WO2006059566A1 - 送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法 - Google Patents

送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法 Download PDF

Info

Publication number
WO2006059566A1
WO2006059566A1 PCT/JP2005/021799 JP2005021799W WO2006059566A1 WO 2006059566 A1 WO2006059566 A1 WO 2006059566A1 JP 2005021799 W JP2005021799 W JP 2005021799W WO 2006059566 A1 WO2006059566 A1 WO 2006059566A1
Authority
WO
WIPO (PCT)
Prior art keywords
line state
state level
snr value
subcarrier
value
Prior art date
Application number
PCT/JP2005/021799
Other languages
English (en)
French (fr)
Inventor
Daichi Imamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to BRPI0518699-4A priority Critical patent/BRPI0518699A2/pt
Priority to US11/720,269 priority patent/US20070258366A1/en
Priority to JP2006547899A priority patent/JP4598003B2/ja
Priority to EP05809656A priority patent/EP1816772A1/en
Publication of WO2006059566A1 publication Critical patent/WO2006059566A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes

Definitions

  • Transmission control frame generation device transmission control frame processing device, transmission control frame generation method, and transmission control frame processing method
  • the present invention relates to a transmission control frame generation device, a transmission control frame processing device, a transmission control frame generation method, and a transmission control frame processing method used in a mobile communication system of a multicarrier transmission system.
  • next-generation mobile communication systems such as the fourth generation
  • a data rate exceeding 100 Mbps is required even during high-speed movement.
  • various wireless communications using a bandwidth of about 100 MHz are being studied.
  • a multicarrier transmission system represented by the OFDM (Orthogonal Frequency Division Multiplexing) system is a transmission system for next-generation mobile communication systems. Being seen as powerful!
  • One of the technologies under consideration for realizing high throughput in a mobile communication system of the multicarrier transmission system is the following adaptive transmission control.
  • adaptive transmission control the channel state for each subcarrier or subcarrier group is estimated, and based on channel state information (CSI: Channel State Information) indicating the estimation result, for example, error correction capability, number of modulation levels, power Modulation parameters such as phase and transmit antenna are adaptively controlled for each subcarrier or subcarrier group.
  • CSI Channel State Information
  • a subcarrier group is an area in the entire band used for multicarrier transmission, and includes one or more subcarriers.
  • the configuration and operation for performing modulation parameter control for each subcarrier group are basically the same as the configuration and operation for performing modulation parameter control for each subcarrier. Therefore, for the sake of simplicity, the following description will refer only to modulation parameter control for each subcarrier.
  • the modulation parameter control for each subcarrier group can be performed by appropriately replacing “subcarrier” with “subcarrier group”. it can.
  • a device that receives information transmitted from the controlled subcarrier feeds back the CSI value of that subcarrier.
  • an apparatus that transmits information on a subcarrier to be controlled receives feedback information, and appropriately controls a modulation parameter for the subcarrier based on the information.
  • the compressed feedback information is obtained by signifying the difference between CSI values of two subcarriers adjacent to each other in the frequency axis direction. Generate.
  • differential coding a technique for encoding a difference between samples by using a high correlation between consecutive samples.
  • the differential code ⁇ has been established for a long time in fields such as the speech code ⁇ .
  • Examples of differential encoding methods include DPCM (Differential Pulse Code Modulation), DM (Delta Modulation), AD PCM (Adaptive Differential Pulse Code Modulation), ADM (Adaptive Delta Modulation), etc. 2, see Non-Patent Document 3).
  • Non-Patent Literature 1 Adaptive Multicarrier System with Reduced Feedback Information in Wideband Radio Channels ", Hynsoo Cheon, Byungjoon Park, Daesik Hong, Vehicular Technology Conference, 1999. VTC 1999— Fall. IEEE VTS 50th, Volume: 5, pp. 2 880-2884, 19-22 September 1999
  • Non-patent document 2 "Digital information compression INC 'Basic technology in the VAN era” ", Tanaka Nakao, August 30, 1984
  • Non-Patent Document 3 "Source coding, data compression with distortion”, Information theory and its application society , Information theory and its application series 1-11, September 8, 2000
  • the above-described existing data compression technique based on differential encoding is a technique originally devised with audio and images as the target information sources. Therefore, the CSI value feedback information for each subcarrier can be generated by simply introducing the existing differential code key ⁇ .
  • An object of the present invention is to provide a transmission control frame generation device, a transmission control frame processing device, a transmission control frame generation method, and a transmission capable of reducing the amount of feedback information data while maintaining the quality of feedback information. It is to provide a control frame processing method.
  • the transmission control frame generation device of the present invention includes a reference level calculation unit that calculates a reference line state level between the plurality of subcarriers from a plurality of line state levels respectively corresponding to a plurality of subcarriers, Encoding is performed on the difference value between the first channel state level and the second channel state level respectively corresponding to one subcarrier and the other subcarriers of the plurality of subcarriers to obtain an encoded difference value.
  • Encoding means generating means for generating a frame indicating the reference line state level and the encoded difference value; and encoding performed on the difference value, the first line state level and the first line state.
  • a coding control means for controlling based on a relative magnitude of one of two line state levels with respect to the reference line state level.
  • the transmission control frame processing apparatus of the present invention is a frame indicating a reference channel state level between a plurality of subcarriers, and each of the plurality of subcarriers includes one subcarrier and another subcarrier.
  • An acquisition means for acquiring a frame further indicating a difference value between the corresponding first line state level and the second line state level, and decoding for performing decoding on the difference value to obtain a decoded difference value Means, said first line state level and said second line
  • An individual level calculating means for calculating one of the line state levels using the decoded difference value, and the decoding applied to the difference value, the first line state level and And a decoding control means for controlling based on a relative magnitude of the second line state level with respect to the reference line state level.
  • the transmission control frame generation method of the present invention includes a reference level calculation step of calculating a reference line state level between the plurality of subcarriers from a plurality of line state levels respectively corresponding to a plurality of subcarriers; Encoding is performed on the difference value between the first channel state level and the second channel state level respectively corresponding to one subcarrier and the other subcarriers of the plurality of subcarriers to obtain an encoded difference value.
  • An encoding step a generating step for generating a frame indicating the reference channel state level and the sign key difference value; and the encoding performed on the difference value, the first channel state level and And a coding control step for controlling based on the relative magnitude of either one of the second line state levels with respect to the reference line state level.
  • the transmission control frame processing method of the present invention is a frame indicating a reference channel state level between a plurality of subcarriers, and each of the subcarriers includes one subcarrier and another subcarrier.
  • a decoding control step for controlling the conversion based on a relative magnitude of one of the first line state level and the second line state level with respect to the reference line state level; It was made to have.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to Embodiment 1 of the present invention.
  • [2] A block diagram showing the configuration of the receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 A block diagram showing a configuration of a CSI frame generation unit according to Embodiment 1 of the present invention.
  • ⁇ 4 A flow diagram for explaining an operation example in the CSI frame generation unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing an example of an OFDM frame configuration, channel response estimation timing, and frequency response estimation value according to Embodiment 1 of the present invention.
  • FIG. 7 shows an example of SNR values of subcarriers according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing an example of waveforms of SNR values and frequency characteristics of each subcarrier according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a differential SNR value or SNR value of each subcarrier according to Embodiment 1 of the present invention and the required number of bits.
  • FIG. 10 A diagram showing the number of bits corresponding to the comparison result between the SNR value and the threshold according to Embodiment 1 of the present invention.
  • FIG. 11 Diagram showing the statistical relationship between SNR value vs. average SNR value and differential SNR value
  • FIG. 12 is a diagram showing the differential SNR value of each subcarrier or the number of bits allocated to the SNR value according to Embodiment 1 of the present invention.
  • FIG. 13 shows a first example of a CSI frame according to Embodiment 1 of the present invention.
  • FIG. 14 shows a second example of the CSI frame according to Embodiment 1 of the present invention.
  • FIG. 15 is a diagram showing a third example of the CSI frame according to Embodiment 1 of the present invention.
  • FIG. 16 is a diagram showing a fourth example of the CSI frame according to Embodiment 1 of the present invention.
  • 17 is a diagram showing a CSI frame generated using the SNR value or differential SNR value encoded with the number of bits shown in FIG. 12 and having the frame format of FIG.
  • FIG. 18 is a block diagram showing a configuration of a CSI frame processing unit according to the first embodiment of the present invention.
  • FIG. 19 is a flowchart for explaining an operation example of the CSI frame processing unit according to the first embodiment of the present invention.
  • FIG. 20 is a block diagram showing a configuration of a CSI frame generation unit according to Embodiment 2 of the present invention.
  • ⁇ 21 An operation example of the CSI frame generation unit according to Embodiment 2 of the present invention will be described.
  • FIG. 22 is a diagram showing a step width corresponding to a comparison result between an SNR value and a threshold according to Embodiment 2 of the present invention.
  • FIG. 23 is a diagram showing a differential SNR value of each subcarrier according to Embodiment 2 of the present invention or the number of bits allocated to the SNR value and a set step width
  • FIG. 24 is a block diagram showing a configuration of a CSI frame processing unit according to Embodiment 2 of the present invention.
  • FIG. 25 is a flowchart for explaining an operation example in the CSI frame processing unit according to Embodiment 2 of the present invention.
  • FIG. 26 A block diagram showing a configuration of a CSI frame generation unit according to Embodiment 3 of the present invention.
  • ⁇ 27 A diagram for explaining an example of a delay dispersion estimation method according to Embodiment 3 of the present invention. Diagram showing the statistical relationship between delay spread and differential SNR value
  • ⁇ 29 A diagram for explaining another example of the delay dispersion estimation method according to the third embodiment of the invention.
  • ⁇ 30 A diagram showing a table for obtaining the delay dispersion estimation value according to the third embodiment of the present invention.
  • ⁇ 31 A diagram for explaining table setting switching according to the third embodiment of the present invention.
  • ⁇ 32 A diagram showing an offset value corresponding to the delay dispersion estimated value according to the third embodiment of the present invention.
  • FIG. 34 shows a first example of a CSI frame according to Embodiment 3 of the present invention.
  • FIG. 35 shows a second example of a CSI frame according to Embodiment 3 of the present invention.
  • FIG. 36 shows a third example of a CSI frame according to Embodiment 3 of the present invention.
  • FIG. 37 shows a fourth example of a CSI frame according to Embodiment 3 of the present invention.
  • FIG. 38 is a block diagram showing a configuration of a CSI frame processing unit according to Embodiment 3 of the present invention.
  • FIG. 39 is a block diagram showing a configuration of a CSI frame generation unit according to Embodiment 4 of the present invention.
  • FIG. 41 is a diagram for explaining table setting switching according to Embodiment 4 of the present invention. The offset value corresponding to the delay dispersion estimated value according to the fourth embodiment is shown.
  • FIG. 42 is a diagram showing a step width corresponding to a comparison result between an SNR value and a threshold according to Embodiment 4 of the present invention.
  • FIG. 43 is a block diagram showing a configuration of a CSI frame processing unit according to the fourth embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a radio communication apparatus provided with a transmission control frame processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a radio communication apparatus provided with a transmission control frame generation apparatus according to Embodiment 1 of the present invention.
  • a wireless communication device including a transmission control frame processing device is a device that transmits information (information data string) using a subcarrier to be controlled, and is therefore referred to as a “transmission device” in the following description.
  • a wireless communication device provided with a transmission control frame generation device is a device that receives information (information data string) transmitted on a subcarrier to be controlled, and is referred to as a “reception device” in the following description.
  • the transmitting apparatus 100 in FIG. 1 and the receiving apparatus 150 in FIG. 2 are mounted on a base station apparatus or a communication terminal apparatus used in a mobile communication system.
  • the base station device may be expressed as Node B, the communication terminal device as UE, and the subcarrier as tone (Tone).
  • the transmission device 100 includes a transmission unit 101, a reception unit 102, and an antenna 103.
  • the transmission unit 101 includes a CSI frame processing unit 110, a modulation parameter determination unit 111, an encoding unit 112, a modulation unit 113, a power control unit 114, an IFFT (Inverse Fast Fourier Transform) unit 115, and a GI (Guard Interval) insertion unit. 116 and a transmission wireless processing unit 117.
  • the reception unit 102 includes a reception radio processing unit 120, a GI removal unit 121, an FFT (Fast Fourier Transform) unit 122, a demodulation unit 123, and a decoding unit 124.
  • CSI frame processing section 110 as a CSI frame processing apparatus obtains line state information (hereinafter referred to as CSI) for each subcarrier from the CSI frame obtained by the decoding processing of decoding section 124.
  • CSI may be expressed as CQI (Channel Quality Indicator).
  • Modulation parameter determination section 111 uses modulation parameters (error correction code, coding rate, modulation scheme, and transmission power) for each subcarrier based on CSI for each subcarrier input from CSI frame processing section 110. To decide. That is, transmission on each subcarrier is controlled by the determined error correction code, coding rate, modulation scheme, and transmission power.
  • the code key unit 112 codes the input time-series transmission data for each subcarrier with the error correction code key method and the code key rate specified by the modulation parameter determination unit 111.
  • Modulation section 113 modulates the encoded transmission data for each subcarrier using a modulation scheme (for example, M-PSK or M-QAM) specified by modulation parameter determination section 111.
  • the power control unit 114 sets the transmission power for each subcarrier to the transmission power value indicated by the modulation parameter determination unit 111.
  • IFFT section 115 performs an IFFT process of multiplexing the signal modulated for each subcarrier with a plurality of orthogonal subcarriers, and generates an OFDM symbol that is a multicarrier signal.
  • the GI insertion unit 116 inserts a GI between OFDM symbols in order to reduce inter symbol interference (ISI) due to delayed waves.
  • ISI inter symbol interference
  • Transmission radio processing section 117 performs predetermined radio processing such as up-conversion on the OFDM symbol, and transmits the OFDM symbol after the radio processing to receiving apparatus 150 from antenna 103. That is, the transmission data string superimposed on each subcarrier is transmitted by radio.
  • Reception radio processing section 120 performs predetermined radio processing such as down-conversion on the OFDM symbol received by antenna 103.
  • the received OFDM symbol contains a framed CSI (CSI frame). That is, reception radio processing section 120 receives a CSI frame.
  • CSI frame framed CSI
  • GI removal section 121 removes the GI inserted between OFDM symbols.
  • the FFT unit 122 performs FFT processing on the OFDM symbol after the GI removal, and obtains a signal for each subcarrier.
  • Demodulation section 123 demodulates the signal after FFT, and decoding section 124 decodes the modulated signal. As a result, received data is obtained.
  • Received data includes data frames and CSI frames! /
  • the receiving apparatus 150 in FIG. 2 includes an antenna 151, a receiving unit 152, and a transmitting unit 153.
  • the reception unit 152 includes a reception wireless processing unit 160, a GI removal unit 161, an FFT unit 162, a demodulation unit 163, and a decoding unit. And a transmission path response estimation unit 165 and a CSI frame generation unit 166.
  • the transmission unit 153 includes an encoding unit 170, a modulation unit 171, a power control unit 172, an IFFT unit 173, a GI insertion unit 174, and a transmission radio processing unit 175.
  • Reception radio processing section 160 performs predetermined radio processing such as down-conversion on the OFDM symbol received by antenna 151. That is, reception radio processing section 160 receives a data sequence superimposed on each subcarrier.
  • GI removal section 161 removes the GI inserted between OFDM symbols.
  • the FFT unit 162 performs FFT processing on the OFDM symbol after GI removal, and obtains a signal for each subcarrier.
  • the demodulator 163 receives an information signal from which the pilot signal or the like is removed from the signal after the FFT.
  • Demodulation section 163 demodulates the information signal using a demodulation method corresponding to the modulation method used for modulation in transmitting apparatus 100.
  • Decoding unit 164 obtains received data by performing decoding processing such as error correction on the modulated signal in a decoding method corresponding to the encoding method used for the encoding in transmitting apparatus 100.
  • Transmission path response estimation section 165 estimates the transmission path response for each subcarrier, and obtains a transmission path response estimated value (propagation path estimated value).
  • CSI frame generation section 166 as a transmission control frame generation device obtains CSI for each subcarrier based on the propagation path estimation value, and feeds back the CSI to transmission device 100. Is generated.
  • the configuration and operation of the CSI frame generation unit 166 will be described in detail later.
  • Code encoder 170 encodes input time-series transmission data and CSI frames for each subcarrier with a predetermined code scheme and code ratio.
  • Modulation section 171 modulates the encoded transmission data and CSI frame for each subcarrier using a predetermined modulation scheme.
  • the power control unit 172 controls transmission power for each subcarrier.
  • IFFT section 173 performs an IFFT process of multiplexing the signal modulated for each subcarrier with a plurality of orthogonal subcarriers, and generates an OFDM symbol that is a multicarrier signal.
  • the GI insertion unit 174 inserts a GI between OFDM symbols in order to reduce ISI due to delayed waves.
  • the transmission radio processing unit 175 as a transmission means is used for up-converting the OFDM symbol. Perform fixed radio processing and transmit the OFDM symbol after radio processing from antenna 151 to transmitting apparatus 100. That is, the transmission wireless processing unit 175 wirelessly transmits the generated CSI frame.
  • the CSI frame generation unit 166 includes a quality level calculation unit 180, a line state memory unit 181, an average quality level calculation unit 182, a bit number control unit 183, a DPCM unit 184, and a feedback frame generation unit. 185.
  • the DPCM unit 184 includes a subtracting unit 190, a quantizing unit 191, a bit converting unit 192, an adding unit 193, a delay unit 194, and a sign key unit 195.
  • Quality level calculation section 180 uses the SNR (Signal to Noise Ratio) value for each subcarrier as the value indicating the channel state, as well as the channel estimation power for each subcarrier input from transmission path response estimation section 165. calculate.
  • SNR Signal to Noise Ratio
  • SNR value referred to in the following description is a logarithmic value unless otherwise stated to use the true value.
  • CNR Carrier to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • received amplitude etc.
  • SIR Signal to Interference Ratio
  • CIR Carrier to Interference Ratio
  • SINR bignal to Interference and Noise Ratio
  • CINR Carrier to Interference and Noise Ratio
  • Control values such as, etc., may be used as the line state level, or if the MIMO (Multi-Input Multi-Output) method is adopted, the matrix or the matrix obtained by singular value decomposition, eigenvalue decomposition, or QR decomposition may be used.
  • MIMO Multi-Input Multi-Output
  • a value such as a singular value or an eigenvalue may be used as the line state level, and an MCS (Modulation and Coding Scheme) parameter (modulation scheme, code) calculated from SNR or SIR. Rate, and the like transmit power) may be used as CSI information.
  • MCS Modulation and Coding Scheme
  • the channel state memory unit 181 is provided for each subcarrier calculated by the quality level calculation unit 180.
  • the SNR value of In addition, the SNR value for each subcarrier is sequentially output to subtractor 190 in accordance with the number (order) assigned to each subcarrier as identification information.
  • Average quality level calculation section 182 as calculation means calculates an average SNR value over all subcarriers using the SNR value for each subcarrier held in channel state memory section 181.
  • the average SNR value may be an average of SNR values of all subcarriers at a certain time, or an average of SNR values of all subcarriers within a certain period.
  • Bit number control section 183 as code key control means is a bit used for code key in code key section 195 based on the relative magnitude of the SNR value for each subcarrier with respect to the average SNR value.
  • the encoding process of the DPCM unit 184 is controlled by variably setting the number. In other words, a variable number of bits is assigned to the differential SNR value generated by the encoding unit 195. The number of allocated bits is notified to the code key unit 195.
  • the subtracting unit 190 subtracts the SNR value input from the delay unit 194 from the SNR value input from one line state memory unit 181 to obtain a difference. S NR value is calculated. However, the SNR value of subcarrier f is output as it is to quantization section 19 1.
  • the quantization unit 191 quantizes the differential SNR value (or SNR value) with a preset step width.
  • the bit conversion unit 192 converts the step width of the differential SNR value (or SNR value) quantized by the quantization unit 191. By this conversion, the step width of the differential SNR value (or SNR value) is adjusted from the step width used for quantization by the quantizing unit 191 to the step width used for addition by the adding unit 193.
  • Adder 193 adds the differential SNR value quantized by quantizer 191 and the SNR value input from delay unit 194. The addition result is output to delay section 194. However, the quantized SNR value of subcarrier f is output to delay section 194 as it is.
  • the delay unit 194 updates the internal state value with the output of the adder 193. And updated The state value is delayed by one subcarrier and output to adder 193, subtractor 190, and bit number controller 183.
  • the sign key unit 195 codes the difference SNR value (or SNR value) quantized by the quantizing unit 191 with the number of bits notified from the bit number control unit 183.
  • Feedback frame generation section 185 as generation means uses the average SNR value calculated by average quality level calculation section 182, and the difference SNR value for each subcarrier encoded by code section 195. To generate a CSI frame.
  • FIG. 4 shows a flowchart for explaining an operation example of CSI frame generation section 166.
  • 5A and 5B show examples of the configuration of OFDM frames exchanged between transmitting and receiving stations, transmission path response estimation timing, and frequency response estimation values.
  • a channel response estimation carrier for example, a known pilot signal
  • Transmission path response estimation section 165 estimates the amplitude fluctuation and phase fluctuation received on the transmission path for each subcarrier at the timing of time t (k is an integer) using the transmission path response estimation carrier. Output the estimation result to the quality level calculator 180
  • a data carrier may be used as a transmission path estimation carrier.
  • quality level calculation section 180 calculates SNR value ⁇ for each subcarrier as shown in FIG. 5B from the received frequency response estimation value (ST1020).
  • SNR value ⁇ is m
  • M represents the total number of subcarriers.
  • the SNR value ⁇ calculated by the quality level calculation unit 180 is stored in the line state memory unit 181.
  • the SNR value ⁇ stored in the line state memory unit 181 is the quality level calculation unit 180. It is updated every time it is newly calculated.
  • the update cycle is
  • control is performed so that update processing to the line state memory unit 181 during the generation of the CSI frame does not occur.
  • the SNR value ⁇ calculated for each subcarrier is calculated by the average quality level calculation unit 182
  • the average SNR value is obtained by the following equation (1). Also, the m-th subcarrier estimated at time t
  • the true value of the SNR value is expressed by the following equation (2), and the average value of the true SNR values for all subcarriers is expressed by the following equation (3).
  • the average SNR value is calculated in the process of calculating the SNR value by the power quality level calculation unit 180 in which the SNR value returned from the logarithmic value to the true value is used.
  • the true SNR value may be used!
  • the SNR value S 1 is used to avoid the accumulation of the quantization error e m ⁇ 1 m that can occur in the quantization unit 191. Note that the SNR value of subcarrier f is output to quantization section 191 as it is.
  • the quantization unit 191 quantizes the differential SNR value X (or SNR value) with the resolution required for the feedback information, that is, the required step width, and the quantized differential SNR value X ′ (or mm Output SNR value) (ST1050).
  • the quantization step width S Sb used in the quantization unit 191 is a fixed value in the present embodiment.
  • Bit conversion section 192 converts the step width of differential SNR value X after quantization (or SNR value) (ST1060).
  • the step width after conversion is SSa, as shown in Figure 6C. That is, by this conversion, the differential SNR value X ′ (or SNR value) is represented again by the step width and the number of bits used in the subtracting unit 190, the adding unit 193, and the delay unit 194.
  • the quantized SNR value of subcarrier f is output from adder 193 to delay unit 194 as it is. Then, the state value of the delay unit 194 is updated to the SNR value S (ST1080)
  • bit number control unit 183 compares the SNR value S after the quantization of the subcarrier f input from the delay unit 194 with the reference value (threshold value) obtained from the average SNR value. . This m— 1
  • the number of bits used for the sign key of the differential SNR value X ′ (or SNR value) is determined and notified to the sign key unit 195.
  • the bit number control processing in the bit number control unit 183 will be specifically described.
  • FIG. 7 is a diagram showing the SNR value of each subcarrier at a certain time.
  • FIG. 8 is a diagram showing waveforms of SNR values and frequency characteristics of each subcarrier.
  • the average SNR The value is 37 [dB] (however, the fractional part is rounded down).
  • 10 subcarriers f to f are used. The number of subcarriers and the SNR value can be taken.
  • the range is not limited.
  • Figure 9 shows the required values for the SNR value of subcarrier f and the differential SNR value of subcarriers f to f.
  • FIG. 9 shows the number of required bits for subcarriers f to f.
  • the encoding range is also shown.
  • the SNR value of subcarrier f is 2 [d] higher than the SNR value of subcarrier f.
  • the bit number control unit 183 uses the average SNR value as a reference value as it is, or obtains the average SNR value power as a threshold value as a reference value.
  • the threshold is calculated by a function that takes the average SNR value as an argument. For example, two thresholds Th and Th
  • the threshold values Th and Th are calculated by adding two predetermined offset values (constants) to the average SNR value. More specifically, the average SNR value is 37 [dB] and two offsets are used.
  • the threshold Th is 40 [dB] and the threshold Th is 34 [dB]. in front
  • the encoding of the differential SNR value can be controlled more appropriately.
  • bit number control section 183 determines whether counter m is “1” or not when performing bit number control (ST1090).
  • the ratio between the SNR value S ′ input from the delay unit 194 and the threshold values Th and Th make a comparison. Then, the number of bits is determined according to the comparison result. For example, the number of bits is determined according to a table (FIG. 10) showing the correspondence between the comparison result and the number of bits. In this table, if Th ⁇ S, the number of bits is “3”, and Th ⁇ S, ⁇ Th
  • m ⁇ 1 indicates the correspondence between the comparison result (the comparison result between the SNR value S ′ and the reference value) and the number of bits.
  • the bit number control unit 183 associates the number of bits allocated to the differential SNR value to be encoded with the SNR value versus the average SNR value, and the bit number allocated to the differential SNR value as the SNR value versus the average SNR value increases. And increase the number of bits allocated to the differential SNR value as the SNR value versus the average SNR value decreases.
  • the number of bits allocated to the differential SNR value (or SNR value) of each subcarrier by the above processing is shown in FIG. That is, the number of bits allocated to the SNR value of subcarrier f is a fixed value (“6” in this embodiment), and each of subcarriers f to f
  • the number of bits allocated to the differential SNR value is variable.
  • the number of allocated bits is notified to the encoding unit 195.
