JP5013878B2 - Treatment of organic matter containing chitin - Google Patents

Treatment of organic matter containing chitin Download PDF

Info

Publication number
JP5013878B2
JP5013878B2 JP2006547929A JP2006547929A JP5013878B2 JP 5013878 B2 JP5013878 B2 JP 5013878B2 JP 2006547929 A JP2006547929 A JP 2006547929A JP 2006547929 A JP2006547929 A JP 2006547929A JP 5013878 B2 JP5013878 B2 JP 5013878B2
Authority
JP
Japan
Prior art keywords
chitin
aqueous solution
acid
organic
subcritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006547929A
Other languages
Japanese (ja)
Other versions
JPWO2006057398A1 (en
Inventor
弘之 吉田
秀美 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture University
Original Assignee
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture University filed Critical Osaka Prefecture University
Priority to JP2006547929A priority Critical patent/JP5013878B2/en
Publication of JPWO2006057398A1 publication Critical patent/JPWO2006057398A1/en
Application granted granted Critical
Publication of JP5013878B2 publication Critical patent/JP5013878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H5/00Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium
    • C07H5/04Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium to nitrogen
    • C07H5/06Aminosugars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、キチンを含む有機物を効率よく処理し、有効に利用する方法に関する。詳細には、キチンを含む有機物を、亜臨界又は超臨界状態で処理し、高純度のキチン及び有用な物質を効率よく得る方法に関する。   The present invention relates to a method for efficiently treating and effectively using an organic substance containing chitin. Specifically, the present invention relates to a method for efficiently obtaining high-purity chitin and useful substances by treating an organic substance containing chitin in a subcritical or supercritical state.

キチンやキトサンは、種々の興味深い機能を有する天然物質として、その需要が高まっている。一方、カニ殻やエビ殻などのキチンやキトサンを含む有機性廃棄物が、魚市場や加工場から大量に排出されており、その廃棄物の有効な処理方法が焦眉の課題になっている。そこで、カニ殻やエビ殻などの廃棄物から、キチンやキトサンを生産する方法が検討されてきた。しかし、それらの有機性廃棄物からキチンやキトサンを単離精製するためには、灰分、蛋白質、脂質及び色素等をキチンから分離する処理が必要である。   The demand for chitin and chitosan is increasing as natural substances having various interesting functions. On the other hand, a large amount of organic waste containing chitin and chitosan such as crab shell and shrimp shell is discharged from the fish market and processing plant, and an effective treatment method of the waste is a serious issue. Therefore, methods for producing chitin and chitosan from waste such as crab shell and shrimp shell have been studied. However, in order to isolate and purify chitin and chitosan from these organic wastes, it is necessary to separate ash, proteins, lipids and pigments from chitin.

従来の方法では、その処理に多段階の工程と数日間の日程、多量の試薬や水、更には大量の廃水処理が必要であり、コスト面で大きな負担となっていた。そのため、キチン又はキトサンを含む廃棄物等の利用がほとんど行なわれなくなってきている。   The conventional method requires a multi-step process, a schedule of several days, a large amount of reagent and water, and a large amount of wastewater treatment, which is a heavy burden in terms of cost. Therefore, the utilization of the waste containing chitin or chitosan has been hardly performed.

一方、これまでにも、有機物や高分子化合物の処理方法として、亜臨界水や超臨界水による方法が報告されている(特開平05−031000号公報及び特開平11−342379号公報参照)。   On the other hand, methods using subcritical water or supercritical water have been reported as methods for treating organic substances and polymer compounds (see JP-A Nos. 05-031000 and 11-342379).

しかし、キチンやキトサンを高純度で取得することは難しかった。   However, it was difficult to obtain chitin and chitosan with high purity.

本発明は、キチンを含む有機物から、高純度のキチンを、少ないプロセスで、短時間で、かつ低いコストで取得する方法を提供することを主な目的とする。更に、キチンを含む有機物から、有用物質を取得する方法を提供することを主な目的とする。   The main object of the present invention is to provide a method for obtaining high-purity chitin from an organic substance containing chitin by a small number of processes in a short time and at a low cost. Furthermore, the main object is to provide a method for obtaining a useful substance from an organic substance containing chitin.

本発明者らは、上記課題を解決することを目的として、鋭意検討を重ねた結果、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、キチンを効率よく高純度で精製し得ることを見出し、更に検討を重ねて、本発明を完成するに至った。   As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have efficiently treated chitin by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state. The present inventors have found that it can be purified with high purity, and have further studied to complete the present invention.

即ち、本発明は、以下の精製方法及び製造方法に関する。   That is, the present invention relates to the following purification method and production method.

項1:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することを特徴とする、キチンの精製方法。   Item 1: A method for purifying chitin, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.

好ましくは、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を行うことを特徴とする、キチンの精製方法。   Preferably, chitin-containing organic matter is treated in a subcritical or supercritical acidic aqueous solution to separate ash, protein, lipid, and pigment from the chitin, thereby purifying chitin Method.

好ましくは、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階で行う工程を有する、キチンの精製方法。   Preferably, an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state or a supercritical state to thereby separate ash, protein, lipid and pigment from the chitin in one step. Purification method.

なお、本明細書における「キチンの精製方法」は「高純度キチンの製造方法」とも換言し得る。   In addition, the “purification method of chitin” in this specification can also be referred to as “a method for producing high-purity chitin”.

項2:キチンを含む有機物を亜臨界状態の酸性水溶液中で処理することを特徴とする、項1に記載の精製方法。   Item 2: The purification method according to Item 1, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state.

好ましくは、キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階で行う工程を有する、キチンの精製方法。   Preferably, a method for purifying chitin, comprising a step of separating ash, protein, lipid, and pigment from chitin in one step by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state.

項3:キチンを含む有機物を、493K未満の亜臨界状態の酸性水溶液中で処理する項1又は項2に記載の精製方法。   Item 3: The purification method according to Item 1 or Item 2, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state of less than 493K.

好ましくは、キチンを含む有機物を、493K未満の亜臨界状態の酸性水溶液中で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を一段階で行う工程を有する、キチンの精製方法。   Preferably, purification of chitin, comprising a step of separating ash, protein, lipid and pigment from chitin in a single step by treating an organic substance containing chitin in a subcritical acid aqueous solution of less than 493K Method.

項4:酸性水溶液が有機酸水溶液である項1〜3のいずれかに記載の精製方法。   Item 4: The purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an organic acid aqueous solution.

具体的態様には、酸性水溶液が酢酸水溶液である項1〜3のいずれかに記載の精製方法が含まれる。   The purification method according to any one of Items 1 to 3, wherein the acidic aqueous solution is an aqueous acetic acid solution.

項5:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理し、処理後のキチンを脱アセチル化することを特徴とするキトサンの製造方法。   Item 5: A method for producing chitosan, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, and deacetylating the treated chitin.

項5の態様には、項1〜4のいずれかに記載の方法によって、キチンを精製し、得られる精製キチンを脱アセチル化することを特徴とするキトサンの製造方法が含まれる。具体的態様には、キチンを含む有機物を亜臨界状態の酸性水溶液中で処理し、処理後のキチンを脱アセチル化することを特徴とするキトサンの製造方法が含まれる。   The embodiment of Item 5 includes a method for producing chitosan characterized by purifying chitin by the method according to any one of Items 1 to 4 and deacetylating the purified chitin obtained. A specific embodiment includes a method for producing chitosan characterized by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state and deacetylating the treated chitin.

また、具体的態様には、(1)キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、該有機物における灰分、蛋白質、脂質及び色素の分解を一段階で行ってキチンを得る工程、及び(2)(1)で得られるキチンを脱アセチル化する工程を有する高純度キトサンの製造方法も含まれる。   Further, in a specific embodiment, (1) by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, decomposition of ash, protein, lipid and pigment in the organic substance in one step. A method for producing high-purity chitosan having a step of obtaining chitin by performing and a step of deacetylating the chitin obtained in (2) and (1) is also included.

項6:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することを特徴とする低分子キチン及び/又はキチンオリゴ糖の製造方法。   Item 6: A method for producing a low-molecular chitin and / or chitin oligosaccharide, comprising treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state.

好ましくは、キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理する項6に記載の製造方法。   Preferably, the manufacturing method of claim | item 6 which processes the organic substance containing a chitin in the acidic aqueous solution of a subcritical state.

