WO2006057398A1 - Method for processing organic matter containing chitin - Google Patents

Method for processing organic matter containing chitin Download PDF

Info

Publication number
WO2006057398A1
WO2006057398A1 PCT/JP2005/021845 JP2005021845W WO2006057398A1 WO 2006057398 A1 WO2006057398 A1 WO 2006057398A1 JP 2005021845 W JP2005021845 W JP 2005021845W WO 2006057398 A1 WO2006057398 A1 WO 2006057398A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitin
aqueous solution
subcritical
acidic aqueous
organic
Prior art date
Application number
PCT/JP2005/021845
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Yoshida
Hidemi Nakamura
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2006547929A priority Critical patent/JP5013878B2/en
Publication of WO2006057398A1 publication Critical patent/WO2006057398A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • C07H5/06Aminosugars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for efficiently treating and effectively using an organic substance containing chitin.
  • the present invention relates to a method for efficiently obtaining high-purity chitin and a useful substance by treating an organic substance containing chitin in a subcritical or supercritical state.
  • Chitin and chitosan are increasing in demand as natural substances having various interests / functions.
  • organic waste containing chitin and chitosan such as power-shelled shrimp shells
  • the effective treatment of the waste has become a serious issue. Yes. Therefore, methods for producing chitin and chitosan from wastes such as power-shelled shrimp shells have been studied.
  • the conventional method requires a multi-step process, a schedule of several days, a large amount of reagents and water, and a large amount of wastewater treatment, which is a large burden in terms of cost. For this reason, the use of wastes containing chitin or chitosan is hardly used.
  • the main object of the present invention is to provide a method for obtaining high-purity chitin from an organic substance containing chitin in a small amount of process, in a short time, and at a low cost. Furthermore, the main object is to provide a method for obtaining useful substances from organic substances containing chitin. Means for solving the problem [0007] As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors treated an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. We have found that chitin can be purified efficiently and with high purity, and have further studied to complete the present invention.
  • the present invention relates to the following purification method and production method.
  • Item 1 A method for purifying chitin, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
  • the ash, protein, lipid, and pigment are separated from the chitin by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. Purification method of chitin.
  • the method includes a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state.
  • the purification method of chitin is a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state.
  • the "purification method of chitin" in the present specification can also be referred to as "a method for producing high-purity chitin”.
  • Item 2 The purification method according to Item 1, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state.
  • the chitin having a step of separating ash, protein, lipid and pigment from the chitin in a single step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state. Purification method.
  • Item 3 The purification method according to Item 1 or Item 2, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state of less than 493K.
  • the method includes a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state of less than 493K. Purification method of chitin.
  • Item 4 The purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an organic acid aqueous solution.
  • Specific embodiments include the purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an acetic acid aqueous solution.
  • Item 5 A method for producing chitosan, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, and subjecting the treated chitin to deacetylation.
  • the embodiment of Item 5 includes a method for producing chitosan characterized in that chitin is purified by the method according to any one of Items 1 to 4 and the purified chitin obtained is deacetylated.
  • a specific embodiment includes a method for producing chitosan characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state, and the treated chitin is deacetylated.
  • Item 6 A method for producing low-molecular chitin and Z or chitin oligosaccharide, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state or a supercritical state.
  • the organic material containing chitin is treated in an acidic aqueous solution in a subcritical state.
  • Specific embodiments include the production method according to Item 6, wherein the acidic aqueous solution is an organic acid aqueous solution, particularly an acetic acid aqueous solution.
  • Item 7 A low molecular weight characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical or supercritical state, and the resulting low molecular chitin and Z or chitin oligosaccharide are deacetylated.
  • the method for producing a low-molecular chitosan and Z or chitosan oligosaccharide characterized in that the low-molecular chitin and Z or chitin oligosaccharide obtained by the method of Item 6 are deacetylated. Is included.
  • Item 8 A method for producing a chitin degradation product and a Z or protein degradation product, which comprises treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
  • the chitin degradation product and the Z or protein degradation product are one or more compounds selected from the group power consisting of amino acids, organic acids, low molecular weight sugars, peptides and low molecular weight water-soluble proteins.
  • the present invention includes a case where a plurality of one or more methods selected from items 1 to 8 are performed in parallel.
  • examples of specific embodiments of the present invention include the following methods.
  • Item 9 Purification of chitin and production of low-molecular chitin and Z or chitin oligosaccharide, characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical or supercritical state.
  • Item 10 Purification of chitin, low molecular chitin, chitin oligosaccharides, chitin degradation products and Z or Z, characterized by treating organic matter containing chitin in an acidic aqueous solution in a subcritical or supercritical state A method for producing a proteolysate, preferably in one step.
  • the organic matter targeted by the present invention is not particularly limited as long as it contains chitin, and includes, for example, a biological component itself containing chitin or a processed product thereof, or organic waste.
  • Organic waste includes, for example, food processing waste from fish markets and fish processing plants, food waste such as food waste and food residues from homes and schools, and the like.
  • chitin-containing organic substances include force- and Z or shrimp shells, insect shells and legs, squid shells and shellfish mollusc organs such as shellfish and shellfish, diatoms, fungi, chitin or chitosan. These include microorganisms and bacteria that produce or processed products thereof.
  • These organic substances may be used as they are, or may be pulverized to an appropriate size. Also, it may have been pretreated such as drying.
  • This invention includes the process of processing the organic substance containing chitin in the acidic aqueous solution of a subcritical state or a supercritical state.
  • the subcritical state means that the temperature of the solvent is about 433 to 647 K, in particular, about 433 to 523 mm, particularly about 433 to 493 mm, and the pressure force is 0.62 to 22.1.
  • the pressure is about 0.6 MPa, especially about 0.62 to 4.
  • OMPa especially about 0.62 to 2.32 MPa.
  • the supercritical state means that the temperature of the solvent is 647 K or more, particularly about 647 K to 673 ⁇ , and the pressure is 22.
  • IMPa or more particularly about 22.1 to 30 OMPa. It means that there is.
  • the treatment in a subcritical state it is particularly preferable to perform the treatment in a subcritical state.
  • Processing in the subcritical state increases the yield of chitin, in other words, the residual rate of chitin, compared to processing in the supercritical state.
  • the residual ratio of high molecular weight chitin increases.
  • the yield of high molecular weight chitin can be further improved by treatment in a relatively low temperature range, preferably a subcritical state of less than 493K (220 ° C).
  • the treatment in the subcritical state at a relatively low temperature raises the residual ratio of the initial molecular weight or high molecular weight chitin with less thermal decomposition of the chitin compared to the treatment in the higher temperature region.
  • the yield of low-molecular chitin, chitin oligosaccharides, chitin degradation products and Z or protein degradation products can be improved by treatment in a subcritical state in a relatively high temperature region.
  • the present invention provides a method for purifying chitin comprising a step of treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
  • a method for purifying chitin comprising a step of treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
  • the ratio between the amount of the organic substance and the amount of the acidic aqueous solution in the treatment of the present invention is a force that can be appropriately set according to the treatment conditions and the like.
  • the weight of the organic substance Z acidic aqueous solution is about 0.05 to 0.2. is there.
  • the acidic aqueous solution used in the present invention can be obtained by adding an acid component to the aqueous solution.
  • the type of the acid component is not particularly limited, and a strong acid or a weak acid can be used.
  • Strong acids include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • Weak acids include acetic acid, lactic acid, and succinic acid
  • Organic acids such as malic acid, formic acid, pyroglutamic acid, glycolic acid and succinic acid, and inorganic acids such as phosphoric acid.
  • organic acids such as acetic acid and lactic acid are preferred because they do not corrode the reactor and can be reused by decomposition of proteins during processing.
  • the treatment by reusing the acid can be performed as follows.
  • an acidic aqueous solution is prepared using an organic acid generated by protein degradation, and an organic substance containing chitin is treated in the subcritical state or supercritical state in the prepared acidic aqueous solution.
  • chitin can be continuously purified, and high-purity chitin can be continuously produced.
  • the concentration of the acidic aqueous solution can be appropriately set according to the processing conditions and the like.
  • the stoichiometric molar ratio of the reaction between calcium carbonate and acetic acid that is usually contained in an organic substance is about 1 to 2 or more, and usually about 1 to 2 to 1 to 4. .
  • a stoichiometric molar ratio as close to 1 to 2 as possible is appropriate.
  • the processing procedure is not particularly limited and can be set as appropriate.
  • an organic substance containing chitin is added to an acidic aqueous solution, and the resulting solution is prepared and reacted under subcritical or supercritical conditions.
  • the treatment time is not particularly limited, but is usually about 1 to 30 minutes, preferably about 1 to about LO.
  • the organic matter after treatment is separated by filtration into a solid phase containing chitin and an aqueous phase containing degradation products such as amino acids, organic acids, and sugars, and further purified as necessary. Chitin can be isolated.
  • High purity chitosan can be obtained by treating chitin obtained by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state as described above.
  • the method of deacetylation treatment is not particularly limited, and a known method can be appropriately used.
  • a method of treating chitin with an alkali or an enzyme can be used. More specifically, the obtained chitin is treated with 30 to 60% high-concentration molten sodium hydroxide solution under a heating and stirring condition of 353 to 393 K for 30 minutes to 5 hours. Cetylation can be performed.
  • the degree of deacetylation is not particularly limited, and can be appropriately set for the purpose of obtaining chitosan having desired physical properties.
  • waste containing chitin can be effectively used to produce high-purity chitosan in a short time, in a short time, efficiently and at low cost.
  • the low molecular chitin means chitin which has become a lower molecule as a result of degradation of chitin contained in an organic substance.
  • Chitin oligosaccharide means an oligosaccharide produced by the decomposition of chitin.
  • Low molecular chitin and sputum or chitin degradation products can be isolated by appropriate separation and purification after treatment.
  • the organic substance after the treatment is separated by filtration into a solid phase containing chitin and an aqueous phase containing chitin or chitin oligosaccharide that has been made low-molecular and soluble, and further purified as necessary.
  • the desired substance can be isolated by