  • encoding section 195 uses the number of bits allocated to subcarrier f differential SNR value X ′ to calculate subcarrier f differential SNR value X ′. Is sign mmm (ST1120). Alternatively, the SNR value of subcarrier f is encoded using the number of bits allocated to the SNR value of subcarrier f. [0073] Then, whether or not the counter m is equal to or greater than the number of subcarriers M is determined (ST1130). When counter m is less than M (ST1130: NO), counter m is updated to m + 1 in step ST1140, and then the process returns to step ST1040. If counter m is greater than or equal to M h (ST1130: YES), go to step ST1150.
  • step ST1150 feedback frame generation section 185 outputs the output of coding section 195 (ie, the SNR value of subcarrier f and the differential SNR values X, ⁇ X of subcarriers f to f).
  • FIG. 13 shows an example of the format of the generated CSI frame.
  • the average SNR value is arranged at the head of the CSI frame, the SNR value of subcarrier f is arranged following the average SNR value, and subsequently, subcarriers f to The differential SNR value of f is placed.
  • the frame format shown in FIG. 14 may be used instead of the frame format shown in FIG. In FIG. 14, the difference between the SNR value of subcarrier f and the average SNR value is arranged following the average SNR value. Following this, differential SNR values of subcarriers f to f are arranged in ascending order of subcarrier numbers. This frame format is adopted
  • CSI frame generation section 166 When used, CSI frame generation section 166 performs processing for subtracting the average SNR value from the SNR value of subcarrier f, while CSI frame processing section 110 performs a process of subtracting the SNR value of subcarrier f from the average SNR value. Processing to add the average SNR value to the difference is performed.
  • Threshold values Th and Th derived from the average SNR value are used for bit number control.
  • a CSI frame having the format shown in FIG. 15 is generated.
  • threshold values Th and Th are sequentially arranged at the head of the CSI frame. Subsequent to the threshold Th, Th
  • the SNR value of carrier f is arranged, and subsequently, the differential SNR values of subcarriers f to f are arranged in ascending order of subcarrier numbers.
  • the frame format shown in FIG. 16 may be used instead of using the frame format shown in FIG. 15, the frame format shown in FIG. 16 may be used.
  • the threshold Th is arranged at the head of the CSI frame, and subsequently, the difference between the threshold Th and the threshold Th is arranged.
  • Sabuki The SNR values of the carrier f are arranged, and subsequently, the differential SNR values of the subcarriers f to f are arranged in ascending order of the subcarrier number.
  • the CSI frame processing unit 110 While the process of subtracting the threshold value Th from the threshold value Th is performed, the CSI frame processing unit 110
  • the process of adding the threshold value Th to the difference between the threshold value Th and the threshold value Th is performed.
  • the frame format is not limited to the above.
  • a frame format in which the average SNR value is added to the end of the CSI frame may be adopted.
  • a frame format in which differential SNR values or SNR values are arranged in descending order of subcarrier numbers may be adopted! Any frame format can be adopted as long as it has a common arrangement order between transmission and reception.
  • a CSI frame having the frame format of FIG. 10 is generated using the SNR value or differential SNR value encoded with the allocated number of bits in the above operation example, as shown in FIG.
  • the SNR value is indicated by 6 bits
  • the SNR value of subcarrier f is indicated by 6 bits
  • the difference of subcarrier f is indicated by 4 bits
  • the difference of subcarrier f is indicated.
  • the SNR value is indicated by 3 bits, and the differential SNR value of subcarrier f is indicated by 3 bits.
  • the differential SNR value for carrier f is 4 bits, and the differential SNR value for subcarrier f is 5 bits.
  • the differential SNR value of subcarrier f is indicated by 5 bits, and the differential SNR of subcarrier f
  • the value is indicated by 5 bits
  • the differential SNR value of subcarrier f is indicated by 5 bits
  • the differential SNR value is indicated by 4 bits.
  • the CSI frame processing unit 110 includes a feedback frame processing unit 130, a bit number control unit 131, a decoding unit 132, a bit conversion unit 133, an addition unit 134, a delay unit 135, and a line state memory unit 136.
  • Feedback frame processing section 130 as acquisition means acquires a CSI frame sent from receiving apparatus 150. Also, a CSI frame force reference value (in this embodiment, an average SNR value) is extracted and output to bit number control section 131. However, the average SNR value is extracted when, for example, the CSI frame in Fig. 13 is used. For example, when the CSI frame of FIG. 15 is used, threshold values Th and Th are extracted. Other CSI frames
  • Bit number control section 131 as a decoding key control means receives inputs from feedback frame processing section 130 and delay section 135, and sets the relative magnitude of the SNR value for each subcarrier relative to the average SNR value. Based on this, the number of bits used for decoding in the decoding unit 132 is controlled. In other words, a variable number of bits is assigned to the differential SNR value decoded by the decoding unit 132. The number of allocated bits is notified to the decoding key unit 132.
  • Decoding unit 132 converts the CSI frame (part other than the average SNR value) input from feedback frame processing unit 130 according to the number of bits notified from bit number control unit 131 to the differential SNR value for each subcarrier. By dividing into (or SNR value), the differential SNR value (or SNR value) for each subcarrier is decoded.
  • Bit conversion section 133 converts the step width of the decoded differential SNR value (or SNR value). By this conversion, the step width of the differential SNR value (or SNR value) is matched with the step width used for addition by the adder 134 from the step width used for quantization by the quantizer 191.
  • Adder 134 adds the output of bit converter 133 and the output of delay unit 135.
  • the SNR value for each subcarrier obtained by this addition is output to delay section 135 and line state memory section 136.
  • the SNR value of subcarrier f is output to delay unit 135 and circuit state memory unit 136 as they are.
  • the delay unit 135 updates the internal state value with the output of the adder unit 134. Then, the updated state value is delayed by one subcarrier and output to adder 134 and bit number controller 131.
  • Channel state memory section 136 holds the SNR value for each subcarrier input from adder section 134. The held SNR value is output to modulation parameter determination section 111 as CSI for each subcarrier.
  • FIG. 19 shows a flowchart for explaining an operation example of the CSI frame processing unit 110.
  • the state value of delay section 135 is initialized to “0”, and counter m is initialized to “1” (ST1510).
  • feedback frame processing section 130 extracts the average SNR value from the CSI frame. (ST1520). Then, it is determined whether the counter m is “1” (ST1530).
  • the general operation is the same as that of the bit number control unit 183 of the CSI frame generation unit 166.
  • the decoding unit 132 uses the number of bits assigned to the differential SNR value X of subcarrier f to convert the differential SNR value X of subcarrier f to mmm decoding. (ST1560).
  • the SNR value of subcarrier f is decoded using the number of bits allocated to the SNR value of subcarrier f.
  • bit conversion section 133 converts the step width of the differential SNR value (or SNR value) after decoding (ST1570).
  • the step width after conversion is matched with the step width used in the adder 134.
  • the step width before conversion is SSb shown in Fig. 6B
  • the step width after conversion is SSa shown in Fig. 6C.
  • the step width after conversion does not necessarily have to be SSa shown in FIG. 6C.
  • the SNR value of subcarrier f is output from adder 134 to delay unit 135 and line state memory unit 136 as they are. Then, the state value of delay section 135 is updated to SNR value S (ST1590). In line state memory unit 136, SNR value S is held (ST1600).
  • step ST1610: NO If counter m is less than M (ST1610: NO), counter m is updated to m + 1 in step ST1620, and then the process returns to step ST1530.
  • the counter m is greater than or equal to M, h (ST1610: YES), the operation of the CSI frame processing unit 110 at time t ends.
  • an SNR value (first SNR value) of a certain subcarrier and an SNR value (second value) of a subcarrier adjacent to that subcarrier are set.
  • the range that the differential SNR value can take (dynamic range) by associating the number of bits allocated to the differential value (differential SNR value) with the relative size of the second SNR value with respect to the average SNR value Even if a plurality of different differential SNR values are assigned to a plurality of different differential SNR values, the CSI frame can be allocated without adding the information as side information. Therefore, it is possible to reduce the data amount of the feedback information while maintaining the quality of the feedback information.
  • the number of bits to be allocated to the difference value between the first SNR value and the second SNR value is set to the average SNR value of the second SNR value.
  • FIG. 20 is a block diagram showing a configuration of CSI frame generation section 166 provided in the reception apparatus according to Embodiment 2 of the present invention.
  • the receiving apparatus according to the present embodiment has the same basic configuration as receiving apparatus 150 described in the first embodiment. Therefore, the same reference numerals are given to the same or similar components as those described in the first embodiment. In the following description, differences from the first embodiment are mainly described.
  • a CSI frame generation unit 166 in FIG. 20 includes a step width control unit 201 instead of the bit number control unit 183 described in the first embodiment.
  • a step width control unit 201 as a sign key control means is used for quantization in the quantization unit 191 based on the relative magnitude of the SNR value for each subcarrier with respect to the average SNR value.
  • the encoding process of the DPCM unit 184 is controlled by variably setting the step width.
  • the step width is the magnitude of the amplitude per bit, that is, the SN indicated by 1 bit.
  • the size of the R value In other words, a variable step width is set for the differential SNR value after quantization. That is, the quantization step width SSb shown in FIG. 6B is variably set. The set step width is notified to the quantization unit 191 and the bit conversion unit 192.
  • the quantization unit 191 of the present embodiment performs the quantization process described in Embodiment 1 using the step width notified from the step width control unit 201. Further, the bit conversion unit 192 according to the present embodiment performs the step width conversion described in the first embodiment using the step width notified from the step width control unit 201. Also, encoding section 195 of the present embodiment performs the encoding process described in Embodiment 1 using a fixed number of bits set in advance.
  • FIG. 21 shows a flowchart for explaining an operation example of the CSI frame generation unit 166.
  • the configurations shown in Fig. 5A and Fig. 5B shall be used for the configuration of OFDM frames exchanged between transmitting and receiving stations, transmission channel response estimation timing, and frequency response estimation values.
  • the same processes as those described in Embodiment 1 with reference to FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • step ST2010 the step width control unit 201 determines whether or not the force of the counter m is "1".
  • the step width is determined according to the comparison result.
  • the step width is determined according to a table (FIG. 22) showing the correspondence between the comparison result and the step width. In this table! /, If Th ⁇ S, step width
  • the step width control unit 201 associates the step width used for quantization with the SNR value versus average SNR value, reduces the quantization step width as the SNR value versus average SNR value increases, and performs quantization.
  • the step width is increased as the SNR value versus the average SNR value decreases.
  • the step width may be calculated using a function. For example, if the SNR value is logarithmic, the threshold Th (or threshold Th) is subtracted from the SNR value.
  • the step width can be derived from the result of dividing the SNR value by the threshold Th (or threshold Th).
  • the step width set for the quantization of the differential SNR value (or SNR value) of each subcarrier is shown in Fig. 2. As shown in 3. That is, the step width used for quantization of the SNR value of subcarrier f is a fixed value (“ldBZbit” in this embodiment), and subcarriers f to f
  • the step width used to quantize each differential SNR value is a variable value. These step widths are notified to the quantization unit 191 and the bit conversion unit 192.
  • the quantization unit 191 uses the step width set for the subcarrier f difference SNR value X, and the subcarrier f difference SNR value X mmm
  • the SNR value of subcarrier f is quantized using the step width set for the SNR value of subcarrier f. Specifically, as shown in FIG. 23, the SNR value of subcarrier f is quantized with a step width of ldB / bit, and the differential SNR value of subcarrier f is quantized with a step width of ldBZbit.
  • the difference SNR value of 2 3 is quantized with a step width of 0.5 dBZbit, and the difference S of subcarrier f
  • the NR value is quantized with a step width of 0.5 dBZbit, and the differential SNR value of subcarrier f is , Quantized with a step width of ldBZbit, the differential SNR value of subcarrier f is 2dBZbit
  • the difference SNR value of subcarrier f is quantized with a step width of 2 dBZbit, and the difference SNR value of subcarrier f is quantized with a step width of 2 dBZbit.
  • the differential SNR value of subcarrier f is quantized with a step width of 2 dBZbit
  • the differential SNR value of rear f is quantized with a step width of ldBZbit.
  • bit conversion section 192 converts the step width of quantized differential SNR value X (or SNR value) based on the step width notified from step width control section 201 (S ⁇ 2050). .
  • the step width after conversion is SSa, as shown in Figure 6C. That is, by this conversion, the differential SNR value X ′ (or SNR value) is represented again by the step width and the number of bits used in the subtractor 190, the adder 193, and the delay unit 194.
  • step ST2050 subsequent to steps ST1070 and ST1080 described in the first embodiment, the process of step ST2060 is executed.
  • step ST2060 encoding section 195 encodes differential SNR value X 'of subcarrier f using the number of bits preset in mm for differential SNR value X of subcarrier f.
  • the SNR value of subcarrier f is encoded using the number of bits set in advance for the SNR value of subcarrier f.
  • the SNR value of subcarrier f is encoded with 6 bits, and the differential SNR value of each of subcarriers f to f is 4
  • the quantization error is reduced by setting a small step width for a region (subcarrier) having a relatively small differential SNR value.
  • regions (subcarriers) where the differential SNR value is relatively large the dynamic range is increased by setting a large step width to reduce errors due to saturation. Therefore, if the conventional DPCM that always uses a fixed quantization step width is compared with the DPCM of this embodiment on the assumption that the same number of sign bits are used, the direction code of the DPCM of this embodiment Waveform distortion due to conversion is reduced.
  • the DPCM of this embodiment maintains the quality of feedback information while maintaining feedback. The amount of information data can be reduced.
  • CSI frame processing section 110 provided in the transmission apparatus according to the present embodiment will be described using FIG.
  • the transmission apparatus of the present embodiment has the same basic configuration as that of transmission apparatus 100 described in the first embodiment. Therefore, the same reference numerals are given to the same or similar components as those described in the first embodiment. In the following description, differences from the first embodiment will be mainly described.
  • a CSI frame processing unit 110 shown in FIG. 24 has a step width control unit 202 instead of the bit number control unit 131 described in the first embodiment.
  • Step width control section 202 as a decoding key control means receives inputs from feedback frame processing section 130 and delay section 135, and sets the relative magnitude of the SNR value for each subcarrier relative to the average SNR value. Based on this, the step width used for the step width conversion in the bit converter 133 is variably set to control the decoding process of the differential SNR value (or SNR value). In other words, the step width of the differential SNR value (or SNR value) subjected to the step width conversion is variably set. The set step width is notified to the bit converter 133.
  • Bit converter 133 converts the step width of the decoded differential SNR value (or SNR value) in accordance with the step width notified from step width controller 202. By this conversion, the step width of the differential SNR value (or SNR value) is matched with the step width used for addition by the adder 134 from the step width used for quantization by the quantizer 191.
  • decoding section 132 receives the CSI frame (part other than the average SNR value) input from feedback frame processing section 130 according to a preset number of bits as a subcarrier.
  • the differential SNR value (or SNR value) for each subcarrier is decoded by dividing the differential SNR value (or SNR value) for each subcarrier.
  • FIG. 25 is a flowchart for explaining an operation example of the CSI frame processing unit 110.
  • the same processes as those described in Embodiment 1 with reference to FIG. 19 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • variable step width is set for the differential SNR value X ′ of subcarrier f (ST2520).
  • the specific operation of setting the variable step width is the same as that of the step width control unit 201 of the CSI frame generation unit 166.
  • the decoding unit 132 uses the fixed number of bits set in advance for the differential SNR value X' of the subcarrier f to set the subcarrier fmm
  • the differential SNR value X is decoded (ST2530).
  • the SNR value of subcarrier f is m 1
  • subcarrier f For a fixed number of bits set in advance, subcarrier f
  • the SNR value is decoded.
  • bit conversion section 133 converts the step width of the differential SNR value (or SNR value) after decoding based on the step width notified from step width control section 202 (ST2540).
  • the step width after conversion is matched with the step width used in the adding unit 134.
  • the step width before conversion is SSb shown in FIG. 6B, that is, the same step width used for quantization by the quantization unit 191.
  • the step width after conversion is SSa shown in Fig. 6C.
  • step ST2540 the process proceeds to step ST1580 described in the first embodiment.
  • the step width after conversion does not necessarily have to be SSa shown in FIG. 6C.
  • the difference value between the first SNR value and the second SNR value that is, the quantization step width of the difference SNR value
  • the quantization step width of the difference SNR value By associating the SNR value of 2 with the relative magnitude of the average SNR value, it is possible not only to set the minimum step width according to the dynamic range, but also to multiple different differential SNR values. Even if this is set, CSI frames can be generated without adding the previous information as side information. This reduces the amount of feedback information while maintaining the quality of feedback information. Can do.
  • the difference value between the first SNR value and the second SNR value that is, the quantization step width of the difference SNR value is set to the second SNR value.
  • step width control unit 201 described in the present embodiment is provided in the C SI frame generation unit 166 described in the first embodiment, and the step width control unit 202 described in the present embodiment is implemented.
  • the CSI frame processing unit 110 described in Embodiment 1 either or both of the number of encoding bits and the quantization step width can be variably set.
  • FIG. 26 is a block diagram showing a configuration of CSI frame generation section 166 provided in the reception apparatus according to Embodiment 3 of the present invention.
  • the receiving apparatus according to the present embodiment has the same basic configuration as receiving apparatus 150 described in the first embodiment. Therefore, the same reference numerals are given to the same or similar components as those described in the first embodiment. In the following description, differences from the first embodiment will be mainly described.
  • the CSI frame generation unit 166 in FIG. 26 further includes a delay dispersion measurement unit 301.
  • Delay dispersion estimation section 301 estimates the delay dispersion of the transmission path using the transmission path response estimation value obtained by transmission path response estimation section 165. As a result of this estimation, an estimated delay variance is obtained. The delay dispersion estimated value is output to bit number control section 183 and feedback frame generation section 185.
  • the bit number control section 183 performs the bit number setting described in the first embodiment also based on the delay dispersion estimated value. Further, feedback frame generation section 185 of the present embodiment performs CSI frame generation described in Embodiment 1 using a delay dispersion estimated value.
  • Delay dispersion estimation section 301 uses the transmission path response estimation value, which is the frequency response value of the transmission path calculated by transmission path response estimation section 165, to calculate the transmission path delay dispersion estimation value.
  • the method for estimating the delay dispersion of the channel response is not limited to a specific method, but an example is given below.
  • a certain threshold is set for the SNR characteristic (or amplitude characteristic) of the frequency response of the transmission path. Then, the intensity of fluctuation per unit frequency is detected from the number of times the threshold is crossed from top to bottom (hereinafter referred to as “level crossing number”).
  • level crossing number the number of level crossings is large, the frequency correlation of the channel response, that is, the correlation between adjacent subcarriers is low. Conversely, when the number of level crossings is small, the correlation between adjacent subcarriers is high. Therefore, as shown in FIG.
  • the level crossing frequency force can also estimate the magnitude of delay dispersion.
  • the frequency response of the transmission line (FIG. 29A) is converted into the time domain (FIG. 29B) by Fourier transform, so that A pulse response can be obtained.
  • the delay dispersion may be calculated from the obtained impulse response.
  • the delay profile force delay dispersion obtained by averaging the impulse responses over time may be calculated. If the propagation environment does not change significantly, it is possible to estimate the delay dispersion more accurately by using a time-averaged delay profile.
  • the method of generating the force delay profile obtained from the delay profile file using the method of estimating the frequency response is not limited to this.
  • an impulse response may be obtained directly in the time domain by using a reception result such as a pilot signal.
  • Delay dispersion estimation section 301 refers to a table as shown in FIG. 30, for example, and obtains a delay dispersion estimation value corresponding to the detected number of level crossings N. And the acquired delay
  • the variance estimation value is output to the bit number control unit 183.
  • Bit number control section 183 increases the number of bits as the delay dispersion estimated value increases, and decreases the number of bits as the delay dispersion estimated value decreases.
  • bit number control section 183 switches the set value of the table in accordance with the size of the estimated delay dispersion value input from delay dispersion estimating section 301. More specifically, FIG. As shown in FIG. 4, a table corresponding to the input delay variance estimation value is selected.
  • control method from delay dispersion estimation to table selection is not limited to the above.
  • the bit number control unit 183 uses the offset value C used to calculate the reference value (threshold value) for the number of level crossings N output from the delay dispersion estimation unit 301 as an example.
  • the table force shown in Fig. 32 is also selected. Then, the threshold value Th, Th, Th, Th is calculated by substituting the selected offset value C into the following formulas (4) to (7). This
  • a table shown in FIG. 33 is used for setting the number of variable bits.
  • Th average SNR value + 5 + C--(4)
  • Th average SNR value—10 + C--(7)
  • the number of bits set for the differential SNR value X of the m-th subcarrier f is expressed as the average SNR value, the SNR value S, and the delay m m ⁇ 1
  • the feedback frame generation unit 185 generates a CSI frame in the format as shown in Fig. 34, Fig. 35, Fig. 36, or Fig. 37, for example.
  • the CSI frame shown in FIG. 34 has the same format as the CSI frame shown in FIG. 13, but a delay dispersion estimation value is arranged at the top of the CSI frame.
  • the CSI frame in Fig. 35 has the same format as the CSI frame in Fig. 14, but the delay dispersion estimation value is arranged at the top of the CSI frame.
  • the CSI frame in Fig. 36 has the same format as that of the CSI frame in Fig. 15.
  • the delay spread estimate is arranged at the top of the CSI frame.
  • the delay dispersion estimate is arranged at the very top. Note that the delay dispersion estimated value does not necessarily have to be arranged at the top of the CSI frame. Any frame format can be adopted as long as it has an arrangement order defined in common between transmission and reception.
  • CSI frame processing section 110 provided in the transmission apparatus according to the present embodiment will be described using FIG.
  • the transmission apparatus of the present embodiment has the same basic configuration as that of transmission apparatus 100 described in the first embodiment. Therefore, it is explained in the embodiment. Constituent elements that are the same as or similar to those in FIG. In the following description, differences from Embodiment 1 are mainly described.
  • feedback frame processing section 130 extracts not only the average SNR value but also the delay dispersion estimated value from the input CSI frame, and outputs the result to bit number control section 131. To do. Other parts are output to the decoding unit 132 as in the first embodiment.
  • the bit number control unit 131 performs the bit number setting described in the first embodiment based also on the delay dispersion estimated value.
  • the specific operation for setting the variable bit number is the same as that of the bit number control unit 183 of the CSI frame generation unit 166.
  • FIG. 39 is a block diagram showing a configuration of CSI frame generation section 166 provided in the reception apparatus according to Embodiment 4 of the present invention.
  • the receiving apparatus of the present embodiment has the same basic configuration as the receiving apparatus described in the first embodiment.
  • CSI frame generation section 166 of the present embodiment has the same basic configuration as CSI frame generation section 166 described in the second embodiment. Therefore, the same reference numerals are given to the same or similar components as those described in the above embodiment. In the following description, differences from the second embodiment will be mainly described.
  • CSI frame generation section 166 in FIG. 39 further includes delay dispersion estimation section 301 identical to that described in the third embodiment.
  • step width control section 201 of the present embodiment performs the step width setting described in Embodiment 2 also based on the delay dispersion estimation value input from delay dispersion estimation section 301. That is, the step width control unit 201 increases the step width as the delay dispersion estimated value increases, and reduces the step width as the delay dispersion estimated value decreases.
  • the step width control unit 201 switches the set value of the table according to the magnitude of the delay dispersion estimation value input from the delay dispersion estimation unit 301. More specifically, figure As shown at 40, a table corresponding to the input delay variance estimation value is selected.
  • control method from delay dispersion estimation to table selection is not limited to the above.
  • the step width control unit 201 uses the offset value C used for calculating the reference value (threshold value) for the number of level crossings N output from the delay dispersion estimation unit 301 as an example.
  • the table force shown in FIG. 41 is also selected. Then, the threshold value Th, Th, Th, Th is calculated by substituting the selected offset value C into the above-described equations (4) to (7), for example.
  • a table shown in FIG. 42 is used for the variable step width setting.
  • the step width set for the differential SNR value X of the m-th subcarrier f is calculated using a function that takes the average SNR value, SNR value S, and slow mm-1 spread variance estimate as arguments. You can do it.
  • feedback frame generation section 185 of the present embodiment performs CSI frame generation described in Embodiment 1 using the delay variance estimation value as described in Embodiment 3.
  • CSI frame processing section 110 provided in the transmission apparatus according to the present embodiment will be described using FIG.
  • the transmission apparatus of the present embodiment has the same basic configuration as that of transmission apparatus 100 described in the first embodiment.
  • CSI frame processing section 110 of the present embodiment has the same basic configuration as CSI frame processing section 110 described in the second embodiment. Therefore, the same reference numerals are given to the same or similar components as those described in the above embodiment. In the following description, differences from the second embodiment are mainly described.
  • feedback frame processing section 130 extracts not only the average SNR value but also the delay dispersion estimated value from the input CSI frame, and outputs the result to step width control section 202. To do. Other parts are output to the decoding unit 132 as in the first embodiment.
  • step width control section 202 of the present embodiment performs the step width setting described in the second embodiment based also on the delay dispersion estimated value.
  • the specific operation for setting the variable step width is the same as that of the step width control section 201 of the CSI frame generation section 166.
  • step width control unit 201 described in the present embodiment is provided in the C SI frame generation unit 166 described in the third embodiment, and the step width control unit 202 described in the present embodiment is implemented.
  • the CSI frame processing unit 110 described in Embodiment 3 either or both of the number of encoding bits and the quantization step width can be variably set.
  • each functional block used in the description of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI sub-regular LSI
  • non-regular LSI depending on the difference in power integration as LSI.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacture and a reconfigurable processor that can reconfigure the connection and settings of circuit cells inside the LSI.
  • FPGA field programmable gate array
  • a transmission control frame generation device, a transmission control frame processing device, a transmission control frame generation method, and a transmission control frame processing method of the present invention include a base station device and a communication terminal device in a mobile communication system of a multicarrier transmission scheme, etc. Can be applied to

