WO2006059498A1 - 熱交換器及びその製造方法 - Google Patents

熱交換器及びその製造方法 Download PDF

Info

Publication number
WO2006059498A1
WO2006059498A1 PCT/JP2005/021228 JP2005021228W WO2006059498A1 WO 2006059498 A1 WO2006059498 A1 WO 2006059498A1 JP 2005021228 W JP2005021228 W JP 2005021228W WO 2006059498 A1 WO2006059498 A1 WO 2006059498A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
tube
tube group
exchanger according
group block
Prior art date
Application number
PCT/JP2005/021228
Other languages
English (en)
French (fr)
Inventor
Mitsunori Taniguchi
Osao Kido
Kiyoshi Kinoshita
Takashi Okutani
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004345389A external-priority patent/JP2006153360A/ja
Priority claimed from JP2005020747A external-priority patent/JP2006207937A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/720,135 priority Critical patent/US20080121387A1/en
Publication of WO2006059498A1 publication Critical patent/WO2006059498A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means

Definitions

  • the present invention relates to a heat exchanger for a cooling system, a heat dissipation system, a heating system, and the like, and in particular, a liquid and gas heat exchanger used in a system that requires compactness such as information equipment and the like. It relates to a manufacturing method.
  • FIG. 29 is a front view of a conventional heat exchanger described in Document 1.
  • the conventional heat exchanger has a circular cross-sectional shape between an inlet tank 1 and an outlet tank 2, and an inlet tank 1 and an outlet tank 2 that are arranged to face each other at a predetermined interval.
  • a plurality of annular pipes 3 are arranged, and a core part 4 is formed through which an external fluid flows outside the pipe 3.
  • Water and antifreeze are mainly used as the internal fluid that circulates in the pipe 3, and air is mainly used as the external fluid, and each circulates and performs heat exchange.
  • the pipe 3 is arranged in a grid pattern, and the outer diameter of the pipe 3 is set to 0.2 mm or more and 0.8 mm or less.
  • the value obtained by dividing the pitch of the adjacent pipes 3 by the pipe outer diameter is 0.5 or more and 3.5 or less, so that the amount of heat exchange for the power used can be greatly improved.
  • a heat exchanger includes a plurality of substrates having a large number of through holes, and a plurality of tubes in which the inside of the tube communicates with the through holes and is provided between the substrates. Consists of a plurality of tube group blocks connected in the tube axis direction.
  • the tube group blocks are connected to have a predetermined size. Therefore, the tube length of the tube group block can be shortened by injection molding or die casting. Since the pipes can be manufactured at the same time, and the process of inserting and bonding the pipes is eliminated, heat exchange can be provided at a low cost.
  • a tube group including a plurality of tube forces in which the inside of the tube communicates with the through holes and the surface force of the substrate is provided substantially perpendicularly between the substrates having a large number of through holes.
  • a plurality of blocks may be stacked through a mixing chamber.
  • V and the area can be suppressed by one block of the tube group.
  • FIG. 1 is a front view of a heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the heat exchanger according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA of the heat exchanger ⁇ in FIG.
  • FIG. 4 is a cross-sectional view of the heat exchanger of FIG.
  • FIG. 5 is a perspective view of a tube group block of the heat exchanger according to the first embodiment.
  • FIG. 6 is a front view of a tube group block of the heat exchanger according to the first embodiment.
  • FIG. 7 is a top view of a tube group block of the heat exchanger according to the first embodiment.
  • FIG. 8 is a front view of a heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 9 is a side view of the heat exchanger according to the second embodiment.
  • FIG. 10 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 11 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 12 is a perspective view of a tube group block of the heat exchanger according to the second embodiment.
  • FIG. 13 is a front view of a tube group block of the heat exchanger of the second embodiment.
  • FIG. 14 is a top view of a tube group block of the heat exchanger according to the second embodiment.
  • FIG. 15 is a front view of heat exchange in Embodiment 3 of the present invention.
  • FIG. 16 is a side view of the heat exchanger according to the third embodiment.
  • FIG. 17 is a cross-sectional view taken along line AA in FIG.
  • FIG. 18 is a cross-sectional view taken along line BB in FIG.
  • FIG. 19 is a perspective view of a tube group block of the heat exchanger of the third embodiment.
  • FIG. 20 is a front view of the tube group block of FIG.
  • FIG. 21 is a top view of the tube group block of FIG.
  • FIG. 22 is a front view of a heat exchanger according to Embodiment 4 of the present invention.
  • FIG. 23 is a side view of the heat exchanger according to the fourth embodiment.
  • FIG. 24 is a cross-sectional view taken along line CC of FIG.
  • FIG. 25 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 26 is a perspective view of the tube group block of FIG.
  • FIG. 27 is a front view of the tube group block of FIG.
  • FIG. 28 is a side view of the tube group block of FIG.
  • FIG. 29 is a front view of a conventional heat exchanger.
  • the heat exchanger of the present invention includes a plurality of substrates having a plurality of through holes and a plurality of tube forces in which the inside of the tube communicates with the through holes and is provided between the substrates.
  • a plurality of tube group blocks connected in the tube axis direction.
  • the substrate and the tube can be easily manufactured simultaneously by injection molding, die casting, etc., which can reduce the tube length of the tube group block. This eliminates the process of inserting and gluing the tube, thus providing heat exchange at a low price.
  • the tube group blocks may be connected by joining the peripheral edges of adjacent substrates to each other.
  • the tube may be a multi-hole tube including a plurality of flow paths in the tube.
  • peripheral edges of the substrates may be directly joined together to connect the tube group blocks.
  • the peripheral edges of the substrates may be bonded together by welding bonding.
  • the heat exchanger of the present invention is subdivided in the internal fluid circulation direction, and has a region in which the internal fluid does not flow even when part of the tube group is clogged.
  • the tube group can be kept only in the corresponding one block tube group, and a significant decrease in the heat exchange amount can be prevented.
  • the mixing chamber can also be configured by a spacer attached to the back surface of the substrate and a part of the back surface of the substrate. Since the height of the mixing chamber can be easily positioned with a spacer, man-hours can be reduced and heat exchange can be provided at a low price.
  • the mixing chamber can also be configured by a spacer provided on the back surface of the substrate and the peripheral edge of the substrate. Since the side wall of the mixing chamber can be formed with a spacer, it is possible to provide it at a low price without the need for a new side wall.
  • the cross-sectional shape of the multi-hole tube is flattened and the flow paths in the tube are arranged in the long side direction. You may arrange on a board
  • the tube group, the substrate, and the spacer may be integrally formed.
  • the number of man-hours can be reduced without the need to re-join the tube and substrate and the substrate and spacer, and a heat exchanger can be provided at a low price.
  • the heat exchange of the present invention may be produced by directly joining the tube group blocks together! / ⁇ . Clogging the flow path of the internal fluid with brazing material can reduce the number of defective products, and can be provided at a low price.
  • tube group blocks may be joined together by diffusion bonding according to the heat exchange of the present invention.
  • the base material itself does not melt, so that the flow path of the internal fluid is not clogged, the number of defective products can be further reduced, and the product can be provided at a lower price. wear.
  • the tube group blocks may be joined together by ultrasonic joining. Since the base material itself is not melted, the flow path of the internal fluid is not further clogged. Further, the number of defective products can be further reduced, and it can be provided at a lower price.
  • At least one of the tube group block and the spacer can be made of a resin material.
  • a resin material By using an inexpensive resin material, the cost of direct materials can be reduced and can be provided at a low price.
  • the tube group block and the spacer may be made of a low-viscosity resin material with good fluidity in the heat exchange of the present invention.
  • a low-viscosity resin material with good fluidity in the heat exchange of the present invention.
  • the tube group block and the spacer may be made of a resin material having a low water vapor transmission rate.
  • water or antifreeze is used as the internal fluid, the amount of permeation of the internal fluid from the heat exchanger can be reduced, and the tube wall can be made thinner, so heat exchange can be provided at a low cost.
  • the tube group block and the spacer may be made of polypropylene (PP) or polyethylene terephthalate (PET).
  • PP polypropylene
  • PET polyethylene terephthalate
  • the grease can be supplied to the end, and the number of defective products can be reduced.
