage (HDK), pour l'hydrocraquage (HDK) de ladite plus grande partie au moins des cires paraffiniques en mélange avec E1.
Ceci permet d'opérer avec une unité d'hydrocraquage de capacité accrue, donc de coût réduit par tonne de charge, et permettant des durées de cycle augmentées par rapport à un hydrocraquage de E1 seul.
Selon l'une des mises en oeuvre préférées de l'invention, l'installation comprend une unité (VD) de distillation sous vide du premier résidu AR pour la production d'un distillât sous vide
VGO et d'un résidu sous vide VR, une unité (SDA) de désasphaltage de VR pour produire une huile désasphaltée DAO et un courant d'asphalte AS, et une zone de mélange de VGO et de DAO et de cires issues de l'unité de conversion Fischer-Tropsch pour obtenir la charge de l'unité d'hydrocraquage (typiquement mélange VGO/DAO/cires, et optionnellement gazole Fischer-Tropsch). On accroît ainsi encore le débit de la charge d'hydrocraquage.
Le traitement préliminaire de P peut comprendre essentiellement l'association en série d'une distillation initiale (dite "atmosphérique"), d'une distillation sous vide et d'un désasphaltage du résidu sous vide. Le traitement préliminaire et/ou les traitements subséquents peuvent aussi comprendre un ou plusieurs traitements hydrogénants, par exemple un hydrotraitement HDT ou hydroconversion HDC de distillât sous vide et/ou d'huile désasphaltée, un hydrotraitement RHDT ou une hydroconversion RHDC de résidu atmosphérique, ou sous vide, ou d'asphalte etc..
Lorsqu'on utilise de l'asphalte AS pour alimenter l'unité d'oxydation partielle, on peut avantageusement lui adjoindre un diluant pour la formation du résidu R1 , charge de l'unité d'oxydation partielle, dans une zone de mélange de AS avec de 4% à 40%, et en particulier de 4% à 30% poids de diluant, par exemple 10% à 20% de gasoil ou de kérosène. On peut aussi utiliser avantageusement du pétrole P dessalé comme diluant.
L'invention est liée à une combinaison d'étapes, et non à des conditions particulières (technologie, catalyseurs, conditions opératoires) de mise en oeuvre de ces différentes étapes. Le traitement du pétrole P peut notamment utiliser un ou plusieurs traitements catalytiques hydrogénants. Selon l'invention on appellera "traitement catalytique hydrogénant" un traitement comprenant au moins l'un des traitements définis ci-après et symbolisés par les appellations suivantes: HDT, HDC, HDK (qui couvre M-HDK, MP-HDK et HP-HDK), RHDT, RHDC. Un traitement catalytique hydrogénant peut donc comprendre plusieurs de ces traitements, par exemple HDT + HDC ou HDC + HDT etc..
On distingue donc les traitements catalytiques hydrogénants suivants:
a) Les hvdrotraitements (symboliquement désignés par le sigle HDT) de charges sans asphaltènes :
Les hydrotraitements de distillats hydrocarbonés ou d'huile désasphaltée (charges sensiblement dépourvues d'asphaltènes) sont des procédés bien connus de l'état de la technique. Leur but principal est l'élimination au moins partielle de composés indésirables, typiquement de soufre, d'azote, éventuellement de métaux tels que le fer, le nickel ou le vanadium, etc.. Ils sont aussi souvent utilisés pour l'hydrogénation d'aromatiques, généralement simultanément avec la désulfuration de la charge. Conventionnellement, pour celles parmi les charges précitées qui comprennent des composés bouillant au-dessus de 371 °C, on appelle hydrotraitement un procédé dont la conversion de ces composés en composés de point d'ébullition inférieur à 3710C est inférieure ou égale à 20 % poids. Pour les procédés traitant les mêmes charges, mais avec une conversion supérieure à 20 % poids, on parlera d'hydroconversion (symboliquement désignés par le sigle HDC), ou d'hydrocraquage (symboliquement noté HDK)1 ces procédés étant présentés ci-après.
Les procédés d'hydrotraitement fonctionnent sous pression d'hydrogène, et utilisent des catalyseurs solides supportés, typiquement des solides granulaires ou des extrudés de dimension caractéristique (diamètre pour des billes ou diamètre équivalent (correspondant à la même section) pour des extrudés) compris entre 0,4 et 5 mm, notamment entre 1 et 3 mm, Les conditions opératoires, et en particulier la vitesse spatiale (WH) et le rapport molaire hydrogène sur hydrocarbure (H2/HC) varient selon les coupes traitées, les impuretés présentes et les spécifications finales recherchées.
Des exemples types et non limitatifs de conditions opératoires sont donnés dans le tableau suivant :
Figure imgf000010_0001
Les catalyseurs d'hydrotraitement comprennent typiquement un métal, ou composé d'un métal du groupe VIB et d'un métal ou composé d'un métal du groupe VIII, sur un support. Les catalyseurs les plus courants sont composés d'un support oxyde et d'une phase active sous la forme de sulfure de molybdène ou de tungstène promu par le cobalt ou le nickel. Les formules communément employées sont les associations CoMo, NiMo et NiW pour la phase active, et l'alumine γ de grande aire spécifique pour le support. Les teneurs en métaux sont souvent de l'ordre de 9 à 15 % poids de molybdène et de 2,5 à 5 % poids de cobalt ou de nickel.
Certaines de ces formules catalytiques sont parfois dopées par le phosphore. D'autres supports oxydes sont employés tels que les oxydes mixtes de type silice-alumine ou titane- alumine.