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 フィードバック情報の品質を維持しつつ、フィードバック情報のデータ量を削減することができる送信制御フレーム生成装置。この装置において、平均品質レベル算出部(182)は、複数のサブキャリアにそれぞれ対応する複数の回線状態レベルから、複数のサブキャリア間の基準回線状態レベルを算出する。DPCM(Differential Pulse Code Modulation)部(184)は、あるサブキャリアに対応する第1回線状態レベルと他のサブキャリアに対応する第2回線状態レベルとの差分値に対して符号化を施して、符号化差分値を得る。フィードバックフレーム生成部(185)は、基準回線状態レベルと符号化差分値とを示すフレームを生成する。ビット数制御部(183)は、差分値に対して施される符号化処理を、第1回線状態レベルおよび第2回線状態レベルのいずれか一方の基準回線状態レベルに対する相対的大きさに基づいて制御する。

Description

送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレ ーム生成方法および送信制御フレーム処理方法
技術分野
[0001] 本発明は、マルチキャリア伝送方式の移動通信システムで用いられる送信制御フレ ーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送 信制御フレーム処理方法に関する。
背景技術
[0002] 第 4世代などの次世代移動通信システムでは、高速移動時においても 100Mbpsを 超えるデータレートが要求される。その要求を満たすために 100MHz程度の帯域幅 を使った様々な無線通信が検討されている。その中でも特に、周波数選択性フエ一 ジング環境への適応性や周波数利用効率の観点から、 OFDM (Orthogonal Freque ncy Division Multiplexing)方式に代表されるマルチキャリア伝送方式が次世代移動 通信システムの伝送方式として有力視されて!/、る。
[0003] マルチキャリア伝送方式の移動通信システムで高スループットを実現するために検 討されている技術の一つに、下記の適応送信制御が挙げられる。適応送信制御では 、サブキャリア毎またはサブキャリアグループ毎の回線状態を推定し、その推定結果 を示す回線状態情報(CSI : Channel State Information)に基づいて、例えば誤り訂正 能力、変調多値数、電力、位相、送信アンテナなどの変調パラメータをサブキャリア 毎またはサブキャリアグループ毎に適応的に制御する。サブキャリアグループは、マ ルチキャリア伝送に用いられる帯域全体の中の一区域であり、一つ以上のサブキヤリ ァを含む。
[0004] なお、サブキャリアグループ毎に変調パラメータ制御を行うための構成および動作 は、サブキャリア毎に変調パラメータ制御を行うための構成および動作と基本的に同 じである。よって、説明簡略ィ匕のために以下の説明では、サブキャリア毎の変調パラ メータ制御についてのみ言及する。サブキャリアグループ毎の変調パラメータ制御は 、「サブキャリア」を「サブキャリアグループ」と適宜読み替えることにより実施することが できる。
[0005] 適応送信制御には、クローズドループ型のものがある。つまり、制御対象のサブキヤ リアで送信された情報を受信する装置では、そのサブキャリアの CSI値をフィードバッ クする。一方、制御対象のサブキャリアで情報を送信する装置では、フィードバック情 報を受信し、その情報に基づいて、そのサブキャリアについての変調パラメータを適 応的に制御する。
[0006] クローズドループ型の適応送信制御に関して、サブキャリア数の増加に伴うフィード ノ ック情報のオーバーヘッドの増大に対処するための様々な手法が提案されている
[0007] 例えば、非特許文献 1に記載された従来の適応送信制御では、各サブキャリアに つ!、て、ある時刻にフィードバックした CSI値とその直後の CSI値との差を符号ィ匕する ことにより、圧縮されたフィードバック情報を生成する。
[0008] また、従来の適応送信制御の他の例では、周波数軸方向において相互に隣接す る 2つのサブキャリアについての CSI値の差を符号ィ匕することにより、圧縮されたフィ ードバック情報を生成する。
[0009] 上記のように、連続するサンプル間の相関が高いことを利用してサンプル間の差を 符号化する技術は一般に差分符号化 (Differential Coding)と呼ばれる。差分符号ィ匕 は、音声符号ィ匕などの分野で古くから確立されている。差分符号化の方式としては、 例えば DPCM (Differential Pulse Code Modulation)、 DM (Delta Modulation)、 AD PCM (Adaptive Differential Pulse Code Modulation)、 ADM (Adaptive Delta Modul ation)などが挙げられる (例えば、非特許文献 2、非特許文献 3参照)。
非特干文献 1: Adaptive Multicarrier System with Reduced Feedback Information in Wideband Radio Channels", Hynsoo Cheon, Byungjoon Park, Daesik Hong, Vehicul ar Technology Conference, 1999. VTC 1999— Fall. IEEE VTS 50th, Volume: 5, pp. 2 880-2884, 19-22 September 1999
非特許文献 2 :「ディジタル情報圧縮く INC ' VAN時代の基礎技術〉」、田中和男、 1984年 8月 30日
非特許文献 3 :「情報源符号化 歪のあるデータ圧縮」、情報理論とその応用学会編 、情報理論とその応用シリーズ 1— 11、 2000年 9月 8日
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、前述の既存の差分符号化によるデータ圧縮技術は、本来、音声や画 像を対象情報源として考案された技術である。よって、サブキャリア毎の CSI値力 フ イードバック情報を生成するのに対して単に既存の差分符号ィ匕を導入するだけでは
、フィードバック情報のデータ量の削減に一定の限界がある。
[0011] また、マルチキャリア伝送のスループットを十分に実用的なレベルに維持するため には、フィードバック情報の品質を一定レベル以上に維持することが要求される。
[0012] 本発明の目的は、フィードバック情報の品質を維持しつつ、フィードバック情報のデ 一タ量を削減することができる送信制御フレーム生成装置、送信制御フレーム処理 装置、送信制御フレーム生成方法および送信制御フレーム処理方法を提供すること である。
課題を解決するための手段
[0013] 本発明の送信制御フレーム生成装置は、複数のサブキャリアにそれぞれ対応する 複数の回線状態レベルから、前記複数のサブキャリア間の基準回線状態レベルを算 出する基準レベル算出手段と、前記複数のサブキャリアのうち一のサブキャリアと他 のサブキャリアとにそれぞれ対応する第 1回線状態レベルと第 2回線状態レベルとの 差分値に対して符号化を施して、符号化差分値を得る符号化手段と、前記基準回線 状態レベルと前記符号化差分値とを示すフレームを生成する生成手段と、前記差分 値に対して施される前記符号化を、前記第 1回線状態レベルおよび前記第 2回線状 態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大きさに基づ いて制御する符号化制御手段と、を有する構成を採る。
[0014] 本発明の送信制御フレーム処理装置は、複数のサブキャリア間の基準回線状態レ ベルを示すフレームであって、前記複数のサブキャリアのうち一のサブキャリアと他の サブキャリアとにそれぞれ対応する第 1回線状態レベルと第 2回線状態レベルとの差 分値をさらに示すフレームを取得する取得手段と、前記差分値に対して復号化を施 して、復号化差分値を得る復号化手段と、前記第 1回線状態レベルおよび前記第 2 回線状態レベルのいずれか一方を、前記復号化差分値を用いて算出する個別レべ ル算出手段と、前記差分値に対して施される前記復号化を、前記第 1回線状態レべ ルおよび前記第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対 する相対的大きさに基づいて制御する復号化制御手段と、を有する構成を採る。
[0015] 本発明の送信制御フレーム生成方法は、複数のサブキャリアにそれぞれ対応する 複数の回線状態レベルから、前記複数のサブキャリア間の基準回線状態レベルを算 出する基準レベル算出ステップと、前記複数のサブキャリアのうち一のサブキャリアと 他のサブキャリアとにそれぞれ対応する第 1回線状態レベルと第 2回線状態レベルと の差分値に対して符号化を施して、符号化差分値を得る符号化ステップと、前記基 準回線状態レベルと前記符号ィ匕差分値とを示すフレームを生成する生成ステップと 、前記差分値に対して施される前記符号化を、前記第 1回線状態レベルおよび前記 第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大 きさに基づ!/ヽて制御する符号化制御ステップと、を有するようにした。
[0016] 本発明の送信制御フレーム処理方法は、複数のサブキャリア間の基準回線状態レ ベルを示すフレームであって、前記複数のサブキャリアのうち一のサブキャリアと他の サブキャリアとにそれぞれ対応する第 1回線状態レベルと第 2回線状態レベルとの差 分値をさらに示すフレームを取得する取得ステップと、前記差分値に対して復号化を 施して、復号化差分値を得る復号化ステップと、前記第 1回線状態レベルおよび前 記第 2回線状態レベルのいずれか一方を、前記復号化差分値を用いて算出する個 別レベル算出ステップと、前記差分値に対して施される前記復号化を、前記第 1回線 状態レベルおよび前記第 2回線状態レベルのいずれか一方の前記基準回線状態レ ベルに対する相対的大きさに基づ ヽて制御する復号化制御ステップと、を有するよう にした。
発明の効果
[0017] 本発明によれば、フィードバック情報の品質を維持しつつ、フィードバック情報のデ 一タ量を削減することができる。
図面の簡単な説明
[0018] [図 1]本発明の実施の形態 1に係る送信装置の構成を示すブロック図 圆 2]本発明の実施の形態 1に係る受信装置の構成を示すブロック図
[図 3]本発明の実施の形態 1に係る CSIフレーム生成部の構成を示すブロック図 圆 4]本発明の実施の形態 1に係る CSIフレーム生成部における動作例を説明する ためのフロー図
[図 5]本発明の実施の形態 1に係る OFDMフレームの構成、伝送路応答推定タイミン グおよび周波数応答推定値の一例を示す図
圆 6]本発明の実施の形態 1に係るステップ幅を説明するための図
[図 7]本発明の実施の形態 1に係る各サブキャリアの SNR値の一例を示す図
[図 8]本発明の実施の形態 1に係る各サブキャリアの SNR値と周波数特性の波形の 一例を示す図
[図 9]本発明の実施の形態 1に係る各サブキャリアの差分 SNR値または SNR値とそ の所要ビット数とを示す図
圆 10]本発明の実施の形態 1に係る SNR値と閾値との比較結果に対応するビット数 を示す図
[図 11]SNR値対平均 SNR値と差分 SNR値との統計的な関係を示す図
[図 12]本発明の実施の形態 1に係る各サブキャリアの差分 SNR値または SNR値に 対して割り当てられるビット数を示す図
[図 13]本発明の実施の形態 1に係る CSIフレームの第 1の例を示す図
[図 14]本発明の実施の形態 1に係る CSIフレームの第 2の例を示す図
[図 15]本発明の実施の形態 1に係る CSIフレームの第 3の例を示す図
[図 16]本発明の実施の形態 1に係る CSIフレームの第 4の例を示す図
[図 17]図 12に示されたビット数で符号ィ匕された SNR値または差分 SNR値を用 ヽて 生成され且つ図 10のフレームフォーマットを有する CSIフレームを示す図
[図 18]本発明の実施の形態 1に係る CSIフレーム処理部の構成を示すブロック図
[図 19]本発明の実施の形態 1に係る CSIフレーム処理部の動作例を説明するための フロー図
[図 20]本発明の実施の形態 2に係る CSIフレーム生成部の構成を示すブロック図 圆 21]本発明の実施の形態 2に係る CSIフレーム生成部における動作例を説明する ためのフロー図
[図 22]本発明の実施の形態 2に係る SNR値と閾値との比較結果に対応するステップ 幅を示す図
[図 23]本発明の実施の形態 2に係る各サブキャリアの差分 SNR値または SNR値に 対して割り当てられるビット数および設定されるステップ幅を示す図
[図 24]本発明の実施の形態 2に係る CSIフレーム処理部の構成を示すブロック図 [図 25]本発明の実施の形態 2に係る CSIフレーム処理部における動作例を説明する ためのフロー図
[図 26]本発明の実施の形態 3に係る CSIフレーム生成部の構成を示すブロック図 圆 27]本発明の実施の形態 3に係る遅延分散推定方法の一例を説明するための図 圆 28]遅延分散と差分 SNR値との統計的な関係を示す図
圆 29]本発明の実施の形態 3に係る遅延分散推定方法の他の例を説明するための 図
圆 30]本発明の実施の形態 3に係る遅延分散推定値を取得するためのテーブルを 示す図
圆 31]本発明の実施の形態 3に係るテーブル設定切り替えを説明するための図 圆 32]本発明の実施の形態 3に係る遅延分散推定値に対応するオフセット値を示す 図
圆 33]本発明の実施の形態 3に係る SNR値と閾値との比較結果に対応するビット数 を示す図
[図 34]本発明の実施の形態 3に係る CSIフレームの第 1の例を示す図
[図 35]本発明の実施の形態 3に係る CSIフレームの第 2の例を示す図
[図 36]本発明の実施の形態 3に係る CSIフレームの第 3の例を示す図
[図 37]本発明の実施の形態 3に係る CSIフレームの第 4の例を示す図
[図 38]本発明の実施の形態 3に係る CSIフレーム処理部の構成を示すブロック図
[図 39]本発明の実施の形態 4に係る CSIフレーム生成部の構成を示すブロック図 圆 40]本発明の実施の形態 4に係るテーブル設定切り替えを説明するための図 圆 41]本発明の実施の形態 4に係る遅延分散推定値に対応するオフセット値を示す 図
[図 42]本発明の実施の形態 4に係る SNR値と閾値との比較結果に対応するステップ 幅を示す図
[図 43]本発明の実施の形態 4に係る CSIフレーム処理部の構成を示すブロック図 発明を実施するための最良の形態
[0019] 以下、本発明の実施の形態について、図面を用いて詳細に説明する。
[0020] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る送信制御フレーム処理装置を備えた無線通 信装置の構成を示すブロック図である。また、図 2は、本発明の実施の形態 1に係る 送信制御フレーム生成装置を備えた無線通信装置の構成を示すブロック図である。 なお、送信制御フレーム処理装置を備えた無線通信装置は、制御対象のサブキヤリ ァで情報 (情報データ列)を送信する装置であるため、以下の説明では「送信装置」 と言う。一方、送信制御フレーム生成装置を備えた無線通信装置は、制御対象のサ ブキャリアで送信された情報 (情報データ列)を受信する装置であるため、以下の説 明では「受信装置」と言う。図 1の送信装置 100および図 2の受信装置 150は、移動 通信システムにおいて使用される基地局装置や通信端末装置などに搭載される。な お、基地局装置は Node B、通信端末装置は UE、サブキャリアはトーン (Tone)と表さ れることがある。
[0021] 送信装置 100は、送信部 101、受信部 102およびアンテナ 103を有する。送信部 1 01は、 CSIフレーム処理部 110、変調パラメータ決定部 111、符号化部 112、変調 部 113、電力制御部 114、 IFFT (Inverse Fast Fourier Transform)部 115、 GI (Guar d Interval)挿入部 116および送信無線処理部 117を有する。受信部 102は、受信無 線処理部 120、 GI除去部 121、 FFT(Fast Fourier Transform)部 122、復調部 123 および復号化部 124を有する。
[0022] CSIフレーム処理装置としての CSIフレーム処理部 110は、復号化部 124の復号 処理で得られた CSIフレームから、サブキャリア毎の回線状態情報(以下、 CSIと呼 ぶ)を得る。 CSIフレーム処理部 110の構成およびその動作については後で詳述す る。なお、 CSIは CQI (Channel Quality Indicator)と表されることがある。 [0023] 変調パラメータ決定部 111は、 CSIフレーム処理部 110から入力されるサブキャリア 毎の CSIに基づいて、サブキャリア毎の変調パラメータ (誤り訂正符号、符号化率、変 調方式および送信電力)を決定する。すなわち、各サブキャリアでの送信を、決定さ れた誤り訂正符号、符号化率、変調方式および送信電力で制御する。
[0024] 符号ィ匕部 112は、入力される時系列の送信データを、変調パラメータ決定部 111か ら指示された誤り訂正符号ィ匕方式および符号ィ匕率でサブキャリア毎に符号ィ匕する。 変調部 113は、符号化された送信データを、変調パラメータ決定部 111から指示され た変調方式 (例えば M— PSKや M— QAMなど)によってサブキャリア毎に変調する 。電力制御部 114は、サブキャリア毎の送信電力を、変調パラメータ決定部 111から 指示された送信電力値に設定する。 IFFT部 115は、サブキャリア毎に変調された信 号を複数の直交するサブキャリアで多重する IFFT処理を行 、、マルチキャリア信号 である OFDMシンボルを生成する。 GI揷入部 116は、遅延波によるシンボル間干渉 (ISI : Inter Symbol Interference)を低減するために、 OFDMシンボル間に GIを挿入 する。
[0025] 送信無線処理部 117は、 OFDMシンボルにアップコンバートなどの所定の無線処 理を施して、無線処理後の OFDMシンボルをアンテナ 103から受信装置 150へ送 信する。すなわち、各サブキャリアに重畳された送信データ列を無線送信する。
[0026] 受信無線処理部 120は、アンテナ 103で受信される OFDMシンボルに対してダウ ンコンバートなどの所定の無線処理を施す。受信される OFDMシンボルには、フレ ーム化された CSI (CSIフレーム)が含まれている。すなわち、受信無線処理部 120 は、 CSIフレームを受信する。
[0027] GI除去部 121は、 OFDMシンボル間に挿入されている GIを除去する。 FFT部 12 2は、 GI除去後の OFDMシンボルに対して FFT処理を行い、サブキャリア毎の信号 を得る。復調部 123は、 FFT後の信号を復調し、復号ィ匕部 124は、変調後の信号を 復号する。これにより受信データが得られる。受信データには、データフレームおよ び CSIフレームが含まれて!/、る。
[0028] 図 2の受信装置 150は、アンテナ 151、受信部 152および送信部 153を有する。受 信部 152は、受信無線処理部 160、 GI除去部 161、 FFT部 162、復調部 163、復号 化部 164、伝送路応答推定部 165および CSIフレーム生成部 166を有する。送信部 153は、符号化部 170、変調部 171、電力制御部 172、 IFFT部 173、 GI挿入部 17 4および送信無線処理部 175を有する。
[0029] 受信無線処理部 160は、アンテナ 151で受信される OFDMシンボルに対してダウ ンコンバートなどの所定の無線処理を施す。すなわち、受信無線処理部 160は、各 サブキャリアに重畳されたデータ列を受信する。