  • the tube wall can be made thin. As a result, heat exchange can be provided at a low price.
  • FIG. 1 is a front view of a heat exchanger according to Embodiment 1 of the present invention
  • FIG. 2 is a side view
  • 3 is a cross-sectional view taken along line AA in FIG. 1
  • FIG. 4 is a cross-sectional view taken along line BB in FIG.
  • the heat exchanger 100 has a tube group block 30 including a tube 10 and a substrate 20. Furthermore, the tube group block 30 is connected in two stages on the peripheral edge 90 of the substrate 20 in the tube axis direction of the tube 10, so that two stages of tube group blocks 30 are connected, and an inlet header 50 and an outlet header 60 are provided at both ends in the vertical direction. Installed!
  • the tube 10 is a circular tube and is provided with an internal fluid flow path force.
  • the shape of the tube 10 need not be a circular tube.
  • the cross-sectional shape may be a rectangular tube, a polygonal tube, or an elliptical tube.
  • the peripheral edges 90 of the substrate 20 are directly bonded without using a brazing material or an adhesive. Examples of the bonding method include welding bonding, ultrasonic bonding, and diffusion bonding. By directly bonding the peripheral edges 90 of the substrate 20 in this way, it is possible to prevent the brazing material from being eluted and clogging the tube 10.
  • Diffusion bonding is a method in which diffusion of the atoms (interdiffusion) occurs by applying temperature and pressure up to the temperature at the same time without melting the base material, and the base material also elutes because it joins by bonding of atoms.
  • Interdiffusion occurs by applying temperature and pressure up to the temperature at the same time without melting the base material, and the base material also elutes because it joins by bonding of atoms.
  • brazing material By joining by diffusion bonding without using brazing material in this way, it is possible to suppress the occurrence of defective products such as brazing material clogging the inside of the tube 10 as much as possible, and to provide the heat exchanger 100 at a low price. .
  • FIGS. 5 to 7 are diagrams for explaining the tube group block 30 of the heat exchanger 100.
  • 5 is a perspective view of the tube group block 30,
  • FIG. 6 is a front view thereof, and
  • FIG. 7 is a top view thereof.
  • the tube 10 and the substrate 20 are integrally formed by injection molding or the like.
  • a material for producing the tube group block 30 a low-cost and easy-to-mold resin material is preferable.
  • the shape of the tube group block 30 is complicated because the tube diameter of the tube 10 is small and the number of tubes 10 is large.
  • a resin material having a low viscosity at the time of calorie and good fluidity is preferable. By using such a resin material, the number of defective products can be reduced, and the heat exchange 100 can be provided at a low price.
  • polypropylene having good fluidity, low water vapor permeability, and low cost is used.
  • PP polyethylene terephthalate
  • PET polyethylene terephthalate
  • PP or PET has a higher melt flow rate and better fluidity than ABS. Therefore, the filling property to the mold at the time of molding is good. PP or PET also has a lower water vapor transmission rate, so it can be thinner than ABS.
  • the arrangement of the tubes 10 is a grid pattern, but may be a staggered pattern.
  • the internal fluid 210 flows into the inlet header 50, is divided into the pipes 10, passes through the pipe group block 30, and flows out of the heat exchanger 100 through the outlet header 60. Meanwhile, tube 1
  • the external fluid 220 flows between the tubes 10, and the internal fluid 210 and the external fluid 220 exchange heat through the tubes 10.
  • the tube group block 30 is stacked in two stages, but a plurality of stages of two or more stages may be stacked.
  • the length of the tube 10 of the tube group block 30 may be shortened in order to connect the tube group block 30 to a predetermined size.
  • the substrate 20 and the tube 10 can be simultaneously and easily manufactured by injection molding, die casting, or the like. Since the process of inserting and fixing the tube 10 is eliminated, the heat exchange 100 can be provided at a low price.
  • the periphery 90 of the substrate 20 is bonded to each other.
  • Tube group pro
  • the reliability of the joint is improved and the number of man-hours can be reduced, so the heat exchange 100 can be provided at a low price. it can.
  • the heat exchanger 100 can be provided at a low price.
  • the peripheral edges 90 of the substrates 20 can also be directly bonded by diffusion bonding.
  • diffusion bonding it is possible to bond without the need to use a brazing material and without melting the base material.
  • defective products that do not clog the flow path in the tube 10 can be greatly reduced, and the heat exchanger 100 can be provided at a low price.
  • FIG. 8 is a front view of a heat exchanger according to Embodiment 2 of the present invention, and FIG. 9 is a side view thereof.
  • 10 is a cross-sectional view taken along the line CC in FIG. 8
  • FIG. 11 is a cross-sectional view taken along the line DD in FIG.
  • the heat exchanger 200 has a tube group block 130 consisting of a tube 110 and a substrate 120. Furthermore, the tube group block 130 is connected in two stages in the tube axis direction of the tube 110 on the peripheral edge 190 of the substrate 120, and the inlet header 150 and the outlet header are connected to both ends in the vertical direction. 160 is installed.
  • the cross-sectional shape of the tube 110 is flat, and a plurality of flow paths 115 are arranged in the long side direction.
  • the plurality of tubes 110 are installed on the substrate 120 at predetermined intervals so that the long side directions are parallel to each other.
  • the peripheral edges 190 of the substrates 120 are directly joined without using a brazing material or an adhesive. Examples of the bonding method include welding bonding, ultrasonic bonding, and diffusion bonding. By directly joining the peripheral edges 190 of the substrates 120 in this manner, the brazing material does not elute and the tube 110 is not clogged.
  • Diffusion bonding is a method in which diffusion of the atoms (interdiffusion) occurs when the temperature and pressure are applied at the same time so that the base material does not melt, and the base material elutes because bonding is performed by atomic bonding. There will be no clogging in the pipe 110 without a gap.
  • By bonding by diffusion bonding without using a brazing material in this way It is possible to minimize the occurrence of defective products such as clogging of the pipe 110, and to provide the heat exchanger 200 at a low price.
  • FIGS. 12 to 14 are views for explaining the tube group block 130.
  • FIG. 12 is a perspective view of the tube group block of the second embodiment
  • FIG. 13 is a front view thereof
  • FIG. FIG. 12 is a perspective view of the tube group block of the second embodiment
  • the tube 110 and the substrate 120 are integrally formed by injection molding or the like.
  • a low-cost and highly fluid resin material is preferable. By using such a material, the number of defective products can be reduced, and the heat exchange 200 can be provided at a low price.
  • the water vapor transmission rate is small! If a resin material is used, the internal fluid is difficult to permeate, so that the wall thickness of the tube 110 can be reduced. The cost can be reduced and the heat exchange 200 can be provided at a low price.
  • polypropylene having good fluidity, low water vapor transmission rate, and low cost is used.
  • PP polyethylene terephthalate
  • PET polyethylene terephthalate
  • the internal fluid 210 flows into the inlet header 150, is divided into the pipes 110, passes through the pipe group block 130, and flows out of the heat exchanger 200 through the outlet header 160.
  • the external fluid 220 flows between the pipes 110, the internal fluid 210 and the external fluid 220 exchange heat through the pipe 110.
  • the tube group block 130 is stacked in two stages, but is not limited to two stages, and may be any two or more stages.
  • the length of the tube 110 of the tube group block 130 may be shortened in order to connect the tube group block 130 to a predetermined size.
  • the substrate 120 and the tube 110 can be manufactured easily and simultaneously. Therefore, the process of inserting and fixing the pipe 110 is eliminated, and the heat exchanger 200 can be provided at a low price.
  • the periphery 190 of the substrate 120 is bonded to each other.
  • the tube 110 is a multi-hole tube including a plurality of flow paths 115 in the tube.
  • the number of pipes can be reduced without reducing the number of flow paths. Therefore, the manufacture becomes easy and the heat exchange 200 can be provided at a low cost.
  • the heat exchanger 200 can be provided at a low price.
  • peripheral edges 190 of the substrates 120 can also be directly bonded by diffusion bonding.
  • diffusion bonding it is possible to bond without the need to use a brazing material and without melting the base material.
  • the flow path 115 in the pipe 110 is not clogged, defective products can be greatly reduced, and the heat exchange ⁇ 200 can be provided at a low price.
  • FIG. 15 is a front view of the heat exchanger according to the third embodiment of the present invention
  • FIG. 16 is a side view thereof
  • 17 is a cross-sectional view taken along line AA in FIG. 16
  • FIG. 18 is a cross-sectional view taken along line BB in FIG.
  • the heat exchanger 300 has a tube group block 40 including a tube 10, a substrate 20, and a spacer 80. Further, three stages of tube group blocks 40 are stacked in the flow direction of the internal fluid flowing in the tube 10, and the inlet header 50 and the outlet header 60 are installed at both ends in the vertical direction.