具体的態様には、酸性水溶液が有機酸水溶液、特に酢酸水溶液である項6に記載の製造方法が含まれる。   A specific embodiment includes the production method according to Item 6, wherein the acidic aqueous solution is an organic acid aqueous solution, particularly an acetic acid aqueous solution.

項7:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理し、得られる低分子キチン及び/又はキチンオリゴ糖を脱アセチル化することを特徴とする低分子キトサン及び/又はキトサンオリゴ糖の製造方法。   Item 7: An organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state or a supercritical state, and the low molecular chitin and / or chitin oligosaccharide obtained is deacetylated, and / or Or the manufacturing method of chitosan oligosaccharide.

項7の態様には、項6に記載の方法によって得られる低分子キチン及び/またはキチンオリゴ糖を脱アセチル化することを特徴とする低分子キトサン及び/又はキトサンオリゴ糖の製造方法が含まれる。   The embodiment of Item 7 includes a method for producing a low-molecular chitosan and / or chitosan oligosaccharide characterized by deacetylating the low-molecular chitin and / or chitin oligosaccharide obtained by the method of Item 6. .

項8:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することを特徴とする、キチン分解物及び/又は蛋白分解物の製造方法。   Item 8: A method for producing a chitin degradation product and / or a protein degradation product, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state or a supercritical state.

好ましくは、キチン分解物及び/又は蛋白分解物は、アミノ酸、有機酸、低分子糖類、ペプチド及び低分子水溶性蛋白質からなる群から選ばれる1以上の化合物である。   Preferably, the chitin degradation product and / or the protein degradation product is one or more compounds selected from the group consisting of amino acids, organic acids, low molecular sugars, peptides, and low molecular weight water-soluble proteins.

なお、本発明には、項1〜8から選ばれる1以上の方法を複数並行して実施する場合も含まれる。   The present invention includes a case where a plurality of one or more methods selected from items 1 to 8 are performed in parallel.

例えば、本発明の具体的態様の例には、以下の方法が含まれる。   For example, examples of specific embodiments of the present invention include the following methods.

項9:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することを特徴とする、キチンの精製と低分子キチン及び/又はキチンオリゴ糖の製造を、好ましくは一段階で、行う方法、
項10:キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することを特徴とする、キチンの精製と、低分子キチン、キチンオリゴ糖、キチン分解物及び/又は蛋白分解物の製造を、好ましくは一段階で、行う方法。
Item 9: Purification of chitin and production of low-molecular chitin and / or chitin oligosaccharide, characterized by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state, preferably in one step And how to do it,
Item 10: Purification of chitin, low molecular chitin, chitin oligosaccharide, chitin degradation product and / or proteolysis characterized by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state A method for producing a product, preferably in one step.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

キチンを含む有機物
本発明が対象とする有機物は、キチンを含むものであれば、特に限定されず、例えば、キチンを含む生体の構成物自体又はその処理物、或いは有機性廃棄物などを含む。
Organic matter containing chitin The organic matter targeted by the present invention is not particularly limited as long as it contains chitin, and includes, for example, a biological component itself containing chitin or a processed product thereof, or organic waste.

有機性廃棄物には、例えば、魚市場や水産加工処理場から出される食品加工廃棄物、家庭や学校等から出される生ごみや食品残渣等の食品廃棄物等が含まれる。   Organic waste includes, for example, food processing waste from fish markets and fish processing plants, food waste such as garbage and food residues from homes and schools, and the like.

具体的に、キチンを含む有機物には、カニ及び/又はエビの甲殻、昆虫の甲羅や脚、イカの甲や貝等の軟体動物の器官、珪藻類、菌類、キチン或いはキトサンを生産する微生物や細菌、又はそれらの処理物等が含まれる。   Specifically, organic matter containing chitin includes crab and / or shrimp shells, insect shells and legs, mollusc organs such as squid shells and shellfish, diatoms, fungi, microorganisms that produce chitin or chitosan, Bacteria or processed products thereof are included.

これらの有機物は、得られた原料をそのまま用いてもよく、また、適当な大きさに粉砕されたものでもよい。また予め乾燥などの前処理を行ったものでもよい。   These organic materials may be used as they are, or may be pulverized to an appropriate size. Further, a pretreatment such as drying may be performed in advance.

亜臨界状態又は超臨界状態の処理
本発明は、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理する工程を含む。
Treatment of Subcritical State or Supercritical State The present invention includes a step of treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or supercritical state.

キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、キチンからの灰分(具体的には炭酸カルシウム)、蛋白質、脂質及び色素の分離、換言すると、有機物においてキチンに付着している灰分、蛋白質、脂質及び色素のキチンからの除去を一段階で行うことが可能になり、多量の試薬や水の消費並びに大量の廃水の処理を不要とすることができる。また、処理に要するコストを格段に下げることができる。   By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, separation of ash (specifically, calcium carbonate), protein, lipid and pigment from chitin, in other words, chitin in the organic substance It is possible to remove ash, proteins, lipids and pigments adhering to the chitin in a single step, making it unnecessary to consume a large amount of reagents and water and to treat a large amount of waste water. In addition, the cost required for processing can be significantly reduced.

本発明において、亜臨界状態とは、溶媒の温度が433〜647K程度、中でも、433〜523K程度、特に433〜493K程度の状態にあること、及び圧力が0.62〜22.1MPa程度、中でも0.62〜4.0MPa程度、特に0.62〜2.32MPa程度の状態にあることを意味する。
本発明において、超臨界状態とは、溶媒の温度が647K以上、特に647K〜673K程度の状態にあること、及び圧力が22.1MPa以上、特に22.1〜30.0MPa程度の状態にあることを意味する。
In the present invention, the subcritical state means that the temperature of the solvent is about 433 to 647 K, especially about 433 to 523 K, particularly about 433 to 493 K, and the pressure is about 0.62 to 22.1 MPa, It means that it is in a state of about 0.62 to 4.0 MPa, particularly about 0.62 to 2.32 MPa.
In the present invention, the supercritical state means that the temperature of the solvent is 647 K or higher, particularly about 647 K to 673 K, and the pressure is 22.1 MPa or higher, particularly about 22.1 to 30.0 MPa. Means.

本発明では、特に、亜臨界状態で処理を行うことが好ましい。亜臨界状態で処理を行うことは、超臨界状態で処理を行うよりも、キチンの収率、換言すると、キチンの残存率が高くなる。特に、高分子量のキチンの残存率が高くなる。   In the present invention, it is particularly preferable to perform the treatment in a subcritical state. Processing in the subcritical state increases the yield of chitin, in other words, the chitin remaining rate, compared to processing in the supercritical state. In particular, the residual ratio of high molecular weight chitin increases.

亜臨界状態の中でも、比較的低い温度領域、好ましくは493K(220℃)未満の亜臨界状態で処理することにより、高分子量のキチンの収率を更に向上させることができる。比較的低い温度の亜臨界状態の処理は、より高い温度領域の処理に比べてキチンの熱分解が少なく、当初の分子量、或いは、高分子量のキチンの残存率を高くする。   Even in the subcritical state, the yield of high molecular weight chitin can be further improved by processing in a relatively low temperature range, preferably a subcritical state of less than 493 K (220 ° C.). The treatment in the subcritical state at a relatively low temperature causes less thermal decomposition of chitin than the treatment in a higher temperature region, and increases the residual ratio of the original molecular weight or high molecular weight chitin.

一方、比較的高い温度領域の亜臨界状態で処理することにより、低分子キチン、キチンオリゴ糖、キチン分解物及び/又は蛋白分解物の収率を向上させることができる。   On the other hand, the yield of low-molecular chitin, chitin oligosaccharide, chitin degradation product and / or protein degradation product can be improved by processing in a subcritical state in a relatively high temperature region.

キチンの精製
本発明は、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で、処理する工程を含むキチンの精製方法を提供する。亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、キチンが効率よく精製され、高純度のキチンが製造できる。
Purification of Chitin The present invention provides a method for purifying chitin, comprising a step of treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state. By treating in an acidic aqueous solution in a subcritical state or a supercritical state, chitin is efficiently purified, and high-purity chitin can be produced.

本発明の処理における有機物の量と酸性水溶液の量との割合は、処理の条件等に応じて適宜設定し得るが、通常、重量比で、有機物/酸性水溶液=0.05〜0.2程度である。   The ratio between the amount of the organic substance and the amount of the acidic aqueous solution in the treatment of the present invention can be appropriately set according to the treatment conditions and the like, but usually the organic matter / acidic aqueous solution is about 0.05 to 0.2 by weight.