Ces supports sont typiquement de faible acidité, pour obtenir des durées de cycle catalytique acceptables. Des exemples types de catalyseurs et d'hydrotraitement, notamment de coupes diesel, gasoil ou gasoil sous vide sont les catalyseurs HR448 et HR426 commercialisés par la société française AXENS.
Lorsque des traces de métaux, notamment de nickel et de vanadium sont présentes dans la charge, on utilise avantageusement un support catalytique comprenant une porosité adaptée au dépôt de ces métaux.
Un exemple d'un tel catalyseur est le HMC 841 commercialisé par la société AXENS. Pour l'hydrotraitement d'une huile désasphaltée (DAO) comprenant des métaux, on pourra par exemple utiliser un premier lit avec un catalyseur HMC 841 , pour la démétallisation, puis un deuxième lit de HR 448 pour la désulfuration et la déazotation.
D'autres éléments techniques relatifs aux hydrotraitements peuvent être trouvés dans l'ouvrage de référence: "Conversion processes" (procédés de conversion), P. Leprince, Editions Technip, Paris 15ème, pages 533-574.
b) Les procédés d'hydrocraquage (symboliquement désignés par le siqle HDK) de charges sans asphaltènes:
Les procédés d'hydrocraquage sont également des procédés bien connus de l'état de la technique. Ils s'appliquent exclusivement à des charges sensiblement exemptes d'asphaltènes ou de métaux tels que le nickel ou le vanadium. La charge d'hydrocraquage est typiquement composée de gasoil sous vide, parfois additionnée de gasoil et/ou d'huile désasphaltée (résidu sous vide désasphalté, typiquement par un solvant du groupe formé par le propane, le butane, le pentane et leurs mélanges, et de préférence le propane et le butane). On peut également réaliser un hydrocraquage d'huile désasphaltée DAO. La DAO doit alors avoir une qualité suffisante : typiquement, une charge d'hydrocraquage comprend moins de 400 ppm (parties par millions en poids) d'asphaltènes, de préférence moins de 200 ppm et de façon très préférée moins de 100 ppm. Les teneurs en métaux (typiquement nickel+vanadium) d'une charge d'hydrocraquage sont typiquement inférieures à 10 ppm, de préférence inférieures à 5 ppm, et de façon très préférée inférieures à 3 ppm. Conventionnellement, on considère qu'une charge est sensiblement sans asphaltènes si son taux d'asphaltènes est inférieur à 400 ppm. (Pour un pétrole préraffiné, on considère de façon analogue qu'il est sans asphaltènes, ou non asphalténique, si la fraction bouillant au dessus de 524°C contient moins de 400 ppm d'asphaltènes). Typiquement la charge d'hydrocraquage est d'abord préraffinée sur un catalyseur d'hydrotraitement, typiquement différent du catalyseur d'hydrocraquage. Ce catalyseur, typiquement d'acidité inférieure à celle du catalyseur d'hycrocraquage est choisi pour sensiblement éliminer les métaux, réduire les traces d'asphaltènes, et réduire l'azote organique, qui inhibe les réactions d'hydrocraquage, jusqu'à une valeur typiquement inférieure à 100 ppm, de préférence à 50 ppm et de façon très préférée inférieure à 20 ppm.
Les catalyseurs d'hydrocraquage sont typiquement des catalyseurs bifonctionnels ayant une double fonction : acide d'une part et hydrogénante/déshydrogénante d'autre part. Typiquement, le support a une acidité relativement élevée telle que le rapport d'activité hydrogénante sur activité isomérisante H/A tel que défini dans le brevet français No 2 805 276 pages 1 ligne 24 à page 3 ligne 5, est supérieur à 8, ou de préférence supérieur à 10 ou de façon très préférée supérieure à 12, ou même supérieur à 15. Typiquement, on réalise un hydrotraitement en amont du réacteur ou de la zone d'hydrocraquage avec un catalyseur d'hydrotraitement dont le rapport H/A précité est inférieur à 8, notamment inférieur à 7.
Les catalyseurs d'hydrocraquage comprennent typiquement au moins un métal ou composé métallique du groupe VIB (tel que Mo1W) et un métal ou composé métallique du groupe VIII (tel que Ni...) déposé sur un support. Le rapport atomique du métal du groupe VIII (Mvm) sur la somme des métaux des groupes VIII et Vl B> c'est-à-dire le rapport atomique Mvm / (Mvm + MVι B ), notamment pour les couples NiMo et NiW est souvent voisin de 0,25, par exemple compris entre 0,22 et 0, 28.
La teneur en métaux est souvent comprise entre 10 et 30% poids. Le métal du groupe VIII peut également être un métal noble tel que du palladium ou du platine, à des teneurs de l'ordre de 0,5 à 1 % en masse.
Le support acide peut comprendre une alumine dopée avec un halogène, ou une silice- alumine ayant une acidité suffisante, ou une zéolithe par exemple une zéolithe Y ou USY désaluminisée, ayant souvent une double distribution de pores avec un double réseau de porosité comprenant notamment des micropores de dimension comprise principalement entre 4 à 10 Λ et des mésopores de dimension comprise principalement entre 60 et 500Â. Le rapport silice/alumine de la structure de la zéolithe est souvent compris entre 6,5 et 12. A titre d'exemple, on peut utiliser un enchaînement hydrotraitement puis hydrocraquage avec les catalyseurs HR 448 (HDT) puis HYC 642 (HDK) commercialisés par la société française AXENS. Si la charge comprend des métaux, on pourra utiliser en amont de ces deux lits catalytiques un lit de catalyseur de démétallisation tel que le catalyseur HMC 841 également commercialisé par la société AXENS.