  • the spacer 80 is a portion protruding in a stepped manner from the substrate at a predetermined height and width on the periphery of the substrate 20.
  • the tube 10 is a circular tube and is provided with an internal fluid flow path force.
  • the shape of the tube 10 is not limited to a circular tube.
  • the tube 10 may be a rectangular tube, a polygonal tube, or an elliptical tube.
  • the spacers 80 are provided on both of the adjacent tube group blocks 40, but the spacers 80 may be provided on at least one of the substrates.
  • the spacer 80 of one tube group block 40 and the peripheral edge of the substrate 20 of the other tube group block 40 are joined.
  • the tube group blocks 40 are directly joined without using brazing material. Since no brazing material is used, the tube 10 is not clogged by the elution of the brazing material.
  • diffusion bonding is used for the above bonding.
  • diffusion bonding is a bonding method in which the substrate is heated to a temperature at which the substrate does not melt and pressure is applied simultaneously.
  • diffusion bonding the phenomenon of atomic diffusion (interdiffusion) occurs, and bonding is performed by the bonding of atoms, so that the inside of the tube 10 is not clogged without elution of the base material.
  • FIGS. 19 to 21 are diagrams illustrating the tube group block 40.
  • FIG. 19 is a perspective view of a tube group block of the heat exchanger 300 of Embodiment 3
  • FIG. 6 is a front view thereof
  • FIG. 7 is a top view thereof.
  • the tube 10, the substrate 20, and the spacer 80 are integrally formed by injection molding or the like.
  • a material for producing the tube group block 40 a low-cost and easy-to-mold resin material is preferable. Because the tube diameter of the tube 10 is small and the number is large, the shape of the tube group block 40 is complicated.Therefore, when manufacturing by injection molding, the viewpoint of supplying grease to the end.Low viscosity during molding Thus, a resin material with good fluidity is preferable. By using such a resin material, the number of defective products can be reduced and the heat exchanger 300 can be provided at a low price.
  • polypropylene having good fluidity, low water vapor transmission rate and low cost
  • PP polyethylene terephthalate
  • PET polyethylene terephthalate
  • the arrangement of the tubes 10 is a grid pattern, but may be a staggered pattern.
  • the operation and action of the heat exchanger 300 configured as described above will be described below. Note that the heat exchanger consists of three stages of tube group blocks 40a, 40b, and 40c.
  • the internal fluid 210 flows into the inlet header 50, is divided into the pipes 10a, passes through the pipe group block 40a, flows into the mixing chamber 70a, and is mixed.
  • the mixed internal fluid 210 is also divided into each of the pipes 10b, passes through the pipe group block 40b and the mixing chamber 70b, passes through the pipe group block 40c, and goes out of the heat exchanger ⁇ 300 from the outlet header 60. And leaked.
  • the external fluid 220 flows between the pipes 10, and the internal fluid 210 and the external fluid 220 exchange heat through the pipe 10.
  • the tube group block 40 is stacked in three stages, but may be a plurality of stages including two or more stages. (Embodiment 4)
  • FIG. 22 is a front view of heat exchanger 400 according to Embodiment 4 of the present invention
  • FIG. 23 is a side view thereof.
  • 24 is a cross-sectional view taken along the line CC in FIG. 23
  • FIG. 25 is a cross-sectional view taken along the line DD in FIG. Note that elements equivalent to those in Embodiments 1 and 2 are denoted by the same reference numerals, and the description may be simplified.
  • the heat exchanger 400 has a tube 110 and a tube group block 140 having a substrate 120 and a spacer 180 force.
  • Three stages of tube group blocks 140 are stacked in the flow direction of the internal fluid flowing in the pipe 110, and the inlet header 50 and the outlet header 60 are installed at both ends in the vertical direction.
  • the tube 110 is a multi-hole tube having a flat cross-sectional shape and a plurality of flow paths 115 arranged in the long side direction.
  • the tubes 110 are arranged in a direction perpendicular to the substrate 120 at a predetermined interval so that the long side directions of the flat shape are parallel to each other.
  • the spacers 180 installed on the periphery of the substrate 120 are joined together, so that a mixing chamber 170 is formed between the substrates 120.
  • the force in which the spacers 180 are provided on both of the adjacent tube group blocks 140 is sufficient if the spacers 180 are provided on at least one of them.
  • the spacer 180 of the group block 140 and the substrate 120 of the other tube group block 140 are joined.
  • the tube group blocks 140 are directly joined without using a brazing material. Since no brazing material is used, the tube 110 is not clogged by the elution of the brazing material.
  • Diffusion bonding is an atomic diffusion (interdiffusion) phenomenon that occurs when a temperature and pressure are applied to a substrate at the same time without melting the substrate. There is no clogging in the tube 110 where the base material does not elute. In this way, by joining the tube group blocks 140 together by diffusion bonding without using brazing material, the occurrence of defective products such as clogging in the tube 110 can be suppressed as much as possible. Can provide 400.
  • FIGS. 26 to 28 are diagrams illustrating the tube group block 140.
  • FIG. 26 is a perspective view of a tube group block of the heat exchanger 400 of Embodiment 4
  • FIG. 27 is a front view thereof
  • FIG. 28 is a side view thereof.
  • the tube group block 140 is configured by joining a tube 110, a substrate 120, and a spacer 180.
  • the pipe 110 has a plurality of flow paths 115, and the number of pipes bonded to the substrate 120 can be reduced while securing the number of flow paths, thereby reducing the number of steps and providing the heat exchange 400 at a low price. .
  • the internal fluid 210 flows into the inlet header 50, is divided into the respective flow paths 115 of the tubes 110, passes through the tube group block 140a, and flows into the mixing chamber 170a to be mixed.
  • the mixed internal fluid 210 is diverted to each flow path 115 of the pipe 110, passes through the tube group block 140b, further passes through the mixing chamber 170b, passes through the tube group block 140c, and goes out of the heat exchanger 400 from the outlet header 60. And leaked.
  • the external fluid 220 flows between the pipes 110, and the internal fluid 210 and the external fluid 220 exchange heat via the pipe 110.
  • the pipe 110 has a flat cross-sectional shape and is arranged at a predetermined interval so that the long side directions are parallel to each other, the wake of the pipe 10 of Embodiment 3 made of a circular pipe is used.
  • the flow path through which the external fluid 220 flows is not enlarged like the part. Therefore, the flow rate of the external fluid 220 is increased, the heat transfer coefficient between the external fluid 220 and the pipe 110 is improved, and the amount of heat exchange can be increased.
  • the internal fluid 210 does not flow through the clogged flow path 115a, so that the clogged flow path 115a is subjected to heat exchange. Will no longer contribute.
  • the internal fluid 210 that has passed through the other unfilled flow paths 115a is mixed in the mixing chambers 170a and 170b and then re-distributed.
  • the internal fluid 210 can flow in the flow paths 115b and 115c. As a result, the internal fluid 210 in the flow paths 115b and 115c can contribute to heat exchange.
  • the tube group block 140 is divided in the flow direction of the internal fluid 210, clogging occurs and it does not contribute to heat exchange, so the area can be reduced and the amount of heat exchange can be significantly reduced. Can be prevented. Furthermore, as shown in FIG. 25, the internal fluid 210 flowing in the flow path 115d on the upstream side of the external fluid having a large amount of heat exchange with the external fluid 220 has a small temperature difference from the external fluid 220 and heat exchange. The exchange amount decreases. On the other hand, the internal fluid 210 flowing in the flow path 115e located downstream of the external fluid having a small amount of heat exchange with the external fluid 220 maintains a large temperature difference from the external fluid 220. Since the internal fluid 210 is mixed in the mixing chambers 170a and 170b, when the external fluid 220 passes through the tube group blocks 140b and 140c, the average temperature difference between the external fluid 220 and the internal fluid 210 increases, and heat Exchange amount increases.
  • the tube group block 140 is stacked in three stages in the fourth embodiment, it may be a plurality of stages of two or more stages. Further, in the present embodiment, the force for joining the tube 110 and the substrate 120 may be formed integrally as in the third embodiment.
  • the heat exchange according to the present invention can be realized at a low price while maintaining very excellent heat exchange performance, and can be used for heat exchangers for refrigeration equipment and air conditioning equipment. It can also be applied to uses such as heat recovery equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 多数の貫通穴を備えた複数の基板と管内が貫通穴と連通し基板間に設けられた複数の管から構成される管群ブロックを管軸方向に複数連結した熱交換器であり、管群ブロックを連結して所定の大きさにするため、管群ブロックの管長を短くしてもよく、射出成形やダイキャスト等により容易に基板と管を同時に製作することができ、管を挿入し接着する工程がなくなるため、優れた熱交換性能を保持する熱交換器を低価格で提供することができる。