  • Low molecular chitosan and Z or chitosan oligosaccharide can be obtained by subjecting low molecular chitin and chitin oligosaccharide obtained by treatment with deacetylation treatment.
  • the method for the deacetylation treatment is not particularly limited, and a known method can be appropriately used as described above.
  • a method of treating low molecular chitin or chitin oligosaccharide with an alkali or an enzyme can be used. More specifically, the obtained low-molecular chitin or chitin oligosaccharide was used for 30 minutes to 5 hours under a heating and stirring condition of 353 to 393 K using a 30 to 60% high-concentration molten sodium hydroxide solution. By performing the processing, deacetylation can be performed.
  • the degree of deacetylation is not particularly limited, and can be set as appropriate for the purpose of obtaining low-molecular chitosan or chitosan oligosaccharide having desired physical properties.
  • waste containing chitin can be effectively used to produce low-molecular chitosan and chitosan oligosaccharide in a short time, with an efficient combing force and a low cost.
  • the chitin degradation product and the koji or protein degradation product mean a compound produced by the degradation of chitin, a compound produced by the protein degradation and the koji or a mixture thereof.
  • Examples of specific embodiments of chitin degradation products and sputum or protein degradation products are amino acids, organic acids, low molecular sugars, peptides, and one or more compounds selected from the group power consisting of low molecular weight water-soluble proteins. is there.
  • amino acids generated by degradation include cystine, serine, parin, threonine, daricin, proline, alanine, methionine, histidine, anoleginin, leucine, isoleucine, tyrosine, lysine, ferulalanin, aspartic acid, glutamic acid. Etc. are included.
  • Examples of organic acids generated by decomposition include malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid, and the like.
  • Examples of low molecular weight saccharides produced by decomposition include low molecular weight chitin, chitin oligosaccharides, glucosamine, erythrose, and the like.
  • Examples of other decomposition products include phosphoric acid.
  • decomposition products can be recovered as resources and reused effectively. For example, it can be used as a component of pharmaceuticals, seasonings, health drinks, additives and the like.
  • the above one or two or more embodiments can be carried out in parallel or in one step.
  • the proteolysate can be produced preferably in one step.
  • processing residue after recovering them can also be used for energy recovery as a raw material for methane fermentation or the like.
  • the method for treating an organic substance of the present invention is accompanied by the acquisition of purified high-purity chitin.
  • the present invention is capable of efficiently purifying chitin from an organic substance containing chitin in a shorter process than conventional methods, in a short time and with low cost, and obtaining high-purity chitin. Has a special effect.
  • the present invention it is possible to efficiently separate chitin-containing ash, proteins, lipids and pigments in a short time in an organic substance containing chitin.
  • the burden imposed on the use of large amounts of reagents and water and the treatment of large amounts of wastewater can be greatly reduced. Therefore, according to this invention, the cost accompanying the process of the organic substance containing chitin can be reduced significantly.
  • chitosan, low-molecular chitosan and chitosan oligosaccharide can also be efficiently obtained with organic power including chitin.
  • useful substances such as amino acids and organic acids are produced by the decomposition of proteins and the like, and these can be recovered and used. Furthermore, using the recovered organic acid, it is possible to purify chitin and continuously produce the useful substance.
  • the present invention has an excellent advantage that both high-purity chitin can be obtained and useful resources can be recovered and used together.
  • Organic acids, and useful compounds such as darcosamine from waste organic matter, etc. It becomes possible to produce at a cost.
  • the present invention can greatly promote the use of organic substances containing chitin.
  • the present invention can be usefully used as an effective treatment technique for organic substances and an efficient production technique for useful substances.
  • FIG. 1 is a graph showing the relationship between the solid phase remaining rate and the reaction time when a force bishell is treated in an aqueous solvent in a subcritical state.
  • FIG. 2 is a graph showing the relationship between the calcium carbonate residual rate and the reaction temperature when calcium carbonate is treated in an aqueous solvent in a subcritical state.
  • FIG. 3 is a graph showing the relationship between chitin residual rate and reaction temperature when chitin is treated in a subcritical water solvent.
  • FIG. 4 is a graph showing the relationship between calcium carbonate remaining rate and reaction time when calcium carbonate is treated in an aqueous acetic acid solution in a subcritical state.
  • FIG. 5 is a graph showing the relationship between chitin residual rate and reaction time when chitin is treated in an aqueous acetic acid solution in a subcritical state.
  • FIG. 6 is a graph showing the relationship between the residual rate of calcium carbonate and the reaction time when calcium carbonate is treated in a subcritical acetic acid solution at a relatively low temperature.
  • FIG. 7 is a graph showing the relationship between the chitin remaining rate and the reaction time when chitin was treated in a subcritical acetic acid aqueous solution at a relatively low temperature.
  • FIG. 8 is a graph showing the relationship between the calcium carbonate recovery rate and the reaction temperature when the two-shell shell is treated in a subcritical acetic acid aqueous solution.
  • FIG. 9 is a graph showing the relationship between the solid phase residual rate and the reaction temperature when the force two-shell is treated in a subcritical acetic acid aqueous solution.
  • the force-shell used was a sample obtained by pulverizing a freeze-dried product of a snow crab shell with a mini blender.
  • the force-shell was immersed in a 2 mol / l hydrochloric acid aqueous solution for 1 day. Thereafter, the aqueous hydrochloric acid solution was replaced, and the deashing treatment was performed by immersing for another day. Thereby the force-about 40 of the initial weight of the shell
  • the protein was boiled for 6 hours with lmol / 1 sodium hydroxide aqueous solution, and the solution was changed and boiled for further 30 hours to perform deproteinization treatment. This removed about 25% of the protein in the initial weight of the force-shell.
  • a frozen and dried product of the snow crab shell was crushed with a mini blender and used as a sample.
  • ultrapure water produced by an ultrapure water production apparatus (Minipure TW-250RU manufactured by Nomura Micro Science Co., Ltd.) was used.
  • a reaction tube having SWAGELOK caps attached to both ends of a stainless steel pipe (made of SUS316) having an inner diameter of 6.4 mm, an outer diameter of 9.5 mm, a length of 150 mm, and an internal volume of about 8.0 cm 3 was prepared.
  • the reaction tube was charged with 0.1 or 0.2 g of force-shell and 2 g of water, and after replacing the dissolved oxygen with argon, the reaction tube was closed.
  • the reaction tube was added to a salt bath in which potassium nitrate and sodium nitrate were added at a ratio of 1: 1 and preheated to a predetermined temperature (533 to 593 K), and allowed to stand for a predetermined time (1 to 10 minutes). Thereafter, the reaction tube was quickly taken out from the salt bath and poured into water to quench it.
  • amino acid concentration in the aqueous phase as a product HPLC system (Shimadzu LC-10A, IS C -07 / S1504 column, mobile phase: four, flow rate 8.33 X 10- 9 m 3 / s , Temperature: 328K ) and using a fluorescence photometer (Shimadzu RF-535), post-column (reagent: two, flow rate: determined by 5 X 10- 9 m 3 / s ).
  • the sugar contained in the aqueous phase is a high-performance liquid chromatographic sugar analysis system HSS- 1500 (column: Shodex SUGAR KS-804, mobile phase: water, flow rate 1.0 cm 3 / min, detector, manufactured by JASCO Corporation : Differential refractometer MD-2010 deflection type, column temperature: 313K).
  • HSS- 1500 columnumn: Shodex SUGAR KS-804, mobile phase: water, flow rate 1.0 cm 3 / min, detector, manufactured by JASCO Corporation : Differential refractometer MD-2010 deflection type, column temperature: 313K).
  • TOC total organic carbon content
  • Figure 1 shows the results of investigating the relationship between the solid-phase residual rate of the force-shell and the reaction time.
  • Normal temperature 'normal pressure' No reaction occurs with water.
  • the weight of the solid phase decreased with the reaction time. From this, it is considered that deproteinization occurs rapidly under these conditions.
  • the solid phase residual ratio is 50% or more, and considering the mass balance estimated from the conventional method (Experimental Example 1), it is considered that calcium carbonate and chitin are decomposed and are highly likely.
  • the TOC, IC value, amino acid concentration, and organic acid concentration present in the aqueous phase were measured.
  • amino acids proline, alanine, methionine, histidine, arginine and the like were produced.
  • Organic acids such as malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid were produced.
  • the yields increased with the reaction time, and the yields of alanine and arginine for amino acids and acetic acid and pyroglutamic acid for organic acids were high.
  • the reaction temperature was set to 533 ° C and 563 ° C, and the reaction time was set to 1 minute or 2 minutes.
  • the chitin was hardly decomposed even when treated for 2 minutes in a subcritical water solvent at 563mm.
  • the color has changed to brown, it is presumed that a part of it is thermally decomposed and melanoidin is produced by the Maillard reaction of sugar.
  • the force-shell was treated in the subcritical state in the same procedure as in Experimental Example 1 except that an acetic acid aqueous solution was used as the solvent.
  • the acetic acid aqueous solution is an acetic acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) which is prepared with ultrapure water produced by an ultrapure water production apparatus (Minipure 1 TW-250RU manufactured by Nomura Microscience Co., Ltd.) to a predetermined concentration. Was used.
  • the concentration is about 0.03 times (0.0174 mol / 1) or about 3 times the stoichiometric molar ratio to calcium carbonate.
  • the subcritical reaction was performed in an acetic acid aqueous solution adjusted to a concentration of 1.74 mol / l at a temperature of 563 K, 593 K or 623 K.
  • Figure 4 shows the results of investigating the relationship between the residual rate of calcium carbonate and the reaction time.
  • Amino acids are cystine, serine, norine, threonine, glycine, proline, alanine, methionine, histidine, anoleginine, leucine, isoleucine, tyrosine, lysine, and phenenorea.
  • Lanin, aspartic acid, glutamic acid and the like were produced.
  • the degradation products contained low-molecular chitin, chitin oligosaccharide, darcosamine, erythrose, phosphoric acid and the like.
  • this method was proved to be useful as a method for producing saccharides such as amino acids, organic acids, low-molecular chitin and chitin oligosaccharides, and darcosamine.
  • the measurement procedure is 1.74 mol / 1 acetic acid aqueous solution that is about 3 times the chemical reaction stoichiometric molar ratio with respect to calcium carbonate, and the reaction temperature is set at a relatively low temperature in the range of 453 to 523K.
  • a subcritical process was performed in the same manner as in Example 1 except that.
  • the residual solid phase was about 40% of the initial weight regardless of the treatment temperature, but when the obtained solid phase was further treated with hydrochloric acid, it was found to contain 3-5% calcium carbonate by ICP analysis. Wakata. This value is similar to the carbonated lucium contained in commercially available chitin (manufactured by the conventional method), and corresponds to the difference from the solid phase residual rate when no calcium carbonate is contained. From this, it was found that very high purity chitin was obtained by the present invention.
  • acetic acid which is a weak acid
  • acetic acid remaining after the reaction can be reused as a component of the acidic aqueous solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Disclosed is a method for purifying a chitin which includes a step for processing an organic matter containing a chitin in an acidic aqueous solution in the subcritical or supercritical state. Also disclosed is a method for producing a low molecular weight chitin or a chitin oligosaccharide. Further disclosed is a method for producing a chitosan, a low molecular weight chitosan or a chitosan oligosaccharide which includes deacetylation of the thus-obtained chitin or the like. Still further disclosed is a method for producing a chitin degradation product and/or a protein degradation product which includes a step for processing an organic matter containing a chitin in an acidic aqueous solution in the subcritical or supercritical state.