本発明で用いる酸性水溶液は、酸成分を水溶液に添加して得ることができる。   The acidic aqueous solution used in the present invention can be obtained by adding an acid component to the aqueous solution.

酸成分の種類は特に限定されず、強酸や弱酸を用いることができる。   The kind of acid component is not particularly limited, and a strong acid or a weak acid can be used.

強酸には、塩酸、硝酸、硫酸等が含まれる。また、弱酸には、酢酸、乳酸、コハク酸、リンゴ酸、蟻酸、ピログルタミン酸、グリコール酸、クエン酸等の有機酸や、リン酸等の無機酸が含まれる。   Strong acids include hydrochloric acid, nitric acid, sulfuric acid and the like. In addition, the weak acid includes organic acids such as acetic acid, lactic acid, succinic acid, malic acid, formic acid, pyroglutamic acid, glycolic acid and citric acid, and inorganic acids such as phosphoric acid.

このうち、酢酸や乳酸等の有機酸が、反応器の腐食がない点や、処理中に蛋白質の分解によって生成したものを再利用し得る点で好ましい。   Of these, organic acids such as acetic acid and lactic acid are preferred because they do not corrode the reactor and can be reused by decomposition of proteins during processing.

具体的に、酸の再利用による処理は、以下のように行うことができる。   Specifically, the treatment by recycling the acid can be performed as follows.

キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、該キチンからの灰分、蛋白質、脂質及び色素の分離を行い、
該処理において、蛋白質が分解して生じた有機酸を用いて酸性水溶液を調製し、
該調製された酸性水溶液中で、キチンを含む有機物を、亜臨界状態又は超臨界状態で処理する。
By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state, ash, protein, lipid and pigment are separated from the chitin,
In the treatment, an acidic aqueous solution is prepared using an organic acid produced by protein degradation,
In the prepared acidic aqueous solution, the organic substance containing chitin is treated in a subcritical state or a supercritical state.

これにより、キチンを連続的に精製し、高純度キチンを連続的に製造することができる。   Thereby, chitin can be refine | purified continuously and a highly purified chitin can be manufactured continuously.

酸性水溶液の濃度は、処理条件等に応じて、適宜設定し得る。例えば、酢酸水溶液の場合、有機物中に通常含まれる炭酸カルシウムと酢酸との反応の化学量論モル比である1対2以上程度であればよく、通常1対2〜1対4程度である。特に出来る限り1対2に近い量論モル比が適当である。   The concentration of the acidic aqueous solution can be appropriately set according to the processing conditions and the like. For example, in the case of an acetic acid aqueous solution, it may be about 1 to 2 or more, which is the stoichiometric molar ratio of the reaction between calcium carbonate and acetic acid usually contained in an organic substance, and is usually about 1 to 2 to 1: 4. In particular, a stoichiometric molar ratio as close to 1 to 2 as possible is suitable.

処理の手順は特に限定されず、適宜設定し得る。例えば、キチンを含む有機物を酸性水溶液に添加し、得られる溶液を、亜臨界状態又は超臨界状態の条件に調製して反応させてもよい。   The processing procedure is not particularly limited, and can be set as appropriate. For example, an organic substance containing chitin may be added to an acidic aqueous solution, and the resulting solution may be prepared and reacted under subcritical or supercritical conditions.

処理時間も特に限定されないが、通常、1〜30分程度、好ましくは1〜10分程度である。   The treatment time is not particularly limited, but is usually about 1 to 30 minutes, preferably about 1 to 10 minutes.

処理後は、適宜分離精製を行うことができる。例えば、処理後の有機物を、濾過により、キチンが含まれる固相と、アミノ酸、有機酸、糖などの分解物を含む水相とに分離し、必要に応じて更に適宜精製を行って、キチンを単離することができる。   After the treatment, separation and purification can be appropriately performed. For example, the treated organic substance is separated by filtration into a solid phase containing chitin and an aqueous phase containing degradation products such as amino acids, organic acids, and sugars, and further purified as necessary to obtain chitin. Can be isolated.

キトサンの製造
キチンを含む有機物を、上述のように亜臨界状態又は超臨界状態の酸性水溶液中で処理して得られるキチンを、脱アセチル化処理することにより、高純度キトサンを得ることができる。
Production of chitosan High-purity chitosan can be obtained by deacetylating chitin obtained by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state as described above.

脱アセチル化処理の方法は特に限定されず、公知の方法を適宜用いることができる。   The method for the deacetylation treatment is not particularly limited, and a known method can be appropriately used.

例えば、キチンをアルカリや酵素を用いて処理する方法等を用いることができる。より具体的には、得られたキチンを、30〜60%の高濃度溶融水酸化ナトリウム溶液を用いて、353〜393Kの加熱攪拌条件で30分から5時間かけて処理することにより、脱アセチル化を行うことができる。   For example, a method of treating chitin with an alkali or an enzyme can be used. More specifically, the obtained chitin is deacetylated by treating it with 30-60% high-concentration molten sodium hydroxide solution under a heating and stirring condition of 353-393K for 30 minutes to 5 hours. It can be performed.

脱アセチル化の程度は特に限定されず、所望の物性を有するキトサンを得ることを目的として、適宜設定することができる。   The degree of deacetylation is not particularly limited, and can be set as appropriate for the purpose of obtaining chitosan having desired physical properties.

本方法により、キチンを含む廃棄物を有効に利用して、高純度キトサンを、従来に比べて少ないプロセスで、短時間で、効率よく、しかも低コストで製造することができる。   By this method, waste containing chitin can be used effectively, and high-purity chitosan can be produced in a short time, efficiently, and at a low cost with fewer processes than conventional methods.

低分子キチン及び/又はキチンオリゴ糖の製造
キチンを含む有機物を、上述のように亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、低分子キチン及び/又はキチンオリゴ糖を効率よく製造することもできる。
Production of low-molecular chitin and / or chitin oligosaccharide By treating an organic substance containing chitin in an acidic aqueous solution in a subcritical or supercritical state as described above, low-molecular chitin and / or chitin oligosaccharide can be efficiently produced. It can also be manufactured.

本明細書において、低分子キチンとは、有機物中に含まれるキチンが分解されて、より低分子となったキチンを意味する。またキチンオリゴ糖とは、キチンの分解により生成するオリゴ糖を意味する。   In the present specification, the low molecular chitin means chitin that has been decomposed into chitin contained in an organic substance to have a lower molecular weight. Moreover, chitin oligosaccharide means the oligosaccharide produced | generated by decomposition | disassembly of chitin.

低分子キチン及び/又はキチン分解物は、処理後、適宜分離精製を行うことにより、単離することができる。例えば、処理後の有機物を、濾過により、キチンが含まれる固相と、低分子化して可溶性となったキチン又はキチンオリゴ糖を含む水相とに分離し、必要に応じて更に適宜精製を行うことにより、所望の物質を単離することができる。   The low-molecular chitin and / or chitin degradation product can be isolated by appropriately separating and purifying after the treatment. For example, the organic substance after the treatment is separated by filtration into a solid phase containing chitin and an aqueous phase containing chitin or chitin oligosaccharide which has become low molecular weight and becomes soluble, and further purified as necessary. Thus, a desired substance can be isolated.

低分子キトサン及び/又はキトサンオリゴ糖の製造
キチンを含む有機物を上述のように亜臨界状態又は超臨界状態の酸性水溶液中で処理して得られる低分子キチン及びキチンオリゴ糖を、脱アセチル化処理することにより、低分子キトサン及び/又はキトサンオリゴ糖を得ることができる。
Production of low molecular chitosan and / or chitosan oligosaccharide Deacetylation treatment of low molecular chitin and chitin oligosaccharide obtained by treating an organic substance containing chitin in a subcritical or supercritical acidic aqueous solution as described above By doing so, a low molecular chitosan and / or chitosan oligosaccharide can be obtained.

脱アセチル化処理の方法は特に限定されず、上述と同様に、公知の方法を適宜用いることができる。   The method for the deacetylation treatment is not particularly limited, and a known method can be appropriately used as described above.