[0030] GI除去部 161は、 OFDMシンボル間に挿入されている GIを除去する。 FFT部 16 2は、 GI除去後の OFDMシンボルに対して FFT処理を行い、サブキャリア毎の信号 を得る。復調部 163には、 FFT後の信号のうち、パイロット信号等を除いた情報信号 が入力される。復調部 163は、送信装置 100での変調に使用された変調方式に対応 する復調方式で情報信号を復調する。復号ィ匕部 164は、送信装置 100での符号ィ匕 に使用された符号化方式に対応する復号化方式で変調後の信号に対して誤り訂正 などの復号処理を行って受信データを得る。
[0031] 伝送路応答推定部 165には、 FFT後の信号のうち、パイロット信号などの伝送路応 答の推定に必要な信号が入力される。伝送路応答推定部 165は、サブキャリア毎の 伝送路応答を推定し、伝送路応答推定値 (伝搬路推定値)を得る。
[0032] 送信制御フレーム生成装置としての CSIフレーム生成部 166は、伝搬路推定値に 基づ 、てサブキャリア毎の CSIを求め、それらの CSIを送信装置 100へフィードバッ クするための CSIフレームを生成する。 CSIフレーム生成部 166の構成やその動作 については後で詳述する。
[0033] 符号ィ匕部 170は、入力される時系列の送信データおよび CSIフレームを、所定の 符号ィ匕方式および符号ィ匕率でサブキャリア毎に符号ィ匕する。変調部 171は、符号ィ匕 された送信データおよび CSIフレームを、所定の変調方式によってサブキャリア毎に 変調する。電力制御部 172は、サブキャリア毎の送信電力を制御する。 IFFT部 173 は、サブキャリア毎に変調された信号を複数の直交するサブキャリアで多重する IFF T処理を行い、マルチキャリア信号である OFDMシンボルを生成する。 GI挿入部 17 4は、遅延波による ISIを低減するために、 OFDMシンボル間に GIを挿入する。送信 手段としての送信無線処理部 175は、 OFDMシンボルにアップコンバートなどの所 定の無線処理を施して、無線処理後の OFDMシンボルをアンテナ 151から送信装 置 100へ送信する。すなわち、送信無線処理部 175は、生成された CSIフレームを 無線送信する。
[0034] 次いで、 CSIフレーム生成部 166の内部構成およびその動作について説明する。
CSIフレーム生成部 166は、図 3に示すように、品質レベル算出部 180、回線状態メ モリ部 181、平均品質レベル算出部 182、ビット数制御部 183、 DPCM部 184およ びフィードバックフレーム生成部 185を有する。 DPCM部 184は、減算部 190、量子 化部 191、ビット変換部 192、加算部 193、遅延部 194および符号ィ匕部 195を有する
[0035] 品質レベル算出部 180は、回線状態を示す値として、伝送路応答推定部 165より 入力されるサブキャリア毎の伝搬路推定値力もサブキャリア毎の SNR (Signal to Nois e Ratio)値を算出する。
[0036] なお、以下の説明にお!/、て言及する SNR値は、真値の使用につ!/、て言及した場 合を除いて、対数値である。また、ここでは品質レベル(回線状態レベル)を表す指標 として SNRを用いた場合を例にとって説明して!/、るが、 SNRの代わりに CNR (Carrie r to Noise Ratio)、受信電力、 RSSI (Received Signal Strength Indicator)、受信振幅 などを回線状態レベルとして用いても良い。また、セルラシステムのように雑音電力だ けでなく干渉電力も CSIとして重要となる通信システムでは、 SIR (Signal to Interfere nce Ratio;、 CIR (Carrier to Interference Ratioノ、 SINR (bignal to Interference and Noise Ratio)、 CINR (Carrier to Interference and Noise Ratio)などを回線状態レべ ルとして用いても良い。あるいは、前述の指標で示された数値から算出されるローデ イングビット数、送信電力または送信複素重み係数などの制御値を回線状態レベル として用いても良い。あるいは、 MIMO (Multi-Input Multi- Output)方式が採用され ている場合は、特異値分解、固有値分解または QR分解によって得られる行列もしく は特異値または固有値などの値を、回線状態レベルとして用いても良い。また、 SNR や SIRより算出される、 MCS (Modulation and Coding Scheme)パラメータ(変調方式 、符号化率、送信電力など)を CSI情報として用いても良い。
[0037] 回線状態メモリ部 181は、品質レベル算出部 180により算出されたサブキャリア毎 の SNR値を保持する。また、各サブキャリアに識別情報として付与された番号 (順序) に従ってサブキャリア毎の SNR値を減算部 190に順次出力する。
[0038] 算出手段としての平均品質レベル算出部 182は、回線状態メモリ部 181に保持さ れたサブキャリア毎の SNR値を用いて、全サブキャリアに渡る平均 SNR値を算出す る。平均 SNR値は、ある時刻での全サブキャリアの SNR値を平均したものでも良いし 、ある期間内での全サブキャリアの SNR値を平均したものでも良い。
[0039] なお、本実施の形態では、算出された平均 SNR値を全サブキャリアの基準品質レ ベルとして用いている力 平均 SNR値の変わりに、全サブキャリアの SNR値の中央 値、最小値または最大値などを用いても良 、。
[0040] 符号ィ匕制御手段としてのビット数制御部 183は、サブキャリア毎の SNR値の平均 S NR値に対する相対的大きさに基づいて、符号ィ匕部 195での符号ィ匕に用いるビット数 を可変設定することにより、 DPCM部 184の符号化処理を制御する。換言すれば、 符号化部 195で生成される差分 SNR値に可変のビット数を割り当てる。割り当てられ たビット数は、符号ィ匕部 195に通知される。
[0041] 符号ィ匕手段としての DPCM部 184において、減算部 190は、回線状態メモリ部 18 1カゝら入力された SNR値から、遅延部 194から入力された SNR値を減算して、差分 S NR値を算出する。ただし、サブキャリア f の SNR値についてはそのまま量子化部 19 1に出力する。
[0042] 量子化部 191は、差分 SNR値 (または SNR値)を、予め設定されて!ヽるステップ幅 で量子化する。
[0043] ビット変換部 192は、量子化部 191によって量子化された差分 SNR値 (または SN R値)のステップ幅を変換する。この変換により、差分 SNR値 (または SNR値)のステ ップ幅を、量子化部 191の量子化に用いるステップ幅から、加算部 193の加算に用 V、るステップ幅に合わせる。
[0044] 加算部 193は、量子化部 191によって量子化された差分 SNR値と遅延部 194から 入力された SNR値とを加算する。加算結果は遅延部 194に出力される。ただし、サ ブキャリア f の量子化後の SNR値についてはそのまま遅延部 194に出力する。
[0045] 遅延部 194は、内部の状態値を、加算部 193の出力で更新する。そして、更新され た状態値を 1サブキャリア分だけ遅延して、加算部 193、減算部 190およびビット数 制御部 183に出力する。
[0046] 符号ィ匕部 195は、量子化部 191によって量子化された差分 SNR値 (または SNR値 )に対して、ビット数制御部 183から通知されたビット数で符号ィ匕する。
[0047] 生成手段としてのフィードバックフレーム生成部 185は、平均品質レベル算出部 18 2によって算出された平均 SNR値と符号ィ匕部 195によって符号ィ匕されたサブキャリア 毎の差分 SNR値とを用いて CSIフレームを生成する。
[0048] 続いて、 CSIフレーム生成部 166における動作の一例について説明する。
[0049] 図 4には、 CSIフレーム生成部 166の動作例を説明するためのフロー図が示されて いる。また、図 5Aおよび図 5Bには、送受信局間でやりとりする OFDMフレームの構 成、伝送路応答推定タイミングおよび周波数応答推定値の一例が示されている。送 信装置 100と受信装置 150との間で利用される OFDMフレームにおいては、例えば 図 5Aのように、伝送路の周波数応答を推定するための伝送路応答推定用キャリア( 例えば、既知のパイロット信号)力 データなど他の目的に利用されるデータキャリア の間に所定間隔で挿入される。伝送路応答推定部 165では、伝送路応答推定用キ ャリアを用いて、サブキャリア毎の伝送路で受けた振幅変動および位相変動を、時刻 t (kは整数)のタイミングで推定し、これらの推定結果を品質レベル算出部 180に出 k
力する。なお、ブラインド推定をするようなシステムでは、伝送路推定用キャリアとして データ用キャリアが使用されることがある。
[0050] まず、 CSIフレーム生成部 166の CSIフレーム生成処理開始に際して、遅延部 194 の状態値が「0」に初期化されるとともに、カウンタ mの値力「1」に初期化される (ST1 010)。
[0051] そして、品質レベル算出部 180で、受け取った周波数応答推定値から図 5Bのよう にサブキャリア毎に SNR値 γ を算出する(ST1020)。ここで、 SNR値 γ は m番
m,k m,k 目のサブキャリア(πι= 1,2,3,···,Μ—1,Μ)の時間 tでの SNR値を対数変換した値
k
を表す。また、 Mは全サブキャリア数を表す。
[0052] 品質レベル算出部 180で算出された SNR値 γ は、回線状態メモリ部 181に記憶
m,k
される。回線状態メモリ部 181に記憶される SNR値 γ は、品質レベル算出部 180 で新たに算出されるたびに更新される。
[0053] なお、伝送路応答推定値の更新および SNR値 γ の算出の頻度は、 CSIフレー
m,k
ムのフィードバック周期と同じかそれよりも小さく設定される。また、更新周期は、フィ
-N 1
ードバック周期と独立に設定されても良い。ただし、 CSIフレーム生成途中での回線 状態メモリ部 181への更新処理は発生しないように制御される。
[0054] サブキャリア毎に算出された SNR値 γ は、平均品質レベル算出部 182にて、全
m,k
サブキャリアに渡る平均 SNR値を算出するために利用される(ST1030)。平均 SNR 値は、次の式(1)により求められる。また、時間 tで推定した m番目のサブキャリアの
k
SNR値の真値は、次の式(2)で表され、全サブキャリアについての真値の SNR値の 平均値は、次の式(3)で表される。
[数 1]
^ = 1010§10(^)) … ( 1 )
[数 2]
Tm k = 10^/10 … (2 )
Γ „:時間 t kで推定した m番目のサブキャリアの S N R値 (真値)
[数 3]
Γ, ( 3 ) f, : の平均値 (真値)
[0055] なお、この例示においては、平均 SNR値の算出に、対数値から真値に戻された S NR値が用いられている力 品質レベル算出部 180で SNR値を算出する過程で得ら れる SNR値の真値が用いられても良!、。
[0056] そして、減算部 190で減算が行われる。この減算では、 m番目のサブキャリア f の S NR値 Sから、遅延部 194の出力である m—1番目のサブキャリア f の量子化後の SNR値 S ,が減算され、差分 SNR値 Xが得られる (ST1040)。ここで、量子化後 m— 1 m
の SNR値 S ,が用いられているのは、量子化部 191で発生し得る量子化誤差 e m— 1 m の累積を回避するためである。なお、サブキャリア f の SNR値はそのまま量子化部 1 91に出力される。
[0057] そして、量子化部 191で、フィードバック情報に必要な解像度、つまり所要ステップ 幅で差分 SNR値 X (または SNR値)を量子化して、量子化後の差分 SNR値 X ' (ま m m たは SNR値)を出力する(ST1050)。量子化部 191で用いる量子化のステップ幅 S Sbは、本実施の形態においては固定値である。また、図 6Bに示された量子化後の 差分 SNR値 X ,(または SNR値)のステップ幅 SSbは、図 6Aに示された減算部 190 で用いられるステップ幅 SSaよりも広い。したがって、量子化後の差分 SNR値 X ' (ま たは SNR値)には、量子化誤差 e が含まれる(つまり、 X,=X +e )ことがある。
m m m m
[0058] ビット変換部 192では、量子化後の差分 SNR値 X ,(または SNR値)のステップ幅 を変換する(ST1060)。変換後のステップ幅は、図 6Cに示すように、 SSaである。つ まり、この変換により、差分 SNR値 X ' (または SNR値)は、減算部 190、加算部 193 および遅延部 194で用いられるステップ幅およびビット数で再び表現される。
[0059] 変換後の差分 SNR値 X ,は、加算部 193で、遅延部 194の出力である m— 1番目 のサブキャリア f の量子化後の SNR値 S ,に加算される (ST1070)。加算結果 m— 1 m— 1
は、 m番目のサブキャリア f の量子化後の SNR値 S 'として遅延部 194に出力され m m
る。なお、サブキャリア f の量子化後の SNR値はそのまま加算部 193から遅延部 194 に出力される。そして、遅延部 194の状態値が SNR値 S ,に更新される (ST1080)
[0060] また、ビット数制御部 183では、遅延部 194から入力されたサブキャリア f の量子 m— 1 化後の SNR値 S ,と平均 SNR値から求められる基準値(閾値)とを比較する。この m— 1
比較結果に基づいて、差分 SNR値 X ' (または SNR値)の符号ィ匕に用いられるビッ ト数を決定して、符号ィ匕部 195に通知する。以下、ビット数制御部 183でのビット数制 御処理について具体的に説明する。
[0061] 図 7は、ある時刻における、各サブキャリアの SNR値を示す図である。また、図 8は、 各サブキャリアの SNR値と周波数特性の波形を示す図である。ここでは、平均 SNR 値は 37 [dB]である(ただし、小数点以下切り捨て)。なお、この例示においては 10個 のサブキャリア f 〜f が用いられている力 サブキャリア数および SNR値の取り得る
1 10
範囲は限定されない。
[0062] サブキャリア f 〜f に対応付けられた差分 SNR値は、図 9に示されている。また、
2 10
図 9には、サブキャリア f の SNR値およびサブキャリア f 〜f の差分 SNR値の所要ビ
1 2 10
ット数も示されている。さらに、図 9には、サブキャリア f 〜f の所要ビット数に対応す
1 10
る符号化範囲も示されて ヽる。
[0063] 具体的には、例えばサブキャリア f の SNR値は、サブキャリア f の SNR値よりも 2[d
2 1
B]だけ大きいため、サブキャリア f の差分 SNR値は 2 [dB]である。そして、飽和する
2
ことなく差分 SNR値「2」を符号ィ匕するには 3ビットが必要である。ただし、ステップ幅 を ldBZbitかつ 2の補数と仮定する。 3ビットでは、 + 3 [(18]〜ー4[(18]までの差分 SNR値を符号ィ匕することができる。
[0064] ところで、ビット数制御部 183では、平均 SNR値をそのまま基準値として使用する、 あるいは、基準値としての閾値を、平均 SNR値力も求める。閾値は、平均 SNR値を 引数とする関数によって算出される。例えば、 2つの閾値 Th、Th
1 2が用いられる場合
、所定の 2つのオフセット値 (定数)をそれぞれ平均 SNR値に加算することにより、閾 値 Th、 Thを算出する。より具体的には、平均 SNR値が 37[dB]で、 2つのオフセッ
1 2
ト値が「 + 3」「一 3」の場合、閾値 Thは 40 [dB]となり、閾値 Thは 34 [dB]となる。前
1 2
述のような基準値を用いることにより、差分 SNR値の符号化を、より適切に制御する ことができる。
[0065] また、ビット数制御部 183では、ビット数制御を行うに際して、カウンタ mが「1」であ るか否かを判定する(ST1090)。
[0066] カウンタ m力「l」の場合(ST1090 :YES)、固定のビット数、より具体的には、予め 送受信間で既知のビット数力 サブキャリア f の SNR値に割り当てられる(ST1100)
[0067] 一方、カウンタ m力「1」でない場合(ST1090 :NO)、可変のビット数力 サブキヤリ ァ f の差分 SNR値 X 'に割り当てられる(ST1110)。
m m
[0068] より具体的には、遅延部 194から入力される SNR値 S 'と閾値 Th、 Thとの比 較を行う。そして、その比較結果に従ってビット数を決定する。例えば、比較結果とビ ット数との対応関係を示すテーブル(図 10)に従ってビット数が決定される。このテー ブルにおいては、 Th < S ,の場合、ビット数は「3」であり、 Th < S ,≤Thの
1 m— 1 2 m— 1 1 場合、ビット数は「4」であり、 S '≤Thの場合、ビット数は「5」である。
m- 1 2
[0069] ここで、比較結果 (SNR値 S 'と基準値との比較結果)とビット数との対応関係に m— 1
ついて説明する。とりわけレイリーフェージングチャネルでは、 SNR値の平均 SNR値 に対する相対的大きさ(SNR値対平均 SNR値)と隣接サブキャリア間の SNR値の差 (差分 SNR値)との間には、図 11に示すような性質がある。すなわち、 SNR値対平均 SNR値の増大に伴って差分 SNR値は減少し、 SNR値対平均 SNR値の減少に伴つ て差分 SNR値は増大する。したがって、ビット数制御部 183では、符号化される差分 SNR値に割り当てるビット数を SNR値対平均 SNR値に対応付けて、差分 SNR値に 割り当てるビット数を SNR値対平均 SNR値の増大に伴って減少させ、差分 SNR値 に割り当てるビット数を SNR値対平均 SNR値の減少に伴って増加させる。
[0070] なお、図 10のテーブルを用いる代わりに、関数を用いてビット数を算出しても良い。
例えば、 SNR値が対数値の場合は、 SNR値から閾値 Th (または閾値 Th )を減算
1 2 した結果力もビット数を導出できるような関数を用いる。また、 SNR値が真値の場合、 SNR値を閾値 Th (または閾値 Th )で除算した結果力もビット数を導出できるような
1 2
関数を用いる。
[0071] 以上の処理によって各サブキャリアの差分 SNR値 (または SNR値)に割り当てられ るビット数は、図 12に示されている。すなわち、サブキャリア f の SNR値に割り当てら れるビット数は固定値 (本実施の形態では「6」)となり、サブキャリア f 〜f の各々の
2 10 差分 SNR値に割り当てられるビット数は可変値となる。これらの割り当てビット数は符 号化部 195に通知される。
[0072] サブキャリア f の SNR値またはサブキャリア f 〜f の差分 SNR値 X,〜X ,のいず
1 2 M 2 M れかにビット数が割り当てられた後、符号化部 195で、サブキャリア f の差分 SNR値 X 'に割り当てられたビット数を用いて、サブキャリア f の差分 SNR値 X 'が符号ィ匕 m m m される(ST1120)。あるいは、サブキャリア f の SNR値に割り当てられたビット数を用 いて、サブキャリア f の SNR値が符号化される。 [0073] そして、カウンタ mがサブキャリア数 M以上である力否かが判定される(ST1130)。 カウンタ mが M未満の場合(ST1130: NO)、ステップ ST1140でカウンタ mを m+ 1 に更新してから、ステップ ST1040に戻る。カウンタ mが M以上の場合 h(ST1130 : YES)、ステップ ST1150に進む。
[0074] ステップ ST1150では、フィードバックフレーム生成部 185で、符号化部 195の出 力(つまり、サブキャリア f の SNR値およびサブキャリア f 〜f の差分 SNR値 X,〜X