Description

明 細 書
熱交換器及びその製造方法
技術分野
[0001] 本発明は冷却システム、放熱システムや加熱システム等用の熱交換器に関するも のであり、特に、情報機器などコンパクト性を要求されるシステムで使用される液体と 気体の熱交換器及びその製造方法に関するものである。
背景技術
[0002] 従来、この種の熱交翻としては、管とフィンとから構成されたものが一般的である 力 近年はそのコンパクトィ匕を図るために、管径及び管ピッチを小さくし、管を高密度 化する傾向にある。その一例として、日本特許公開公報 2001— 116481号 (文献 1) は、管外径が 0. 5mm程度の、非常に細い管のみ力ゝら熱交換部が構成された熱交 換器を開示する。
[0003] 図 29は、文献 1に記載された従来の熱交換器の正面図である。
[0004] 図 29に示すように、従来の熱交換器は、所定間隔を置いて対向配置される入ロタ ンク 1と出口タンク 2と、入口タンク 1と出口タンク 2の間に断面形状が円環の複数の管 3が配置され、管 3の外部を外部流体が流通されるコア部 4が構成されている。管 3内 を流通する内部流体としては主に水や不凍液が用いられ、外部流体としては空気が 主流であり、それぞれが流通し、熱交換を行う。
[0005] そして、管 3を、碁盤目状に配置するとともに、管 3の外径を 0. 2mm以上 0. 8mm 以下としている。かつ、隣接する管 3のピッチを管外径で除した値を、 0. 5以上 3. 5 以下とすることで、使用動力に対する熱交換量を大幅に向上できるとしている。
[0006] なお、上記従来の熱交換器を構成する具体的な要素や製造方法につ!、ては示さ れていない。一般的には、多数の細い管 3と、特定の面に多数の細かい円孔を予め 開けた入口タンク 1と出口タンク 2を用意し、入口タンク 1及び出口タンク 2の円孔に管 3の両端を挿入し、溶接等によって管 3の挿入部を入口タンク 1及び出口タンク 2〖こ固 定する方法が行われて 、る。
[0007] し力しながら、上記従来の熱交^^の場合、熱交換性能を高くすることが出来るに しても、非常に高価となり、かつ洩れに対する信頼性が低くなるという課題を有してい た。その理由は、長くて細い管 3は非常に高価であること、及び、入口タンク 1や出口 タンク 2に管 3の挿入用の微細な円孔を所定の微細なピッチで設ける工程と、非常に 多くの管 3を入口タンク 1や出口タンク 2に挿入し固定する工程が必要とされるため作 業が困難であること〖こよる。
発明の開示
[0008] 上記従来の課題を解決するために、本発明の熱交換器は、多数の貫通穴を備えた 複数の基板と、管内が貫通穴と連通し基板間に設けられた複数の管から構成される 管群ブロックを管軸方向に複数連結したものである。
[0009] 本発明の熱交 は、管群ブロックを連結して所定の大きさにするため、管群プロ ックの管長を短くしてもよぐ射出成形やダイキャスト等により容易に基板と管を同時 に製作することができ、管を挿入し接着する工程がなくなるため、低価格で熱交翻 を提供することができる。
[0010] また、本発明の熱交翻は、多数の貫通穴を備えた基板間に、管内が貫通穴と連 通し基板の表面力 略垂直に設けられた複数の管力 構成される管群ブロックが混 合室を介して複数積層された態様であってもよ ヽ。
[0011] これにより、管群の一部が目詰まりしても管群ブロック出口の混合室で内部流体が 混合され次の管群ブロックへと流れるため、目詰まりをおこして内部流体が流通しな
V、領域は管群一ブロック分で抑えることができる。
図面の簡単な説明
[0012] [図 1]図 1は本発明の実施の形態 1における熱交換器の正面図である。
[図 2]図 2は実施の形態 1の熱交換器の側面図である。
[図 3]図 3は、図 1の熱交^^の A— A線断面図である。
[図 4]図 4は、図 2の熱交換器の B— B線断面図である。
[図 5]図 5は実施の形態 1の熱交換器の管群ブロックの斜視図である。
[図 6]図 6は実施の形態 1の熱交換器の管群ブロックの正面図である。
[図 7]図 7は実施の形態 1の熱交換器の管群ブロックの上面図である。
[図 8]図 8は本発明の実施の形態 2における熱交換器の正面図である。 [図 9]図 9は実施の形態 2の熱交換器の側面図である。
[図 10]図 10は、図 8の熱交^^の C C線断面図である。
[図 11]図 11は、図 9の熱交^^の D— D線断面図である。
[図 12]図 12は実施の形態 2の熱交換器の管群ブロックの斜視図である。
[図 13]図 13は実施の形態 2の熱交換器の管群ブロックの正面図である。
[図 14]図 14は実施の形態 2の熱交換器の管群ブロックの上面図である。
[図 15]図 15は本発明の実施の形態 3における熱交^^の正面図である。
[図 16]図 16は実施の形態 3の熱交換器の側面図である。
[図 17]図 17は、図 16の A— A線断面図である。
[図 18]図 18は、図 16の B— B線断面図である。
[図 19]図 19は実施の形態 3の熱交換器の管群ブロックの斜視図である。
[図 20]図 20は、図 15の管群ブロックの正面図である。
[図 21]図 21は、図 15の管群ブロックの上面図である。
[図 22]図 22は本発明の実施の形態 4における熱交換器の正面図である。
[図 23]図 23は実施の形態 4の熱交換器の側面図である。
[図 24]図 24は、図 23の C C線断面図である。
[図 25]図 25は、図 23の D— D線断面図である。
[図 26]図 26は、図 22の管群ブロックの斜視図である。
[図 27]図 27は、図 22の管群ブロックの正面図である。
[図 28]図 28は、図 22の管群ブロックの側面図である。
[図 29]図 29は従来の熱交換器の正面図である。
符号の説明
10, 10a, 10b, 10c, 10d, lOe, 110 管
20, 120 基板
30, 130 管群ブロック
40, 40a, 40b, 40c 管群ブロック
140, 140a, 140b, 140c 管群ブロック
50, 150 入口ヘッダー 60, 160 出口ヘッダー
70, 70a, 70b, 170, 170a, 170b 混合室
80, 180 スぺーサ
90, 190 周縁
115, 115a, 115b, 115c, 115d, 115e 流路
210 内部流体
220 外部流体
100, 200, 300, 400 熱交^ ¾
発明を実施するための最良の形態
[0014] 上記従来の課題を解決するために、本発明の熱交換器は多数の貫通穴を備えた 複数の基板と管内が貫通穴と連通し基板間に設けられた複数の管力 構成される管 群ブロックを管軸方向に複数連結したものである。
[0015] これにより、管群ブロックを連結して所定の大きさにするため、管群ブロックの管長を 短くしてもよぐ射出成形やダイキャスト等により容易に基板と管を同時に製作するこ とができ、管を挿入し接着する工程がなくなるため、低価格で熱交 を提供するこ とがでさる。
[0016] また、本発明の熱交翻は、隣接する基板の周縁上を相互に接合し、管群ブロック を連結してもよい。
[0017] これにより、管群ブロックを連結する際、外部力 操作しやすい周縁上を接合するた め、工数の低減が図れるとともに接合の信頼性が向上し、低価格で熱交翻を提供 することができる。
[0018] また、管は管内に複数の流路を備えた多穴管であってもよい。
[0019] これにより、流路数を低減することなぐ管本数を低減できるため、容易に製作可能 であり、低価格で熱交翻を提供することができる。
[0020] また、本発明の熱交換器は、基板の周縁相互を直接接合し管群ブロックを連結し てもよい。
[0021] これにより、ロウ材が溶出して管を目詰まりさせることがなぐ不良品を大幅に削減す ることができ、低価格で熱交翻を提供することができる。 [0022] また、本発明は、基板の周縁相互を溶着接合で接合してもよ 、。
[0023] これにより、基板自体を溶融し、接合するためロウ材が溶出して管内流路を目詰まり させることはない。
[0024] また、本発明の熱交換器は、内部流体流通方向に細分化しており、管群の一部が 目詰まりを起こしたような場合であっても、内部流体が流通しない領域を有する管群 を、該当する一ブロックの管群だけに留めることができ熱交換量の著しい低下を防ぐ ことができる。
[0025] また本発明の熱交換器は、混合室を、基板の背面と基板の背面の一部に取り付け たスぺーサにより構成することも出来る。スぺーサで混合室の高さを容易に位置決め できるため、工数の低減が可能となり、熱交 を低価格で提供できる。
[0026] また本発明の熱交 は、混合室を基板の背面と基板の周縁上に設けられたスぺ ーサにより構成することも出来る。スぺーサで混合室の側壁を形成できるため、改め て側壁を設ける必要が無ぐ低価格で提供できる。
[0027] また本発明の熱交換器において、多穴管の断面形状を扁平状にし、管内の流路を 長辺方向に配列するとともに、多穴管を、多穴管相互で長辺方向が平行となるように 間隔を空けて基板上に配列してもよい。外部流体の流路幅を小さくすることができ風 速が大きくなるため、外部流体と管の熱伝達率が向上し、熱交換量を向上することが でき、管が目詰まりすることによる熱交換量の低下の一部をカバーでき、著しい熱交 換量の低下を防ぐことができる。
[0028] また本発明の熱交翻において、管群、基板及びスぺーサを一体成形してもよい。
管と基板及び基板とスぺーサを改めて接合する必要が無ぐ工数の低減が可能とな り、熱交換器を低価格で提供できる。
[0029] また本発明の熱交翻にぉ 、て、管群ブロック相互を直接接合して製作してもよ!/ヽ 。ロウ材で内部流体の流路を目詰まりさせることはなぐ不良品の数を低減することが でき、低価格で提供できる。
[0030] また本発明の熱交翻にぉ ヽて、管群ブロック相互を拡散接合で接合してもよ!/ヽ。
これにより基材自体も溶融しな 、ため、さらに内部流体の流路が目詰まりすることが 無くなり、さらに不良品の数を低減することができ、さらに低価格で提供することがで きる。
[0031] また本発明の熱交換器において、管群ブロック相互を超音波接合で接合してもよ い。基材自体も溶融しないため、さらに内部流体の流路を目詰まりさせることはなぐ さらに不良品の数を低減することができ、さらに低価格で提供することができる。
[0032] また本発明の熱交換器において、管群ブロックおよびスぺーサの少なくとも一方を 、榭脂材料で製作することが出来る。安価な榭脂材料を用いることにより直材費を低 減することができ、低価格で提供できる。
[0033] また本発明の熱交翻にぉ 、て、管群ブロック及びスぺーサを流動性がよ!、低粘 度の榭脂材料で製作してもよい。射出成形により製作する場合、微細な管形状であ つても端部まで榭脂を供給することができ、不良品の数を低減することができ、低価 格で熱交換器を提供できる。
[0034] また本発明の熱交換器において、管群ブロック及びスぺーサを水蒸気透過率が小 さい榭脂材料で製作してもよい。内部流体として水や不凍液を用いた場合、熱交換 器からの内部流体の透過量を低減でき、管壁を薄くできるため低価格で熱交 を 提供できる。
[0035] また本発明の熱交換器において、管群ブロック及びスぺーサをポリプロピレン(PP) またはポリエチレンテレフタレート (PET)で製作してもよ ヽ。端部まで榭脂を供給する ことができ、不良品の数を低減することができる。かつ管壁を薄くすることができる。こ れらにより、熱交翻を低価格で提供できる。