例えば、低分子キチン又はキチンオリゴ糖をアルカリや酵素を用いて処理する方法等を用いることができる。より具体的には、得られた低分子キチン又はキチンオリゴ糖を、30〜60%の高濃度溶融水酸化ナトリウム溶液を用いて、353〜393Kの加熱攪拌条件で30分から5時間かけて処理することにより、脱アセチル化を行うことができる。   For example, a method of treating low molecular chitin or chitin oligosaccharide with an alkali or an enzyme can be used. More specifically, the obtained low-molecular chitin or chitin oligosaccharide is treated with a high concentration molten sodium hydroxide solution of 30 to 60% under a heating and stirring condition of 353 to 393 K for 30 minutes to 5 hours. Thus, deacetylation can be performed.

脱アセチル化の程度は特に限定されず、所望の物性を有する低分子キトサン又はキトサンオリゴ糖を得ることを目的として、適宜設定することができる。   The degree of deacetylation is not particularly limited, and can be appropriately set for the purpose of obtaining low-molecular chitosan or chitosan oligosaccharide having desired physical properties.

本方法により、キチンを含む廃棄物を有効に利用して、低分子キトサン及びキトサンオリゴ糖を、少ないプロセスで、短時間で、効率よく、しかも低コストで製造することができる。   By this method, waste containing chitin can be effectively used to produce low-molecular chitosan and chitosan oligosaccharide in a short time, efficiently, and at low cost.

キチン分解物及び/又は蛋白分解物の製造
キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、キチンの一部及び/又は蛋白質が分解して、有用な物質を製造することができる。
Manufacture of chitin degradation product and / or proteolysis product A useful substance is obtained by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, so that part of the chitin and / or protein is degraded. Can be manufactured.

なお、キチン分解物及び/又は蛋白分解物とは、キチンの分解によって生成する化合物、蛋白質の分解によって生成する化合物及び/又はそれらの混合物を意味する。   The chitin degradation product and / or protein degradation product means a compound produced by the degradation of chitin, a compound produced by the degradation of protein, and / or a mixture thereof.

キチン分解物及び/又は蛋白分解物の具体的な態様の例は、アミノ酸、有機酸、低分子糖類、ペプチド及び低分子水溶性蛋白質からなる群から選ばれる1以上の化合物である。   An example of a specific embodiment of the chitin degradation product and / or proteolysis product is one or more compounds selected from the group consisting of amino acids, organic acids, low molecular sugars, peptides, and low molecular weight water-soluble proteins.

分解によって生成するアミノ酸の例には、シスチン、セリン、バリン、スレオニン、グリシン、プロリン、アラニン、メチオニン、ヒスチジン、アルギニン、ロイシン、イソロイシン、チロシン、リジン、フェニルアラニン、アスパラギン酸、グルタミン酸などが含まれる。   Examples of amino acids generated by decomposition include cystine, serine, valine, threonine, glycine, proline, alanine, methionine, histidine, arginine, leucine, isoleucine, tyrosine, lysine, phenylalanine, aspartic acid, glutamic acid and the like.

また、分解により生成する有機酸の例には、リンゴ酸、コハク酸、乳酸、蟻酸、酢酸、ピログルタミン酸などが含まれる。   Examples of the organic acid generated by decomposition include malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid and the like.

また、分解により生成する低分子糖類の例には、低分子キチン、キチンオリゴ糖、グルコサミン、エリトロースなどが含まれる。   Examples of low molecular weight saccharides produced by decomposition include low molecular weight chitin, chitin oligosaccharides, glucosamine, erythrose and the like.

また、他の分解物の例には、リン酸が含まれる。   Examples of other decomposition products include phosphoric acid.

これらの分解物は、資源として回収し、有効に再利用することができる。例えば、医薬品、調味料、健康飲料、添加剤等の成分として利用することができる。   These decomposition products can be recovered as resources and reused effectively. For example, it can be used as a component of pharmaceuticals, seasonings, health drinks, additives and the like.

従来、キチンを含む有機物の処理においては、脱蛋白処理に高額のコストを要し、しかも蛋白質はそのまま処分されていたが、本方法によれば、簡便かつ効率のよいプロセスで、高純度のキチンを得ることができると共に、アミノ酸、有機酸、低分子糖類等の有用物質を取得することもできる。   Conventionally, in the treatment of organic matter containing chitin, deproteinization processing has been expensive, and the protein has been disposed of as it is. However, according to this method, high-purity chitin can be obtained by a simple and efficient process. As well as useful substances such as amino acids, organic acids, and low-molecular sugars.

有機物の有効利用
本発明の方法においては、キチンを含む有機物を、亜臨界状態又は超臨界状態で処理することにより、上記1又は2以上の態様を、並行して、或いは、一段階で実施することができる。
Effective use of organic matter In the method of the present invention, the organic matter containing chitin is treated in a subcritical state or a supercritical state, whereby the above one or two or more embodiments are carried out in parallel or in one step. be able to.

例えば、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、高純度キチンの製造と、低分子キチン及び/又はキチンオリゴ糖の製造を、好ましくは一段階で、行うことができる。   For example, by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or supercritical state, production of high-purity chitin and production of low-molecular chitin and / or chitin oligosaccharide are preferably performed in one step. ,It can be carried out.

また、キチンを含む有機物を、亜臨界状態又は超臨界状態の酸性水溶液中で処理することにより、高純度キチンの製造と、低分子キチン、キチンオリゴ糖、キチン分解物及び/又は蛋白分解物の製造を、好ましくは一段階で、行うこともできる。   In addition, by treating an organic substance containing chitin in an acidic aqueous solution in a subcritical state or a supercritical state, production of high-purity chitin and low molecular chitin, chitin oligosaccharides, chitin degradation products and / or protein degradation products The production can also be carried out preferably in one step.

さらに、それらを回収したあとの処理残渣は、メタン発酵などの原料としてエネルギー回収に利用することもできる。   Furthermore, the process residue after collect | recovering them can also be utilized for energy recovery as raw materials, such as methane fermentation.

このように、本発明の有機物の処理方法は、精製された高純度キチンの取得と共に、他の有用物質の回収利用を行うことができるという優れた利点を有する。   As described above, the method for treating an organic substance of the present invention has an excellent advantage that other useful substances can be recovered and used together with the acquisition of purified high-purity chitin.

なお、本発明における処理方法においては、キチン及びキトサンの製造処理に関する各種の公知技術を必要に応じて付加し得るものである。   In addition, in the processing method in this invention, the various well-known techniques regarding the manufacturing process of chitin and chitosan can be added as needed.

本発明は、キチンを含む有機物から、従来に比べて少ないプロセスで、短時間で、しかも低コストで、効率よくキチンを精製し、高純度のキチンを得ることができるという、格別な効果を奏する。   INDUSTRIAL APPLICABILITY The present invention has an exceptional effect that it can efficiently purify chitin and obtain high-purity chitin from an organic substance containing chitin in a short time and at a low cost with fewer processes than before. .

従来の方法によれば、キチンを含む有機物からキチンを単離する際に、脱灰工程、脱蛋白質工程等に多段階の処理や数日間の日程を要していた。また多量の試薬の消費、更には大量の廃水処理を要していた。   According to the conventional method, when isolating chitin from an organic substance containing chitin, a multi-step process and a schedule of several days are required for the decalcification process, the deproteinization process, and the like. In addition, a large amount of reagent is consumed, and a large amount of wastewater treatment is required.

これに対し、本発明によれば、キチンを含む有機物において、キチンからの灰分、蛋白質、脂質及び色素の分離を、短時間で効率よく、行うことを可能にする。また、多量な試薬や水の使用や大量の廃水の処理にかかる負担を大幅に低減することができる。従って、本発明によれば、キチンを含む有機物の処理工程に伴うコストを大幅に低減することができる。   On the other hand, according to the present invention, it is possible to efficiently separate ash, protein, lipid, and pigment from chitin in a short time in an organic substance containing chitin. In addition, the burden on the use of a large amount of reagent and water and the treatment of a large amount of wastewater can be greatly reduced. Therefore, according to this invention, the cost accompanying the process of the organic substance containing chitin can be reduced significantly.

また、本発明によれば、精製度の高い高純度のキチンを効率よく製造することができる。   Moreover, according to the present invention, high-purity chitin with a high degree of purification can be efficiently produced.

特に比較的低温の亜臨界状態で処理することにより、高分子量のキチンを高純度で取得することが可能となる。また比較的高温の亜臨界状態で処理することにより、低分子キチン及びキチンオリゴ糖の収率を向上させることもできる。   In particular, high-molecular-weight chitin can be obtained with high purity by processing in a subcritical state at a relatively low temperature. Moreover, the yield of low molecular weight chitin and chitin oligosaccharide can also be improved by processing in a relatively high temperature subcritical state.