Description

明 細 書  Specification
キチンを含む有機物の処理法  Treatment of organic matter containing chitin
技術分野  Technical field
[0001] 本発明は、キチンを含む有機物を効率よく処理し、有効に利用する方法に関する。  [0001] The present invention relates to a method for efficiently treating and effectively using an organic substance containing chitin.
詳細には、キチンを含む有機物を、亜臨界又は超臨界状態で処理し、高純度のキチ ン及び有用な物質を効率よく得る方法に関する。  More specifically, the present invention relates to a method for efficiently obtaining high-purity chitin and a useful substance by treating an organic substance containing chitin in a subcritical or supercritical state.
背景技術  Background art
[0002] キチンやキトサンは、種々の興味深!/、機能を有する天然物質として、その需要が高 まっている。一方、力-殻ゃェビ殻などのキチンやキトサンを含む有機性廃棄物が、 魚市場や加工場から大量に排出されており、その廃棄物の有効な処理方法が焦眉 の課題になっている。そこで、力-殻ゃェビ殻などの廃棄物から、キチンやキトサンを 生産する方法が検討されてきた。しかし、それらの有機性廃棄物からキチンやキトサ ンを単離精製するためには、灰分、蛋白質、脂質及び色素等をキチンから分離する 処理が必要である。  [0002] Chitin and chitosan are increasing in demand as natural substances having various interests / functions. On the other hand, organic waste containing chitin and chitosan, such as power-shelled shrimp shells, is discharged in large quantities from the fish market and processing plants, and the effective treatment of the waste has become a serious issue. Yes. Therefore, methods for producing chitin and chitosan from wastes such as power-shelled shrimp shells have been studied. However, in order to isolate and purify chitin and chitosan from these organic wastes, it is necessary to separate ash, proteins, lipids and pigments from chitin.
[0003] 従来の方法では、その処理に多段階の工程と数日間の日程、多量の試薬や水、更 には大量の廃水処理が必要であり、コスト面で大きな負担となっていた。そのため、キ チン又はキトサンを含む廃棄物等の利用がほとんど行なわれなくなってきている。  [0003] The conventional method requires a multi-step process, a schedule of several days, a large amount of reagents and water, and a large amount of wastewater treatment, which is a large burden in terms of cost. For this reason, the use of wastes containing chitin or chitosan is hardly used.
[0004] 一方、これまでにも、有機物や高分子化合物の処理方法として、亜臨界水や超臨 界水による方法が報告されている(特開平 05— 031000号公報及び特開平 11— 34 2379号公報参照)。  [0004] On the other hand, methods using subcritical water or supercritical water have been reported so far as methods for treating organic substances and polymer compounds (Japanese Patent Laid-Open Nos. 05-031000 and 11-34 2379). Issue gazette).
[0005] しかし、キチンやキトサンを高純度で取得することは難し力つた。  [0005] However, obtaining chitin and chitosan with high purity has been difficult.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、キチンを含む有機物から、高純度のキチンを、少な 、プロセスで、短時 間で、かつ低いコストで取得する方法を提供することを主な目的とする。更に、キチン を含む有機物から、有用物質を取得する方法を提供することを主な目的とする。 課題を解決するための手段 [0007] 本発明者らは、上記課題を解決することを目的として、鋭意検討を重ねた結果、キ チンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理すること により、キチンを効率よく高純度で精製し得ることを見出し、更に検討を重ねて、本発 明を完成するに至った。 The main object of the present invention is to provide a method for obtaining high-purity chitin from an organic substance containing chitin in a small amount of process, in a short time, and at a low cost. Furthermore, the main object is to provide a method for obtaining useful substances from organic substances containing chitin. Means for solving the problem [0007] As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors treated an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. We have found that chitin can be purified efficiently and with high purity, and have further studied to complete the present invention.
[0008] 即ち、本発明は、以下の精製方法及び製造方法に関する。  [0008] That is, the present invention relates to the following purification method and production method.
[0009] 項 1:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 することを特徴とする、キチンの精製方法。  [0009] Item 1: A method for purifying chitin, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
[0010] 好ましくは、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中 で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を行うこと を特徴とする、キチンの精製方法。 [0010] Preferably, the ash, protein, lipid, and pigment are separated from the chitin by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. Purification method of chitin.
[0011] 好ましくは、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中 で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階 で行う工程を有する、キチンの精製方法。 [0011] Preferably, the method includes a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state. The purification method of chitin.
[0012] なお、本明細書における「キチンの精製方法」は「高純度キチンの製造方法」とも換 言し得る。  [0012] The "purification method of chitin" in the present specification can also be referred to as "a method for producing high-purity chitin".
[0013] 項 2 :キチンを含む有機物を亜臨界状態の酸性水溶液中で処理することを特徴とす る、項 1に記載の精製方法。  [0013] Item 2: The purification method according to Item 1, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state.
[0014] 好ましくは、キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理することに より、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階で行う工程を有 する、キチンの精製方法。 [0014] Preferably, the chitin having a step of separating ash, protein, lipid and pigment from the chitin in a single step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state. Purification method.
[0015] 項 3 :キチンを含む有機物を、 493K未満の亜臨界状態の酸性水溶液中で処理す る項 1又は項 2に記載の精製方法。 [0015] Item 3: The purification method according to Item 1 or Item 2, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state of less than 493K.
[0016] 好ましくは、キチンを含む有機物を、 493K未満の亜臨界状態の酸性水溶液中で 処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階で 行う工程を有する、キチンの精製方法。 [0016] Preferably, the method includes a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state of less than 493K. Purification method of chitin.
[0017] 項 4:酸性水溶液が有機酸水溶液である項 1〜3の ヽずれかに記載の精製方法。 Item 4: The purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an organic acid aqueous solution.
[0018] 具体的態様には、酸性水溶液が酢酸水溶液である項 1〜3のいずれかに記載の精 製方法が含まれる。 [0019] 項 5 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 し、処理後のキチンを脱ァセチルイ匕することを特徴とするキトサンの製造方法。 [0018] Specific embodiments include the purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an acetic acid aqueous solution. Item 5: A method for producing chitosan, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, and subjecting the treated chitin to deacetylation.
[0020] 項 5の態様には、項 1〜4のいずれかに記載の方法によって、キチンを精製し、得ら れる精製キチンを脱ァセチルイ匕することを特徴とするキトサンの製造方法が含まれる 。具体的態様には、キチンを含む有機物を亜臨界状態の酸性水溶液中で処理し、 処理後のキチンを脱ァセチルイ匕することを特徴とするキトサンの製造方法が含まれる  [0020] The embodiment of Item 5 includes a method for producing chitosan characterized in that chitin is purified by the method according to any one of Items 1 to 4 and the purified chitin obtained is deacetylated. . A specific embodiment includes a method for producing chitosan characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state, and the treated chitin is deacetylated.
[0021] また、具体的態様には、(1)キチンを含む有機物を、亜臨界状態又は超臨界状態 の酸性水溶液中で処理することにより、該有機物における灰分、蛋白質、脂質及び 色素の分解を一段階で行ってキチンを得る工程、及び (2) (1)で得られるキチンを脱 ァセチル化する工程を有する高純度キトサンの製造方法も含まれる。 [0021] Further, in a specific embodiment, (1) by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, decomposition of ash, protein, lipid, and pigment in the organic substance is performed. Also included is a method for producing high-purity chitosan, which comprises a step of obtaining chitin by performing in one step, and a step of (2) deacetylating the chitin obtained in (1).
[0022] 項 6 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 することを特徴とする低分子キチン及び Z又はキチンオリゴ糖の製造方法。  [0022] Item 6: A method for producing low-molecular chitin and Z or chitin oligosaccharide, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state or a supercritical state.
[0023] 好ましくは、キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理する項 6に 記載の製造方法。  [0023] Preferably, the organic material containing chitin is treated in an acidic aqueous solution in a subcritical state.
[0024] 具体的態様には、酸性水溶液が有機酸水溶液、特に酢酸水溶液である項 6に記 載の製造方法が含まれる。  [0024] Specific embodiments include the production method according to Item 6, wherein the acidic aqueous solution is an organic acid aqueous solution, particularly an acetic acid aqueous solution.
[0025] 項 7 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 し、得られる低分子キチン及び Z又はキチンオリゴ糖を脱ァセチルイ匕することを特徴 とする低分子キトサン及び Z又はキトサンオリゴ糖の製造方法。  [0025] Item 7: A low molecular weight characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical or supercritical state, and the resulting low molecular chitin and Z or chitin oligosaccharide are deacetylated. A method for producing chitosan and Z or chitosan oligosaccharide.
[0026] 項 7の態様には、項 6に記載の方法によって得られる低分子キチン及び Zまたはキ チンオリゴ糖を脱ァセチルイ匕することを特徴とする低分子キトサン及び Z又はキトサ ンオリゴ糖の製造方法が含まれる。  [0026] In the embodiment of Item 7, the method for producing a low-molecular chitosan and Z or chitosan oligosaccharide characterized in that the low-molecular chitin and Z or chitin oligosaccharide obtained by the method of Item 6 are deacetylated. Is included.
[0027] 項 8 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 することを特徴とする、キチン分解物及び Z又は蛋白分解物の製造方法。  Item 8: A method for producing a chitin degradation product and a Z or protein degradation product, which comprises treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
[0028] 好ましくは、キチン分解物及び Z又は蛋白分解物は、アミノ酸、有機酸、低分子糖 類、ペプチド及び低分子水溶性蛋白質力 なる群力 選ばれる 1以上の化合物であ る。 [0029] なお、本発明には、項 1〜8から選ばれる 1以上の方法を複数並行して実施する場 合も含まれる。 [0028] Preferably, the chitin degradation product and the Z or protein degradation product are one or more compounds selected from the group power consisting of amino acids, organic acids, low molecular weight sugars, peptides and low molecular weight water-soluble proteins. [0029] It should be noted that the present invention includes a case where a plurality of one or more methods selected from items 1 to 8 are performed in parallel.
[0030] 例えば、本発明の具体的態様の例には、以下の方法が含まれる。  [0030] For example, examples of specific embodiments of the present invention include the following methods.
[0031] 項 9 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理 することを特徴とする、キチンの精製と低分子キチン及び Z又はキチンオリゴ糖の製 造を、好ましくは一段階で、行う方法、  [0031] Item 9: Purification of chitin and production of low-molecular chitin and Z or chitin oligosaccharide, characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical or supercritical state. A method of performing, preferably in one step,
項 10 :キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処 理することを特徴とする、キチンの精製と、低分子キチン、キチンオリゴ糖、キチン分 解物及び Z又は蛋白分解物の製造を、好ましくは一段階で、行う方法。  Item 10: Purification of chitin, low molecular chitin, chitin oligosaccharides, chitin degradation products and Z or Z, characterized by treating organic matter containing chitin in an acidic aqueous solution in a subcritical or supercritical state A method for producing a proteolysate, preferably in one step.
[0032] 以下、本発明について、詳細に説明する。 Hereinafter, the present invention will be described in detail.
[0033] キチン 含む有機物 [0033] Organic matter containing chitin
本発明が対象とする有機物は、キチンを含むものであれば、特に限定されず、例え ば、キチンを含む生体の構成物自体又はその処理物、或いは有機性廃棄物などを 含む。  The organic matter targeted by the present invention is not particularly limited as long as it contains chitin, and includes, for example, a biological component itself containing chitin or a processed product thereof, or organic waste.
[0034] 有機性廃棄物には、例えば、魚市場や水産加工処理場から出される食品加工廃 棄物、家庭や学校等から出される生ごみや食品残渣等の食品廃棄物等が含まれる。  [0034] Organic waste includes, for example, food processing waste from fish markets and fish processing plants, food waste such as food waste and food residues from homes and schools, and the like.
[0035] 具体的に、キチンを含む有機物には、力-及び Z又はェビの甲殻、昆虫の甲羅や 脚、イカの甲や貝等の軟体動物の器官、珪藻類、菌類、キチン或いはキトサンを生産 する微生物や細菌、又はそれらの処理物等が含まれる。  [0035] Specifically, chitin-containing organic substances include force- and Z or shrimp shells, insect shells and legs, squid shells and shellfish mollusc organs such as shellfish and shellfish, diatoms, fungi, chitin or chitosan. These include microorganisms and bacteria that produce or processed products thereof.