Des exemples de conditions opératoires pour l'hydrocraquage sont typiquement :
- Vitesse spatiale WH entre 0,3 et 2 h'1, - Température entre 360 et 440 0C,
- Recyclage d'hydrogène entre 400 et 2000 Nm3 par m3 de charge,
- La pression partielle d'hydrogène et la pression totale peuvent varier notablement selon la charge et la conversion recherchée. Par convention, une conversion supérieure ou égale à 20 % poids et inférieure à 42 % poids correspond à un hydrocraquage doux (noté symboliquement M-HDK); une conversion supérieure ou égale à 42 % poids et inférieure à 60 % poids correspond à un hydrocraquage moyenne pression (noté symboliquement MP- HDK); une conversion supérieure ou égale à 60% poids (et typiquement inférieure à 95% poids correspond à un hydrocraquage haute pression (noté symboliquement HP-HDK). Par définition, la conversion est celle des produits de température d'ébullition supérieure à 3710C, en produits bouillant en dessous de 3710C.
Typiquement, la pression partielle d'hydrogène est, selon les charges, souvent comprise entre environ 2 MPa et 6 MPa pour l'hydrocraquage doux, entre environ 5 MPa et 10 MPa pour l'hydrocraquage moyenne pression, et entre environ 9 MPa et 17 MPa pour l'hydrocraquage haute pression. La pression totale est souvent comprise entre 2,6 et 8 MPa pour l'hydrocraquage doux, entre environ 7 et 12 MPa pour l'hydrocraquage moyenne pression, et entre 12 et 20 MPa pour l'hydrocraquage haute pression. Les procédés d'hydrocraquage sont typiquement opérés en lit fixe avec des solides granulaires ou des extrudés de dimension caractéristique (diamètre pour des billes ou diamètre équivalent (correspondant à la même section) pour des extrudés) compris entre 0,4 et 5 mm, notamment entre 1 et 3 mm. On ne sortirait pas du cadre de l'invention si l'hydrocraquage était réalisé en lit mobile (lit granulaire de catalyseur typiquement sous forme d'extrudés ou de façon préférée de billes, de dimensions similaires à celles décrites pour un lit fixe. D'autres éléments techniques relatifs à l'hydrocraquage peuvent être trouvés dans l'ouvrage général de référence A: "Hydrocracking Science and Technology" (Science et Technologie de l'hydrocraquage), J Scherzer et A. J. Gruia, Editeur Marcel Dekker, New- York, et dans l'ouvrage général de référence B: "Conversion processes" (procédés de conversion), P. Leprince, 2001, Editions Technip, Paris 15ème, pages 334-364. c) Les procédés d'hvdroconversion (symboliquement désignés par le sigle HDC) d'une charge sans asphaltènes (par exemple de type DAO) mais comprenant des quantités notables de métaux (Ni, V):
On connaît de tels procédés permettant d'atteindre des conversions (avec la même définition que pour l'hydrocraquage) supérieures à 20% poids et souvent bien supérieures (par exemple de 20 % à 50 %, ou de 50 % à 85 % poids, par exemple des procédés en lit bouillonnant. Ces procédés peuvent utiliser des pressions partielles d'hydrogène variables, par exemple entre 4 et 12 MPa, des températures entre 380 et 45O0C, et un recyclage d'hydrogène compris par exemple entre 300 et 1000 Nm3 par m3 de charge, Les catalyseurs utilisés sont similaires ou de type voisin de celui des catalyseurs d'hydrotraitement ou d'hydroconversion de résidus, définis ci-après, et ont une porosité permettant d'avoir une capacité notable en démétallisation.
On peut par exemple utiliser un catalyseur du type HTS 358, commercialisé par la société AXENS.
d) Les hvdrotraitements de résidus (symboliquement désignés par le sigle RHDT) ou hvdroconversions de résidus (svmboliguement désignés par le sigle RHDC):
Les procédés d'hydrotraitement de résidus (et d'hydroconversion de résidus sont des procédés bien connus de l'état de la technique. Les conditions opératoires de ces procédés sont typiquement: Vitesse spatiale horaire (ou WH) comprise entre 0,1 et 0,5. Pression partielle H2 entre 1 et 1 ,7 MPa. Recyclage d'hydrogène entre 600 et 1600 Nm3 par m3 de charge. Température entre 340 et 450 0C. Les catalyseurs des procédés en lit fixe, mobile ou bouillonnant sont le plus souvent des solides macroscopiques supportés, par exemple des billes ou extrudés de diamètre moyen compris entre 0,4 et 5 millimètres. Typiquement il s'agit de catalyseurs supportés comprenant un métal ou composé métallique du groupe VIB (Cr, Mo, W) et un métal ou composé métallique du groupe VIII (Fe1 Co, Ni,...) sur un support minéral, par exemple des catalyseurs à base de cobalt et molybdène sur alumine, ou de nickel et molybdène sur alumine. Pour un hydrotraitement ou une hydroconversion en lit fixe, on peut utiliser par exemple un catalyseur d'hydrodémétallisation HMC 841 , puis des catalyseurs d'hydroconversion et hydrocraquage: HT 318, puis HT 328 commercialisés par la société AXENS. Pour un lit bouillonnant, on peut utiliser un catalyseur de type HOC 458, également commercialisés par la société AXENS. Les catalyseurs des procédés en slurry sont plus diversifiés et peuvent comprendre des particules de charbon ou de lignite broyé imprégné de sulfate de fer ou d'autres métaux, du catalyseur d'hydrotraitement usé broyé, des particules de sulfure de molybdène associé à une matrice hydrocarbonée, obtenues par