更に、本発明の方法を用いることで、キトサン、低分子キトサン及びキトサンオリゴ糖を、キチンを含む有機物から効率よく取得することも可能になる。   Furthermore, by using the method of the present invention, it is possible to efficiently obtain chitosan, low-molecular chitosan and chitosan oligosaccharide from an organic substance containing chitin.

また、本発明における亜臨界状態又は超臨界状態の処理において、蛋白質等の分解によりアミノ酸や有機酸等の有用物質が生成され、それらを回収利用することもできる。更に回収した有機酸を利用して、キチンの精製や該有用物質の製造を連続的に実施することも可能にする。   In the treatment in the subcritical state or supercritical state in the present invention, useful substances such as amino acids and organic acids are produced by the decomposition of proteins and the like, and these can be recovered and used. Furthermore, it is possible to continuously carry out purification of chitin and production of the useful substance using the recovered organic acid.

更に、本発明の方法によれば、キチンを含む有機物を、亜臨界状態又は超臨界状態で処理することにより、キチンの精製と、有用物質の製造を、並行して、或いは、一段階で、行うことができる。さらに、処理後の残渣を、エネルギー利用することもできる。   Furthermore, according to the method of the present invention, by treating an organic substance containing chitin in a subcritical state or a supercritical state, purification of chitin and production of a useful substance can be performed in parallel or in one step. It can be carried out. Furthermore, energy can be used for the residue after the treatment.

このように、本発明は、高純度キチンの取得と、有用資源の回収利用を共に行うことができるという優れた利点を有する。   As described above, the present invention has an excellent advantage that both high-purity chitin can be obtained and useful resources can be recovered and used.

本発明によって、キチン、キトサン、キチンオリゴ糖、キトサンオリゴ糖、各種アミノ酸、有機酸、グルコサミンなどの有用な化合物を、廃棄有機物等から、効率よくしかも低コストで生産することが可能になる。また、本発明は、キチンを含む有機物の利用を大きく推進させ得る。   According to the present invention, useful compounds such as chitin, chitosan, chitin oligosaccharide, chitosan oligosaccharide, various amino acids, organic acids, and glucosamine can be produced efficiently and at low cost from waste organic substances. In addition, the present invention can greatly promote the use of organic substances containing chitin.

このように、本発明は、有機物の有効な処理技術、並びに有用物質の効率のよい生産技術として、有用に利用できる。   As described above, the present invention can be effectively used as an effective processing technique for organic substances and an efficient production technique for useful substances.


カニ殻を亜臨界状態の水溶媒中で処理した場合の固相残存率と反応時間との関係を示した図である。It is the figure which showed the relationship between the solid-phase residual rate at the time of processing crab shell in the aqueous solvent of a subcritical state, and reaction time. 炭酸カルシウムを亜臨界状態の水溶媒中で処理した場合の炭酸カルシウム残存率と反応温度との関係を示した図である。It is the figure which showed the relationship between calcium carbonate residual rate and reaction temperature at the time of processing calcium carbonate in the aqueous solvent of a subcritical state. キチンを亜臨界状態の水溶媒中で処理した場合のキチン残存率と反応温度との関係を示した図である。It is the figure which showed the relationship between the chitin residual rate and reaction temperature at the time of processing chitin in the water solvent of a subcritical state. 炭酸カルシウムを亜臨界状態の酢酸水溶液中で処理した場合の炭酸カルシウム残存率と反応時間との関係を示した図である。It is the figure which showed the relationship between calcium carbonate residual rate and reaction time at the time of processing calcium carbonate in the acetic acid aqueous solution of a subcritical state. キチンを亜臨界状態の酢酸水溶液中で処理した場合のキチン残存率と反応時間との関係を示した図である。It is the figure which showed the relationship between chitin residual rate at the time of processing chitin in the acetic acid aqueous solution of a subcritical state, and reaction time. 炭酸カルシウムを比較的低い温度の亜臨界状態の酢酸水溶液中で処理した場合の炭酸カルシウム残存率と反応時間との関係を示した図である。It is the figure which showed the relationship between calcium carbonate residual rate and reaction time at the time of processing calcium carbonate in the acetic acid aqueous solution of a subcritical state of a comparatively low temperature. キチンを比較的低い温度の亜臨界状態の酢酸水溶液中で処理した場合のキチン残存率と反応時間との関係を示した図である。It is the figure which showed the relationship between chitin residual rate and reaction time at the time of processing chitin in the acetic acid aqueous solution of a comparatively low temperature subcritical state. カニ殻を亜臨界状態の酢酸水溶液中で処理した場合の炭酸カルシウム回収率と反応温度との関係を示した図である。It is the figure which showed the relationship between the calcium carbonate collection | recovery rate at the time of processing crab shell in the acetic acid aqueous solution of a subcritical state, and reaction temperature. カニ殻を亜臨界状態の酢酸水溶液中で処理した場合の固相残存率と反応温度との関係を示した図である。It is the figure which showed the relationship between the solid-phase residual rate at the time of processing crab shell in the acetic acid aqueous solution of a subcritical state, and reaction temperature.

以下、実施例及び実験例を用いて、本発明を更に詳細に説明するが、本発明はこれらの実施例及び実験例に限定されることはない。本方法はズワイガニ以外のカニ、エビ等の甲殻類に対しても適用可能であり、亜臨界連続処理装置等によるキチンの連続精製も可能である。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and an experiment example, this invention is not limited to these Examples and an experiment example. This method can also be applied to crustaceans such as crabs and shrimps other than snow crab, and it is possible to continuously purify chitin using a subcritical continuous processing apparatus or the like.

実験例1
まず、比較のために、従来の方法に従って、カニ殻を処理した。
Experimental example 1
First, for comparison, crab shells were treated according to a conventional method.

カニ殻は、ズワイガニの甲羅の冷凍乾燥品をミニブレンダーによって粉砕したものを試料として用いた。   As the crab shell, a frozen and dried product of a snow crab shell was crushed with a mini blender as a sample.

まず2mol/lの塩酸水溶液に、カニ殻を1日浸した。その後、塩酸水溶液を交換し、さらに1日浸すことによって、脱灰処理を行った。それによりカニ殻の初期重量の約40%の炭酸カルシウムが除去された。   First, the crab shell was immersed in a 2 mol / l hydrochloric acid aqueous solution for 1 day. Thereafter, the aqueous solution of hydrochloric acid was replaced, and the deashing treatment was performed by immersing for another day. This removed about 40% of the calcium carbonate initial weight of the crab shell.

次に、1mol/lの水酸化ナトリウム水溶液で6時間煮沸し、液を交換してさらに30時間煮沸することにより、脱蛋白処理を行った。それによりカニ殻の初期重量の約25%の蛋白質が除去された。   Next, the protein was boiled for 6 hours in a 1 mol / l aqueous sodium hydroxide solution, and the solution was changed and boiled for 30 hours to perform deproteinization treatment. This removed about 25% of the initial weight of the crab shell.

さらに、エタノール還流で6時間加熱することにより、一部残存している脂質及び色素の除去を行った。   Furthermore, the remaining lipid and pigment were removed by heating at ethanol reflux for 6 hours.

これら多段階の操作により、最終的にはカニ殻の初期重量の約35%に相当する固相が残存した。この残存固相を従来法で生産したキチンとみなした。   These multi-step operations ultimately left a solid phase corresponding to about 35% of the initial weight of the crab shell. This remaining solid phase was regarded as chitin produced by the conventional method.

実験例2
次に、反応条件を適宜変えながら、以下の手順に従って、カニ殻を亜臨界状態の水溶媒中で処理した。
Experimental example 2
Next, the crab shell was treated in a subcritical water solvent according to the following procedure while appropriately changing the reaction conditions.

(手順)
カニ殻は、ズワイガニの甲羅の冷凍乾燥品をミニブレンダーによって粉砕したものを試料として用いた。水は、超純水製造装置(野村マイクロサイエンス社製 ミニピュアーTW-250RU)で製造した超純水を用いた。
(procedure)
As the crab shell, a frozen and dried product of a snow crab shell was crushed with a mini blender as a sample. As the water, ultrapure water produced by an ultrapure water production apparatus (Minipure TW-250RU manufactured by Nomura Micro Science Co., Ltd.) was used.