[0036] これらの有機物は、得られた原料をそのまま用いてもよぐまた、適当な大きさに粉 砕されたものでもよ 、。また予め乾燥などの前処理を行ったものでもよ 、。  [0036] These organic substances may be used as they are, or may be pulverized to an appropriate size. Also, it may have been pretreated such as drying.
[0037] ^^ は ^^ の  [0037] ^^ is ^^
本発明は、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中 で処理する工程を含む。  This invention includes the process of processing the organic substance containing chitin in the acidic aqueous solution of a subcritical state or a supercritical state.
[0038] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理する ことにより、キチン力もの灰分 (具体的には炭酸カルシウム)、蛋白質、脂質及び色素 の分離、換言すると、有機物においてキチンに付着している灰分、蛋白質、脂質及 び色素のキチン力 の除去を一段階で行うことが可能になり、多量の試薬や水の消 費並びに大量の廃水の処理を不要とすることができる。また、処理に要するコストを 格段に下げることができる。 [0038] By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, separation of ash content (specifically calcium carbonate), protein, lipid and pigment of chitin power, It is possible to remove the chitin power of ash, proteins, lipids and pigments adhering to chitin in organic substances in one step. Costs and treatment of large amounts of wastewater can be eliminated. In addition, the cost required for processing can be significantly reduced.
[0039] 本発明において、亜臨界状態とは、溶媒の温度が 433〜647K程度、中でも、 433 〜523Κ程度、特に 433〜493Κ程度の状態にあること、及び圧力力0. 62-22. 1 MPa程度、中でち 0. 62〜4. OMPa程度、特【こ 0. 62〜2. 32MPa程度の状態【こあ ることを意味する。  [0039] In the present invention, the subcritical state means that the temperature of the solvent is about 433 to 647 K, in particular, about 433 to 523 mm, particularly about 433 to 493 mm, and the pressure force is 0.62 to 22.1. This means that the pressure is about 0.6 MPa, especially about 0.62 to 4. OMPa, especially about 0.62 to 2.32 MPa.
本発明において、超臨界状態とは、溶媒の温度が 647K以上、特に 647K〜673 Κ程度の状態にあること、及び圧力が 22. IMPa以上、特に 22. 1〜30. OMPa程 度の状態にあることを意味する。  In the present invention, the supercritical state means that the temperature of the solvent is 647 K or more, particularly about 647 K to 673 、, and the pressure is 22. IMPa or more, particularly about 22.1 to 30 OMPa. It means that there is.
[0040] 本発明では、特に、亜臨界状態で処理を行うことが好ま 、。亜臨界状態で処理を 行うことは、超臨界状態で処理を行うよりも、キチンの収率、換言すると、キチンの残 存率が高くなる。特に、高分子量のキチンの残存率が高くなる。  [0040] In the present invention, it is particularly preferable to perform the treatment in a subcritical state. Processing in the subcritical state increases the yield of chitin, in other words, the residual rate of chitin, compared to processing in the supercritical state. In particular, the residual ratio of high molecular weight chitin increases.
[0041] 亜臨界状態の中でも、比較的低い温度領域、好ましくは 493K(220°C)未満の亜 臨界状態で処理することにより、高分子量のキチンの収率を更に向上させることがで きる。比較的低い温度の亜臨界状態の処理は、より高い温度領域の処理に比べてキ チンの熱分解が少なぐ当初の分子量、或いは、高分子量のキチンの残存率を高く する。  [0041] Among the subcritical states, the yield of high molecular weight chitin can be further improved by treatment in a relatively low temperature range, preferably a subcritical state of less than 493K (220 ° C). The treatment in the subcritical state at a relatively low temperature raises the residual ratio of the initial molecular weight or high molecular weight chitin with less thermal decomposition of the chitin compared to the treatment in the higher temperature region.
[0042] 一方、比較的高い温度領域の亜臨界状態で処理することにより、低分子キチン、キ チンオリゴ糖、キチン分解物及び Z又は蛋白分解物の収率を向上させることができる  [0042] On the other hand, the yield of low-molecular chitin, chitin oligosaccharides, chitin degradation products and Z or protein degradation products can be improved by treatment in a subcritical state in a relatively high temperature region.
[0043] キチンの精製 [0043] Purification of chitin
本発明は、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中 で、処理する工程を含むキチンの精製方法を提供する。亜臨界状態又は超臨界状 態の酸性水溶液中で処理することにより、キチンが効率よく精製され、高純度のキチ ンが製造できる。  The present invention provides a method for purifying chitin comprising a step of treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. By treating in an acidic aqueous solution in a subcritical state or a supercritical state, chitin is efficiently purified and high purity chitin can be produced.
[0044] 本発明の処理における有機物の量と酸性水溶液の量との割合は、処理の条件等 に応じて適宜設定し得る力 通常、重量比で、有機物 Z酸性水溶液 =0.05〜0.2程 度である。 [0045] 本発明で用いる酸性水溶液は、酸成分を水溶液に添加して得ることができる。 [0044] The ratio between the amount of the organic substance and the amount of the acidic aqueous solution in the treatment of the present invention is a force that can be appropriately set according to the treatment conditions and the like. Usually, the weight of the organic substance Z acidic aqueous solution is about 0.05 to 0.2. is there. [0045] The acidic aqueous solution used in the present invention can be obtained by adding an acid component to the aqueous solution.
[0046] 酸成分の種類は特に限定されず、強酸や弱酸を用いることができる。  [0046] The type of the acid component is not particularly limited, and a strong acid or a weak acid can be used.
[0047] 強酸には、塩酸、硝酸、硫酸等が含まれる。また、弱酸には、酢酸、乳酸、コハク酸 [0047] Strong acids include hydrochloric acid, nitric acid, sulfuric acid and the like. Weak acids include acetic acid, lactic acid, and succinic acid
、リンゴ酸、蟻酸、ピログルタミン酸、グリコール酸、クェン酸等の有機酸や、リン酸等 の無機酸が含まれる。 , Organic acids such as malic acid, formic acid, pyroglutamic acid, glycolic acid and succinic acid, and inorganic acids such as phosphoric acid.
[0048] このうち、酢酸や乳酸等の有機酸が、反応器の腐食がない点や、処理中に蛋白質 の分解によって生成したものを再利用し得る点で好ましい。  [0048] Of these, organic acids such as acetic acid and lactic acid are preferred because they do not corrode the reactor and can be reused by decomposition of proteins during processing.
[0049] 具体的に、酸の再利用による処理は、以下のように行うことができる。 [0049] Specifically, the treatment by reusing the acid can be performed as follows.
[0050] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理する ことにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を行い、 [0050] By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state, ash, proteins, lipids and pigments are separated from the chitin,
該処理において、蛋白質が分解して生じた有機酸を用いて酸性水溶液を調製し、 該調製された酸性水溶液中で、キチンを含む有機物を、亜臨界状態又は超臨界 状態で処理する。  In the treatment, an acidic aqueous solution is prepared using an organic acid generated by protein degradation, and an organic substance containing chitin is treated in the subcritical state or supercritical state in the prepared acidic aqueous solution.
[0051] これにより、キチンを連続的に精製し、高純度キチンを連続的に製造することができ る。  [0051] Thereby, chitin can be continuously purified, and high-purity chitin can be continuously produced.
[0052] 酸性水溶液の濃度は、処理条件等に応じて、適宜設定し得る。例えば、酢酸水溶 液の場合、有機物中に通常含まれる炭酸カルシウムと酢酸との反応の化学量論モル 比である 1対 2以上程度であればよぐ通常 1対 2〜1対 4程度である。特に出来る限り 1対 2に近い量論モル比が適当である。  [0052] The concentration of the acidic aqueous solution can be appropriately set according to the processing conditions and the like. For example, in the case of an acetic acid aqueous solution, the stoichiometric molar ratio of the reaction between calcium carbonate and acetic acid that is usually contained in an organic substance is about 1 to 2 or more, and usually about 1 to 2 to 1 to 4. . In particular, a stoichiometric molar ratio as close to 1 to 2 as possible is appropriate.
[0053] 処理の手順は特に限定されず、適宜設定し得る。例えば、キチンを含む有機物を 酸性水溶液に添加し、得られる溶液を、亜臨界状態又は超臨界状態の条件に調製 して反応させてちょい。  The processing procedure is not particularly limited and can be set as appropriate. For example, an organic substance containing chitin is added to an acidic aqueous solution, and the resulting solution is prepared and reacted under subcritical or supercritical conditions.
[0054] 処理時間も特に限定されないが、通常、 1〜30分程度、好ましくは 1〜: LO分程度で ある。  [0054] The treatment time is not particularly limited, but is usually about 1 to 30 minutes, preferably about 1 to about LO.
[0055] 処理後は、適宜分離精製を行うことができる。例えば、処理後の有機物を、濾過に より、キチンが含まれる固相と、アミノ酸、有機酸、糖などの分解物を含む水相とに分 離し、必要に応じて更に適宜精製を行って、キチンを単離することができる。  [0055] After the treatment, separation and purification can be appropriately performed. For example, the organic matter after treatment is separated by filtration into a solid phase containing chitin and an aqueous phase containing degradation products such as amino acids, organic acids, and sugars, and further purified as necessary. Chitin can be isolated.
[0056] キトサンの製造 キチンを含む有機物を、上述のように亜臨界状態又は超臨界状態の酸性水溶液 中で処理して得られるキチンを、脱ァセチルイ匕処理することにより、高純度キトサンを 得ることができる。 [0056] Production of chitosan High purity chitosan can be obtained by treating chitin obtained by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state as described above.
[0057] 脱ァセチル化処理の方法は特に限定されず、公知の方法を適宜用いることができ る。  [0057] The method of deacetylation treatment is not particularly limited, and a known method can be appropriately used.
[0058] 例えば、キチンをアルカリや酵素を用いて処理する方法等を用いることができる。よ り具体的には、得られたキチンを、 30〜60%の高濃度溶融水酸化ナトリウム溶液を用 いて、 353〜393Kの加熱攪拌条件で 30分から 5時間かけて処理することにより、脱ァ セチル化を行うことができる。  [0058] For example, a method of treating chitin with an alkali or an enzyme can be used. More specifically, the obtained chitin is treated with 30 to 60% high-concentration molten sodium hydroxide solution under a heating and stirring condition of 353 to 393 K for 30 minutes to 5 hours. Cetylation can be performed.
[0059] 脱ァセチルイ匕の程度は特に限定されず、所望の物性を有するキトサンを得ることを 目的として、適宜設定することができる。  [0059] The degree of deacetylation is not particularly limited, and can be appropriately set for the purpose of obtaining chitosan having desired physical properties.
[0060] 本方法により、キチンを含む廃棄物を有効に利用して、高純度キトサンを、従来に 比べて少ないプロセスで、短時間で、効率よぐしかも低コストで製造することができる  [0060] By this method, waste containing chitin can be effectively used to produce high-purity chitosan in a short time, in a short time, efficiently and at low cost.
[0061] 低分早キチン及び/ はキチンオリゴ糖の製诰 [0061] Production of chitin and / or chitin oligosaccharide
キチンを含む有機物を、上述のように亜臨界状態又は超臨界状態の酸性水溶液 中で処理することにより、低分子キチン及び ζ又はキチンオリゴ糖を効率よく製造す ることちでさる。  By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state as described above, it is possible to efficiently produce low-molecular chitin and ζ or chitin oligosaccharide.
[0062] 本明細書において、低分子キチンとは、有機物中に含まれるキチンが分解されて、 より低分子となったキチンを意味する。またキチンオリゴ糖とは、キチンの分解により 生成するオリゴ糖を意味する。  [0062] In the present specification, the low molecular chitin means chitin which has become a lower molecule as a result of degradation of chitin contained in an organic substance. Chitin oligosaccharide means an oligosaccharide produced by the decomposition of chitin.
[0063] 低分子キチン及び Ζ又はキチン分解物は、処理後、適宜分離精製を行うことにより 、単離することができる。例えば、処理後の有機物を、濾過により、キチンが含まれる 固相と、低分子化して可溶性となったキチン又はキチンオリゴ糖を含む水相とに分離 し、必要に応じて更に適宜精製を行うことにより、所望の物質を単離することができる  [0063] Low molecular chitin and sputum or chitin degradation products can be isolated by appropriate separation and purification after treatment. For example, the organic substance after the treatment is separated by filtration into a solid phase containing chitin and an aqueous phase containing chitin or chitin oligosaccharide that has been made low-molecular and soluble, and further purified as necessary. The desired substance can be isolated by
[0064] 低分早キトサン及び/又はキトサンオリゴ糖の製诰 [0064] Production of low minute and early chitosan and / or chitosan oligosaccharide
キチンを含む有機物を上述のように亜臨界状態又は超臨界状態の酸性水溶液中 で処理して得られる低分子キチン及びキチンオリゴ糖を、脱ァセチル化処理すること により、低分子キトサン及び Z又はキトサンオリゴ糖を得ることができる。 Organic matter containing chitin in acidic solution in subcritical or supercritical state as described above Low molecular chitosan and Z or chitosan oligosaccharide can be obtained by subjecting low molecular chitin and chitin oligosaccharide obtained by treatment with deacetylation treatment.
[0065] 脱ァセチル化処理の方法は特に限定されず、上述と同様に、公知の方法を適宜用 いることがでさる。  [0065] The method for the deacetylation treatment is not particularly limited, and a known method can be appropriately used as described above.
[0066] 例えば、低分子キチン又はキチンオリゴ糖をアルカリや酵素を用いて処理する方法 等を用いることができる。より具体的には、得られた低分子キチン又はキチンオリゴ糖 を、 30〜60%の高濃度溶融水酸ィ匕ナトリウム溶液を用いて、 353〜393Kの加熱攪拌条 件で 30分から 5時間かけて処理することにより、脱ァセチルイ匕を行うことができる。  [0066] For example, a method of treating low molecular chitin or chitin oligosaccharide with an alkali or an enzyme can be used. More specifically, the obtained low-molecular chitin or chitin oligosaccharide was used for 30 minutes to 5 hours under a heating and stirring condition of 353 to 393 K using a 30 to 60% high-concentration molten sodium hydroxide solution. By performing the processing, deacetylation can be performed.