décomposition in situ de précurseurs tel le naphténate de molybdène etc.. Les dimensions des particules sont typiquement inférieures à 100 micromètres, voire beaucoup plus faibles encore. D'autres caractéristiques des procédés et catalyseurs d1 hydroconversion de résidus sont données dans l'ouvrage général de référence C : "Raffinage et conversion des produits lourds du pétrole", par JF Le Page, SG Chatila, M Davidson, aux Editions Technip, Paris, 1990, dans le chapitre 4 (Conversion catalytique sous pression d'hydrogène), et le chapitre 3 paragraphe 3.2.3. On pourra également se référer à l'ouvrage général de référence B précité pages 411-450, dans le chapitre 13 (hydroconversion des résidus), ainsi qu'à l'ouvrage général de référence D: "upgrading petroleum residues and heavy oils" qui signifie: améliorer la qualité de résidus pétroliers et d'huiles lourdes, par Murray R. Gray, éditeur Marcel Dekker inc. New York, au chapitre 5.
La production d'hydrogène pour la mise en œuvre de ces traitements catalytiques hydrogénants peut être réalisée à partir de gaz épuré, par exemple par vaporéformage sur catalyseur au nickel puis conversion du CO à la vapeur (shift conversion) puis purification. Il s'agit d'un procédé bien connu, décrit dans l'ouvrage général de référence B précité, p 451- 502. Le procédé selon l'invention permet en outre de produire l'hydrogène nécessaire aux diverses utilisations (hydrotraitement(s), hydrocraquage ...) à partir d'une fraction du gaz de synthèse SG2.
Le CO2 séparé peut, lorsque le procédé selon l'invention est mis en oeuvre sur ou à proximité d'un site de production de pétrole (par exemple à moins de 100 km), être réinjecté au niveau de puits du gisement de pétrole, pour la récupération assistée par le CO2 ("CO2 flooding" en anglais) et/ou la séquestration de CO2 notamment dans des puits dépiétés (en fin de production).
Le procédé selon l'invention peut éventuellement comprendre en outre des étapes de raffinage pour l'obtention de produits raffinés. On pourra se référer notamment à l'ouvrage référencé B précité pour la description des procédés unitaires d'isomérisation de réformage catalytique de naphta, de craquage catalytique etc..
L'étape (POX) d'oxydation partielle et les traitements de purification du gaz de synthèse obtenu sont décrits dans l'ouvrage général de référence B précité, pages 480 - 491 et 575 - 593. Le procédé selon l'invention comprend généralement une ou plusieurs étapes de purification du gaz de synthèse, bien connues de l'homme de l'art, pour notamment éliminer les composés soufrés et azotés résiduels, notamment H2S, HCN et souvent également le CO2.
La séparation de I'H2S et du CO2 est classiquement réalisée par lavage du gaz par une solution aqueuse d'aminés, par exemple de monoéthanolamine (MEA) ou de méthyldiéthanolamine (MDEA) tel que décrit dans l'ouvrage général général de référence B précité pages 468-471 , ou dans l'ouvrage de référence E: "Gas purification" (Purification des gaz), 2eme édition F. C. Riesenfeld et A. L. Kohi GuIf Publishing Company; Houston, pages 22 à 81. Une option parfois utilisée consiste à réaliser préalablement sur le gaz de synthèse, après condensation de l'eau, une conversion des composés soufrés en H2S notamment sur catalyseur au chrome sur alumine ou au cuivre/chrome sur alumine tel que décrit pages 626-627 dans l'ouvrage général de référence E. On peut aussi utiliser un catalyseur de conversion à la vapeur (shift conversion selon la terminologie anglosaxonne) à base d'oxyde de fer et d'oxyde de chrome tel que décrit dans cet ouvrage page 634. Un traitement final sur charbon actif tel que décrit dans cet ouvrage page 633, peut enfin être utilisé en aval du lavage aux aminés pour enlever les traces d'impuretés résiduelles.
On peut également, si l'on recherche une extrême pureté utiliser à la place du lavage aux aminés une purification avec lavage au méthanol refroidi, par exemple selon le procédé Rectisol utilisant deux étages pour l'élimination de COS et H2S, puis de CO2, tel que décrit dans l'ouvrage général de référence B précité pages 488 et 489 et dans l'ouvrage général de référence E précité pages 691 à 700. D'autres options utilisant des tamis moléculaires (adsorption à variation de pression, appelée PSA) ou une conversion catalytique sur oxyde de zinc peuvent aussi être utilisées lors de la purification du gaz de synthèse. La purification réalisée peut typiquement éliminer presque totalement les impuretés, par exemple à moins de 0,1 ppmv de soufre et de même pour les composés azotés tels d'HCN.