内径6.4mm、外径9.5mm、長さ150mm、内容積約8.0cm3のステンレスパイプ(SUS316製)の両端にSWAGELOKキャップを取り付けた反応管を用意した。該反応管に、0.1または0.2gのカニ殻と水2gを入れ、溶存酸素をアルゴンで置換した後、反応管を閉じた。該反応管を、硝酸カリウムと硝酸ナトリウムを1:1の割合で添加して所定温度(533〜593K)に予熱したソルトバスに投入し、所定時間(1〜10分)静置した。その後、ソルトバスから反応管を速やかに取り出し、水中に投じて急冷した。A reaction tube with SWAGELOK caps attached to both ends of a stainless steel pipe (made of SUS316) having an inner diameter of 6.4 mm, an outer diameter of 9.5 mm, a length of 150 mm, and an internal volume of about 8.0 cm 3 was prepared. The reaction tube was filled with 0.1 or 0.2 g of crab shell and 2 g of water, and the dissolved oxygen was replaced with argon, and then the reaction tube was closed. The reaction tube was added to a salt bath in which potassium nitrate and sodium nitrate were added at a ratio of 1: 1 and preheated to a predetermined temperature (533 to 593K), and allowed to stand for a predetermined time (1 to 10 minutes). Thereafter, the reaction tube was quickly taken out from the salt bath and poured into water to quench it.

反応管中の試料について、2500rpmで10分遠心分離し、水で洗浄する工程を3回繰り返した後、ろ過して、水相と固相とに分離した。次いで、それぞれの相について、成分分析を行った。   The sample in the reaction tube was centrifuged at 2500 rpm for 10 minutes and washed with water three times, and then filtered to separate the aqueous phase and the solid phase. Subsequently, component analysis was performed about each phase.

(測定方法)
生成物として水相に含まれる有機酸は、高速液体クロマトグラフ有機酸分析システム(Shimadzu LC-10A、分離法:イオン排除クロマトグラフ、検出法:ポストカラムpH緩衝化電気伝導度検出法(カラム:Shim-pack SCR-102H 2本直列、移動相:5mol/m3 p-トルエンスルホン酸水溶液、流量1.33×10-8m3/s、緩衝液: 5mol/m3 p-トルエンスルホン酸水溶液、0.1mol/m3EDTA、20mol/m3 Bis-Tris水溶液、検出器:Shimazu CDD-6A、カラム温度:318K)を用いて分析した。
(Measuring method)
Organic acid contained in the aqueous phase as a product is a high-performance liquid chromatographic organic acid analysis system (Shimadzu LC-10A, separation method: ion exclusion chromatography, detection method: post-column pH buffered conductivity detection method (column: Shim-pack SCR-102H in series, mobile phase: 5 mol / m 3 p-toluenesulfonic acid aqueous solution, flow rate 1.33 × 10 -8 m 3 / s, buffer: 5 mol / m 3 p-toluenesulfonic acid aqueous solution, 0.1 mol / m 3 EDTA, 20 mol / m 3 Bis-Tris aqueous solution, detector: Shimazu CDD-6A, column temperature: 318 K).

生成物として水相に含まれるアミノ酸濃度はHPLCシステム(Shimadzu LC-10A 、ISC-07/S1504カラム、移動相:4種類、流量8.33×10-9m3/s、温度:328K)と蛍光光度計(Shimadzu RF-535) を用いて、ポストカラム法(反応試薬:2種類、流量:5×10-9m3/s)により決定した。The amino acid concentration contained in the aqueous phase as a product is HPLC system (Shimadzu LC-10A, ISC-07 / S1504 column, mobile phase: 4 types, flow rate 8.33 × 10 -9 m 3 / s, temperature: 328K) and fluorescence Using a meter (Shimadzu RF-535), it was determined by a post column method (reaction reagents: 2 types, flow rate: 5 × 10 −9 m 3 / s).

水相に含まれる糖は、日本分光(株)製高速液体クロマトグラフ糖分析システムHSS-1500(カラム:Shodex SUGAR KS-804、移動相:水、流量1.0cm3/min、検出器:示差屈折計 MD-2010偏向型、カラム温度:313K)を用いて分析した。The sugar contained in the aqueous phase is a high-performance liquid chromatographic sugar analysis system HSS-1500 (column: Shodex SUGAR KS-804, mobile phase: water, flow rate 1.0 cm 3 / min, detector: differential refraction, manufactured by JASCO Corporation. MD-2010 deflection type, column temperature: 313K).

水相中の全有機炭素量(TOC)は、TOC分析装置(Shimadzu TOC-500)により測定した。標準的方法に従って、0.01cm3 の水溶性生成物をTOC分析装置に注入した。測定は、高純度空気流量2.5×10-6m3/sの条件で、全炭素(TC)の標準溶液として250ppmのフタル酸水素カリウム、無機炭素(IC)の標準溶液として250ppmの炭酸水素ナトリウムと炭酸ナトリウムの混合溶液を使用して行い、TOCはTCからICを差し引いて求めた。The total organic carbon content (TOC) in the aqueous phase was measured with a TOC analyzer (Shimadzu TOC-500). According to standard methods, 0.01 cm 3 of water soluble product was injected into the TOC analyzer. The measurement is performed under the condition of a high-purity air flow rate of 2.5 × 10 −6 m 3 / s, 250 ppm potassium hydrogen phthalate as the standard solution for total carbon (TC), and 250 ppm sodium hydrogen carbonate as the standard solution for inorganic carbon (IC). And TOC was determined by subtracting IC from TC.

炭酸カルシウムが分解・反応して、水相中に溶出しているカルシウムイオンの測定は、セイコーインスツルメント(株)製ICPプラズマ発光分析装置SPS7800を用いて濃度を測定(測定波長393.366nm)して行った。   Calcium ions dissolved in the aqueous phase due to the decomposition and reaction of calcium carbonate are measured using the ICP plasma emission spectrometer SPS7800 manufactured by Seiko Instruments Inc. (measurement wavelength: 393.366 nm). I went.

なお、下記実施例1及び2においても、本実験例と同様の測定方法を用いた。   In Examples 1 and 2 below, the same measurement method as in this experimental example was used.

(結果)
図1に、カニ殻の固相残存率と反応時間との関係を調べた結果を示す。常温・常圧の水では反応は起こらない。しかし、図1に示されるように、533〜593Kの高温で亜臨界水処理を行うことにより、固相の重量は反応時間とともに減少した。このことから、この条件下では脱蛋白が速やかに起こると考えられる。しかし、固相残存率は50%以上となり、従来法(実験例1)から推定される物質収支から考察すると、炭酸カルシウムやキチンは分解されていない可能性が高いと考えられる。
(result)
FIG. 1 shows the results of examining the relationship between the solid phase residual rate of crab shell and the reaction time. No reaction occurs at room temperature and pressure. However, as shown in FIG. 1, by performing subcritical water treatment at a high temperature of 533 to 593K, the weight of the solid phase decreased with the reaction time. From this, it is considered that deproteinization occurs rapidly under these conditions. However, the solid phase residual ratio is 50% or more, and considering the material balance estimated from the conventional method (Experimental Example 1), it is highly likely that calcium carbonate and chitin are not decomposed.

また、反応終了後、水相中に存在するTOCやIC値、アミノ酸濃度、有機酸濃度を測定したところ、ICの値はほぼ0に近く、分解された蛋白質は大部分がアミノ酸、有機酸として加水分解されていることが分かった。アミノ酸は、プロリン、アラニン、メチオニン、ヒスチジン、アルギニンなどが生産されていた。また有機酸は、リンゴ酸、コハク酸、乳酸、蟻酸、酢酸、ピログルタミン酸などが生産されていた。また、それらの収率は反応時間とともに大きくなること、アミノ酸ではアラニンやアルギニン、有機酸では酢酸やピログルタミン酸等の収率が高いことが分かった。   After the reaction was completed, the TOC, IC value, amino acid concentration, and organic acid concentration present in the aqueous phase were measured. The IC value was close to 0, and most of the degraded proteins were amino acids and organic acids. It was found that it was hydrolyzed. As amino acids, proline, alanine, methionine, histidine, arginine and the like were produced. In addition, malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid and the like were produced as organic acids. Moreover, it turned out that those yields become large with reaction time, and the yield of acetic acid, pyroglutamic acid, etc. is high with an amino acid, an organic acid, and an amino acid.