[0036] 以下、本発明の熱交換器を、実施の形態において、具体的に説明する。
[0037] (実施の形態 1)
図 1は、本発明の実施の形態 1における熱交換器の正面図であり、図 2は側面図で ある。図 3は、図 1の A— A線断面図であり、図 4は図 2の B— B線断面図である。
[0038] 図 1から図 4に示すように、実施の形態 1の熱交^^ 100は、管 10および基板 20か らなる管群ブロック 30を有している。さらに、管 10の管軸方向に基板 20の周縁 90上 で相互に接合されることで、管群ブロック 30が 2段連結されており、上下方向の両端 には入口ヘッダー 50と出口ヘッダー 60が設置されて!、る。
[0039] 本実施の形態では、管 10は円管であり、内部流体流路力^つ設けられている。な お、管 10の形状は円管でなくても良い。例えば、断面形状が矩形の管、多角形の管 または楕円形の管であっても良い。また、基板 20の周縁 90相互はロウ材ゃ接着剤を 用いず直接接合されている。この接合方法としては、溶着接合、超音波接合及び拡 散接合等が挙げられる。このように基板 20の周縁 90相互を直接接合することにより、 ロウ材ゃ接着剤が溶出して、管 10内を目詰まりさせるのを防ぐことが出来る。
[0040] 本実施の形態では、拡散接合を用いて 、る。拡散接合は基材が溶融しな 、温度ま での温度と圧力を同時に加えることにより原子の拡散 (相互拡散)現象が生じ、原子 の結びつきにより接合を行う方法であるため、基材も溶出することが無ぐ管 10内を 目詰まりさせることはな 、。このようにロウ材を用いな 、拡散接合で接合することにより 、ロウ材等が管 10内を目詰まりさせるといった不良品の発生を極力抑えることができ 、低価格で熱交換器 100を提供できる。
[0041] 図 5から図 7は熱交翻100の管群ブロック 30を説明する図である。図 5は、管群 ブロック 30の斜視図、図 6はその正面図、図 7はその上面図である。
[0042] 管群ブロック 30は、管 10と基板 20を射出成形等で一体成形されている。管群プロ ック 30を作製する材料としては低価格で、成形しやすい榭脂材料が良い。管 10の管 径が小さぐかつ本数が多いことにより管群ブロック 30の形状が複雑であるため、特 に射出成形で作製する場合には、端部まで榭脂を供給するという観点から、成形カロ ェ時に低粘度で、流動性のよい榭脂材料が好ましい。このような榭脂材料を用いるこ とにより、不良品の数を低減でき、低価格で熱交翻100を提供することができる。
[0043] また、内部流体として、水や不凍液を用いる場合、水蒸気透過率が小さ!ヽ榭脂材 料を用いれば、内部流体が透過しにくいため、管 10の壁厚を薄くすることができて材 料費を低減でき、低価格で熱交換器 100を提供することができる。
[0044] 榭脂材料としては、流動性が良ぐ水蒸気透過率が小さくかつ安価なポリプロピレン
(PP)またはポリエチレンテレフタレート(PET)を用いるのが最適である。
[0045] [表 1] ポリプロピレン ポリエチレンテレフ アクリロニトリル - 材料
(P P) 夕レート ブタジエン,スチレ 物性
(PET) ン (ABS) メルトフローレ一ト 60 50 22
(g/10 m i n)
成形時充填率 100 100 10 (V o 1 %)
水蒸気透過率
厚み 0. 1mm 1. 5 5. 3 18 (g/m2 - d ay)
水蒸気透過率が
1 g/m2, d ay 0. 15 0. 53 1. 8 となる厚み (mm)
[0046] 表 1に示すように、 PPまたは PETは、 ABSと比較すると粘度を示すメルトフローレ 一ト(melt— flow rate)が大きく流動性が良い。従って、成形時の金型への充填性 が良好である。また、 PPまたは PETは、水蒸気透過率が低いため ABSよりも薄い壁 厚が可能となる。
[0047] なお、本実施の形態 1では、管 10の配置は碁盤目状であるが、千鳥状でも良い。
[0048] 以上のように構成された熱交換器 100について、その動作、作用を説明する。
[0049] 内部流体 210は、入口ヘッダー 50内に流入し、管 10それぞれに分流され、管群ブ ロック 30内を通過し、出口ヘッダー 60より熱交^^ 100外へと流出する。一方、管 1
0外では、管 10相互間を外部流体 220が流動し、管 10を介して、内部流体 210と外 部流体 220が熱交換する。
[0050] なお、本実施の形態では管群ブロック 30を 2段積層したが、 2段以上の複数段を積 層してちょい。
[0051] 以上のように本実施の形態 1においては、管群ブロック 30を連結して所定の大きさ にするため、管群ブロック 30の管 10の長さを短くしてもよい。また、射出成形やダイキ ヤスト等により、基板 20と管 10を同時に、かつ容易に製作することができる。管 10を 挿入して固定する工程がなくなるため、低価格で熱交翻 100を提供することができ る。
[0052] また、本実施の形態 1では、基板 20の周縁 90上を相互に接合している。管群プロ ック 30を連結する際、外部カゝら操作しやすい周縁 90上を接合するため、接合の信頼 性が向上するとともに工数の低減が図れるため、熱交翻 100を低価格で提供する ことができる。
[0053] また、本実施の形態 1では、管群ブロック 30を安価な榭脂材料で作製して 、るので 、熱交換器 100を低価格で提供できる。
[0054] また、本実施の形態 1では、基板 20の周縁 90相互を拡散接合により直接接合する ことも出来る。拡散接合により、ロウ材ゃ接着剤を用いる必要がなぐかつ基材を溶融 させることなく接合できる。その結果、管 10内の流路を目詰まりさせることがなぐ不良 品を大幅に削減することができ、熱交翻100を低価格で提供することができる。
[0055] (実施の形態 2)
図 8は、本発明の実施の形態 2における熱交換器の正面図、図 9はその側面図で ある。図 10は、図 8の C— C線における断面図、図 11は図 9の D— D線における断面 図を示す。
[0056] 図 8から図 11において、熱交^^ 200は、管 110と基板 120からなる管群ブロック 1 30を有している。さらに、管 110の管軸方向に基板 120の周縁 190上で相互に接合 されることで、管群ブロック 130が 2段連結されておりし、上下方向の両端には入口へ ッダー 150と出口ヘッダー 160が設置されている。
[0057] 本実施の形態 2では、管 110の断面形状は扁平状であり、複数の流路 115が長辺 方向に配列されている。複数の管 110は、それぞれ長辺方向が平行となるように所 定の間隔を空けて基板 120上に設置されている。また、基板 120の周縁 190相互は ロウ材ゃ接着剤を用いず直接接合されている。この接合方法としては、溶着接合、超 音波接合及び拡散接合等が挙げられる。このように基板 120の周縁 190相互を直接 接合することにより、ロウ材ゃ接着剤が溶出して、管 110内を目詰まりさせることはな い。
[0058] 本実施の形態では、拡散接合を用いて 、る。拡散接合は基材が溶融しな 、程度の 温度と圧力を同時に加えることにより原子の拡散 (相互拡散)現象が生じ、原子の結 びつきにより接合を行う方法であるため、基材が溶出することが無ぐ管 110内を目詰 まりさせることはない。このようにロウ材を用いない拡散接合で接合することにより、口 ゥ材等が管 110内を目詰まりさせるといった不良品の発生を極力抑えることができ、 低価格で熱交換器 200を提供できる。
[0059] 図 12から図 14は管群ブロック 130を説明する図であり、図 12は、実施の形態 2の 管群ブロックの斜視図、図 13は、その正面図、図 14は、その上面図である。
[0060] 管群ブロック 130は管 110と基板 120を射出成形等で一体成形されている。管群ブ ロック 130の材料としては低価格で、流動性がよい榭脂材料が良い。このような材料 を用いることにより、不良品の数を低減でき、低価格で熱交翻200を提供すること ができる。
[0061] また、内部流体に水や不凍液を用いる場合、水蒸気透過率が小さ!、榭脂材料を用 いれば、内部流体が透過しにくいため、管 110の壁厚を薄くすることができ材料費を 低減でき、低価格で熱交翻200を提供することができる。
[0062] 榭脂材料としては、流動性が良ぐ水蒸気透過率が小さくかつ安価なポリプロピレン
(PP)またはポリエチレンテレフタレート(PET)を用いるのが最適である。
[0063] 以上のように構成された熱交換器 200について、以下その動作、作用を説明する。
[0064] 内部流体 210は入口ヘッダー 150内に流入し、管 110それぞれに分流され、管群 ブロック 130内を通過し、出口ヘッダー 160より熱交^^ 200外へと流出する。一方 、管 110外では、管 110相互間を外部流体 220が流動するため、管 110を介して、 内部流体 210と外部流体 220が熱交換する。
[0065] なお、本実施の形態では管群ブロック 130を 2段積層したが、 2段に限定されるので はなぐ 2段以上の複数段であればよい。
[0066] 以上のように本実施の形態 2においては、管群ブロック 130を連結して所定の大き さにするため、管群ブロック 130の管 110長を短くしてもよい。射出成形やダイキャス ト等の方法を用いることにより、容易に、かつ同時に基板 120と管 110を製作すること ができる。そのため、管 110を挿入し固定する工程がなくなるため、低価格で熱交換 器 200を提供することができる。
[0067] また、本実施の形態では基板 120の周縁 190上を相互に接合している。管群ブロッ ク 130を連結する際、外部カゝら操作しやすい周縁 190上を接合するため、工数の低 減が図れるとともに接合の信頼性が向上し、低価格で熱交 200を提供すること ができる。
[0068] また、本実施の形態 2において、管 110は管内に複数の流路 115を備えた多穴管 である。多穴管を用いることで、流路数を低減することなぐ管本数を低減できるため 、製作が容易になり、低価格で熱交 200を提供することができる。
[0069] また、本実施の形態では管群ブロック 130が安価な榭脂材料で作製しているので、 熱交換器 200を低価格で提供できる。
[0070] また、本実施の形態では基板 120の周縁 190相互を拡散接合により直接接合する ことも出来る。拡散接合により、ロウ材ゃ接着剤を用いる必要がなぐかつ基材を溶融 させることなく接合できる。その結果、管 110内の流路 115を目詰まりさせることがなく 、不良品を大幅に削減することができ、熱交 ^^200を低価格で提供することができ る。
[0071] (実施の形態 3)
図 15は、本発明の実施の形態 3の熱交換器の正面図、図 16はその側面図である 。図 17は図 16の A— A線断面図であり、図 18は図 16の B— B線断面図を示す。な お、実施の形態 1と同等の要素には同一の符号を付して説明を簡略ィ匕することがあ る。
[0072] 図 15から図 18において、熱交^^ 300は管 10、基板 20及びスぺーサ 80からなる 管群ブロック 40を有している。さらに、管 10内を流れる内部流体の流通方向に管群 ブロック 40が 3段積層され、上下方向の両端に入口ヘッダー 50と出口ヘッダー 60が 設置される。ここで、スぺーサ 80は、基板 20の周縁において、基板から所定の高さ 及び幅で階段状に突出した部分である。