[0067] 脱ァセチルイヒの程度は特に限定されず、所望の物性を有する低分子キトサン又は キトサンオリゴ糖を得ることを目的として、適宜設定することができる。  [0067] The degree of deacetylation is not particularly limited, and can be set as appropriate for the purpose of obtaining low-molecular chitosan or chitosan oligosaccharide having desired physical properties.
[0068] 本方法により、キチンを含む廃棄物を有効に利用して、低分子キトサン及びキトサ ンオリゴ糖を、少ないプロセスで、短時間で、効率よぐし力も低コストで製造すること ができる。  [0068] According to this method, waste containing chitin can be effectively used to produce low-molecular chitosan and chitosan oligosaccharide in a short time, with an efficient combing force and a low cost.
[0069] キチン分解物及び/ は 白分解物の製诰  [0069] Production of chitin degradation product and / or white degradation product
キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理する ことにより、キチンの一部及び Ζ又は蛋白質が分解して、有用な物質を製造すること ができる。  By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state, a part of chitin and soot or protein can be decomposed to produce a useful substance.
[0070] なお、キチン分解物及び Ζ又は蛋白分解物とは、キチンの分解によって生成する 化合物、蛋白質の分解によって生成する化合物及び Ζ又はそれらの混合物を意味 する。  [0070] The chitin degradation product and the koji or protein degradation product mean a compound produced by the degradation of chitin, a compound produced by the protein degradation and the koji or a mixture thereof.
[0071] キチン分解物及び Ζ又は蛋白分解物の具体的な態様の例は、アミノ酸、有機酸、 低分子糖類、ペプチド及び低分子水溶性蛋白質力 なる群力 選ばれる 1以上の化 合物である。  [0071] Examples of specific embodiments of chitin degradation products and sputum or protein degradation products are amino acids, organic acids, low molecular sugars, peptides, and one or more compounds selected from the group power consisting of low molecular weight water-soluble proteins. is there.
[0072] 分解によって生成するアミノ酸の例には、シスチン、セリン、パリン、スレオニン、ダリ シン、プロリン、ァラニン、メチォニン、ヒスチジン、ァノレギニン、ロイシン、イソロイシン 、チロシン、リジン、フエ-ルァラニン、ァスパラギン酸、グルタミン酸などが含まれる。  [0072] Examples of amino acids generated by degradation include cystine, serine, parin, threonine, daricin, proline, alanine, methionine, histidine, anoleginin, leucine, isoleucine, tyrosine, lysine, ferulalanin, aspartic acid, glutamic acid. Etc. are included.
[0073] また、分解により生成する有機酸の例には、リンゴ酸、コハク酸、乳酸、蟻酸、酢酸、 ピログルタミン酸などが含まれる。 [0074] また、分解により生成する低分子糖類の例には、低分子キチン、キチンオリゴ糖、グ ルコサミン、エリトロースなどが含まれる。 [0073] Examples of organic acids generated by decomposition include malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid, and the like. [0074] Examples of low molecular weight saccharides produced by decomposition include low molecular weight chitin, chitin oligosaccharides, glucosamine, erythrose, and the like.
[0075] また、他の分解物の例には、リン酸が含まれる。 [0075] Examples of other decomposition products include phosphoric acid.
[0076] これらの分解物は、資源として回収し、有効に再利用することができる。例えば、医 薬品、調味料、健康飲料、添加剤等の成分として利用することができる。  [0076] These decomposition products can be recovered as resources and reused effectively. For example, it can be used as a component of pharmaceuticals, seasonings, health drinks, additives and the like.
[0077] 従来、キチンを含む有機物の処理においては、脱蛋白処理に高額のコストを要し、 し力も蛋白質はそのまま処分されていたが、本方法によれば、簡便かつ効率のよい プロセスで、高純度のキチンを得ることができると共に、アミノ酸、有機酸、低分子糖 類等の有用物質を取得することもできる。  [0077] Conventionally, in the treatment of an organic substance containing chitin, a high cost was required for the deproteinization treatment, and the protein was disposed of as it was, but according to this method, a simple and efficient process, In addition to obtaining high-purity chitin, useful substances such as amino acids, organic acids, and low-molecular sugars can also be obtained.
[0078] 有機物の有効禾 II用  [0078] Effective organic matter II
本発明の方法においては、キチンを含む有機物を、亜臨界状態又は超臨界状態 で処理することにより、上記 1又は 2以上の態様を、並行して、或いは、一段階で実施 することができる。  In the method of the present invention, by treating an organic substance containing chitin in a subcritical state or a supercritical state, the above one or two or more embodiments can be carried out in parallel or in one step.
[0079] 例えば、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で 処理することにより、高純度キチンの製造と、低分子キチン及び Z又はキチンオリゴ 糖の製造を、好ましくは一段階で、行うことができる。  [0079] For example, by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, it is preferable to produce high-purity chitin and low-molecular chitin and Z or chitin oligosaccharides. It can be done in one step.
[0080] また、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処 理することにより、高純度キチンの製造と、低分子キチン、キチンオリゴ糖、キチン分 解物及び Z又は蛋白分解物の製造を、好ましくは一段階で、行うこともできる。  [0080] Further, by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, production of high-purity chitin, low-molecular chitin, chitin oligosaccharides, chitin degradation products, and Z Alternatively, the proteolysate can be produced preferably in one step.
[0081] さらに、それらを回収したあとの処理残渣は、メタン発酵などの原料としてエネルギ 一回収に利用することもできる。  [0081] Furthermore, the processing residue after recovering them can also be used for energy recovery as a raw material for methane fermentation or the like.
[0082] このように、本発明の有機物の処理方法は、精製された高純度キチンの取得と共に[0082] As described above, the method for treating an organic substance of the present invention is accompanied by the acquisition of purified high-purity chitin.
、他の有用物質の回収利用を行うことができるという優れた利点を有する。 In addition, it has an excellent advantage that other useful substances can be recovered and used.
[0083] なお、本発明における処理方法においては、キチン及びキトサンの製造処理に関 する各種の公知技術を必要に応じて付加し得るものである。 [0083] In the treatment method of the present invention, various known techniques relating to the production of chitin and chitosan can be added as necessary.
発明の効果  The invention's effect
[0084] 本発明は、キチンを含む有機物から、従来に比べて少ないプロセスで、短時間で、 し力も低コストで、効率よくキチンを精製し、高純度のキチンを得ることができるという、 格別な効果を奏する。 [0084] The present invention is capable of efficiently purifying chitin from an organic substance containing chitin in a shorter process than conventional methods, in a short time and with low cost, and obtaining high-purity chitin. Has a special effect.
[0085] 従来の方法によれば、キチンを含む有機物カもキチンを単離する際に、脱灰工程、 脱蛋白質工程等に多段階の処理や数日間の日程を要して!/、た。また多量の試薬の 消費、更には大量の廃水処理を要していた。  [0085] According to the conventional method, when isolating chitin-containing organic mosquitoes, the decalcification process, the deproteinization process, etc. require a multi-step process and a period of several days! . In addition, a large amount of reagent was consumed, and a large amount of wastewater treatment was required.
[0086] これに対し、本発明によれば、キチンを含む有機物において、キチン力もの灰分、 蛋白質、脂質及び色素の分離を、短時間で効率よぐ行うことを可能にする。また、多 量な試薬や水の使用や大量の廃水の処理に力かる負担を大幅に低減することがで きる。従って、本発明によれば、キチンを含む有機物の処理工程に伴うコストを大幅 に低減することができる。  On the other hand, according to the present invention, it is possible to efficiently separate chitin-containing ash, proteins, lipids and pigments in a short time in an organic substance containing chitin. In addition, the burden imposed on the use of large amounts of reagents and water and the treatment of large amounts of wastewater can be greatly reduced. Therefore, according to this invention, the cost accompanying the process of the organic substance containing chitin can be reduced significantly.
[0087] また、本発明によれば、精製度の高!、高純度のキチンを効率よく製造することがで きる。  [0087] Further, according to the present invention, highly purified chitin with high purity can be efficiently produced.
[0088] 特に比較的低温の亜臨界状態で処理することにより、高分子量のキチンを高純度 で取得することが可能となる。また比較的高温の亜臨界状態で処理することにより、 低分子キチン及びキチンオリゴ糖の収率を向上させることもできる。  [0088] In particular, by treating in a subcritical state at a relatively low temperature, high molecular weight chitin can be obtained with high purity. Moreover, the yield of low molecular weight chitin and chitin oligosaccharide can also be improved by processing in a relatively high temperature subcritical state.
[0089] 更に、本発明の方法を用いることで、キトサン、低分子キトサン及びキトサンオリゴ糖 を、キチンを含む有機物力も効率よく取得することも可能になる。  [0089] Furthermore, by using the method of the present invention, chitosan, low-molecular chitosan and chitosan oligosaccharide can also be efficiently obtained with organic power including chitin.
[0090] また、本発明における亜臨界状態又は超臨界状態の処理において、蛋白質等の 分解によりアミノ酸や有機酸等の有用物質が生成され、それらを回収利用することも できる。更に回収した有機酸を利用して、キチンの精製ゃ該有用物質の製造を連続 的に実施することも可能にする。  [0090] Further, in the treatment in the subcritical state or supercritical state in the present invention, useful substances such as amino acids and organic acids are produced by the decomposition of proteins and the like, and these can be recovered and used. Furthermore, using the recovered organic acid, it is possible to purify chitin and continuously produce the useful substance.
[0091] 更に、本発明の方法によれば、キチンを含む有機物を、亜臨界状態又は超臨界状 態で処理することにより、キチンの精製と、有用物質の製造を、並行して、或いは、一 段階で、行うことができる。さらに、処理後の残渣を、エネルギー利用することもできる  [0091] Further, according to the method of the present invention, by treating an organic substance containing chitin in a subcritical state or a supercritical state, purification of chitin and production of a useful substance can be performed in parallel or It can be done in one step. Furthermore, energy can be used for the residue after treatment.
[0092] このように、本発明は、高純度キチンの取得と、有用資源の回収利用を共に行うこと ができると!、う優れた利点を有する。 [0092] As described above, the present invention has an excellent advantage that both high-purity chitin can be obtained and useful resources can be recovered and used together.
[0093] 本発明によって、キチン、キトサン、キチンオリゴ糖、キトサンオリゴ糖、各種アミノ酸[0093] According to the present invention, chitin, chitosan, chitin oligosaccharide, chitosan oligosaccharide, various amino acids
、有機酸、ダルコサミンなどの有用な化合物を、廃棄有機物等から、効率よくし力も低 コストで生産することが可能になる。また、本発明は、キチンを含む有機物の利用を 大きく推進させ得る。 , Organic acids, and useful compounds such as darcosamine from waste organic matter, etc. It becomes possible to produce at a cost. In addition, the present invention can greatly promote the use of organic substances containing chitin.
[0094] このように、本発明は、有機物の有効な処理技術、並びに有用物質の効率のよい 生産技術として、有用に利用できる。  [0094] As described above, the present invention can be usefully used as an effective treatment technique for organic substances and an efficient production technique for useful substances.
図面の簡単な説明  Brief Description of Drawings
[0095] [図 1]力二殻を亜臨界状態の水溶媒中で処理した場合の固相残存率と反応時間との 関係を示した図である。  [0095] FIG. 1 is a graph showing the relationship between the solid phase remaining rate and the reaction time when a force bishell is treated in an aqueous solvent in a subcritical state.
[図 2]炭酸カルシウムを亜臨界状態の水溶媒中で処理した場合の炭酸カルシウム残 存率と反応温度との関係を示した図である。  FIG. 2 is a graph showing the relationship between the calcium carbonate residual rate and the reaction temperature when calcium carbonate is treated in an aqueous solvent in a subcritical state.
[図 3]キチンを亜臨界状態の水溶媒中で処理した場合のキチン残存率と反応温度と の関係を示した図である。  FIG. 3 is a graph showing the relationship between chitin residual rate and reaction temperature when chitin is treated in a subcritical water solvent.
[図 4]炭酸カルシウムを亜臨界状態の酢酸水溶液中で処理した場合の炭酸カルシゥ ム残存率と反応時間との関係を示した図である。  FIG. 4 is a graph showing the relationship between calcium carbonate remaining rate and reaction time when calcium carbonate is treated in an aqueous acetic acid solution in a subcritical state.
[図 5]キチンを亜臨界状態の酢酸水溶液中で処理した場合のキチン残存率と反応時 間との関係を示した図である。  FIG. 5 is a graph showing the relationship between chitin residual rate and reaction time when chitin is treated in an aqueous acetic acid solution in a subcritical state.
[図 6]炭酸カルシウムを比較的低い温度の亜臨界状態の酢酸水溶液中で処理した場 合の炭酸カルシウム残存率と反応時間との関係を示した図である。  FIG. 6 is a graph showing the relationship between the residual rate of calcium carbonate and the reaction time when calcium carbonate is treated in a subcritical acetic acid solution at a relatively low temperature.
[図 7]キチンを比較的低い温度の亜臨界状態の酢酸水溶液中で処理した場合のキ チン残存率と反応時間との関係を示した図である。  FIG. 7 is a graph showing the relationship between the chitin remaining rate and the reaction time when chitin was treated in a subcritical acetic acid aqueous solution at a relatively low temperature.