1 2 M 2
,)および平均品質レベル算出部 182の出力(平均 SNR値)を用いて、 CSIフレーム
M
が生成される。 CSIフレーム生成後、時刻 tにおける CSIフレーム生成部 166の動作 k
は終了となる。
[0075] 図 13には、生成される CSIフレームのフォーマットの一例が示されている。図 13で は、 CSIフレームの先頭部に平均 SNR値が配置され、平均 SNR値に続いて、サブ キャリア f の SNR値が配置され、これに続いて、サブキャリア番号の小さい順にサブ キャリア f 〜f の差分 SNR値が配置される。
2 M
[0076] なお、図 13に示すフレームフォーマットを使用する代わりに、図 14に示すフレーム フォーマットを使用しても良い。図 14では、平均 SNR値に続いて、サブキャリア f の S NR値と平均 SNR値との差が配置される。これに続いて、サブキャリア番号の小さい 順にサブキャリア f 〜f の差分 SNR値が配置される。このフレームフォーマットが採
2 M
用される場合、 CSIフレーム生成部 166では、サブキャリア f の SNR値から平均 SNR 値を減算する処理が行われる一方、 CSIフレーム処理部 110では、サブキャリア f の SNR値と平均 SNR値との差に平均 SNR値を加算する処理が行われる。
[0077] 平均 SNR値カゝら導出される閾値 Th、 Thがビット数制御にぉ ヽて用いられる場合
1 2
は、例えば図 15に示すフォーマットの CSIフレームが生成される。図 15では、 CSIフ レームの先頭部に閾値 Th、 Thが順次配置される。閾値 Th、 Thに続いて、サブ
1 2 1 2
キャリア f の SNR値が配置され、これに続いて、サブキャリア番号の小さい順にサブ キャリア f 〜f の差分 SNR値が配置される。
2 M
[0078] なお、図 15に示すフレームフォーマットを使用する代わりに、図 16に示すフレーム フォーマットを使用しても良い。図 16では、 CSIフレームの先頭部に閾値 Thが配置 され、これに続いて、閾値 Thと閾値 Thとの差が配置される。これに続いて、サブキ ャリア f の SNR値が配置され、これに続いて、サブキャリア番号の小さい順にサブキ ャリア f 〜f の差分 SNR値が配置される。この場合、 CSIフレーム生成部 166では、
2 M
閾値 Thカゝら閾値 Thを減算する処理が行われる一方、 CSIフレーム処理部 110で
2 1
は、閾値 Thと閾値 Thとの差に閾値 Thを加算する処理が行われる。
1 2 1
[0079] なお、フレームフォーマットは上記のものだけに限定されない。例えば、平均 SNR 値が CSIフレームの末尾に付加されるフレームフォーマットを採用しても良い。または 、サブキャリア番号の大きい順に差分 SNR値あるいは SNR値が配置されるフレーム フォーマットを採用しても良!、。送受信間で共通に規定された配置順序を有するもの であれば、任意のフレームフォーマットを採用することができる。
[0080] 前述の動作例において割り当てられたビット数で符号化された SNR値または差分 SNR値を用いて、図 10のフレームフォーマットを有する CSIフレームを生成した場合 、図 17に示すように、平均 SNR値は 6ビットで示され、サブキャリア f の SNR値は 6ビ ットで示され、サブキャリア f の差分 SNR値は 4ビットで示され、サブキャリア f の差分
2 3
SNR値は 3ビットで示され、サブキャリア f の差分 SNR値は 3ビットで示され、サブキ
4
ャリア f の差分 SNR値は 4ビットで示され、サブキャリア f の差分 SNR値は 5ビットで
5 6
示され、サブキャリア f の差分 SNR値は 5ビットで示され、サブキャリア f の差分 SNR
7 8
値は 5ビットで示され、サブキャリア f の差分 SNR値は 5ビットで示され、サブキャリア f
9
の差分 SNR値は 4ビットで示される。
10
[0081] 次いで、 CSIフレーム処理部 110の内部構成およびその動作について説明する。
CSIフレーム処理部 110は、図 18に示すように、フィードバックフレーム処理部 130、 ビット数制御部 131、復号化部 132、ビット変換部 133、加算部 134、遅延部 135お よび回線状態メモリ部 136を有する。
[0082] 取得手段としてのフィードバックフレーム処理部 130は、受信装置 150から送られる CSIフレームを取得する。また、 CSIフレーム力 基準値 (本実施の形態では、平均 S NR値)を抽出してビット数制御部 131へ出力する。ただし、平均 SNR値が抽出され るのは、例えば図 13の CSIフレームが用いられる場合である。例えば図 15の CSIフ レームが用いられる場合は、閾値 Th 、 Thが抽出される。 CSIフレームのその他の
1 2
部分は復号ィ匕部 132へ出力される。 [0083] 復号ィ匕制御手段としてのビット数制御部 131は、フィードバックフレーム処理部 130 および遅延部 135からの入力を受け、サブキャリア毎の SNR値の平均 SNR値に対 する相対的大きさに基づ ヽて、復号化部 132での復号化に用 ヽるビット数を制御す る。換言すれば、復号ィ匕部 132で復号される差分 SNR値に可変のビット数を割り当 てる。割り当てられたビット数は、復号ィ匕部 132に通知される。
[0084] 復号ィ匕部 132は、ビット数制御部 131から通知されたビット数に従って、フィードバ ックフレーム処理部 130から入力された CSIフレーム(平均 SNR値以外の部分)をサ ブキャリア毎の差分 SNR値 (または SNR値)に分割することによって、サブキャリア毎 の差分 SNR値 (または SNR値)を復号する。
[0085] ビット変換部 133は、復号された差分 SNR値 (または SNR値)のステップ幅を変換 する。この変換により、差分 SNR値 (または SNR値)のステップ幅を、量子化部 191 の量子化に用いられたステップ幅から、加算部 134の加算に用!、るステップ幅に合 わせる。
[0086] 加算部 134は、ビット変換部 133の出力と遅延部 135の出力とを加算する。この加 算によって得られたサブキャリア毎の SNR値は、遅延部 135および回線状態メモリ部 136に出力される。ただし、サブキャリア f の SNR値はそのまま遅延部 135および回 線状態メモリ部 136に出力される。
[0087] 遅延部 135は、内部の状態値を、加算部 134の出力で更新する。そして、更新され た状態値を 1サブキャリア分だけ遅延して、加算部 134およびビット数制御部 131に 出力する。
[0088] 回線状態メモリ部 136は、加算部 134から入力されたサブキャリア毎の SNR値を保 持する。保持された SNR値は、サブキャリア毎の CSIとして変調パラメータ決定部 11 1に出力される。
[0089] 続いて、 CSIフレーム処理部 110における動作の一例について説明する。図 19に は、 CSIフレーム処理部 110の動作例を説明するためのフロー図が示されている。
[0090] まず、遅延部 135の状態値が「0」に初期化されるとともに、カウンタ mが「1」に初期 化される(ST1510)。
[0091] そして、フィードバックフレーム処理部 130で、 CSIフレームから平均 SNR値を抽出 する(ST1520)。そして、カウンタ mが「1」であるか否かが判定される(ST1530)。
[0092] カウンタ m力「l」の場合(ST1530 :YES)、固定のビット数、より具体的には、予め 送受信間で既知のビット数力 サブキャリア f の SNR値に割り当てられる(ST1540)
[0093] 一方、カウンタ m力「1」でない場合(ST1530 :NO)、可変のビット数力 サブキヤリ ァ f の差分 SNR値 X ,に割り当てられる(ST1550)。可変ビット数割り当ての具体 m m
的な動作は、 CSIフレーム生成部 166のビット数制御部 183と同一である。
[0094] そして、サブキャリア f の SNR値またはサブキャリア f 〜f の差分 SNR値 X,〜X
1 2 M 2 M
'のいずれかにビット数が割り当てられた後、復号化部 132で、サブキャリア f の差分 SNR値 X ,に割り当てられたビット数を用いて、サブキャリア f の差分 SNR値 X ,が m m m 復号される(ST1560)。あるいは、サブキャリア f の SNR値に割り当てられたビット数 を用いて、サブキャリア f の SNR値が復号される。
[0095] そして、ビット変換部 133で、復号後の差分 SNR値 (または SNR値)のステップ幅を 変換する(ST1570)。変換後のステップ幅は、加算部 134で用いられるステップ幅 に合わせられる。変換前のステップ幅は図 6Bに示された SSbであり、変換後のステツ プ幅は図 6Cに示された SSaである。ここで、ビット変換部 133で量子化誤差が発生し なければ、必ずしも変換後のステップ幅は図 6Cで示された SSaである必要はな 、。
[0096] 変換後の差分 SNR値 X ,は、加算部 134で、遅延部 135の出力である m— 1番目 のサブキャリア f の SNR値 S ,に加算される(ST1580)。加算結果は、 m番目 m— 1 m— 1
のサブキャリア f の SNR値 S ,として遅延部 135および回線状態メモリ部 136に出力 m m
される。なお、サブキャリア f の SNR値はそのまま加算部 134から遅延部 135および 回線状態メモリ部 136に出力される。そして、遅延部 135の状態値が SNR値 S ,に 更新される(ST1590)。また、回線状態メモリ部 136では、 SNR値 S ,が保持される (ST1600)。
[0097] そして、カウンタ mがサブキャリア数 M以上であるか否かが判定される(ST1610)。
カウンタ mが M未満の場合(ST1610: NO)、ステップ ST1620でカウンタ mを m+ 1 に更新してから、ステップ ST1530に戻る。カウンタ mが M以上の場合 h(ST1610 : YES)、時刻 tにおける CSIフレーム処理部 110の動作が終了となる。 [0098] このように、本実施の形態によれば、受信装置 150においては、あるサブキャリアの SNR値(第 1の SNR値)とそのサブキャリアに隣接するサブキャリアの SNR値(第 2の SNR値)との差分値 (差分 SNR値)に割り当てるビット数を、第 2の SNR値の平均 SN R値に対する相対的大きさに対応付けることにより、差分 SNR値が取り得る範囲 (ダ イナミックレンジ)に応じた最小限のビット数を割り当てることができるだけでなぐ複数 の異なる差分 SNR値に複数の異なるビット数を割り当てても、その割り当てにっ 、て の情報をサイド情報として付加することなく CSIフレームを生成することができるため、 フィードバック情報の品質を維持しつつ、フィードバック情報のデータ量を削減するこ とがでさる。
[0099] また、本実施の形態によれば、送信装置 100においては、第 1の SNR値と第 2の S NR値との差分値に割り当てるビット数を、第 2の SNR値の平均 SNR値に対する相対 的大きさに対応付けることにより、ダイナミックレンジに応じた最小限のビット数を割り 当てることができるだけでなぐ複数の異なる差分 SNR値に複数の異なるビット数を 割り当てても、その割り当てについての情報をサイド情報として参照することなく CSI フレームを復元することができるため、フィードバック情報の品質を維持しつつ、フィ ードバック情報のデータ量を削減することができる。
[0100] (実施の形態 2)
図 20は、本発明の実施の形態 2に係る受信装置に設けられた CSIフレーム生成部 166の構成を示すブロック図である。なお、本実施の形態の受信装置は、実施の形 態 1で説明した受信装置 150と同様の基本的構成を有する。よって、実施の形態 1で 説明したものと同一のまたは同様の構成要素には同一の参照符号を付す。以下の 説明では、主に実施の形態 1との相違点について記載する。
[0101] 図 20の CSIフレーム生成部 166は、実施の形態 1で説明したビット数制御部 183の 代わりにステップ幅制御部 201を有する。
[0102] 符号ィ匕制御手段としてのステップ幅制御部 201は、サブキャリア毎の SNR値の平 均 SNR値に対する相対的大きさに基づ 、て、量子化部 191での量子化に用 、るス テツプ幅を可変設定することにより、 DPCM部 184の符号化処理を制御する。ここで 、ステップ幅は、 1ビットあたりの振幅の大きさであり、すなわち、 1ビットで示される SN R値の大きさである。換言すれば、量子化後の差分 SNR値に対して可変のステップ 幅を設定する。つまり、図 6Bに示された量子化のステップ幅 SSbが可変に設定され る。設定されたステップ幅は、量子化部 191およびビット変換部 192に通知される。
[0103] したがって、本実施の形態の量子化部 191は、実施の形態 1で説明した量子化処 理を、ステップ幅制御部 201から通知されたステップ幅を用いて行う。また、本実施の 形態のビット変換部 192は、実施の形態 1で説明したステップ幅変換を、ステップ幅 制御部 201から通知されたステップ幅を用いて行う。また、本実施の形態の符号化部 195は、実施の形態 1で説明した符号化処理を、予め設定された固定のビット数を用 いて行う。
[0104] 続いて、 CSIフレーム生成部 166における動作の一例について説明する。図 21に は、 CSIフレーム生成部 166の動作例を説明するためのフロー図が示されている。な お、送受信局間でやりとりする OFDMフレームの構成、伝送路応答推定タイミングお よび周波数応答推定値については、図 5Aおよび図 5Bに示されたものが用いられる ものとする。また、図 21において、実施の形態 1で図 4を用いて説明したものと同一の 処理については、同一の参照番号を付し、その詳細な説明を省略する。
[0105] ステップ ST1040に続いて、ステップ ST2010では、ステップ幅制御部 201で、カウ ンタ mが「1」である力否かが判定される。
[0106] カウンタ m力 「1」の場合(ST2010 :YES)、サブキャリア f の SNR値について予め 設定されている固定のステップ幅、より具体的には、予め送受信間で既知のステップ 幅が出力される(ST2020)。
[0107] 一方、カウンタ m力 「l」でない場合(ST2010 : NO)、サブキャリア f の差分 SNR値 X ,に対して、可変のステップ幅が設定される(ST2030)。
[0108] より具体的には、遅延部 194から入力される SNR値 S 'と基準値(閾値)との比 m— 1
較を行う。実施の形態 1で説明した閾値 Th、 Thが用いられる場合は、 SNR値 S
1 2 m- 1
'と閾値 Th、 Thとの比較を行う。そして、その比較結果に従ってステップ幅を決定
1 2
する。例えば、比較結果とステップ幅との対応関係を示すテーブル(図 22)に従って ステップ幅を決定する。このテーブルにお!/、ては、 Th < S ,の場合、ステップ幅
1 m— 1
は「0. 5dBZbit」であり、 Th < S ,≤Thの場合、ステップ幅は「1. OdBZbitJ であり、 S ,≤Thの場合、ステップ幅は「2. OdBZbit」である。
m- 1 2
[0109] ここで、比較結果 (SNR値 S 'と基準値との比較結果)とステップ幅との対応関係 m— 1
について説明する。とりわけレイリーフェージングチャネルでは、 SNR値対平均 SNR 値の増大に伴って差分 SNR値は減少し、 SNR値対平均 SNR値の減少に伴って差 分 SNR値は増大する、という性質がある(図 11)。したがって、ステップ幅制御部 201 では、量子化に用いられるステップ幅を SNR値対平均 SNR値に対応付けて、量子 化のステップ幅を SNR値対平均 SNR値の増大に伴って縮小させ、量子化のステツ プ幅を SNR値対平均 SNR値の減少に伴って拡大させる。
[0110] なお、図 22のテーブルを用いる代わりに、関数を用いてステップ幅を算出しても良 い。例えば、 SNR値が対数値の場合は、 SNR値から閾値 Th (または閾値 Th )を減
1 2 算した結果からステップ幅を導出できるような関数を用いる。また、 SNR値が真値の 場合、 SNR値を閾値 Th (または閾値 Th )で除算した結果からステップ幅を導出で
1 2
きるような関数を用いる。
[0111] 図 7および図 8に示された SNR値および周波数特性を前提とした場合、各サブキヤ リアの差分 SNR値 (または SNR値)の量子化に対して設定されるステップ幅は、図 2 3に示されたとおりとなる。すなわち、サブキャリア f の SNR値の量子化に用いられる ステップ幅は固定値 (本実施の形態では「ldBZbit」 )となり、サブキャリア f 〜f の
2 10 各々の差分 SNR値の量子化に用いられるステップ幅は可変値となる。これらのステツ プ幅は量子化部 191およびビット変換部 192に通知される。
[0112] サブキャリア f の SNR値またはサブキャリア f 〜f の差分 SNR値 X,〜X ,のいず
1 2 M 2 M れかについてステップ幅が設定された後、量子化部 191で、サブキャリア f の差分 S NR値 X ,について設定されたステップ幅を用いて、サブキャリア f の差分 SNR値 X m m m
,が量子化される(ST2040)。あるいは、サブキャリア f の SNR値について設定され たステップ幅を用いて、サブキャリア f の SNR値が量子化される。具体的には、図 23 に示すように、サブキャリア f の SNR値は、 ldB/bitのステップ幅で量子化され、サ ブキャリア f の差分 SNR値は、 ldBZbitのステップ幅で量子化され、サブキャリア f
2 3 の差分 SNR値は、 0. 5dBZbitのステップ幅で量子化され、サブキャリア f の差分 S
4
NR値は、 0. 5dBZbitのステップ幅で量子化され、サブキャリア f の差分 SNR値は 、 ldBZbitのステップ幅で量子化され、サブキャリア f の差分 SNR値は、 2dBZbit
6
のステップ幅で量子化され、サブキャリア f の差分 SNR値は、 2dBZbitのステップ幅 で量子化され、サブキャリア f の差分 SNR値は、 2dBZbitのステップ幅で量子化さ
8
れ、サブキャリア f の差分 SNR値は、 2dBZbitのステップ幅で量子化され、サブキヤ
9
リア f の差分 SNR値は、 ldBZbitのステップ幅で量子化される。
10
[0113] そして、ビット変換部 192では、ステップ幅制御部 201から通知されたステップ幅に 基づいて、量子化後の差分 SNR値 X ,(または SNR値)のステップ幅を変換する(S Τ2050)。変換後のステップ幅は、図 6Cに示すように、 SSaである。つまり、この変換 により、差分 SNR値 X ' (または SNR値)は、減算部 190、加算部 193および遅延部 194で用いられるステップ幅およびビット数で再び表現される。ステップ ST2050の 後、実施の形態 1で説明したステップ ST1070、 ST1080に続いて、ステップ ST206 0の処理が実行される。
[0114] ステップ ST2060では、符号化部 195で、サブキャリア f の差分 SNR値 X ,に対し m m て予め設定されているビット数を用いて、サブキャリア f の差分 SNR値 X 'が符号化 される。あるいは、サブキャリア f の SNR値に対して予め設定されているビット数を用 いて、サブキャリア f の SNR値が符号ィ匕される。本実施の形態では、サブキャリア f の SNR値は、 6ビットで符号化され、サブキャリア f 〜f の各々の差分 SNR値は、 4
2 M
ビットで符号化される。