[0073] 本実施の形態では、管 10は円管であり、内部流体流路力^つ設けられている。な お、管 10形状は円管に限定されるわけではなぐ例えば、断面形状が矩形の管、多 角形の管や、楕円形の管であっても良い。
[0074] 隣接する管群ブロック 40において、基板 20の周縁上に設けられたスぺーサ 80同 士が接合されており、接合された二つの基板 20間には混合室 70が形成されている。 なお、本実施の形態 3では隣接する管群ブロック 40の双方にスぺーサ 80が設けられ ているが、少なくともどちらか一方の基板上にスぺーサ 80が設けられていれば良い。 この場合は一方の管群ブロック 40のスぺーサ 80と、他方の管群ブロック 40の基板 2 0の周縁とが接合されることとなる。ここで、管群ブロック 40相互はロウ材を用いない で直接接合されている。ロウ材を用いていないため、ロウ材の溶出により管 10内を目 詰まりさせることはない。
[0075] 本実施の形態 3では、上記の接合に際して拡散接合を用いて 、る。ロウ付けとは異 なり、拡散接合は、基材を、基材が溶融しない温度まで加熱し、同時に圧力を加える 接合方法である。拡散接合では、原子の拡散 (相互拡散)現象が生じ、原子の結び つきにより接合が行われるため、基材が溶出することが無ぐ管 10内を目詰まりさせる ことはない。このようにロウ材を用いない拡散接合で接合することにより、管 10内を目 詰まりさせるといった不良品の発生を極力抑えることができ、低価格で熱交翻300 を提供できる。
[0076] なお、超音波接合法を用いても、同様の効果が得られる。また、その他の直接接合 方法として、溶着接合、圧着接合を用いることが出来る。
[0077] 図 19から図 21は、管群ブロック 40を説明する図である。図 19は実施の形態 3の熱 交換器 300の管群ブロックの斜視図、図 6はその正面図、図 7はその上面図である。
[0078] 管群ブロック 40は、管 10、基板 20及びスぺーサ 80が射出成形等で一体成形され ている。管群ブロック 40を作製する材料としては低価格で、成形しやすい榭脂材料 が良い。管 10の管径が小さぐかつ本数が多いため、管群ブロック 40の形状が複雑 であるため、特に射出成形で製作する場合、端部まで榭脂を供給するという観点力 成形加工時に低粘度で、流動性のよい榭脂材料が好ましい。このような榭脂材料を 用いることにより、不良品の数を低減でき、低価格で熱交翻 300を提供することが できる。
[0079] また、内部流体として、水や不凍液を用いる場合、水蒸気透過率が小さ!ヽ榭脂材 料を用いれば、内部流体が透過しにくいため、管 10の壁厚を薄くすることができて、 材料費を低減でき、低価格で熱交換器 300を提供することができる。
[0080] 榭脂材料としては、流動性が良ぐ水蒸気透過率が小さくかつ安価なポリプロピレン
(PP)またはポリエチレンテレフタレート(PET)を用いるのが最適である。
[0081] なお、本実施の形態 3では、管 10の配置は碁盤目状であるが、千鳥状でも良い。 [0082] 以上のように構成された熱交換器 300について、以下その動作、作用を説明する。 なお、熱交^^ 300ίま、図 15【こ示すよう【こ、三段の管群ブロック 40a、 40bおよび 40 cからなる。
[0083] 内部流体 210は入口ヘッダー 50内に流入し、管 10aそれぞれに分流され、管群ブ ロック 40a内を通過し、混合室 70aに流入し、混合される。混合された内部流体 210 は、また管 10bそれぞれに分流され、管群ブロック 40b、および混合室 70bを通り、さ らに管群ブロック 40cを通過し、出口ヘッダー 60より熱交^^ 300外へと流出する。 一方、管 10 (10a、 10b、 10cを含む)外では管 10相互間を外部流体 220が流動し、 管 10を介して、内部流体 210と外部流体 220が熱交換する。
[0084] 異物等が混入し、例えば、一つの管 10a内が詰まった場合、内部流体 210はその 管 10a内を流れず、その管 10aは熱交換に寄与しなくなる。しかし、管 10aの下流に 位置する管 10b、 10cでは、詰まっていない他の管 10aを通過した内部流体 210が 混合室 70a、 70bで混合された後、再分流されるため、内部流体 210は管 10b、 10c 内を流れることが出来る。その結果、管 10b、 10c内の内部流体 210は熱交換に寄 与することができる。このように、内部流体 210の流動方向に管群ブロック 40を分割 することにより、目詰まりが生じた場合であっても、目詰まりにより熱交換に寄与しなく なる領域を削減することができ、熱交換量が著しく低下することを防ぐことができる。
[0085] また、熱交換量が大きい場合には、図 16に示すように、外部流体 220と、外部流体 の上流側に位置する管 10d内を流れる内部流体 210との温度差が小さくなることが ある。このような場合であっても、熱交換量が大きいため、内部流体 210との温度差 力 、さくなつた外部流体上流側に位置する管 10d内を流れる内部流体 210と、熱交 換量が小さいため、外部流体 220との大きな温度差を維持する外部流体下流側に 位置する管 10e内を流れる内部流体 210と、が混合室 70a、 70bで混合される。その ため、内部流体下流側に位置する管群ブロック 40b、 40cを通過する際、外部流体 2 20と内部流体 210との平均温度差が大きくなり、大きな熱交換量を実現することが出 来る。
[0086] なお、本実施の形態では管群ブロック 40を 3段積層したが、 2段以上の複数段であ ればよい。 [0087] (実施の形態 4)
図 22は、本発明の実施の形態 4の熱交換器 400の正面図、図 23は、その側面図 である。図 24は、図 23の C C線断面図、図 25は図 23の D— D線断面図を示すも のである。なお、実施の形態 1、 2と同等の要素には同一の符号を付して説明を簡略 ィ匕することがある。
[0088] 図 22力ら図 25に示すように、熱交^^ 400は管 110と、基板 120及びスぺーサ 18 0力もなる管群ブロック 140を有して 、る。管 110内を流れる内部流体の流通方向に 、管群ブロック 140が 3段積層され、上下方向の両端には入口ヘッダー 50と出口へッ ダー 60が設置される。
[0089] 本実施の形態 4では、管 110は断面形状が扁平な形状であり、複数の流路 115が 長辺方向に配列された多穴管である。管 110は、扁平な形状の長辺方向が互いに 平行となるように、所定の間隔で基板 120に対して垂直方向に配列されている。
[0090] 隣接する管群ブロック 140において、基板 120の周縁上に設置されたスぺーサ 18 0同士が接合されているため基板 120間には混合室 170が形成されている。なお、 本実施の形態では隣接する管群ブロック 140の双方にスぺーサ 180が設けられてい る力 少なくともどちらか一方にスぺーサ 180が設けられていれば良ぐこの場合は一 方の管群ブロック 140のスぺーサ 180と他方の管群ブロック 140の基板 120とが接合 されることとなる。ここで、管群ブロック 140相互はロウ材を用いず直接接合されてい る。ロウ材を用いていないため、ロウ材の溶出により、管 110内を目詰まりさせることは ない。
[0091] 本実施の形態では、拡散接合を用いて 、る。拡散接合は、基材が溶融しな 、程度 の温度と圧力を基材に同時に加えることにより、原子の拡散 (相互拡散)現象が生じ、 原子の結びつきにより接合させるものである。基材が溶出することが無ぐ管 110内を 目詰まりさせることはない。このようにロウ材を用いない拡散接合により、管群ブロック 140が相互に接合されることにより、管 110内を目詰まりさせるといった不良品の発生 を極力抑えることができ、低価格で熱交翻 400を提供できる。
[0092] なお、超音波接合法を用いても、同様の効果が得られる。また、その他の直接接合 方法としては溶着接合、圧着接合がある。 [0093] 図 26から図 28は管群ブロック 140を説明する図である。図 26は実施の形態 4の熱 交換器 400の管群ブロックの斜視図、図 27はその正面図、図 28はその側面図であ る。
[0094] 管群ブロック 140は、管 110、基板 120及びスぺーサ 180が接合されて構成されて いる。管 110は複数の流路 115を有しており、流路数を確保しながら基板 120と接合 する管本数を低減することができるため、工数を削減でき低価格で熱交翻 400を 提供できる。
[0095] 以上のように構成された熱交換器 400について、以下その動作、作用を説明する。
[0096] 内部流体 210は、入口ヘッダー 50内に流入し、管 110のそれぞれの流路 115に分 流され、管群ブロック 140a内を通過し、混合室 170aに流入して混合される。混合さ れた内部流体 210は、管 110のそれぞれの流路 115に分流され、管群ブロック 140b 、さらに混合室 170bを通って管群ブロック 140cを通過し、出口ヘッダー 60から熱交 400外へと流出する。
[0097] 一方、管 110外では管 110相互間を外部流体 220が流動し、管 110を介して、内 部流体 210と外部流体 220が熱交換する。この際、管 110は、断面形状が扁平状で あり、かつ長辺方向が互いに平行となるように所定の間隔で配列されているため、円 管からなる実施の形態 3の管 10の後流部のように外部流体 220が流れる流路が拡大 されるようなことは無い。従って、外部流体 220の流速が大きくなり、外部流体 220と 管 110の熱伝達率が向上し、熱交換量を増加させることができる。
[0098] 例えば、異物等が混入し、図 24に示す流路 115a内に詰まった場合、内部流体 21 0は、その詰まった流路 115a内を流れないため、詰まった流路 115aは熱交換に寄 与しなくなる。しかし、流路 115aの下流側に位置する流路 115b、 115cでは、詰まつ ていない他の流路 115aを通過した内部流体 210が混合室 170a、 170bで混合され た後、再分流されるため流路 115b、 115c内を内部流体 210が流れることが出来る。 その結果、流路 115b、 115c内の内部流体 210は熱交換に寄与することができる。こ のように、内部流体 210の流動方向に管群ブロック 140を分割したため、目詰まりが 生じて熱交換に寄与しな 、領域を削減することができ、熱交換量が著しく低下するこ とを防ぐことができる。 [0099] さらに、図 25に示すように、外部流体 220との熱交換量の多い外部流体上流側の 流路 115d内を流れる内部流体 210は、外部流体 220との温度差が小さくなり熱交 換量が減少する。一方、外部流体 220との熱交換量が小さい外部流体下流に位置 する流路 115e内を流れる内部流体 210は、外部流体 220との大きな温度差を維持 している。混合室 170a、 170bで、それらの内部流体 210が混合されるため、外部流 体 220が管群ブロック 140b、 140cを通過する際、外部流体 220と内部流体 210の 平均温度差が大きくなり、熱交換量が増加する。
[0100] なお、本実施の形態 4では管群ブロック 140を 3段積層したが、 2段以上の複数段 であればよい。また、本実施の形態では管 110と基板 120を接合している力 実施の 形態 3と同様に一体で形成されて ヽても良 ヽ。
産業上の利用可能性
[0101] 以上のように、本発明にかかる熱交翻は、非常に優れた熱交換性能を維持しな がら、低価格で実現でき、冷凍冷蔵機器や空調機器用の熱交換器や、廃熱回収機 器等の用途にも適用できる。