L'étape de conversion Fischer-Tropsch peut être réalisée, selon l'invention, selon l'un quelconque des procédés connus, utilisant l'un quelconque des catalyseurs connus, notamment à base de fer ou de cobalt, et n'est pas limitée à un procédé ou un catalyseur particulier. Elle est réalisée avec un catalyseur adapté au rapport H2/CO du gaz de synthèse, par exemple un catalyseur au cobalt pour un gaz de synthèse de rapport H2/CO compris entre environ 1 ,8 et 2,5 ou bien un catalyseur au fer pour un gaz de synthèse de rapport H2/CO compris entre environ 1 ,2 et 2. On peut utiliser un réacteur en lit fixe triphasique, ou un réacteur triphasique (en "slurry" selon la terminologie anglosaxonne, c'est-à-dire un réacteur triphasique avec une phase liquide comprenant un catalyseur solide divisé en suspension et une phase gazeuse (ici, le gaz de synthèse). L'option préférée selon l'invention correspond à un tel réacteur triphasique comprenant un catalyseur Fischer-Tropsch sous forme de fines particules en suspension comprenant un support inerte imprégné de fer ou de cobalt. On pourra par exemple utiliser un support en alumine ou silice, ou zircone, ou silice-alumine, ou alumine-zircone, imprégné par 10% à 30% poids de fer ou de cobalt par rapport au catalyseur global. Le mélange triphasique peut comprendre des particules de catalyseur de diamètre moyen compris entre 3 et 150 micromètres, de préférence 10 à 120 micromètres, en suspension dans un liquide essentiellement composé par des produits de la réaction, en particulier des cires paraffiniques fondues à la température de réaction. Le pourcentage poids de catalyseur peut être compris généralement entre 10% et 40% poids par rapport à la suspension liquide/catalyseur solide. La vitesse superficielle gaz dans le réacteur peut être comprise entre 0,05 m/s et 0,4 m/s, notamment entre 0,12 et 0,3 m/s. La pression est souvent comprise entre 1 ,5 et 4 MPa, notamment entre 1 ,8 et 2,8 MPa. La température est souvent comprise entre 215°C et 255°C, généralement entre 23O0C et 2400C. On pourra notamment pour plus de détails concernant des catalyseurs et/ou procédés Fischer-Tropsch se référer aux brevets ou demandes de brevet: EP 450 860; US 5,961 ,933; US 6,060,524; US 6,921 ,778; PCT/FR05/02.863.
Description de la figure 1 et du meilleur mode de réalisation de l'invention
On se réfère maintenant à la figure 1 qui présente un exemple non limitatif de schéma d' installation pour la réalisation du procédé selon l'invention, représentatif du mode de réalisation préféré de l'invention. Un pétrole brut P, typiquement conventionnel (par exemple un pétrole transportable à température ambiante tel que l'arabe léger), est alimenté par la ligne 1 dans un dessaleur DES. Le pétrole dessalé alimente via la ligne 2 une colonne de distillation préliminaire PRE- DIST (souvent appelée distillation initiale ou distillation atmosphérique) fonctionnant typiquement sous une pression comprise entre 0,1 et 0,5 MPa. Cette colonne, qui peut réaliser éventuellement un fractionnement sommaire, produit par la ligne 3a un courant léger, comprenant typiquement des distillats moyens: typiquement kérosène et diesel, ainsi que du naphta et des composés plus légers.
La colonne produit également un résidu atmosphérique par la ligne 4, qui alimente une colonne de distillation sous vide VAC-DIST. Cette colonne, qui fonctionne typiquement sous une pression comprise entre 0,004 et 0,04 MPa, produit un courant de distillât sous vide VGO par la ligne 5, et un courant de résidu sous vide VR par la ligne 6.
Le résidu sous vide VR est alimenté dans une unité (SDA) de désasphaltage au solvant (typiquement au butane, ou de préférence au pentane) pour produire une huile désasphaltée DAO circulant dans la ligne 7 et un courant d'asphalte AS évacué par la ligne 8.
L'asphalte AS est mélangé à un courant de diluant DIL alimenté par la ligne 9. Ce courant comprend par exemple un courant de pétrole dessalé alimenté à partir de la ligne 2. DIL peut aussi comprendre des hydrocarbures légers prélevés à partir de la ligne 3.
Le résidu R1 comprenant l'asphalte additionné du diluant alimente par la ligne 8 l'unité (POX) d'oxydation partielle. Cette unité réalise une oxydation partielle à l'oxygène, sous pression typiquement comprise entre 1 et 4 MPa, pour produire un courant SG1 de gaz de synthèse de rapport H2/CO typiquement compris entre 0,4 et 0,8 et souvent entre 0,45 et 0,7.
Ces rapports H2/CO sont très bas et mal adaptés à la synthèse Fischer-Tropsch, non seulement pour des catalyseurs au cobalt mais aussi pour des catalyseurs au fer.
On alimente par ailleurs via la ligne 11 une unité (SMR) de vaporéformage par une autre charge G, typiquement différente du pétrole P (charge externe), comprenant du gaz épuré sensiblement exempt d'H2S et additionné de vapeur d'eau. Cette charge additionnelle externe (non issue de P) peut être notamment du gaz naturel, ou associé, notamment au pétrole P. G peut aussi comprendre des fractions légères recyclées, par exemple C1/C2 ayant été produites au cours du traitement de P, notamment au cours des étapes Fischer- Tropsch et/ou hydrocraquage, alimentées par la ligne 17. On produit ainsi par vaporéformage un second gaz de synthèse SG2, circulant dans la ligne 12, de rapport H2/CO supérieur à 3, par exemple compris entre 4,5 et 7. Les deux gaz de synthèse SG1 circulant dans la ligne 10 et SG2 circulant dans la ligne 12 sont mélangés pour former le gaz de synthèse SG qui alimente via la ligne 13 l'unité de conversion Fischer-Tropsch (FT), qui est généralement précédée par une unité (PUR-FT) de purification du gaz de synthèse, représentée ici de façon intégrée à l'unité Fischer-Tropsch. Le gaz de synthèse est en effet typiquement épuré préalablement jusqu'à moins de 0,1 ppmv (ppm volume) d'impuretés soufrées et azotées (et plus particulièrement SG1, qui contient plus d'impuretés, en particulier de IΗ2S et des traces de métaux tels que Ni, V qui peut aussi être épuré en amont du mélange). On peut notamment réaliser un lavage aux éthanolamines, un lavage au méthanol (par exemple selon le procédé Rectisol ou d'autres procédés connus de l'homme de l'art.