[0115] 本実施の形態の CSIフレーム生成部 166では、差分 SNR値が相対的に小さい領 域 (サブキャリア)に対しては、ステップ幅を小さく設定することにより量子化誤差を低 減させ、一方、差分 SNR値が相対的に大きい領域 (サブキャリア)に対しては、ステツ プ幅を大きく設定することによりダイナミックレンジを大きくして飽和による誤差を低減 させる。したがって、同数の符号ィ匕ビットの使用を前提として、常に固定の量子化ステ ップ幅を用いる従来の DPCMと本実施の形態の DPCMとを比較すると、本実施の 形態の DPCMの方力 符号化による波形歪が小さくなる。換言すれば、従来の DPC Mで本実施の形態の DPCMと同程度の歪レベルを実現するためには、本実施の形 態の DPCMの符号ィ匕で用いるビット数よりも多くのビット数が必要となる。すなわち、 本実施の形態の DPCMは、フィードバック情報の品質を維持しつつ、フィードバック 情報のデータ量を削減することができる。
[0116] 次いで、本実施の形態に係る送信装置に設けられた CSIフレーム処理部 110につ いて、図 24を用いて説明する。なお、本実施の形態の送信装置は、実施の形態 1で 説明した送信装置 100と同様の基本的構成を有する。よって、実施の形態 1で説明 したものと同一のまたは同様の構成要素には同一の参照符号を付す。以下の説明 では、主に実施の形態 1との相違点について記載する。
[0117] 図 24に示す CSIフレーム処理部 110は、実施の形態 1で説明したビット数制御部 1 31の代わりにステップ幅制御部 202を有する。
[0118] 復号ィ匕制御手段としてのステップ幅制御部 202は、フィードバックフレーム処理部 1 30および遅延部 135からの入力を受け、サブキャリア毎の SNR値の平均 SNR値に 対する相対的大きさに基づいて、ビット変換部 133でのステップ幅変換に用いるステ ップ幅を可変設定することにより、差分 SNR値 (または SNR値)の復号化処理を制御 する。換言すれば、ステップ幅変換を施される差分 SNR値 (または SNR値)のステツ プ幅を可変設定する。設定されたステップ幅は、ビット変換部 133に通知される。
[0119] ビット変換部 133は、ステップ幅制御部 202から通知されたステップ幅に従って、復 号された差分 SNR値 (または SNR値)のステップ幅を変換する。この変換により、差 分 SNR値 (または SNR値)のステップ幅を、量子化部 191の量子化に用いられたス テツプ幅から、加算部 134の加算に用 、られるステップ幅に合わせる。
[0120] なお、本実施の形態では、復号ィ匕部 132は、予め設定されたビット数に従って、フィ ードバックフレーム処理部 130から入力された CSIフレーム(平均 SNR値以外の部分 )をサブキャリア毎の差分 SNR値 (または SNR値)に分割することによって、サブキヤ リア毎の差分 SNR値 (または SNR値)を復号する。
[0121] 次いで、 CSIフレーム処理部 110における動作について説明する。図 25は、 CSIフ レーム処理部 110の動作例を説明するためのフロー図である。なお、図 25において 、実施の形態 1で図 19を用いて説明したものと同一の処理については、同一の参照 番号を付し、その詳細な説明を省略する。
[0122] カウンタ m力「1」の場合(ST1530 :YES)、サブキャリア f の SNR値について予め 設定されている固定のステップ幅、より具体的には、予め送受信間で既知のステップ 幅が出力される(ST2510)。
[0123] 一方、カウンタ m力 「l」でない場合(ST1530 :NO)、サブキャリア f の差分 SNR値 X 'に対して、可変のステップ幅が設定される(ST2520)。可変ステップ幅設定の具 体的な動作は、 CSIフレーム生成部 166のステップ幅制御部 201と同一である。
[0124] そして、サブキャリア f の SNR値またはサブキャリア f 〜f の差分 SNR値 X,〜X
1 2 M 2 m
'のいずれか〖こ対してステップ幅が設定された後、復号化部 132で、サブキャリア f の差分 SNR値 X 'に対して予め設定された固定のビット数を用いて、サブキャリア f m m の差分 SNR値 X ,が復号される(ST2530)。あるいは、サブキャリア f の SNR値に m 1
対して予め設定された固定のビット数を用いて、サブキャリア f
の SNR値が復号される。
[0125] そして、ビット変換部 133で、復号後の差分 SNR値 (または SNR値)のステップ幅を 、ステップ幅制御部 202から通知されたステップ幅に基づいて変換する(ST2540)。 変換後のステップ幅は、加算部 134で用いられるステップ幅に合わせられる。変換前 のステップ幅は図 6Bに示された SSbである、つまり、量子化部 191の量子化に用い られたステップ幅と同一である。一方、変換後のステップ幅は図 6Cに示された SSaで ある。ステップ ST2540に続いて、実施の形態 1で説明したステップ ST1580に進む 。ここで、ビット変換部 133で量子化誤差が発生しなければ、必ずしも変換後のステツ プ幅は図 6Cで示された SSaである必要はない。
[0126] このように、本実施の形態によれば、受信装置においては、第 1の SNR値と第 2の S NR値との差分値、つまり差分 SNR値の量子化のステップ幅を、第 2の SNR値の平 均 SNR値に対する相対的大きさに対応付けることにより、ダイナミックレンジに応じた 最小限のステップ幅を設定することができるだけでなく、複数の異なる差分 SNR値に 複数の異なるステップ幅を設定しても、その設定にっ 、ての情報をサイド情報として 付加することなく CSIフレームを生成することができるため、フィードバック情報の品質 を維持しつつ、フィードバック情報のデータ量を削減することができる。
[0127] また、本実施の形態によれば、送信装置においては、第 1の SNR値と第 2の SNR 値との差分値、つまり差分 SNR値の量子化のステップ幅を、第 2の SNR値の平均 S NR値に対する相対的大きさに対応付けることにより、ダイナミックレンジに応じた最 小限のステップ幅を設定することができるだけでなぐ複数の異なる差分 SNR値に複 数の異なるステップ幅を設定しても、その設定にっ 、ての情報をサイド情報として参 照することなく CSIフレームを復元することができるため、フィードバック情報の品質を 維持しつつ、フィードバック情報のデータ量を削減することができる。
[0128] なお、本実施の形態で説明したステップ幅制御部 201を実施の形態 1で説明した C SIフレーム生成部 166に設けるとともに、本実施の形態で説明したステップ幅制御部 202を実施の形態 1で説明した CSIフレーム処理部 110に設けた場合、符号化のビ ット数および量子化のステップ幅のいずれか一方または双方を可変設定することが できる。
[0129] (実施の形態 3)
図 26は、本発明の実施の形態 3に係る受信装置に設けられた CSIフレーム生成部 166の構成を示すブロック図である。なお、本実施の形態の受信装置は、実施の形 態 1で説明した受信装置 150と同様の基本的構成を有する。よって、実施の形態 1で 説明したものと同一のまたは同様の構成要素については同一の参照符号を付す。以 下の説明では、主に実施の形態 1との相違点について説明する。
[0130] 図 26の CSIフレーム生成部 166は、遅延分散測定部 301をさらに有する。
[0131] 遅延分散推定部 301は、伝送路応答推定部 165で得られた伝送路応答推定値を 用いて、伝送路の遅延分散を推定する。この推定の結果として、遅延分散推定値を 得る。遅延分散推定値は、ビット数制御部 183およびフィードバックフレーム生成部 1 85に出力される。
[0132] したがって、本実施の形態のビット数制御部 183は、実施の形態 1で説明したビット 数設定を、遅延分散推定値にも基づいて行う。また、本実施の形態のフィードバック フレーム生成部 185は、実施の形態 1で説明した CSIフレーム生成を、遅延分散推 定値も用いて行う。
[0133] 次いで、 CSIフレーム生成部 166における動作について説明する。
[0134] 遅延分散推定部 301では、伝送路応答推定部 165で算出された伝送路の周波数 応答値である伝送路応答推定値を用いて、伝送路の遅延分散推定値の算出を行う [0135] 伝送路応答の遅延分散を推定する方法は特定のものに限定されないが、以下にそ の例を挙げる。
[0136] 例えば、図 27に示すように、伝送路の周波数応答の SNR特性 (振幅特性でも良い )に対して、ある閾値を設定する。そして、その閾値を上から下に交差する回数 (以下 「レベル交差回数」と言う)から、単位周波数あたりの変動の激しさを検出する。レべ ル交差回数が多い場合、伝送路応答の周波数相関つまり隣接サブキャリア間相関 が低い。逆にレベル交差回数が少ない場合は、隣接サブキャリア間相関が高い。し たがって、図 28に示すように、遅延分散が大きければ周波数相関が低く(つまり差分 SNR値が大きい)且つ遅延分散が小さければ周波数相関が大きい(つまり差分 SNR 値が小さい)関係にあるため、レベル交差回数力も遅延分散の大きさを推定すること ができる。
[0137] また、他の例では、図 29Aおよび図 29Bに示すように、伝送路の周波数応答(図 2 9A)をフーリエ変換によって時間領域(図 29B)に変換することにより、伝送路のイン パルス応答を得ることができる。得られたインパルス応答カゝら遅延分散を算出しても 良い。或いは、このインパルス応答を時間平均して得られる遅延プロファイル力 遅 延分散を算出しても良い。伝搬環境が著しく変化しない範囲であれば時間平均した 遅延プロファイルを用いた方が、より精度良く遅延分散を推定することができる。
[0138] 図 29Aおよび図 29Bに示した例では、周波数応答を推定する方法を用いて遅延プ 口ファイルを求めた力 遅延プロファイルの生成方法はこれに限定されない。例えば 、パイロット信号などの受信結果を利用し時間領域で直接的にインパルス応答を求 めても良い。
[0139] 遅延分散推定部 301では、例えば図 30に示すようなテーブルを参照し、検出され たレベル交差回数 Nに対応する遅延分散推定値を取得する。そして、取得した遅延
分散推定値をビット数制御部 183に出力する。
[0140] ビット数制御部 183では、遅延分散推定値の増大に伴ってビット数を増力!]させ、遅 延分散推定値の減少に伴ってビット数を減少させる。
[0141] 具体的には、ビット数制御部 183では、遅延分散推定部 301より入力される遅延分 散推定値の大きさに応じて、テーブルの設定値を切り替える。より具体的には、図 31 に示すように、入力された遅延分散推定値に対応するテーブルを選択する。
[0142] なお、遅延分散推定からテーブル選択までの制御方法は、上記のものだけに限定 されない。例えば、ビット数制御部 183では、遅延分散推定部 301から出力されたレ ベル交差回数 Nに対して、基準値(閾値)の算出に用いるオフセット値 C を、例
L offset えば図 32に示すテーブル力も選択する。そして、選択されたオフセット値 C を例 offset えば次の式 (4)〜(7)に代入することにより閾値 Th、 Th、 Th、 Thを算出する。こ
1 2 3 4
の場合、可変ビット数設定には、例えば図 33に示すテーブルが用いられる。
Th =平均 SNR値 + 5 + C - -- (4)
1 offset
Th =平均 SNR値 +C - -- (5)
2 offset
Th =平均 SNR値 5 + C - -- (6)
3 offset
Th =平均 SNR値—10 + C - -- (7)
4 offset
[0143] また、さらに別の制御方法を用いても良い。例えば、 m番目のサブキャリア f の差分 SNR値 X ,に対して設定されるビット数を、平均 SNR値、 SNR値 S ,および遅延 m m— 1
分散推定値を引数とする関数を用いて算出しても良 、。
[0144] フィードバックフレーム生成部 185では、例えば図 34、図 35、図 36、図 37に示すよ うなフォーマットの CSIフレームが生成される。図 34の CSIフレームは、図 13の CSIフ レームと同様のフォーマットを有するが、その最先頭部には遅延分散推定値が配置 されている。図 35の CSIフレームは、図 14の CSIフレームと同様のフォーマットを有 するが、その最先頭部には遅延分散推定値が配置されている。図 36の CSIフレーム は、図 15の CSIフレームと同様のフォーマットを有する力 その最先頭部には遅延分 散推定値が配置されている。図 37の CSIフレームは、図 16の CSIフレームと同様の フォーマットを有する力 その最先頭部には遅延分散推定値が配置されている。なお 、遅延分散推定値は必ずしも CSIフレームの最先頭部に配置されなくても良い。送 受信間で共通に規定された配置順序を有するものであれば、任意のフレームフォー マットを採用することができる。
[0145] 次いで、本実施の形態に係る送信装置に設けられた CSIフレーム処理部 110につ いて、図 38を用いて説明する。なお、本実施の形態の送信装置は、実施の形態 1で 説明した送信装置 100と同様の基本的構成を有する。よって、実施の形態で説明し たものと同一のまたは同様の構成要素には同一の参照符号を付す。以下の説明で は、主に実施の形態 1との相違点について記載する。
[0146] 図 38に示す CSIフレーム処理部 110において、フィードバックフレーム処理部 130 は、入力された CSIフレームから、平均 SNR値だけでなく遅延分散推定値も抽出し て、ビット数制御部 131に出力する。その他の部分は、実施の形態 1と同様に復号化 部 132に出力される。
[0147] したがって、本実施の形態のビット数制御部 131は、実施の形態 1で説明したビット 数設定を、遅延分散推定値にも基づいて行う。可変ビット数の設定についての具体 的な動作は、 CSIフレーム生成部 166のビット数制御部 183と同一である。
[0148] このように、本実施の形態によれば、遅延分散が経時変動する伝搬環境下でも、割 り当てられるビット数が不足した場合に生じる飽和による誤差を最低限度に抑えること ができる。
[0149] (実施の形態 4)
図 39は、本発明の実施の形態 4に係る受信装置に設けられた CSIフレーム生成部 166の構成を示すブロック図である。なお、本実施の形態の受信装置は、実施の形 態 1で説明した受信装置と同様の基本的構成を有する。また、本実施の形態の CSI フレーム生成部 166は、実施の形態 2で説明した CSIフレーム生成部 166と同様の 基本的構成を有する。よって、前述の実施の形態で説明したものと同一のまたは同 様の構成要素には同一の参照符号を付す。以下の説明では、主に実施の形態 2と の相違点につ 、て記載する。
[0150] 図 39の CSIフレーム生成部 166は、実施の形態 3で説明したものと同一の遅延分 散推定部 301をさらに有する。
[0151] したがって、本実施の形態のステップ幅制御部 201は、実施の形態 2で説明したス テツプ幅設定を、遅延分散推定部 301から入力される遅延分散推定値にも基づいて 行う。つまり、ステップ幅制御部 201では、遅延分散推定値の増大に伴ってステップ 幅を拡大させ、遅延分散推定値の減少に伴ってステップ幅を縮小させる。
[0152] 具体的には、ステップ幅制御部 201では、遅延分散推定部 301より入力される遅延 分散推定値の大きさに応じて、テーブルの設定値を切り替える。より具体的には、図 40に示すように、入力された遅延分散推定値に対応するテーブルを選択する。
[0153] なお、遅延分散推定からテーブル選択までの制御方法は、上記のものだけに限定 されない。例えば、ステップ幅制御部 201では、遅延分散推定部 301から出力された レベル交差回数 Nに対して、基準値(閾値)の算出に用いるオフセット値 C を、例
し offset えば図 41に示すテーブル力も選択する。そして、選択されたオフセット値 C を例 offset えば前述の式 (4)〜(7)に代入することにより閾値 Th、 Th、 Th、 Thを算出する。
1 2 3 4
この場合、可変ステップ幅設定には、例えば図 42に示すテーブルが用いられる。
[0154] また、さらに別の制御方法を用いても良い。例えば、 m番目のサブキャリア f の差分 SNR値 X ,に対して設定されるステップ幅を、平均 SNR値、 SNR値 S ,および遅 m m— 1 延分散推定値を引数とする関数を用いて算出しても良 、。
[0155] また、本実施の形態のフィードバックフレーム生成部 185は、実施の形態 1で説明し た CSIフレーム生成を、実施の形態 3で説明したように、遅延分散推定値も用いて行
[0156] 次いで、本実施の形態に係る送信装置に設けられた CSIフレーム処理部 110につ いて、図 43を用いて説明する。なお、本実施の形態の送信装置は、実施の形態 1で 説明した送信装置 100と同様の基本的構成を有する。また、本実施の形態の CSIフ レーム処理部 110は、実施の形態 2で説明した CSIフレーム処理部 110と同様の基 本的構成を有する。よって、前述の実施の形態で説明したものと同一のまたは同様 の構成要素には同一の参照符号を付す。以下の説明では、主に実施の形態 2との 相違点について記載する。
[0157] 図 43に示す CSIフレーム処理部 110において、フィードバックフレーム処理部 130 は、入力された CSIフレームから、平均 SNR値だけでなく遅延分散推定値も抽出し て、ステップ幅制御部 202に出力する。その他の部分は、実施の形態 1と同様に復号 化部 132に出力される。
[0158] したがって、本実施の形態のステップ幅制御部 202は、実施の形態 2で説明したス テツプ幅設定を、遅延分散推定値にも基づいて行う。可変ステップ幅の設定につい て具体的な動作は、 CSIフレーム生成部 166のステップ幅制御部 201と同一である。
[0159] このように、本実施の形態によれば、遅延分散が経時変動する伝搬環境下でも、過 小のステップ幅が設定される場合に生じる傾斜付加歪などの飽和による誤差や、過 大のステップ幅が設定される場合に生じる粒子性雑音などの量子化雑音による誤差 を低減することができる。
[0160] なお、本実施の形態で説明したステップ幅制御部 201を実施の形態 3で説明した C SIフレーム生成部 166に設けるとともに、本実施の形態で説明したステップ幅制御部 202を実施の形態 3で説明した CSIフレーム処理部 110に設けた場合、符号化のビ ット数および量子化のステップ幅のいずれか一方または双方を可変設定することが できる。
[0161] また、上記各実施の形態では、本発明をノヽードウエアで構成する場合を例にとって 説明したが、本発明はソフトウェアで実現することも可能である。
[0162] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されても良いし、一部又は全 てを含むように 1チップィ匕されても良い。
[0163] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレ卜ラ LSIと呼称されることちある。
[0164] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現しても良い。 LSI製造後に、プログラムすることが可能な FPGA (Field Program mable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギュラブノレ ·プロセッサーを利用しても良 、。
[0165] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って も良い。バイオ技術の適応等が可能性としてありえる。
[0166] 本明細書は、 2004年 11月 30日出願の特願 2004— 346512に基づく。この内容 はすべてここに含めておく。
産業上の利用可能性
[0167] 本発明の送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレ ーム生成方法および送信制御フレーム処理方法は、マルチキャリア伝送方式の移動 通信システムにおける基地局装置および通信端末装置などに適用することができる
εε
.TZ0/S00Zdf/X3d 99S6S0/900Z OAV