[図 8]力二殻を亜臨界状態の酢酸水溶液中で処理した場合の炭酸カルシウム回収率 と反応温度との関係を示した図である。  FIG. 8 is a graph showing the relationship between the calcium carbonate recovery rate and the reaction temperature when the two-shell shell is treated in a subcritical acetic acid aqueous solution.
[図 9]力二殻を亜臨界状態の酢酸水溶液中で処理した場合の固相残存率と反応温 度との関係を示した図である。  FIG. 9 is a graph showing the relationship between the solid phase residual rate and the reaction temperature when the force two-shell is treated in a subcritical acetic acid aqueous solution.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0096] 以下、実施例及び実験例を用いて、本発明を更に詳細に説明するが、本発明はこ れらの実施例及び実験例に限定されることはな 、。本方法はズワイガ-以外の力二、 ェビ等の甲殻類に対しても適用可能であり、亜臨界連続処理装置等によるキチンの 連続精製も可能である。 [0097] 実験例 1 [0096] Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the present invention is not limited to these Examples and Experimental Examples. This method can also be applied to crustaceans such as shrimp, shrimp, etc., and continuous purification of chitin is possible using a subcritical continuous processing system. [0097] Experimental Example 1
まず、比較のために、従来の方法に従って、力-殻を処理した。  First, for comparison, force-shells were processed according to conventional methods.
[0098] 力-殻は、ズワイガ二の甲羅の冷凍乾燥品をミニブレンダ一によつて粉砕したものを 試料として用いた。 [0098] The force-shell used was a sample obtained by pulverizing a freeze-dried product of a snow crab shell with a mini blender.
[0099] まず 2mol/lの塩酸水溶液に、力-殻を 1日浸した。その後、塩酸水溶液を交換し、さ らに 1日浸すことによって、脱灰処理を行った。それにより力-殻の初期重量の約 40 [0099] First, the force-shell was immersed in a 2 mol / l hydrochloric acid aqueous solution for 1 day. Thereafter, the aqueous hydrochloric acid solution was replaced, and the deashing treatment was performed by immersing for another day. Thereby the force-about 40 of the initial weight of the shell
%の炭酸カルシウムが除去された。 % Calcium carbonate was removed.
[0100] 次に、 lmol/1の水酸ィ匕ナトリウム水溶液で 6時間煮沸し、液を交換してさらに 30時間 煮沸することにより、脱蛋白処理を行った。それにより力-殻の初期重量の約 25%の 蛋白質が除去された。 [0100] Next, the protein was boiled for 6 hours with lmol / 1 sodium hydroxide aqueous solution, and the solution was changed and boiled for further 30 hours to perform deproteinization treatment. This removed about 25% of the protein in the initial weight of the force-shell.
[0101] さらに、エタノール還流で 6時間加熱することにより、一部残存している脂質及び色 素の除去を行った。  [0101] Furthermore, the remaining lipid and dye were removed by heating at ethanol reflux for 6 hours.
[0102] これら多段階の操作により、最終的には力二殻の初期重量の約 35%に相当する固 相が残存した。この残存固相を従来法で生産したキチンとみなした。  [0102] By these multi-step operations, a solid phase corresponding to about 35% of the initial weight of the force-shell was finally left. This remaining solid phase was regarded as chitin produced by the conventional method.
[0103] 実験例 2 [0103] Experimental Example 2
次に、反応条件を適宜変えながら、以下の手順に従って、力二殻を亜臨界状態の 水溶媒中で処理した。  Next, the force bishell was treated in a subcritical water solvent according to the following procedure while appropriately changing the reaction conditions.
[0104] (手順) [0104] (Procedure)
力-殻は、ズワイガ二の甲羅の冷凍乾燥品をミニブレンダ一によつて粉砕したものを 試料として用いた。水は、超純水製造装置(野村マイクロサイエンス社製ミニピュア 一 TW-250RU)で製造した超純水を用いた。  As the force-shell, a frozen and dried product of the snow crab shell was crushed with a mini blender and used as a sample. As the water, ultrapure water produced by an ultrapure water production apparatus (Minipure TW-250RU manufactured by Nomura Micro Science Co., Ltd.) was used.
[0105] 内径 6.4mm、外径 9.5mm、長さ 150mm、内容積約 8.0cm3のステンレスパイプ(SUS31 6製)の両端に SWAGELOKキャップを取り付けた反応管を用意した。該反応管に、 0. 1または 0.2gの力-殻と水 2gを入れ、溶存酸素をアルゴンで置換した後、反応管を閉 じた。該反応管を、硝酸カリウムと硝酸ナトリウムを 1:1の割合で添加して所定温度 (53 3〜593K)に予熱したソルトバスに投入し、所定時間(1〜10分)静置した。その後、ソ ルトバスから反応管を速やかに取り出し、水中に投じて急冷した。 [0105] A reaction tube having SWAGELOK caps attached to both ends of a stainless steel pipe (made of SUS316) having an inner diameter of 6.4 mm, an outer diameter of 9.5 mm, a length of 150 mm, and an internal volume of about 8.0 cm 3 was prepared. The reaction tube was charged with 0.1 or 0.2 g of force-shell and 2 g of water, and after replacing the dissolved oxygen with argon, the reaction tube was closed. The reaction tube was added to a salt bath in which potassium nitrate and sodium nitrate were added at a ratio of 1: 1 and preheated to a predetermined temperature (533 to 593 K), and allowed to stand for a predetermined time (1 to 10 minutes). Thereafter, the reaction tube was quickly taken out from the salt bath and poured into water to quench it.
[0106] 反応管中の試料について、 2500rpmで 10分遠心分離し、水で洗浄する工程を 3回 繰り返した後、ろ過して、水相と固相とに分離した。次いで、それぞれの相について、 成分分析を行った。 [0106] The process of centrifuging the sample in the reaction tube at 2500 rpm for 10 minutes and washing with water three times After repeating, it was filtered and separated into an aqueous phase and a solid phase. Next, component analysis was performed for each phase.
[0107] (測定方法)  [0107] (Measurement method)
生成物として水相に含まれる有機酸は、高速液体クロマトグラフ有機酸分析システ ム (Shimadzu LC-10A、分離法:イオン排除クロマトグラフ、検出法:ポストカラム pH緩 衝化電気伝導度検出法 (カラム: Shim-pack SCR-102H 2本直列、移動相: 5mol/m3 p-トルエンスルホン酸水溶液、流量 1.33 X 10— 8m3/s、緩衝液: 5mol/m3 p-トルエンス ルホン酸水溶液、 0.1mol/m3EDTA、 20mol/m3 Bis- Tris水溶液、検出器: Shimazu CD D-6A、カラム温度: 318K)を用いて分析した。 Organic acids contained in the aqueous phase as products are analyzed by high-performance liquid chromatographic organic acid analysis system (Shimadzu LC-10A, separation method: ion exclusion chromatograph, detection method: post-column pH buffered conductivity detection method ( column: Shim-pack SCR-102H 2 in series, mobile phase: 5mol / m 3 p- toluenesulfonic acid aqueous solution, flow rate 1.33 X 10- 8 m 3 / s , buffer: 5mol / m 3 p- toluenesulfonic sulfonic acid solution 0.1 mol / m 3 EDTA, 20 mol / m 3 Bis-Tris aqueous solution, detector: Shimazu CD D-6A, column temperature: 318K).
[0108] 生成物として水相に含まれるアミノ酸濃度は HPLCシステム (Shimadzu LC-10A、 IS C-07/S1504カラム、移動相: 4種類、流量 8.33 X 10— 9m3/s、温度: 328K)と蛍光光度計 (Shimadzu RF-535)を用いて、ポストカラム法(反応試薬: 2種類、流量: 5 X 10— 9m3/s) により決定した。 [0108] amino acid concentration in the aqueous phase as a product HPLC system (Shimadzu LC-10A, IS C -07 / S1504 column, mobile phase: four, flow rate 8.33 X 10- 9 m 3 / s , Temperature: 328K ) and using a fluorescence photometer (Shimadzu RF-535), post-column (reagent: two, flow rate: determined by 5 X 10- 9 m 3 / s ).
[0109] 水相に含まれる糖は、 日本分光 (株)製高速液体クロマトグラフ糖分析システム HSS- 1500 (カラム: Shodex SUGAR KS-804、移動相:水、流量 1.0cm3/min、検出器:示差 屈折計 MD-2010偏向型、カラム温度: 313K)を用いて分析した。 [0109] The sugar contained in the aqueous phase is a high-performance liquid chromatographic sugar analysis system HSS- 1500 (column: Shodex SUGAR KS-804, mobile phase: water, flow rate 1.0 cm 3 / min, detector, manufactured by JASCO Corporation : Differential refractometer MD-2010 deflection type, column temperature: 313K).
[0110] 水相中の全有機炭素量 (TOC)は、 TOC分析装置(Shimadzu TOC-500)により測定 した。標準的方法に従って、 0.01cm3の水溶性生成物を TOC分析装置に注入した。 測定は、高純度空気流量 2.5 X 10—6m3/sの条件で、全炭素 (TC)の標準溶液として 25 Oppmのフタル酸水素カリウム、無機炭素(IC)の標準溶液として 250ppmの炭酸水素 ナトリウムと炭酸ナトリウムの混合溶液を使用して行い、 TOCは TCから ICを差し引い て求めた。 [0110] The total organic carbon content (TOC) in the aqueous phase was measured with a TOC analyzer (Shimadzu TOC-500). According to standard methods, 0.01 cm 3 of water-soluble product was injected into the TOC analyzer. Measurements under conditions of high purity air flow rate 2.5 X 10- 6 m 3 / s , all 25 potassium hydrogen phthalate of Oppm as standard solution of carbon (TC), 250 ppm of bicarbonate as a standard solution of inorganic carbon (IC) This was performed using a mixed solution of sodium and sodium carbonate, and TOC was determined by subtracting IC from TC.
[0111] 炭酸カルシウムが分解.反応して、水相中に溶出しているカルシウムイオンの測定 は、セイコーインスツルメント (株)製 ICPプラズマ発光分析装置 SPS7800を用いて濃度 を測定 (測定波長 393.366nm)して行った。  [0111] Calcium ions dissolved in the aqueous phase after decomposition and reaction of calcium carbonate were measured using the SPS7800 ICP plasma emission spectrometer manufactured by Seiko Instruments Inc. (measurement wavelength 393.366). nm).
[0112] なお、下記実施例 1及び 2においても、本実験例と同様の測定方法を用いた。  [0112] In Examples 1 and 2 below, the same measurement method as in this experimental example was used.
[0113] (結果)  [0113] (Result)
図 1に、力二殻の固相残存率と反応時間との関係を調べた結果を示す。常温'常圧 の水では反応は起こらない。し力し、図 1に示されるように、 533〜593Kの高温で亜臨 界水処理を行うことにより、固相の重量は反応時間とともに減少した。このことから、こ の条件下では脱蛋白が速やかに起こると考えられる。しかし、固相残存率は 50%以上 となり、従来法 (実験例 1)から推定される物質収支から考察すると、炭酸カルシウム ゃキチンは分解されて 、な 、可能性が高 、と考えられる。 Figure 1 shows the results of investigating the relationship between the solid-phase residual rate of the force-shell and the reaction time. Normal temperature 'normal pressure' No reaction occurs with water. However, as shown in FIG. 1, by performing subcritical water treatment at a high temperature of 533 to 593K, the weight of the solid phase decreased with the reaction time. From this, it is considered that deproteinization occurs rapidly under these conditions. However, the solid phase residual ratio is 50% or more, and considering the mass balance estimated from the conventional method (Experimental Example 1), it is considered that calcium carbonate and chitin are decomposed and are highly likely.
[0114] また、反応終了後、水相中に存在する TOCや IC値、アミノ酸濃度、有機酸濃度を測 定したところ、 ICの値はほぼ 0に近ぐ分解された蛋白質は大部分がアミノ酸、有機酸 として加水分解されていることが分力つた。アミノ酸は、プロリン、ァラニン、メチォニン 、ヒスチジン、アルギニンなどが生産されていた。また有機酸は、リンゴ酸、コハク酸、 乳酸、蟻酸、酢酸、ピログルタミン酸などが生産されていた。また、それらの収率は反 応時間とともに大きくなること、アミノ酸ではァラニンやアルギニン、有機酸では酢酸 やピログルタミン酸等の収率が高いことが分力つた。  [0114] After the reaction was completed, the TOC, IC value, amino acid concentration, and organic acid concentration present in the aqueous phase were measured. As a result, most of the degraded proteins whose IC values were close to 0 were mostly amino acids. As a result, it was hydrolyzed as an organic acid. As amino acids, proline, alanine, methionine, histidine, arginine and the like were produced. Organic acids such as malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid were produced. In addition, the yields increased with the reaction time, and the yields of alanine and arginine for amino acids and acetic acid and pyroglutamic acid for organic acids were high.
[0115] 次いで、炭酸カルシウムの分解に関する反応温度と反応時間の影響を調べるため に、反応温度を 533Κ又は 563Κ、反応時間を 1分又は 2分と設定して、実験を行った。 その結果、図 2に示されるように、 563Κの亜臨界状態の水溶媒中で 2分間処理では、 炭酸カルシウムはほとんど分解されな力つた。温度が高い程、分解力が強いと考えら れるので、 563Κ以下の亜臨界状態の水溶媒中の処理では、炭酸カルシウムは分解 されないと考えられる。同様に、キチンの分解に関する反応温度と反応時間の影響を 調べるために、反応温度を 533Κと 563Κに設定し、反応時間を 1分又は 2分と設定して 実験を行った。その結果、図 3に示されるように、 563Κの亜臨界状態の水溶媒中で 2 分間処理しても、キチンはほとんど分解されな力つた。ただし、色は褐色に変化して いることから、一部は熱分解して、糖分のメイラード反応により、メラノィジンが生成し て 、るものと推察される。高純度のキチン生産のためには炭酸カルシウム及び蛋白 質をキチン力 分離しなければならないが、溶媒として水を用いた場合には十分な結 果が得られな 、ことがわかった。  [0115] Next, in order to investigate the influence of the reaction temperature and reaction time on the decomposition of calcium carbonate, the reaction temperature was set to 533 ° C or 563 ° C, and the reaction time was set to 1 minute or 2 minutes. As a result, as shown in Fig. 2, when treated for 2 minutes in a subcritical water solvent at 563 mm, calcium carbonate was hardly decomposed. It is considered that the higher the temperature, the stronger the decomposing power. Therefore, it is considered that calcium carbonate is not decomposed by treatment in a subcritical water solvent of 563 mm or less. Similarly, in order to investigate the effect of reaction temperature and reaction time on the degradation of chitin, the reaction temperature was set to 533 ° C and 563 ° C, and the reaction time was set to 1 minute or 2 minutes. As a result, as shown in Fig. 3, the chitin was hardly decomposed even when treated for 2 minutes in a subcritical water solvent at 563mm. However, since the color has changed to brown, it is presumed that a part of it is thermally decomposed and melanoidin is produced by the Maillard reaction of sugar. In order to produce high-purity chitin, it was found that calcium carbonate and protein had to be separated by chitin, but sufficient results could not be obtained when water was used as a solvent.
[0116] 実施例 1  [0116] Example 1