Selon l'invention, l'adjonction à l'effluent d'oxydation partielle SG1 d'un gaz de synthèse SG2 riche en hydrogène produit à partir d'hydrocarbures légers externes, typiquement C1-C4 et de préférence C1/C2 permet d'augmenter notablement le rapport H2/CO à une valeur compatible avec le catalyseur Fischer-Tropsch utilisé, par exemple entre 1 ,2 et 2 pour un catalyseur au fer et entre 1 ,8 et 2,5 ou entre 2 et 2,3 pour un catalyseur au cobalt.
Les effluents de l'étape Fischer-Tropsch (FT) sont fractionnés en C1/C2 recyclé au vaporéformage via la ligne 15a, GPL (C3/C4) évacué par la ligne 15b, naphta évacué par la ligne 15c, et une fraction bouillant au dessus de 1500C comprenant du kérosène, du gasoil et des produits plus lourds riches en cires solides à l'ambiante. Ce courant alimente par la ligne 14 une unité d'hydrocraquage (HDK). La charge d'hydrocraquage E1 comprend, outre ces produits Fischer-Tropsch, le distillât sous vide VGO et l'huile désasphaltée DAO alimentés respectivement via les lignes 5 et 7. Les effluents d'hydrocraquage sont fractionnés en C1/C2 recyclé au vaporéformage via la ligne 16, GPL évacué par la ligne 18b Kérosène évacué par la ligne 18c, gazole GO évacué par la ligne 18d, naphta et VGO résiduel. Ce VGO (gazole sous vide) résiduel et le naphta sont évacués via la ligne 18a et mélangés dans la ligne 3b aux produits légers de distillation atmosphérique. Ceci permet de produire un pétrole synthétique (appelé Syncrude selon la terminologie anglosaxonne) de très haute qualité, sensiblement exempt d'asphaltènes et de produits soufrés lourds. Les produits sortant de l'installation globale sont donc totalement débarrassés de composants de type fioul lourd soufré.
Le mélange de gaz de synthèse riche et pauvre en hydrogène permet d'adapter la composition du gaz de synthèse final aux besoins, sans devoir réaliser une conversion du CO à la vapeur importante ( shift conversion: CO + H2O = C02 + H2 ). Une conversion du CO peut être maintenue, notamment pour accroître la flexibilité ou comme variable d'ajustement du rapport H2/CO mais son importance est alors limitée.
Exemples:
Exemple 1 (comparatif) On traite un pétrole brut P par distillation atmosphérique puis sous vide, et enfin conversion du résidu sous vide par oxydation partielle à l'oxygène (POX). Le gaz de synthèse obtenu est partiellement converti par conversion du CO à la vapeur (réaction CO+H2O = C02 + H2), afin d'obtenir un rapport H2/CO final de 2,15 qui est bien adapté à une synthèse Fischer-Tropsch sur catalyseur au cobalt. Cette voie de conversion de résidus par oxydation partielle puis conversion partielle du CO pour ajuster le rapport H2/CO est une voie connue de transformation de résidus lourds ou de charbon.
Les tableaux 1 et 2 suivants issus d'une simulation montrent les différentes étapes correspondant à la conversion du résidu sous vide VR, avant et après conversion partielle du CO1 ainsi que du gaz de synthèse final par synthèse Fischer-Tropsch puis hydrocraquage (HDK) du distillât et des cires obtenues. L'eau nécessaire à la conversion partielle du CO est apportée en deux étapes au cours du refroidissement (appelé quench) de l'effluent haute température de la POX, sous forme liquide et/ou vapeur en final pour obtenir la température adéquate pour ladite conversion.
Tableau 1 :
Figure imgf000020_0001
Tableau 2:
Figure imgf000021_0001
Exemple 2, selon l'invention: On traite le même pétrole brut P que celui de l'exemple 1 selon un fractionnement et une oxydation partielle du résidu sous vide analogues. Par contre, on ne réalise pas de conversion du CO mais un vaporéformage de gaz externe, selon un schéma similaire à celui de la figure 1, mais sans désasphaltage: Le résidu sous vide VR est envoyé directement à l'oxydation partielle. L'appoint de gaz (charge additionnelle externe), pour le vaporéformage, est un appoint de méthane. Les tableaux 3, 4, et 5 suivants, issus d'une simulation, montrent les résultats des différentes étapes correspondant à la conversion du résidu VR, l'étape de vaporéformage (SMR), ainsi que la conversion du gaz de synthèse final (mélange des gaz de synthèse issus de l'oxydation partielle et du vaporéformage (SMR)) par synthèse Fischer- Tropsch puis hydrocraquage (HDK) du distillât et des cires obtenues. On voit que le rendement en produits liquides (C3, C4, naphta, kérosène et gasoil) est nettement amélioré selon l'invention puisqu'il passe de 31 ,06 % à 37,75 % de la charge globale d'hydrocarbures (charge et combustible). Dans cette simulation, la consommation énergétique du vaporéformage SMR est autosuffisante. On obtiendrait un rendement en produits liquides encore accru si l'on intégrait une récupération thermique sur l'effluent à haute température de l'oxydation partielle pour générer la vapeur d'eau nécessaire au vaporéformage.
On ne sortirait pas du cadre de l'invention en utilisant une intégration thermique différente, ou des dispositions technologiques ou de procédé particulières déjà connues de l'homme du métier.
Tableau 3:
Figure imgf000022_0001
Tableau 4:
Figure imgf000022_0002
Tableau 5:
Figure imgf000023_0001