Claims

請求の範囲
[1] 複数のサブキャリアにそれぞれ対応する複数の回線状態レベルから、前記複数の サブキャリア間の基準回線状態レベルを算出する基準レベル算出手段と、
前記複数のサブキャリアのうち一のサブキャリアと他のサブキャリアとにそれぞれ対 応する第 1回線状態レベルと第 2回線状態レベルとの差分値に対して符号化を施し て、符号化差分値を得る符号化手段と、
前記基準回線状態レベルと前記符号化差分値とを示すフレームを生成する生成手 段と、
前記差分値に対して施される前記符号化を、前記第 1回線状態レベルおよび前記 第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大 きさに基づ!/、て制御する符号化制御手段と、
を有する送信制御フレーム生成装置。
[2] 前記符号化手段は、
前記第 1回線状態レベルと前記一のサブキャリアに隣接するサブキャリアに対応す る前記第 2回線状態レベルとの差分値に対して符号化を施す、
請求項 1記載の送信制御フレーム生成装置。
[3] 前記符号化制御手段は、
前記符号ィ匕のビット数を可変に設定する、
請求項 2記載の送信制御フレーム生成装置。
[4] 前記符号化制御手段は、
前記相対的大きさの増大に伴って前記ビット数を減少させ、前記相対的大きさの減 少に伴って前記ビット数を増加させる、
請求項 3記載の送信制御フレーム生成装置。
[5] 前記符号化制御手段は、
伝送路応答の遅延分散の増大に伴って前記ビット数を増加させ、前記遅延分散の 減少に伴って前記ビット数を減少させる、
請求項 4記載の送信制御フレーム生成装置。
[6] 前記符号化手段は、 前記差分値に対して量子化を施し、
前記符号化制御手段は、
前記量子化のステップ幅を可変に設定する、
請求項 2記載の送信制御フレーム生成装置。
[7] 前記符号化制御手段は、
前記相対的大きさの増大に伴って前記ステップ幅を縮小させ、前記相対的大きさ の減少に伴って前記ステップ幅を拡大させる、
請求項 6記載の送信制御フレーム生成装置。
[8] 前記符号化制御手段は、
伝送路応答の遅延分散の増大に伴って前記ステップ幅を拡大させ、前記遅延分散 の減少に伴って前記ステップ幅を縮小させる、
請求項 7記載の送信制御フレーム生成装置。
[9] 前記基準レベル算出手段は、
前記複数の回線状態レベルの平均値を、前記基準回線状態レベルとして算出する 請求項 2記載の送信制御フレーム生成装置。
[10] 前記基準レベル算出手段は、
前記複数の回線状態レベルの平均値の関数を用いて、前記基準回線状態レベル を算出する、
請求項 2記載の送信制御フレーム生成装置。
[11] 複数のサブキャリア間の基準回線状態レベルを示すフレームであって、前記複数 のサブキャリアのうち一のサブキャリアと他のサブキャリアとにそれぞれ対応する第 1 回線状態レベルと第 2回線状態レベルとの差分値をさらに示すフレームを取得する 取得手段と、
前記差分値に対して復号化を施して、復号化差分値を得る復号化手段と、 前記第 1回線状態レベルおよび前記第 2回線状態レベルのいずれか一方を、前記 復号化差分値を用いて算出する個別レベル算出手段と、
前記差分値に対して施される前記復号化を、前記第 1回線状態レベルおよび前記 第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大 きさに基づ!/、て制御する復号化制御手段と、
を有する送信制御フレーム処理装置。
[12] 前記取得手段は、
前記第 1回線状態レベルと前記一のサブキャリアに隣接するサブキャリアに対応す る前記第 2回線状態レベルとの差分値を示すフレームを取得する、
請求項 11記載の送信制御フレーム処理装置。
[13] 前記復号化制御手段は、
前記復号化を施される前記差分値のビット数を可変に設定する、
請求項 12記載の送信制御フレーム処理装置。
[14] 前記復号化制御手段は、
前記相対的大きさの増大に伴って前記ビット数を減少させ、前記相対的大きさの減 少に伴って前記ビット数を増加させる、
請求項 13記載の送信制御フレーム処理装置。
[15] 前記復号化制御手段は、
伝送路応答の遅延分散の増大に伴って前記ビット数を増加させ、前記遅延分散の 減少に伴って前記ビット数を増加させる、
請求項 14記載の送信制御フレーム処理装置。
[16] 前記復号化手段は、
前記復号ィ匕差分値に対してステップ幅の変換を行 ヽ、
前記復号化制御手段は、
前記変換を施される前記復号ィ匕差分値のステップ幅を可変に設定する、 請求項 12記載の送信制御フレーム処理装置。
[17] 前記復号化制御手段は、
前記相対的大きさの増大に伴って前記ステップ幅を縮小させ、前記相対的大きさ の減少に伴って前記ステップ幅を拡大させる、
請求項 16記載の送信制御フレーム処理装置。
[18] 前記復号化制御手段は、 伝送路応答の遅延分散の増大に伴って前記ステップ幅を拡大させ、前記遅延分散 の減少に伴って前記ステップ幅を縮小させる、
請求項 17記載の送信制御フレーム処理装置。
[19] 前記取得手段は、
前記複数の回線状態レベルの平均値を、前記基準回線状態レベルとして取得する 請求項 12記載の送信制御フレーム処理装置。
[20] 前記取得手段は、
前記複数の回線状態レベルの平均値の関数を用いて算出された前記基準回線状 態レベルを取得する、
請求項 12記載の送信制御フレーム処理装置。
[21] 複数のサブキャリアにそれぞれ対応する複数の回線状態レベルから、前記複数の サブキャリア間の基準回線状態レベルを算出する基準レベル算出ステップと、 前記複数のサブキャリアのうち一のサブキャリアと他のサブキャリアとにそれぞれ対 応する第 1回線状態レベルと第 2回線状態レベルとの差分値に対して符号化を施し て、符号化差分値を得る符号化ステップと、
前記基準回線状態レベルと前記符号化差分値とを示すフレームを生成する生成ス テツプと、
前記差分値に対して施される前記符号化を、前記第 1回線状態レベルおよび前記 第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大 きさに基づ!/ヽて制御する符号化制御ステップと、
を有することを特徴とする送信制御フレーム生成方法。
[22] 複数のサブキャリア間の基準回線状態レベルを示すフレームであって、前記複数 のサブキャリアのうち一のサブキャリアと他のサブキャリアとにそれぞれ対応する第 1 回線状態レベルと第 2回線状態レベルとの差分値をさらに示すフレームを取得する 取得ステップと、
前記差分値に対して復号化を施して、復号化差分値を得る復号化ステップと、 前記第 1回線状態レベルおよび前記第 2回線状態レベルのいずれか一方を、前記 復号ィ匕差分値を用いて算出する個別レベル算出ステップと、 前記差分値に対して施される前記復号化を、前記第 1回線状態レベルおよび前記 第 2回線状態レベルのいずれか一方の前記基準回線状態レベルに対する相対的大 きさに基づ!/、て制御する復号ィ匕制御ステップと、
を有することを特徴とする送信制御フレーム処理方法。
PCT/JP2005/021799 2004-11-30 2005-11-28 送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法 WO2006059566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0518699-4A BRPI0518699A2 (pt) 2004-11-30 2005-11-28 dispositivo de geraÇço de quadro de controle de transmissço, dispositivo de processamento de quadro de controle de transmissço, mÉtodo de geraÇço de quadro de controle de transmissço, e mÉtodo de processamento de quadro de controle de transmissço
US11/720,269 US20070258366A1 (en) 2004-11-30 2005-11-28 Transmission Control Frame Generation Device, Transmission Control Frame Processing Device, Transmission Control Frame Generation Method, and Transmission Control Frame Processing Method
JP2006547899A JP4598003B2 (ja) 2004-11-30 2005-11-28 送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法
EP05809656A EP1816772A1 (en) 2004-11-30 2005-11-28 Transmission control frame generation device, transmission control frame processing device, transmission control frame generation method, and transmission control frame processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004346512 2004-11-30
JP2004-346512 2004-11-30