次いで、炭酸カルシウムの分解に関する反応温度と反応時間の影響を調べるために、反応温度を533K又は563K、反応時間を1分又は2分と設定して、実験を行った。その結果、図2に示されるように、563Kの亜臨界状態の水溶媒中で2分間処理では、炭酸カルシウムはほとんど分解されなかった。温度が高い程、分解力が強いと考えられるので、563K以下の亜臨界状態の水溶媒中の処理では、炭酸カルシウムは分解されないと考えられる。同様に、キチンの分解に関する反応温度と反応時間の影響を調べるために、反応温度を533Kと563Kに設定し、反応時間を1分又は2分と設定して実験を行った。その結果、図3に示されるように、563Kの亜臨界状態の水溶媒中で2分間処理しても、キチンはほとんど分解されなかった。ただし、色は褐色に変化していることから、一部は熱分解して、糖分のメイラード反応により、メラノイジンが生成しているものと推察される。高純度のキチン生産のためには炭酸カルシウム及び蛋白質をキチンから分離しなければならないが、溶媒として水を用いた場合には十分な結果が得られないことがわかった。   Next, in order to investigate the influence of the reaction temperature and reaction time on the decomposition of calcium carbonate, the experiment was performed with the reaction temperature set to 533K or 563K and the reaction time set to 1 minute or 2 minutes. As a result, as shown in FIG. 2, the calcium carbonate was hardly decomposed by the treatment for 2 minutes in the subcritical water solvent at 563K. It is considered that the higher the temperature is, the stronger the decomposition power is. Therefore, it is considered that calcium carbonate is not decomposed by the treatment in a subcritical water solvent at 563 K or less. Similarly, in order to investigate the influence of the reaction temperature and reaction time on the degradation of chitin, the reaction temperature was set to 533 K and 563 K, and the reaction time was set to 1 minute or 2 minutes. As a result, as shown in FIG. 3, the chitin was hardly decomposed even when treated in a subcritical water solvent at 563 K for 2 minutes. However, since the color has changed to brown, it is presumed that melanoidin is partially generated by pyrolysis and saccharides Maillard reaction. In order to produce high-purity chitin, calcium carbonate and protein must be separated from chitin, but it has been found that sufficient results cannot be obtained when water is used as a solvent.

実施例1
実験例1及び2の結果、並びに、処理工程で生成物に酢酸が含まれることや弱酸を用いた方が反応装置の腐食が少ないことなどを考慮し、酢酸水溶液中で亜臨界処理することを試みた。
Example 1
Considering the results of Experimental Examples 1 and 2 and the fact that acetic acid is included in the product in the treatment process and that the use of a weak acid causes less corrosion of the reactor, sub-critical treatment in an acetic acid aqueous solution should be performed. Tried.

(手順)
溶媒として酢酸水溶液を用いる以外は、実験例1と同様の手順で、カニ殻を亜臨界状態で処理した。
(procedure)
The crab shell was treated in a subcritical state in the same procedure as in Experimental Example 1 except that an acetic acid aqueous solution was used as the solvent.

酢酸水溶液は、酢酸(和光純薬製特級試薬)を、超純水製造装置(野村マイクロサイエンス社製 ミニピュアーTW-250RU)で製造した超純水で、所定濃度に調製したものを用いた。   As the acetic acid aqueous solution, acetic acid (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) prepared with ultrapure water produced by an ultrapure water production apparatus (Minipure TW-250RU manufactured by Nomura Micro Science Co., Ltd.) and prepared to a predetermined concentration was used.

(結果)
まず、炭酸カルシウムの分解に関する酢酸水溶液の濃度と反応温度の影響を調べるために、炭酸カルシウムに対し化学反応量論モル比で約0.03倍の濃度(0.0174mol/l)又は約3倍の濃度(1.74mol/l)に調整した酢酸水溶液中で、温度を563K、593K又は623Kに設定して亜臨界反応を行った。この場合の炭酸カルシウムの残存率と反応時間との関係を調べた結果を図4に示す。
(result)
First, in order to investigate the influence of the concentration of acetic acid aqueous solution and the reaction temperature on the decomposition of calcium carbonate, the chemical reaction stoichiometric molar ratio to calcium carbonate is about 0.03 times the concentration (0.0174 mol / l) or about 3 times the concentration ( The subcritical reaction was performed in an acetic acid aqueous solution adjusted to 1.74 mol / l) at a temperature set to 563K, 593K or 623K. The result of investigating the relationship between the residual rate of calcium carbonate and the reaction time in this case is shown in FIG.

図4の結果から、酢酸濃度0.0174mol/l、すなわち化学反応量論モル比である1対2よりかなり小さい濃度である場合は炭酸カルシウムの分解はほとんど起こらないが、酢酸濃度1.74mol/l、すなわち化学反応量論モル比1対3の場合には1分という非常に短い反応時間においても炭酸カルシウムはほぼ完全に分解し、水相中に酢酸カルシウムとして溶解していることが分かった。   From the results of FIG. 4, when the acetic acid concentration is 0.0174 mol / l, that is, a concentration considerably lower than the chemical reaction stoichiometric molar ratio 1: 2, the decomposition of calcium carbonate hardly occurs, but the acetic acid concentration 1.74 mol / l, In other words, when the stoichiometric molar ratio was 1: 3, it was found that calcium carbonate was almost completely decomposed and dissolved as calcium acetate in the aqueous phase even in a very short reaction time of 1 minute.

次に、溶媒として酸性水溶液を用いた場合におけるキチンに対する反応温度の影響を調べるために、反応温度を、563K、593K又は623Kに設定して実験を行った。その結果、図5に示すように、酢酸濃度0.174mol/lにおいて、温度563〜623Kの亜臨界状態の酢酸水溶液中の処理によりキチンが分解されること、更に温度が高いほど、また反応時間が長いほど分解量が増加する傾向があることがわかった。   Next, in order to investigate the influence of the reaction temperature on chitin when an acidic aqueous solution was used as a solvent, the reaction temperature was set to 563K, 593K or 623K, and an experiment was conducted. As a result, as shown in FIG. 5, when the acetic acid concentration is 0.174 mol / l, chitin is decomposed by the treatment in an aqueous acetic acid solution in the subcritical state at a temperature of 563 to 623K. It turned out that there exists a tendency for the decomposition amount to increase, so that it is long.

また、反応終了後、水相中に存在するTOCやIC値、アミノ酸濃度、有機酸濃度を測定したところ、分解された蛋白質は大部分がアミノ酸、有機酸として加水分解されていることが分かった。   In addition, after the reaction was completed, the TOC, IC value, amino acid concentration, and organic acid concentration present in the aqueous phase were measured, and it was found that most of the degraded protein was hydrolyzed as amino acids and organic acids. .

アミノ酸は、シスチン、セリン、バリン、スレオニン、グリシン、プロリン、アラニン、メチオニン、ヒスチジン、アルギニン、ロイシン、イソロイシン、チロシン、リジン、フェニルアラニン、アスパラギン酸、グルタミン酸などが生産されていた。   As amino acids, cystine, serine, valine, threonine, glycine, proline, alanine, methionine, histidine, arginine, leucine, isoleucine, tyrosine, lysine, phenylalanine, aspartic acid, glutamic acid and the like were produced.

また有機酸は、リンゴ酸、コハク酸、乳酸、蟻酸、酢酸、ピログルタミン酸などが生産されていた。   In addition, malic acid, succinic acid, lactic acid, formic acid, acetic acid, pyroglutamic acid and the like were produced as organic acids.

また、分解物には、低分子キチン、キチンオリゴ糖、グルコサミン、エリトロース、リン酸などが含まれていることもわかった。
このように、本法は、アミノ酸、有機酸、低分子キチンやキチンオリゴ糖、グルコサミンなどの糖類等の製法としても、有用であることが明らかになった。
It was also found that the degradation product contained low molecular chitin, chitin oligosaccharide, glucosamine, erythrose, phosphoric acid and the like.
Thus, this method was proved to be useful as a method for producing saccharides such as amino acids, organic acids, low-molecular chitins, chitin oligosaccharides, and glucosamine.

実施例2
高純度で高分子量のキチンを得るためには、炭酸カルシウムや蛋白質を分解し、キチンを分解しない条件が必要である。そのため、比較的温度が低い領域の亜臨界状態での酸性水溶液中で処理を試みた。
Example 2
In order to obtain high-purity and high-molecular-weight chitin, it is necessary to decompose calcium carbonate and protein and not to decompose chitin. Therefore, the treatment was attempted in an acidic aqueous solution in a subcritical state in a relatively low temperature region.