Claims

REVENDICATIONS
1. Procédé de transformation d'au moins un pétrole brut P, de préférence en région de production de pétrole, comprenant :
- un traitement préliminaire de P comprenant au moins une étape de fractionnement de P par distillation (PRE-DIST) et une étape de désasphaltage (SDA) produisant de l'asphalte
AS et au moins un premier courant non asphalténique E1 ;
- une étape d'oxydation partielle (POX) de l'asphalte AS additionné par 4% à 40% poids d'un diluant , produisant un premier gaz de synthèse SG1 de rapport H2/CO inférieur à 1 ;
- une étape de vaporéformage d'une coupe G comprenant des hydrocarbures ayant moins de 5 atomes de carbone, dont au moins 50% poids de ces hydrocarbures sont externes au pétrole P, produisant un second gaz de synthèse SG2 de rapport H2/CO supérieur à 3 ;
- le mélange d'une partie au moins de SG1 et d'une partie au moins de SG2 dans des proportions permettant d'obtenir un gaz de synthèse SG de rapport H2/CO compris entre 1 ,2 et 2,5; - une étape de conversion Fischer-Tropsch de SG, généralement purifié dans une étape de purification préliminaire (PUR-FT), pour obtenir principalement des fractions liquides et des cires paraffiniques ;
- une étape d'hydrocraquage (HDK) au moins de la plus grande partie desdites cires paraffiniques pour produire notamment au moins une coupe comprenant des hydrocarbures liquides bouillant en dessous de 3400C,
- et l'on produit au moins un pétrole pré-raffiné non asphalténique Pa à partir d'une partie au moins des coupes non asphalténiques issues du traitement préliminaire de P, optionnellement après traitement(s) catalytique(s) hydrogénant(s), et d'une partie au moins des effluents d'hydrocraquage.
2. Procédé selon la revendication 1 dans lequel ledit diluant est constitué par du pétrole P dessalé.
3. Procédé selon l'une des revendications 1 et 2 dans lequel on produit pendant ledit traitement préliminaire de P un courant non asphalténique E1 bouillant essentiellement au dessus de 3400C, et l'on réalise ladite étape d'hydrocraquage (HDK) sur la plus grande partie au moins des cires paraffiniques en mélange avec E1.
4. Procédé selon la revendication 3, dans lequel E1 est essentiellement constitué de distillât sous vide VGO et/ou d'huile désasphaltée DAO.
5. Procédé selon l'une des revendications précédentes dans lequel on produit de l'hydrogène utilisé pour l'hydrocraquage à partir d'une fraction des effluents de vaporéformage.
PCT/FR2007/001168 2006-08-08 2007-07-06 Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique WO2008017742A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/376,522 US8431013B2 (en) 2006-08-08 2007-07-06 Process and facility for treatment of crude oil with asphaltenic residue conversion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0607273A FR2904831B1 (fr) 2006-08-08 2006-08-08 Procede et installation de traitement de petrole brut avec conversion de residu asphaltenique
FR0607273 2006-08-08

Publications (1)

Publication Number Publication Date
WO2008017742A1 true WO2008017742A1 (fr) 2008-02-14

Family

ID=37199102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001168 WO2008017742A1 (fr) 2006-08-08 2007-07-06 Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique

Country Status (3)

Country Link
US (1) US8431013B2 (fr)
FR (1) FR2904831B1 (fr)
WO (1) WO2008017742A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003633A1 (fr) * 2007-06-29 2009-01-08 Eni S.P.A. Processus de conversion de charges d'alimentation d'hydrocarbure lourdes en distillats avec auto production d'hydrogène
WO2009003634A1 (fr) * 2007-06-29 2009-01-08 Eni S.P.A. Processus de conversion de charges d'alimentation d'hydrocarbure lourdes en distillats avec auto production d'hydrogène
WO2013087585A1 (fr) * 2011-12-13 2013-06-20 Shell Internationale Research Maatschappij B.V. Procédé de fischer-tropsch

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854163B1 (fr) * 2003-04-25 2005-06-17 Inst Francais Du Petrole Procede de valorisation de charges lourdes par desasphaltage et hydrocraquage en lit bouillonnant
US9181491B2 (en) * 2009-12-31 2015-11-10 Chevron U.S.A. Inc. Process and system for blending synthetic and natural crude oils and blends made thereby
ES2792855T3 (es) * 2014-11-06 2020-11-12 Bp Europa Se Procedimiento y equipamiento para hidroconversión de hidrocarburos
RU2698815C1 (ru) 2016-10-18 2019-08-30 Маветал Ллс Очищенное турбинное топливо
MX2018014995A (es) 2016-10-18 2019-05-13 Mawetal Llc Combustible marino ecologico.
KR102243790B1 (ko) 2016-10-18 2021-04-22 모에탈 엘엘씨 경질 타이트 오일 및 고 황 연료 오일로부터의 연료 조성물