Publications (1)

Publication Number Publication Date
WO2006059566A1 true WO2006059566A1 (ja) 2006-06-08

Family

ID=36564999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021799 WO2006059566A1 (ja) 2004-11-30 2005-11-28 送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法

Country Status (8)

Country Link
US (1) US20070258366A1 (ja)
EP (1) EP1816772A1 (ja)
JP (1) JP4598003B2 (ja)
KR (1) KR20070085573A (ja)
CN (1) CN101069375A (ja)
BR (1) BRPI0518699A2 (ja)
RU (1) RU2007120054A (ja)
WO (1) WO2006059566A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336492A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 送信装置及び通信方法
WO2008001727A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Radio communication device and cqi generation method
JP2008048319A (ja) * 2006-08-21 2008-02-28 Nec Corp 通信システム及び通信方法並びにそれに用いる移動局及び基地局
JP2008533872A (ja) * 2005-03-11 2008-08-21 クゥアルコム・インコーポレイテッド ダウンリンクmimoチャネルデータレートの調整のためにチャネル性能フィードバックを提供するようにアップリンクリソースを低減するためのシステムおよび方法
JP2008263596A (ja) * 2007-03-07 2008-10-30 Motorola Inc 送信をマルチキャリア通信システム内で行なう方法及び装置
WO2008152692A1 (ja) * 2007-06-12 2008-12-18 Fujitsu Limited 周波数分割多重伝送装置
JP2009504065A (ja) * 2005-08-01 2009-01-29 サムスン エレクトロニクス カンパニー リミテッド マルチキャリヤ無線ネットワークにおける適応的チャネル品質フィードバック用装置及び方法
WO2009054264A1 (ja) * 2007-10-25 2009-04-30 Sharp Kabushiki Kaisha 通信装置、マルチキャリア通信システムおよび通信方法
JP2009531993A (ja) * 2006-03-27 2009-09-03 クゥアルコム・インコーポレイテッド 無線通信システムにおけるmimoおよびサブバンドのスケジューリングためのチャネル状態情報のフィードバック
JP2009542157A (ja) * 2006-06-30 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 閉ループ多重アンテナシステムにおけるデータ送受信装置及びその方法
WO2010064695A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、無線通信システム、フィードバック情報演算時の近似方法および記録媒体
JP2011172176A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、及び無線通信システム
JP2011171847A (ja) * 2010-02-16 2011-09-01 Kddi Corp チャネル情報圧縮制御装置、チャネル情報圧縮制御方法、受信機及びコンピュータプログラム
US8073068B2 (en) 2005-08-22 2011-12-06 Qualcomm Incorporated Selective virtual antenna transmission
JPWO2009157521A1 (ja) 2008-06-27 2011-12-15 京セラ株式会社 無線通信装置及び無線通信方法
JP2014017858A (ja) * 2007-12-21 2014-01-30 Qualcomm Inc 通信システムにおけるチャネル品質表示フィードバックのための方法および装置
JP5413854B2 (ja) * 2008-04-25 2014-02-12 パナソニック株式会社 無線通信装置および量子化方法
US8724740B2 (en) 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
JP2014090490A (ja) * 2009-03-03 2014-05-15 Qualcomm Incorporated 周波数グルーピングに基づいてマルチキャリアベースの通信システムにおけるフィードバック情報を減らすための方法およびシステム
US8798201B2 (en) 2006-09-06 2014-08-05 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
US9232429B2 (en) 2010-10-04 2016-01-05 Marvell World Trade Ltd. Compressed feedback format for WLAN
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9755807B2 (en) 2006-03-20 2017-09-05 Qualcomm Incorporated Uplink channel estimation using a signaling channel

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231357B1 (ko) 2006-04-06 2013-02-07 엘지전자 주식회사 다중 안테나 시스템에서 채널 상태 정보 귀환 방법 및데이터 송신 방법
JP4760515B2 (ja) * 2006-04-28 2011-08-31 日本電気株式会社 通信システム及びその通信方法並びにそれに用いる移動局及び基地局
US8385218B2 (en) * 2006-10-12 2013-02-26 Sharp Kabushiki Kaisha Communication apparatus and communication method
US20100061438A1 (en) * 2006-11-13 2010-03-11 Agency For Science, Technology And Research Method for selecting transmission parameters for a data transmission and data transmission controller
US7826521B1 (en) * 2007-02-28 2010-11-02 Atheros Communications, Inc. Rate adaptation using error vector magnitude
US8094761B2 (en) * 2007-12-07 2012-01-10 Samsung Electronics Co., Ltd. Uplink feedback for supporting MIMO operation in the LTE downlink
TW201031151A (en) * 2009-02-12 2010-08-16 Ralink Technology Corp Method for switching between a long guard interval and a short guard interval and module using the same
EP2475126B1 (en) * 2009-09-30 2014-11-12 Huawei Technologies Co., Ltd. Method, terminal and base station for processing channel state information
US8406326B2 (en) 2010-05-13 2013-03-26 Telefonaktiebolaget L M Ericsson (Publ) Exploiting channel time correlation to reduce channel state information feedback bitrate
CN102401902A (zh) * 2010-09-08 2012-04-04 神讯电脑(昆山)有限公司 卫星状态判断方法
US8908600B2 (en) * 2010-10-26 2014-12-09 Qualcomm Incorporated Channel state information feedback frame format and feedback rules for very high throughput wireless systems
US8699644B1 (en) * 2010-10-28 2014-04-15 Marvell International Ltd. Adaptive low-complexity channel estimation
US9130631B2 (en) 2010-11-03 2015-09-08 Qualcomm Incorporated Beamforming feedback format
EP2663130B1 (en) * 2011-01-04 2018-08-08 LG Electronics Inc. Method and apparatus for selecting a node in a distributed multi-node system
US10484898B2 (en) 2012-08-02 2019-11-19 Nokia Solutions And Networks Oy System and apparatus for measurement report in coordinated multipoint transmission system
US20140098757A1 (en) * 2012-10-09 2014-04-10 Qualcomm Incorporated Cqi reporting and generation in wireless network
KR20150009825A (ko) * 2013-07-17 2015-01-27 삼성전자주식회사 무선랜 시스템 및 이의 구동 방법
TWI601400B (zh) * 2015-12-24 2017-10-01 晨星半導體股份有限公司 處理位元配置的裝置及方法
JP6610329B2 (ja) * 2016-02-25 2019-11-27 富士通株式会社 誤り訂正回路および光伝送システム
US10129709B1 (en) * 2016-07-14 2018-11-13 Mbit Wireless, Inc. Method and apparatus for fading profile detection
US10222480B2 (en) * 2016-09-30 2019-03-05 Intel Corporation Methods and devices for compensating misadjustment of a GNSS device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238269A (ja) * 2000-02-25 2001-08-31 Kddi Corp 無線通信システムのサブキャリア割当方法
WO2002049305A2 (en) * 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Ofdma with adaptive subcarrier-cluster configuration and selective loading
WO2002103926A1 (en) * 2001-06-14 2002-12-27 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
JP2003152671A (ja) * 2001-11-16 2003-05-23 Japan Telecom Co Ltd 直交周波数分割多重システムおよび送受信装置
JP2003169036A (ja) * 2001-11-30 2003-06-13 Japan Telecom Co Ltd 直交周波数分割多重システムおよび送受信装置
JP2004242189A (ja) * 2003-02-07 2004-08-26 Nippon Telegr & Teleph Corp <Ntt> 伝送モード選択方法および無線通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US169681A (en) * 1875-11-09 Improvement in sheep-scratch boxes
US291582A (en) * 1884-01-08 X dimpfl
US6137912A (en) * 1998-08-19 2000-10-24 Physical Optics Corporation Method of multichannel data compression
JP3538098B2 (ja) * 1999-07-23 2004-06-14 日本電信電話株式会社 Ofdm変復調回路
US7065146B1 (en) * 2002-02-15 2006-06-20 Marvell International Ltd. Method and apparatus for equalization and decoding in a wireless communications system including plural receiver antennae
JP2003110429A (ja) * 2001-09-28 2003-04-11 Sony Corp 符号化方法及び装置、復号方法及び装置、伝送方法及び装置、並びに記録媒体
CN100514895C (zh) * 2002-03-29 2009-07-15 松下电器产业株式会社 在多载波发送中的数据重发方法
JP4296753B2 (ja) * 2002-05-20 2009-07-15 ソニー株式会社 音響信号符号化方法及び装置、音響信号復号方法及び装置、並びにプログラム及び記録媒体
JP4419745B2 (ja) * 2004-08-05 2010-02-24 株式会社デンソーウェーブ 充電器
KR100606083B1 (ko) * 2004-11-04 2006-07-31 삼성전자주식회사 광대역 무선 접속 통신 시스템에서 부채널 할당 시스템 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001238269A (ja) * 2000-02-25 2001-08-31 Kddi Corp 無線通信システムのサブキャリア割当方法
WO2002049305A2 (en) * 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Ofdma with adaptive subcarrier-cluster configuration and selective loading
WO2002103926A1 (en) * 2001-06-14 2002-12-27 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
JP2003152671A (ja) * 2001-11-16 2003-05-23 Japan Telecom Co Ltd 直交周波数分割多重システムおよび送受信装置
JP2003169036A (ja) * 2001-11-30 2003-06-13 Japan Telecom Co Ltd 直交周波数分割多重システムおよび送受信装置
JP2004242189A (ja) * 2003-02-07 2004-08-26 Nippon Telegr & Teleph Corp <Ntt> 伝送モード選択方法および無線通信装置

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8995547B2 (en) 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
JP4796122B2 (ja) * 2005-03-11 2011-10-19 クゥアルコム・インコーポレイテッド ダウンリンクmimoチャネルデータレートの調整のためにチャネル性能フィードバックを提供するようにアップリンクリソースを低減するためのシステムおよび方法
US9178584B2 (en) 2005-03-11 2015-11-03 Qualcomm Incorporated System and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US8724740B2 (en) 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
JP2008533872A (ja) * 2005-03-11 2008-08-21 クゥアルコム・インコーポレイテッド ダウンリンクmimoチャネルデータレートの調整のためにチャネル性能フィードバックを提供するようにアップリンクリソースを低減するためのシステムおよび方法
US8275386B2 (en) 2005-08-01 2012-09-25 Samsung Electronics Co., Ltd. Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
US9084273B2 (en) 2005-08-01 2015-07-14 Samsung Electronics Co., Ltd. Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
JP2009504065A (ja) * 2005-08-01 2009-01-29 サムスン エレクトロニクス カンパニー リミテッド マルチキャリヤ無線ネットワークにおける適応的チャネル品質フィードバック用装置及び方法
US8229448B2 (en) 2005-08-01 2012-07-24 Samsung Electronics Co., Ltd. Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
US8717905B2 (en) 2005-08-01 2014-05-06 Samsung Electronics Co., Ltd. Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
US8073068B2 (en) 2005-08-22 2011-12-06 Qualcomm Incorporated Selective virtual antenna transmission
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9755807B2 (en) 2006-03-20 2017-09-05 Qualcomm Incorporated Uplink channel estimation using a signaling channel
JP2009531993A (ja) * 2006-03-27 2009-09-03 クゥアルコム・インコーポレイテッド 無線通信システムにおけるmimoおよびサブバンドのスケジューリングためのチャネル状態情報のフィードバック
US8503555B2 (en) 2006-03-27 2013-08-06 Qualcomm Incorporated Feedback of differentially encoded channel state information for multiple-input multiple-output (MIMO) and subband scheduling in a wireless communication system
JP2007336492A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 送信装置及び通信方法
WO2007148588A1 (ja) * 2006-06-19 2007-12-27 Ntt Docomo, Inc. 送信装置及び通信方法
WO2008001727A1 (en) * 2006-06-26 2008-01-03 Panasonic Corporation Radio communication device and cqi generation method
JP4907657B2 (ja) * 2006-06-26 2012-04-04 パナソニック株式会社 無線通信装置及びcqi生成方法
US7864698B2 (en) 2006-06-26 2011-01-04 Panasonic Corporation Radio communication device and CQI generation method
JP2009542157A (ja) * 2006-06-30 2009-11-26 サムスン エレクトロニクス カンパニー リミテッド 閉ループ多重アンテナシステムにおけるデータ送受信装置及びその方法
US8442448B2 (en) 2006-06-30 2013-05-14 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a closed-loop multi-antenna system
US8040868B2 (en) 2006-08-21 2011-10-18 Nec Corporation Communication system, communication method, mobile station and base station used for the same
JP2008048319A (ja) * 2006-08-21 2008-02-28 Nec Corp 通信システム及び通信方法並びにそれに用いる移動局及び基地局
US8798201B2 (en) 2006-09-06 2014-08-05 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
JP2008263596A (ja) * 2007-03-07 2008-10-30 Motorola Inc 送信をマルチキャリア通信システム内で行なう方法及び装置
US8369236B2 (en) 2007-06-12 2013-02-05 Fujitsu Limited Frequency division multiplex transmission device
WO2008152692A1 (ja) * 2007-06-12 2008-12-18 Fujitsu Limited 周波数分割多重伝送装置
JP4868065B2 (ja) * 2007-06-12 2012-02-01 富士通株式会社 周波数分割多重伝送装置
WO2009054264A1 (ja) * 2007-10-25 2009-04-30 Sharp Kabushiki Kaisha 通信装置、マルチキャリア通信システムおよび通信方法
JP5153781B2 (ja) * 2007-10-25 2013-02-27 シャープ株式会社 通信装置、マルチキャリア通信システムおよび通信方法
US8249179B2 (en) 2007-10-25 2012-08-21 Sharp Kabushiki Kaisha Communication apparatus, multicarrier communication system and communication method
JP2014017858A (ja) * 2007-12-21 2014-01-30 Qualcomm Inc 通信システムにおけるチャネル品質表示フィードバックのための方法および装置
US9386473B2 (en) 2007-12-21 2016-07-05 Qualcomm Incorporated Methods and apparatus for channel quality indication feedback in a communication system
US10659131B2 (en) 2007-12-21 2020-05-19 Qualcomm Incorporated Methods and apparatus for channel quality indication feedback in a communication system
JP5413854B2 (ja) * 2008-04-25 2014-02-12 パナソニック株式会社 無線通信装置および量子化方法
JPWO2009157521A1 (ja) 2008-06-27 2011-12-15 京セラ株式会社 無線通信装置及び無線通信方法
JP2010135915A (ja) * 2008-12-02 2010-06-17 Nec Corp 通信装置、無線通信システムおよびフィードバック情報演算時の近似方法ならびにプログラム
CN102227886B (zh) * 2008-12-02 2014-10-15 日本电气株式会社 通信装置、无线通信系统、反馈信息运算时的近似方法和记录介质
US8824585B2 (en) 2008-12-02 2014-09-02 Nec Corporation Communication apparatus, wireless communication system, method for approximation in feedback information calculation, and recording medium
CN102227886A (zh) * 2008-12-02 2011-10-26 日本电气株式会社 通信装置、无线通信系统、反馈信息运算时的近似方法和记录介质
WO2010064695A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、無線通信システム、フィードバック情報演算時の近似方法および記録媒体
JP2014090490A (ja) * 2009-03-03 2014-05-15 Qualcomm Incorporated 周波数グルーピングに基づいてマルチキャリアベースの通信システムにおけるフィードバック情報を減らすための方法およびシステム
JP2011171847A (ja) * 2010-02-16 2011-09-01 Kddi Corp チャネル情報圧縮制御装置、チャネル情報圧縮制御方法、受信機及びコンピュータプログラム
JP2011172176A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信方法、及び無線通信システム
US9232429B2 (en) 2010-10-04 2016-01-05 Marvell World Trade Ltd. Compressed feedback format for WLAN
US9712365B2 (en) 2010-10-04 2017-07-18 Marvell World Trade Ltd. Compressed feedback format for WLAN
US10075319B2 (en) 2010-10-04 2018-09-11 Marvell World Trade Ltd. Compressed feedback format for WLAN

Also Published As

Publication number Publication date
US20070258366A1 (en) 2007-11-08
JPWO2006059566A1 (ja) 2008-06-05
RU2007120054A (ru) 2009-01-10
KR20070085573A (ko) 2007-08-27
JP4598003B2 (ja) 2010-12-15
EP1816772A1 (en) 2007-08-08
BRPI0518699A2 (pt) 2008-12-02
CN101069375A (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4598003B2 (ja) 送信制御フレーム生成装置、送信制御フレーム処理装置、送信制御フレーム生成方法および送信制御フレーム処理方法
US7852814B2 (en) Transmission control frame generation device and transmission control device
KR101268699B1 (ko) 통신 장치, 이동국 및 통신 제어 방법
EP2560315B1 (en) Radio communication apparatus and pilot symbol transmission method
KR100938088B1 (ko) 무선 패킷 데이터 통신 시스템에서의 피드백 정보 송수신방법 및 장치
KR101664517B1 (ko) 다중 사용자-mimo 통신 네트워크에서의 채널 품질 지수를 결정하는 방법 및 장치
US20100027608A1 (en) Scrambled multicarrier transmission
KR100933146B1 (ko) 무선 통신 시스템에 대한 안테나 어레이 보정
US7751307B2 (en) Communication apparatus and a method of transmitting data therefor
TWI526015B (zh) 利用通道時間相關性降低通道狀態資訊回授位元率
JP4948974B2 (ja) マルチキャリア無線通信システムにおけるチャネル品質情報を送る方法ならびに対応するユーザ端末および基地局
US20060246916A1 (en) Radio communication apparatus and subcarrier assignment method
US20110286502A1 (en) Wireless transmitter and precoding method
US20160043816A1 (en) OFDM System with Reverse Link Interference Estimation
US8718194B2 (en) Method and system for efficient channel estimation
JP5562292B2 (ja) 無線ネットワークの送信機においてシンボルを符号化するための方法
US20050185733A1 (en) Data transmission method, communication system, base station and transceiver
KR20170053055A (ko) 무선통신 시스템에서 필터 뱅크 다중 반송파 기법을 위한 전처리 방법 및 장치
KR100763529B1 (ko) 시공간 전송 다이버시티를 적용한 통신 시스템에서전력제어 방법 및 장치
WO2008129121A1 (en) Receiver and receiving method
EP2202901B1 (en) Communication device and reception quality information generation method
Heo et al. A novel two-step channel-prediction technique for supporting adaptive transmission in OFDM/FDD system
Zhou et al. Application of rate splitting transmission scheme for LTE-Advanced systems
KR101505085B1 (ko) 다중 사용자 다중 안테나 시스템에서 에이겐 상수 정규화를기반으로 한 분산 벡터 부호화 장치 및 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547899

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11720269

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005809656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580041084.2

Country of ref document: CN

Ref document number: 1020077012219

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007120054

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005809656

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11720269

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0518699

Country of ref document: BR