Claims

請求の範囲
[1] 熱交^^であって、管群ブロックを有し、
前記管群ブロックは、
複数の貫通穴を備えた複数の基板と、
対向する前記基板間に固定され、かつ管内が前記貫通穴と連通する複数の管を 有し、
前記管群ブロックが、前記管の軸方向に、二以上連結されてなる熱交換器。
[2] 隣接する前記管群ブロックは、隣接する前記基板同士が周縁で接合されることによ り、互いに連結される、請求項 1に記載の熱交換器。
[3] さらに混合室を有し、隣接する前記管群ブロックが前記混合室を介して連結される
、請求項 1に記載の熱交換器。
[4] 隣接する前記管群ブロックが、互いに対向する前記基板の周縁に、所定の高さと所 定の幅のスぺーサをさらに有し、
前記スぺーサは対向する前記基板の間隙を保持し、
前記混合室は、対向する前記基板と前記スぺーサにより構成される、
請求項 3に記載の熱交換器。
[5] 前記スぺーサが、対向する前記基板の少なくとも一方の周縁に形成された、段差 状の凸部である、請求項 4に記載の熱交^^。
[6] 前記管が、前記管内に複数の流路を備えた多穴管である、請求項 1から 4のいずれ か一項に記載の熱交換器。
[7] 前記多穴管の断面形状が扁平形状であり、
前記管内で前記流路が長辺方向に配列されるとともに、
二以上の前記多穴管が長辺方向を略平行にして、所定の間隔で、前記基板に対し て垂直に配列される、請求項 6に記載の熱交換器。
[8] 前記管群ブロックが榭脂材料力もなる成形品である、請求項 1から 4のいずれか一 項に記載の熱交換器。
[9] 前記管群ブロックが一体成形品である、請求項 8に記載の熱交換器。
[10] 前記榭脂材料が低粘度材料である、請求項 8に記載の熱交換器。
[11] 前記管群ブロックが水蒸気透過率の小さい榭脂材料力もなる成形品である、請求 項 8に記載の熱交換器。
[12] 前記榭脂材料がポリプロピレンまたはポリエチレンテレフタレートである請求項 8に 記載の熱交換器。
[13] 熱交^^の製造方法であって、
複数の貫通孔を有し、対向する一対の基板間を、
複数の管を前記貫通孔に揷通することで連結して管群ブロックを形成する第 1ステツ プと、
2以上の前記管群ブロック間を前記基板の周縁で直接接合して連結する第 2ステ ップと、
連結した前記管群ブロックの両端に、入力ヘッダーと出力ヘッダーをそれぞれ装 着する第 3ステップと、
を有する熱交換器の製造方法。
[14] 前記第 3ステップが、溶着接合、拡散接合または超音波接合で接合するステップで ある、請求項 13に記載の熱交換器の製造方法。
[15] 前記第 1ステップが、前記管群ブロックを榭脂成形するステップであり、
前記第 2ステップが、成形された榭脂製の前記基板を直接接合するステップである 、請求項 13に記載の熱交換器の製造方法。
PCT/JP2005/021228 2004-11-30 2005-11-18 熱交換器及びその製造方法 WO2006059498A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/720,135 US20080121387A1 (en) 2004-11-30 2005-11-18 Heat Exchanger and Method of Producing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-345389 2004-11-30
JP2004345389A JP2006153360A (ja) 2004-11-30 2004-11-30 熱交換器及びその製造方法
JP2005-020747 2005-01-28
JP2005020747A JP2006207937A (ja) 2005-01-28 2005-01-28 熱交換器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006059498A1 true WO2006059498A1 (ja) 2006-06-08