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU436117B2 (en) * 1969-06-12 1973-05-25 Shell Internationale Research Maatschappu Nv Process for the preparation of lower boiling hydrocarbons or fractions containing them from residual oils
US4367077A (en) * 1981-04-20 1983-01-04 Air Products And Chemicals, Inc. Integrated hydrogasification process for topped crude oil
WO1999013024A1 (fr) * 1997-09-11 1999-03-18 Atlantic Richfield Company Utilisation d'un procede de desasphaltage en dissolution pour transformer du petrole brut lourd en distillat ion a partir d'une formation souterraine, a travers un puits de forage
WO1999055618A1 (fr) * 1998-04-29 1999-11-04 Stichting Energieonderzoek Centrum Nederland Procede et appareil de production de gaz de synthese
WO2000006670A1 (fr) * 1998-07-29 2000-02-10 Texaco Development Corporation Integration de processus de desasphaltage en dissolution et de gazeification
US6277894B1 (en) * 1999-03-30 2001-08-21 Syntroleum Corporation System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems
US6306917B1 (en) * 1998-12-16 2001-10-23 Rentech, Inc. Processes for the production of hydrocarbons, power and carbon dioxide from carbon-containing materials
EP1219566A1 (fr) * 2000-12-27 2002-07-03 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et dispositif intégré pour la production de gaz de synthèse
US20040181313A1 (en) * 2003-03-15 2004-09-16 Conocophillips Company Managing hydrogen in a gas to liquid plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US677894A (en) * 1899-12-12 1901-07-09 James Norton Shutter-worker.
US6054496A (en) * 1997-09-11 2000-04-25 Atlantic Richfield Company Method for transporting a heavy crude oil produced via a wellbore from a subterranean formation to a market location and converting it into a distillate product stream using a solvent deasphalting process
US7041211B2 (en) * 2001-06-28 2006-05-09 Uop Llc Hydrocracking process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU436117B2 (en) * 1969-06-12 1973-05-25 Shell Internationale Research Maatschappu Nv Process for the preparation of lower boiling hydrocarbons or fractions containing them from residual oils
US4367077A (en) * 1981-04-20 1983-01-04 Air Products And Chemicals, Inc. Integrated hydrogasification process for topped crude oil
WO1999013024A1 (fr) * 1997-09-11 1999-03-18 Atlantic Richfield Company Utilisation d'un procede de desasphaltage en dissolution pour transformer du petrole brut lourd en distillat ion a partir d'une formation souterraine, a travers un puits de forage
WO1999055618A1 (fr) * 1998-04-29 1999-11-04 Stichting Energieonderzoek Centrum Nederland Procede et appareil de production de gaz de synthese
WO2000006670A1 (fr) * 1998-07-29 2000-02-10 Texaco Development Corporation Integration de processus de desasphaltage en dissolution et de gazeification
US6306917B1 (en) * 1998-12-16 2001-10-23 Rentech, Inc. Processes for the production of hydrocarbons, power and carbon dioxide from carbon-containing materials
US6277894B1 (en) * 1999-03-30 2001-08-21 Syntroleum Corporation System and method for converting light hydrocarbons into heavier hydrocarbons with a plurality of synthesis gas subsystems
EP1219566A1 (fr) * 2000-12-27 2002-07-03 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et dispositif intégré pour la production de gaz de synthèse
US20040181313A1 (en) * 2003-03-15 2004-09-16 Conocophillips Company Managing hydrogen in a gas to liquid plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003633A1 (fr) * 2007-06-29 2009-01-08 Eni S.P.A. Processus de conversion de charges d'alimentation d'hydrocarbure lourdes en distillats avec auto production d'hydrogène
WO2009003634A1 (fr) * 2007-06-29 2009-01-08 Eni S.P.A. Processus de conversion de charges d'alimentation d'hydrocarbure lourdes en distillats avec auto production d'hydrogène
WO2013087585A1 (fr) * 2011-12-13 2013-06-20 Shell Internationale Research Maatschappij B.V. Procédé de fischer-tropsch
AU2012350757B2 (en) * 2011-12-13 2015-03-26 Shell Internationale Research Maatschappij B.V. Fischer-Tropsch process
US9029429B2 (en) 2011-12-13 2015-05-12 Shell Oil Company Fischer-tropsch process

Also Published As

Publication number Publication date
US20100282640A1 (en) 2010-11-11
FR2904831A1 (fr) 2008-02-15
US8431013B2 (en) 2013-04-30
FR2904831B1 (fr) 2012-09-21

Similar Documents

Publication Publication Date Title
EP3339401B1 (fr) Installation et procede integre d'hydrotraitement et d'hydroconversion avec fractionnement commun
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d'hydrotraitement en lit fixe, une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
WO2008017742A1 (fr) Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique
FR3014897A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
FR2885134A1 (fr) Procede de prerafinage de petrole brut avec hydroconversion moderee en plusieurs etapes de l'asphalte vierge en presence de diluant
FR3050735A1 (fr) Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
WO2006114488A1 (fr) PROCEDE DE PRE-RAFFINAGE DE PETROLE BRUT POUR LA PRODUCTION D’AU MOINS DEUX PETROLES NON ASPHALTENIQUES Pa, Pb ET UN PETROLE ASPHALTENIQUE Pc
CA3008093A1 (fr) Procede integre d'hydrocraquage deux etapes et d'un procede d'hydrotraitement
FR2964388A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d'hydroconversion avec recyclage de l'huile desasphaltee
CA2816666A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage
FR3067037A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrocraquage de distillat sous vide
FR2866897A1 (fr) Utilisation de gaz pour le preraffinage de petrole conventionnel et optionnellement sequestration de co2
FR3067036A1 (fr) Procede de conversion comprenant un hydrotraitement en lit fixe, une separation d'un distillat sous vide, une etape d'hydrotraitement de distillat sous vide
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
WO2019134811A1 (fr) Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud
WO2017108295A1 (fr) Procede de conversion d'une charge pour la production d'hydrocarbures par voie de synthese fischer-tropsch
WO2012085406A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde.
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
CA2621905C (fr) Petrole non asphaltenique
FR2983864A1 (fr) Procede de conversion de charbon par voie hybride associant liquefaction directe en lit bouillonnant et liquefaction indirecte par gazeification suivie d'une synthese fischer-tropsch
FR3084372A1 (fr) Procede de traitement d'une charge hydrocarbonee lourde comprenant un hydrotraitement en lit fixe, deux desasphaltages et un hydrocraquage en lit bouillonnant de l'asphalte
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
CA2774169A1 (fr) Procede d'hydroconversion de charges hydrocarbonees via une technologie en slurry permettant la recuperation des metaux du catalyseur et de la charge mettant en oeuvre une etape de gazeification
FR2909097A1 (fr) Procede de conversion de gaz en liquides a logistique simplifiee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07823263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12376522

Country of ref document: US