実験例 1及び 2の結果、並びに、処理工程で生成物に酢酸が含まれることや弱酸を 用いた方が反応装置の腐食が少ないことなどを考慮し、酢酸水溶液中で亜臨界処 理することを試みた。 Considering the results of Experimental Examples 1 and 2 and the fact that acetic acid is contained in the product in the treatment process and that the reactor is less corrosive when using weak acid, the subcritical treatment is carried out in an acetic acid aqueous solution. Tried to make sense.
[0117] (手順)  [0117] (Procedure)
溶媒として酢酸水溶液を用いる以外は、実験例 1と同様の手順で、力-殻を亜臨界 状態で処理した。  The force-shell was treated in the subcritical state in the same procedure as in Experimental Example 1 except that an acetic acid aqueous solution was used as the solvent.
[0118] 酢酸水溶液は、酢酸 (和光純薬製特級試薬)を、超純水製造装置 (野村マイクロサ ィエンス社製ミニピュア一 TW-250RU)で製造した超純水で、所定濃度に調製したも のを用いた。  [0118] The acetic acid aqueous solution is an acetic acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) which is prepared with ultrapure water produced by an ultrapure water production apparatus (Minipure 1 TW-250RU manufactured by Nomura Microscience Co., Ltd.) to a predetermined concentration. Was used.
[0119] (結果)  [0119] (Result)
まず、炭酸カルシウムの分解に関する酢酸水溶液の濃度と反応温度の影響を調べ るために、炭酸カルシウムに対しィ匕学反応量論モル比で約 0.03倍の濃度 (0.0174mol /1)又は約 3倍の濃度 (1.74mol/l)に調整した酢酸水溶液中で、温度を 563K、 593Κ又 は 623Κに設定して亜臨界反応を行った。この場合の炭酸カルシウムの残存率と反応 時間との関係を調べた結果を図 4に示す。  First, in order to investigate the influence of the concentration of aqueous acetic acid solution and the reaction temperature on the decomposition of calcium carbonate, the concentration is about 0.03 times (0.0174 mol / 1) or about 3 times the stoichiometric molar ratio to calcium carbonate. The subcritical reaction was performed in an acetic acid aqueous solution adjusted to a concentration of 1.74 mol / l at a temperature of 563 K, 593 K or 623 K. Figure 4 shows the results of investigating the relationship between the residual rate of calcium carbonate and the reaction time.
[0120] 図 4の結果から、酢酸濃度 0.0174mol/l、すなわち化学反応量論モル比である 1対 2 よりかなり小さい濃度である場合は炭酸カルシウムの分解はほとんど起こらないが、 酢酸濃度 1.74mol/l、すなわち化学反応量論モル比 1対 3の場合には 1分という非常 に短 、反応時間にお ヽても炭酸カルシウムはほぼ完全に分解し、水相中に酢酸力 ルシゥムとして溶解して 、ることが分力つた。  [0120] From the results in FIG. 4, when the acetic acid concentration is 0.0174 mol / l, that is, a concentration considerably lower than the chemical reaction stoichiometric molar ratio of 1: 2, the decomposition of calcium carbonate hardly occurs, but the acetic acid concentration is 1.74 mol. / l, that is, when the stoichiometric molar ratio is 1 to 3, it is very short of 1 minute, and even during the reaction time, calcium carbonate decomposes almost completely and dissolves in the aqueous phase as acetic acid lucium. And that was a part of it.
[0121] 次に、溶媒として酸性水溶液を用いた場合におけるキチンに対する反応温度の影 響を調べるために、反応温度を、 563K、 593Κ又は 623Κに設定して実験を行った。そ の結果、図 5に示すように、酢酸濃度 0.174mol/lにおいて、温度 563〜623Kの亜臨界 状態の酢酸水溶液中の処理によりキチンが分解されること、更に温度が高いほど、ま た反応時間が長いほど分解量が増加する傾向があることがわ力つた。  [0121] Next, in order to investigate the influence of the reaction temperature on chitin when an acidic aqueous solution was used as the solvent, an experiment was conducted with the reaction temperature set to 563K, 593Κ or 623Κ. As a result, as shown in Fig. 5, when the acetic acid concentration is 0.174 mol / l, chitin is decomposed by the treatment in an acetic acid aqueous solution in a subcritical state at a temperature of 563 to 623 K. It was obvious that the longer the time, the more the amount of decomposition tends to increase.
[0122] また、反応終了後、水相中に存在する TOCや IC値、アミノ酸濃度、有機酸濃度を測 定したところ、分解された蛋白質は大部分がアミノ酸、有機酸として加水分解されて いることが分力つた。  [0122] Moreover, when the TOC, IC value, amino acid concentration, and organic acid concentration present in the aqueous phase were measured after the reaction was completed, most of the degraded proteins were hydrolyzed as amino acids and organic acids. I was divided.
[0123] アミノ酸は、シスチン、セリン、ノ リン、スレオニン、グリシン、プロリン、ァラニン、メチ ォニン、ヒスチジン、ァノレギニン、ロイシン、イソロイシン、チロシン、リジン、フエニノレア ラニン、ァスパラギン酸、グルタミン酸などが生産されていた。 [0123] Amino acids are cystine, serine, norine, threonine, glycine, proline, alanine, methionine, histidine, anoleginine, leucine, isoleucine, tyrosine, lysine, and phenenorea. Lanin, aspartic acid, glutamic acid and the like were produced.
[0124] また有機酸は、リンゴ酸、コハク酸、乳酸、蟻酸、酢酸、ピログルタミン酸などが生産 されていた。  [0124] As organic acids, malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid and the like were produced.
[0125] また、分解物には、低分子キチン、キチンオリゴ糖、ダルコサミン、エリトロース、リン 酸などが含まれて 、ることもわかった。  [0125] It was also found that the degradation products contained low-molecular chitin, chitin oligosaccharide, darcosamine, erythrose, phosphoric acid and the like.
このように、本法は、アミノ酸、有機酸、低分子キチンゃキチンオリゴ糖、ダルコサミン などの糖類等の製法としても、有用であることが明らかになった。  Thus, this method was proved to be useful as a method for producing saccharides such as amino acids, organic acids, low-molecular chitin and chitin oligosaccharides, and darcosamine.
[0126] 実施例 2 [0126] Example 2
高純度で高分子量のキチンを得るためには、炭酸カルシウムや蛋白質を分解し、キ チンを分解しない条件が必要である。そのため、比較的温度が低い領域の亜臨界状 態での酸性水溶液中で処理を試みた。  In order to obtain high purity and high molecular weight chitin, it is necessary to decompose calcium carbonate and protein and not to decompose chitin. Therefore, the treatment was attempted in an acidic aqueous solution in a subcritical state in a relatively low temperature region.
[0127] (手順) [0127] (Procedure)
測定手順は、炭酸カルシウムに対しィ匕学反応量論モル比で約 3倍の濃度となる 1.74 mol/1の酢酸水溶液を用い、 453〜523Kの範囲の比較的低 、温度で反応温度を設定 した以外は、実施例 1と同様にして、亜臨界処理を行った。  The measurement procedure is 1.74 mol / 1 acetic acid aqueous solution that is about 3 times the chemical reaction stoichiometric molar ratio with respect to calcium carbonate, and the reaction temperature is set at a relatively low temperature in the range of 453 to 523K. A subcritical process was performed in the same manner as in Example 1 except that.
[0128] まず、炭酸カルシウムの分解と反応温度との関係を調べた。結果を図 6に示す。 [0128] First, the relationship between the decomposition of calcium carbonate and the reaction temperature was examined. The result is shown in FIG.
[0129] その結果、 453Κという亜臨界状態の下限値に近い温度においても、 1分という短い 反応時間で炭酸カルシウムは 90%以上分解されていることが分力つた。 As a result, it was found that even at a temperature close to the lower limit of the subcritical state of 453 mm, calcium carbonate was decomposed by 90% or more in a short reaction time of 1 minute.
[0130] 更に、キチン残存率と反応温度との関係を調べた。結果を図 7に示す。 [0130] Further, the relationship between the chitin residual rate and the reaction temperature was examined. The results are shown in FIG.
[0131] その結果、図 7に示されるように、比較的温度が低い亜臨界状態の場合においては[0131] As a result, as shown in FIG. 7, in the subcritical state where the temperature is relatively low,
、キチンの約 80%以上が分解されずに残って 、ることが分力つた。 About 80% or more of chitin remained undecomposed, and it became a component.
[0132] 次に、力二殻からの炭酸カルシウム回収率と反応温度との関係を調べた。結果を図 8に示す。その結果、酢酸濃度 1.74mol/l、反応時間 1分の一定条件で、温度を 453 〜493Kに変化させて処理を行う場合、炭酸カルシウムの回収率は温度に依存しない ことがわ力つた。更に、従来法 (実験例 1)で得られた炭酸カルシウムの除去量から判 断して本条件にぉ 、て力-殻に含まれる炭酸カルシウムがほぼ完全に分解され、水 相中に酢酸カルシウムとして溶解して 、ることが分力つた。 [0132] Next, the relationship between the calcium carbonate recovery from the force shell and the reaction temperature was examined. The results are shown in FIG. As a result, it was found that the recovery rate of calcium carbonate does not depend on the temperature when the treatment was carried out under conditions of acetic acid concentration of 1.74 mol / l and reaction time of 1 minute and changing the temperature from 453 to 493K. Furthermore, judging from the removal amount of calcium carbonate obtained by the conventional method (Experimental Example 1), under this condition, the calcium carbonate contained in the force-shell is almost completely decomposed, and calcium acetate is contained in the aqueous phase. As it melted, it became a component.
[0133] 更に、力-殻からの固相残存率と反応温度との関係を調べるため、 1.74mol/lの酢 酸水溶液を用いて、 453〜523Kの範囲で温度を設定して処理を行った。測定結果を 図 9に示す。 [0133] Furthermore, in order to investigate the relationship between the solid-phase residual rate from the force-shell and the reaction temperature, 1.74 mol / l vinegar The treatment was carried out by setting the temperature in the range of 453 to 523 K using an acid aqueous solution. Figure 9 shows the measurement results.
[0134] その結果、酢酸濃度 1.74mol/l、反応時間 1分の一定条件において、反応温度を 45 3〜493Kに変化させた場合、従来法 (実験例 1)で得られた残存固相の量から判断し て、炭酸カルシウム以外にも、力-殻に含まれる蛋白質、脂質及び色素がキチンから 分離して!/、ることがわ力つた。  As a result, when the reaction temperature was changed from 45 3 to 493 K under the constant conditions of acetic acid concentration 1.74 mol / l and reaction time 1 minute, the residual solid phase obtained by the conventional method (Experimental Example 1) Judging from the amount, in addition to calcium carbonate, it was found that the proteins, lipids and pigments contained in the force-shell were separated from the chitin! /.
[0135] 残存固相は処理温度に関係なく初期重量の約 40%であったが、得られた固相をさ らに塩酸処理したところ ICP分析により炭酸カルシウムが 3〜5%含まれることがわかつ た。この値は市販されているキチン (従来法により製造されたもの)に含まれる炭酸力 ルシゥムと同様な値であり、炭酸カルシウムを全く含まない場合の固相残存率との差 に相当する。このことから、本発明により非常に純度の高いキチンが得られていること が分かった。  [0135] The residual solid phase was about 40% of the initial weight regardless of the treatment temperature, but when the obtained solid phase was further treated with hydrochloric acid, it was found to contain 3-5% calcium carbonate by ICP analysis. Wakata. This value is similar to the carbonated lucium contained in commercially available chitin (manufactured by the conventional method), and corresponds to the difference from the solid phase residual rate when no calcium carbonate is contained. From this, it was found that very high purity chitin was obtained by the present invention.
[0136] 更に、反応時間を長くすると、炭酸カルシウムの残存率が更に低減され、 10分後に は、炭酸カルシウムが全くない場合、すなわち、純度 100%のキチンと同等の固相残 存率が得られた。このことからも、本発明により非常に純度の高いキチンが得られて いることが確認できた。  [0136] Further, when the reaction time is lengthened, the residual rate of calcium carbonate is further reduced, and after 10 minutes, when there is no calcium carbonate, that is, a solid phase residual rate equivalent to 100% pure chitin is obtained. It was. From this fact, it was confirmed that chitin with very high purity was obtained by the present invention.
[0137] また、反応終了後の水溶液中には、溶媒として水を用いた場合とは異なり、酢酸と グリシンのみが検出されたので、蛋白質の加水分解によって生成した有機酸の一部 は力-殻に含まれる炭酸カルシウムとの反応により塩を形成し、また、アミノ酸の一部 は酢酸と炭酸カルシウムの反応によって生成したカルシウムイオンや二酸ィ匕炭素によ り、さらに反応 '分解したものと考えられる。  [0137] Furthermore, unlike the case where water was used as the solvent, only acetic acid and glycine were detected in the aqueous solution after the completion of the reaction, so some of the organic acids produced by protein hydrolysis were A salt is formed by the reaction with calcium carbonate contained in the shell, and some of the amino acids are further reacted and decomposed by calcium ions and carbon dioxide produced by the reaction of acetic acid and calcium carbonate. Conceivable.
[0138] 上記実施例と実験例との比較力 示されるように、亜臨界状態にして活性ィ匕した酸 性水溶液を用いることで、キチンを含む有機物における脱灰、脱色、脱蛋白の同時 処理を 1分程度の短い反応時間で簡単に行うことができ、従来法より少ないプロセス 且つ低コストでキチンを含む有機物の処理を実施できることがわ力つた。  [0138] As shown by the comparative power between the above examples and experimental examples, by using an acidic aqueous solution activated in a subcritical state, simultaneous decalcification, decolorization, and deproteinization of organic matter containing chitin Was able to be carried out easily with a reaction time as short as 1 minute, and it was remarkable that organic matter containing chitin could be carried out at a lower cost and at a lower cost than conventional methods.
[0139] また、弱酸である酢酸を用いることで、強酸、強塩基を使わずに、高純度のキチンを 生産することが可能であり、従来法で必要な中和のための水を全く必要とせず、逆に 反応後に残った酢酸を酸性水溶液の成分として再利用することも可能であることがわ [0139] By using acetic acid, which is a weak acid, it is possible to produce high-purity chitin without using a strong acid or a strong base. On the contrary, acetic acid remaining after the reaction can be reused as a component of the acidic aqueous solution.
。 4 . Four
Sl78lZ0/S00Zdf/X3d 81 86C.S0/900Z OAV Sl78lZ0 / S00Zdf / X3d 81 86C.S0 / 900Z OAV