Family

ID=36564933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021228 WO2006059498A1 (ja) 2004-11-30 2005-11-18 熱交換器及びその製造方法

Country Status (4)

Country Link
US (1) US20080121387A1 (ja)
KR (1) KR20070088654A (ja)
TW (1) TW200630581A (ja)
WO (1) WO2006059498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288931B2 (en) 2011-07-15 2016-03-15 Nec Corporation Cooling system and device housing apparatus using the same

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713618B (zh) * 2008-10-03 2012-03-21 丹佛斯传动有限公司 流量分配器组件及带流量分配器组件的冷却单元
KR101111195B1 (ko) * 2009-05-19 2012-02-21 주식회사 에프에이치아이코리아 상하이송형 응축부 및 그 응축부가 구비된 공조장치
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
CN103221773B (zh) * 2010-11-19 2017-03-08 摩丁制造公司 热交换器组件和方法
MX349702B (es) * 2012-01-17 2017-08-08 General Electric Technology Gmbh Un método y aparato para conectar secciones de un evaporador horizontal directo.
US10274192B2 (en) 2012-01-17 2019-04-30 General Electric Technology Gmbh Tube arrangement in a once-through horizontal evaporator
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US11162424B2 (en) 2013-10-11 2021-11-02 Reaction Engines Ltd Heat exchangers
KR101538984B1 (ko) * 2013-12-26 2015-07-23 갑을오토텍(주) 열교환기
KR20150109130A (ko) 2014-03-19 2015-10-01 삼성전자주식회사 열교환기 및 그 제조방법
EA201791831A1 (ru) * 2015-03-10 2018-03-30 Зендер Груп Интернэшнл Аг Устройство регулирования температуры, имеющее трубный регистр, и способ изготовления такого устройства
CN107306486B (zh) * 2016-04-21 2023-03-24 奇鋐科技股份有限公司 整合式散热装置
US10107559B2 (en) * 2016-05-27 2018-10-23 Asia Vital Components Co., Ltd. Heat dissipation component
US10107557B2 (en) * 2016-05-27 2018-10-23 Asia Vital Components Co., Ltd. Integrated heat dissipation device
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US20180180363A1 (en) * 2016-12-28 2018-06-28 X Development Llc Modular Shell-and-Tube Heat Exchanger Apparatuses and Molds and Methods for Forming Such Apparatuses
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US20180185942A1 (en) * 2016-12-29 2018-07-05 X Development Llc High Temperature Casting and Electrochemical Machining Heat Exchanger Manufacturing Method
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
DE102017128665A1 (de) * 2017-12-04 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wärmetauscheinrichtung, insbesondere Ladeluftkühler, für eine Brennkraftmaschine und Verfahren zur Herstellung
CA3088184A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
US20190257592A1 (en) * 2018-02-20 2019-08-22 K&N Engineering, Inc. Modular intercooler block
DK3792577T3 (da) * 2019-09-13 2022-03-14 Alfa Laval Corp Ab Holdemiddel til varmevekslerplade, pakningsanordning til varmevekslerplade, varmevekslerplade med kantdel og pladevarmeveksler
CN115485459A (zh) 2019-11-16 2022-12-16 马耳他股份有限公司 泵送热电储存系统
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
EP4193041A1 (en) 2020-08-12 2023-06-14 Malta Inc. Pumped heat energy storage system with district heating integration
US20230332806A1 (en) * 2020-11-06 2023-10-19 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus including the same
EP4302039A1 (en) * 2021-03-02 2024-01-10 Evapco, INC. Stacked panel heat exchanger for air cooled industrial steam condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPS58221394A (ja) * 1982-06-18 1983-12-23 Toshiba Corp 熱交換器
JPS59124866U (ja) * 1983-02-14 1984-08-22 スズキ株式会社 オ−トバイのラジエタ−
JPH08508332A (ja) * 1992-12-21 1996-09-03 セザローニ,アンソニー・ジヨセフ 予備成形パネルより形成されたパネル熱交換器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US982334A (en) * 1909-04-23 1911-01-24 Noye Mfg Company Radiator.
US1510807A (en) * 1920-10-08 1924-10-07 American Radiator Co Radiator
US2235806A (en) * 1938-04-30 1941-03-18 George W Walker Liquid and vapor heat exchanger
US2237516A (en) * 1939-07-12 1941-04-08 Fred M Young Multiple unit jacket cooler
US2308119A (en) * 1940-02-23 1943-01-12 Modine Mfg Co Radiator construction
US2327491A (en) * 1941-05-06 1943-08-24 Western Cartridge Co Sectional heat exchanger
BE631026A (ja) * 1962-04-13
DE1295164B (de) * 1964-05-22 1969-05-14 Kirsch Bernhard Heizkoerperglied zum Aufbau von Kunststoffheizkoerpern unterschiedlicher Form und Groesse
US3376917A (en) * 1966-11-28 1968-04-09 Chrysler Corp Condenser for two refrigeration systems
US3489209A (en) * 1968-12-23 1970-01-13 Herbert G Johnson Heat exchanger having plastic and metal components
US4030541A (en) * 1974-06-08 1977-06-21 Hoechst Aktiengesellschaft Multi-element type radiator of plastic material
US4673032A (en) * 1982-09-22 1987-06-16 Honda Radiator and oil cooling apparatus for motor vehicles
EP0226825B1 (de) * 1985-12-16 1990-08-29 Akzo N.V. Verbinden von Hohlprofilkörpern mit einer Kunststoffplatte, insbesondere zum Herstellen von Wärmetauschern
DE3642911A1 (de) * 1986-12-16 1988-07-07 Daimler Benz Ag Waermetraegerseitig geregelter querstromwaermetauscher mit zwei heizflaechen
GB8711428D0 (en) * 1987-05-14 1987-06-17 Du Pont Canada Comfort heat exchanger
IL109269A (en) * 1994-04-10 1996-10-31 Magen Plastic Heat exchanger
JP3059393B2 (ja) * 1996-11-26 2000-07-04 日本ピラー工業株式会社 熱交換器
DE29909871U1 (de) * 1999-06-02 2000-10-12 Autokuehler Gmbh & Co Kg Wärmeaustauscher, insbesondere Ölkühler
US6554929B2 (en) * 2001-01-11 2003-04-29 Lg Electronics Inc. Method for joining tube headers and header tanks of plastic heat exchanger
KR20040065626A (ko) * 2003-01-15 2004-07-23 엘지전자 주식회사 열 교환기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572790A (en) * 1978-11-06 1980-05-31 Akzo Nv Heat exchanger using smallldiameter pipe
JPS58221394A (ja) * 1982-06-18 1983-12-23 Toshiba Corp 熱交換器
JPS59124866U (ja) * 1983-02-14 1984-08-22 スズキ株式会社 オ−トバイのラジエタ−
JPH08508332A (ja) * 1992-12-21 1996-09-03 セザローニ,アンソニー・ジヨセフ 予備成形パネルより形成されたパネル熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9288931B2 (en) 2011-07-15 2016-03-15 Nec Corporation Cooling system and device housing apparatus using the same

Also Published As

Publication number Publication date
US20080121387A1 (en) 2008-05-29
TW200630581A (en) 2006-09-01
KR20070088654A (ko) 2007-08-29
TWI322256B (ja) 2010-03-21

Similar Documents

Publication Publication Date Title
WO2006059498A1 (ja) 熱交換器及びその製造方法
JP2646580B2 (ja) 冷媒蒸発器
WO2005100896A1 (ja) 熱交換器及びその製造方法
CN104053965B (zh) 具有热膨胀补偿的钎焊微通道换热器
WO2015120804A1 (zh) 板式换热器
CN204188026U (zh) 用于热交换器的标准构件、热交换器型芯以及热交换器
CN1271375C (zh) 包括一板式热交换器和一用于已加热水的储存容器的热水器
JP2006153360A (ja) 熱交換器及びその製造方法
JP6084237B2 (ja) ポート領域に改善された強度を持つ平板熱交換器
JP2006207937A (ja) 熱交換器及びその製造方法
KR102060140B1 (ko) 필름 접합형 열교환기
JP4774753B2 (ja) 熱交換器及びその製造方法
CN101782338A (zh) 热交换器
CN201293571Y (zh) 可均匀分流的微通道换热器
CN100476336C (zh) 热交换器及其制造方法
JP4742919B2 (ja) 熱交換器の製造方法
JP2001248995A (ja) 熱交換器
WO2011039563A1 (en) A heat exchanger
CN210570111U (zh) 一种微细管全塑换热器
KR100795269B1 (ko) 열교환기 및 그 제조방법
KR101186115B1 (ko) 열교환기
CN210833189U (zh) 一种换热器的圆管式回流结构
JP4765619B2 (ja) 熱交換器及びその製造方法
CN210833188U (zh) 一种换热器的d型回流结构
JP3409350B2 (ja) 積層型熱交換器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11720135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077012103

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580041119.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807083

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11720135

Country of ref document: US