Claims

請求の範囲 The scope of the claims
[1] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理するこ とを特徴とする、キチンの精製方法。  [1] A method for purifying chitin, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
[2] キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理する、請求項 1に記載の 精製方法。  [2] The purification method according to [1], wherein the organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state.
[3] キチンを含む有機物を、 493K未満の亜臨界状態の酸性水溶液中で処理する請求 項 1に記載の精製方法。  [3] The purification method according to claim 1, wherein the organic matter containing chitin is treated in an acidic aqueous solution in a subcritical state of less than 493K.
[4] 酸性水溶液が有機酸水溶液である請求項 1に記載の精製方法。 [4] The purification method according to [1], wherein the acidic aqueous solution is an organic acid aqueous solution.
[5] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理し、処 理後のキチンを脱ァセチルイ匕することを特徴とするキトサンの製造方法。 [5] A method for producing chitosan, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state, and deacetylating the treated chitin.
[6] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理するこ とを特徴とする低分子キチン及び Z又はキチンオリゴ糖の製造方法。 [6] A method for producing low-molecular chitin and Z or chitin oligosaccharide, characterized by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state.
[7] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理し、得 られる低分子キチン及び Z又はキチンオリゴ糖を脱ァセチルイ匕することを特徴とする 低分子キトサン及び Z又はキトサンオリゴ糖の製造方法。 [7] A low molecular weight chitosan and Z characterized in that an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical or supercritical state, and the resulting low molecular chitin and Z or chitin oligosaccharide is deacetylated. Or the manufacturing method of chitosan oligosaccharide.
[8] キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理するこ とを特徴とするキチン分解物及び Z又は蛋白分解物の製造方法。  [8] A method for producing a chitin degradation product and a Z or protein degradation product comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.
PCT/JP2005/021845 2004-11-29 2005-11-29 Method for processing organic matter containing chitin WO2006057398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547929A JP5013878B2 (en) 2004-11-29 2005-11-29 Treatment of organic matter containing chitin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-343654 2004-11-29
JP2004343654 2004-11-29

Publications (1)

Publication Number Publication Date
WO2006057398A1 true WO2006057398A1 (en) 2006-06-01

Family

ID=36498131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021845 WO2006057398A1 (en) 2004-11-29 2005-11-29 Method for processing organic matter containing chitin

Country Status (2)

Country Link
JP (1) JP5013878B2 (en)
WO (1) WO2006057398A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215408A (en) * 2008-03-10 2009-09-24 Kyosei Seiyaku Kk Alpha-glucosidase inhibitor and process for producing the same
JP2011515541A (en) * 2008-03-19 2011-05-19 アグラテック インターナショナル インコーポレイテッド Chitosan generation method
JP2011167185A (en) * 2010-01-21 2011-09-01 Institute Of National Colleges Of Technology Japan Method for producing decomposed chitin
JP2012149019A (en) * 2011-01-20 2012-08-09 Institute Of National Colleges Of Technology Japan Method and apparatus for producing chitin monosaccharide derivative
CN104231108A (en) * 2014-10-15 2014-12-24 中国林业科学研究院林产化学工业研究所 Production method for extracting tremella polysaccharide by subcritical water extraction-hot water digestion two-step method
JP2015048399A (en) * 2013-08-30 2015-03-16 独立行政法人国立高等専門学校機構 Production device and production method for organic matter
WO2017148186A1 (en) * 2016-02-29 2017-09-08 苏州市贝克生物科技有限公司 Method for extracting chitin from oyster shells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432538B (en) * 2015-08-13 2020-05-15 中国科学院金属研究所 Chitin oligosaccharide, chitooligosaccharide and preparation method of chitooligosaccharide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531000A (en) * 1990-09-08 1993-02-09 Kobe Steel Ltd Selective hydrolysis and/or thermal decomposition of natural or synthetic polymer
JPH10298192A (en) * 1997-04-30 1998-11-10 Ajinomoto Co Inc Production of erythrose
JP2002020401A (en) * 2000-07-11 2002-01-23 Toyota Motor Corp Process for formation of cellulose
JP2002128802A (en) * 2000-10-30 2002-05-09 Ishikawa Pref Gov Method of lowering molecular weight of polysaccharide
JP2005040025A (en) * 2003-07-24 2005-02-17 Hitachi Zosen Corp Method for hydrolyzing polysaccharide substance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947961B2 (en) * 2004-11-24 2012-06-06 国立大学法人長岡技術科学大学 Pressurized hot water treatment method for mushroom cultivation waste fungus bed, compost production method using the same, and compost by this production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531000A (en) * 1990-09-08 1993-02-09 Kobe Steel Ltd Selective hydrolysis and/or thermal decomposition of natural or synthetic polymer
JPH10298192A (en) * 1997-04-30 1998-11-10 Ajinomoto Co Inc Production of erythrose
JP2002020401A (en) * 2000-07-11 2002-01-23 Toyota Motor Corp Process for formation of cellulose
JP2002128802A (en) * 2000-10-30 2002-05-09 Ishikawa Pref Gov Method of lowering molecular weight of polysaccharide
JP2005040025A (en) * 2003-07-24 2005-02-17 Hitachi Zosen Corp Method for hydrolyzing polysaccharide substance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215408A (en) * 2008-03-10 2009-09-24 Kyosei Seiyaku Kk Alpha-glucosidase inhibitor and process for producing the same
JP2011515541A (en) * 2008-03-19 2011-05-19 アグラテック インターナショナル インコーポレイテッド Chitosan generation method
JP2011167185A (en) * 2010-01-21 2011-09-01 Institute Of National Colleges Of Technology Japan Method for producing decomposed chitin
JP2012149019A (en) * 2011-01-20 2012-08-09 Institute Of National Colleges Of Technology Japan Method and apparatus for producing chitin monosaccharide derivative
JP2015048399A (en) * 2013-08-30 2015-03-16 独立行政法人国立高等専門学校機構 Production device and production method for organic matter
CN104231108A (en) * 2014-10-15 2014-12-24 中国林业科学研究院林产化学工业研究所 Production method for extracting tremella polysaccharide by subcritical water extraction-hot water digestion two-step method
WO2017148186A1 (en) * 2016-02-29 2017-09-08 苏州市贝克生物科技有限公司 Method for extracting chitin from oyster shells

Also Published As

Publication number Publication date
JP5013878B2 (en) 2012-08-29
JPWO2006057398A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006057398A1 (en) Method for processing organic matter containing chitin
Brück et al. Chitin and chitosan from marine organisms
CN103689156A (en) Processing method of instant tea with less organophosphorus pesticide residue
KR101775240B1 (en) Method for producing ferulic acid from corn bran with high-purity and high-yield
WO2013170017A2 (en) Enzyme-based protein separation and enrichment from soy meal, wheat meal, and other protein-rich materials derived from plant seeds, fruits and other biomass
EP3397066B1 (en) Process for separating proteins from biomass materials
CN112979482A (en) High-purity L-valine and preparation method and application thereof
US8173837B1 (en) Process for the production of L-citrulline from watermelon flesh and rind
CN109527196B (en) Method for improving enzymolysis efficiency and yield of soybean protein
Pambudi et al. Synthesis of water-soluble chitosan from crab shells (Scylla serrata) waste
JP2870871B2 (en) A method for treating crustacean shells using enzymes
JP4571924B2 (en) Yeast extract and method for producing the same
Sharmila et al. Immobilization of plant protease using calcium alginate beads
CN104774827A (en) Method for preparing alginate lyase from abalone internal organs
CN111939877A (en) Method for preparing adsorbent for methylene blue and organophosphorus pesticide residues in water body by using tea leaves, prepared adsorbent and application
CA2604328C (en) Purification method and production method for cellobiose
JPH0648990B2 (en) Method for purifying tryptophan
KR100672813B1 (en) Purification methods for succinic acid
CN114133346A (en) Alliin and allicin combined extraction and preparation method
JPS6121102A (en) Preparation of chitosan oligosaccharide
CN110183547A (en) One kind can obtain the efficient method for post extraction of right polysaccharide
CN115645312B (en) Application of sargassum pallidum polyphenol in preparing whitening cosmetics and preparation method thereof
EP1613662B1 (en) Novel method of obtaining chondroitin sulphuric acid and uses thereof
JP2007259821A (en) Method for producing sugar alcohol
KR100834518B1 (en) Method for preparing glucosamine organic acid with improved taste by an enzymatic process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05811716

Country of ref document: EP

Kind code of ref document: A1