(手順)
測定手順は、炭酸カルシウムに対し化学反応量論モル比で約3倍の濃度となる1.74mol/lの酢酸水溶液を用い、453〜523Kの範囲の比較的低い温度で反応温度を設定した以外は、実施例1と同様にして、亜臨界処理を行った。
(procedure)
The measurement procedure was that except that the reaction temperature was set at a relatively low temperature in the range of 453 to 523 K, using a 1.74 mol / l aqueous acetic acid solution that had a chemical reaction stoichiometric molar ratio of about 3 times that of calcium carbonate. Subcritical processing was carried out in the same manner as in Example 1.

まず、炭酸カルシウムの分解と反応温度との関係を調べた。結果を図6に示す。   First, the relationship between the decomposition of calcium carbonate and the reaction temperature was examined. The results are shown in FIG.

その結果、453Kという亜臨界状態の下限値に近い温度においても、1分という短い反応時間で炭酸カルシウムは90%以上分解されていることが分かった。   As a result, it was found that at a temperature close to the lower limit of the subcritical state of 453 K, calcium carbonate was decomposed by 90% or more in a short reaction time of 1 minute.

更に、キチン残存率と反応温度との関係を調べた。結果を図7に示す。   Furthermore, the relationship between the chitin residual rate and the reaction temperature was examined. The results are shown in FIG.

その結果、図7に示されるように、比較的温度が低い亜臨界状態の場合においては、キチンの約80%以上が分解されずに残っていることが分かった。   As a result, as shown in FIG. 7, it was found that about 80% or more of chitin remained undecomposed in the subcritical state where the temperature was relatively low.

次に、カニ殻からの炭酸カルシウム回収率と反応温度との関係を調べた。結果を図8に示す。その結果、酢酸濃度1.74mol/l 、反応時間1分の一定条件で、温度を453〜493Kに変化させて処理を行う場合、炭酸カルシウムの回収率は温度に依存しないことがわかった。更に、従来法(実験例1)で得られた炭酸カルシウムの除去量から判断して本条件においてカニ殻に含まれる炭酸カルシウムがほぼ完全に分解され、水相中に酢酸カルシウムとして溶解していることが分かった。   Next, the relationship between the calcium carbonate recovery from the crab shell and the reaction temperature was examined. The results are shown in FIG. As a result, it was found that the recovery rate of calcium carbonate did not depend on the temperature when the treatment was carried out at a constant temperature of 1.453 mol / l and a reaction time of 1 minute while changing the temperature from 453 to 493K. Further, judging from the removal amount of calcium carbonate obtained by the conventional method (Experimental Example 1), the calcium carbonate contained in the crab shell is almost completely decomposed under this condition and dissolved as calcium acetate in the aqueous phase. I understood that.

更に、カニ殻からの固相残存率と反応温度との関係を調べるため、1.74mol/lの酢酸水溶液を用いて、453〜523Kの範囲で温度を設定して処理を行った。測定結果を図9に示す。   Furthermore, in order to investigate the relationship between the solid phase residual rate from the crab shell and the reaction temperature, the treatment was performed using a 1.74 mol / l aqueous acetic acid solution at a temperature set in the range of 453 to 523K. The measurement results are shown in FIG.

その結果、酢酸濃度1.74mol/l 、反応時間1分の一定条件において、反応温度を453〜493Kに変化させた場合、従来法(実験例1)で得られた残存固相の量から判断して、炭酸カルシウム以外にも、カニ殻に含まれる蛋白質、脂質及び色素がキチンから分離していることがわかった。   As a result, when the reaction temperature was changed from 453 to 493 K under the constant conditions of acetic acid concentration of 1.74 mol / l and reaction time of 1 minute, it was judged from the amount of residual solid phase obtained by the conventional method (Experimental Example 1). In addition to calcium carbonate, it was found that proteins, lipids and pigments contained in crab shells were separated from chitin.

残存固相は処理温度に関係なく初期重量の約40%であったが、得られた固相をさらに塩酸処理したところICP分析により炭酸カルシウムが3〜5%含まれることがわかった。この値は市販されているキチン(従来法により製造されたもの)に含まれる炭酸カルシウムと同様な値であり、炭酸カルシウムを全く含まない場合の固相残存率との差に相当する。このことから、本発明により非常に純度の高いキチンが得られていることが分かった。   The residual solid phase was about 40% of the initial weight regardless of the treatment temperature, but when the obtained solid phase was further treated with hydrochloric acid, it was found by ICP analysis to contain 3-5% calcium carbonate. This value is the same value as that of calcium carbonate contained in commercially available chitin (produced by the conventional method), and corresponds to the difference from the solid phase residual rate when no calcium carbonate is contained. From this, it was found that chitin with very high purity was obtained by the present invention.

更に、反応時間を長くすると、炭酸カルシウムの残存率が更に低減され、10分後には、炭酸カルシウムが全くない場合、すなわち、純度100%のキチンと同等の固相残存率が得られた。このことからも、本発明により非常に純度の高いキチンが得られていることが確認できた。   Further, when the reaction time was lengthened, the residual rate of calcium carbonate was further reduced, and after 10 minutes, when there was no calcium carbonate, that is, a solid phase residual rate equivalent to 100% pure chitin was obtained. Also from this fact, it was confirmed that chitin with very high purity was obtained by the present invention.

また、反応終了後の水溶液中には、溶媒として水を用いた場合とは異なり、酢酸とグリシンのみが検出されたので、蛋白質の加水分解によって生成した有機酸の一部はカニ殻に含まれる炭酸カルシウムとの反応により塩を形成し、また、アミノ酸の一部は酢酸と炭酸カルシウムの反応によって生成したカルシウムイオンや二酸化炭素により、さらに反応・分解したものと考えられる。   Also, in the aqueous solution after completion of the reaction, unlike acetic acid and water, only acetic acid and glycine were detected, so some of the organic acid produced by protein hydrolysis is contained in the crab shell It is considered that a salt is formed by the reaction with calcium carbonate, and a part of the amino acid is further reacted and decomposed by calcium ions and carbon dioxide generated by the reaction of acetic acid and calcium carbonate.

上記実施例と実験例との比較から示されるように、亜臨界状態にして活性化した酸性水溶液を用いることで、キチンを含む有機物における脱灰、脱色、脱蛋白の同時処理を1分程度の短い反応時間で簡単に行うことができ、従来法より少ないプロセス且つ低コストでキチンを含む有機物の処理を実施できることがわかった。   As shown from the comparison between the above Examples and Experimental Examples, by using an acidic aqueous solution activated in a subcritical state, simultaneous treatment of decalcification, decolorization, and deproteinization in an organic substance containing chitin is about 1 minute. It was found that it can be carried out easily with a short reaction time, and the treatment of organic matter containing chitin can be carried out with fewer processes and lower costs than conventional methods.

また、弱酸である酢酸を用いることで、強酸、強塩基を使わずに、高純度のキチンを生産することが可能であり、従来法で必要な中和のための水を全く必要とせず、逆に反応後に残った酢酸を酸性水溶液の成分として再利用することも可能であることがわかった。   In addition, by using acetic acid, which is a weak acid, it is possible to produce high-purity chitin without using a strong acid or strong base, and no water for neutralization required in the conventional method is required. On the contrary, it was found that acetic acid remaining after the reaction can be reused as a component of the acidic aqueous solution.

Claims (4)

(i)キチンを含む有機物を、亜臨界状態の酸性水溶液中で処理し、
(ii)処理後の試料の固相と水相とを分離し、
(iii)固相を得ること
を特徴とする、キチンの精製方法。
(I) an organic material containing chitin, is treated with an acidic aqueous solution of subcritical state,
(Ii) separating the solid phase and aqueous phase of the treated sample;
(Iii) A method for purifying chitin, comprising obtaining a solid phase.
キチンを含む有機物を、493K以下の亜臨界状態の酸性水溶液中で処理する請求項1に記載の精製方法。The purification method according to claim 1, wherein an organic substance containing chitin is treated in an acidic aqueous solution in a subcritical state of 493K or less . 酸性水溶液が有機酸水溶液である請求項1又は2に記載の精製方法。The purification method according to claim 1 or 2 , wherein the acidic aqueous solution is an organic acid aqueous solution. キチンを含む有機物を、請求項1〜のいずれかに記載の精製方法で精製し、精製後のキチンを脱アセチル化することを特徴とするキトサンの製造方法。A method for producing chitosan, comprising purifying an organic substance containing chitin by the purification method according to any one of claims 1 to 3 and deacetylating the purified chitin.
JP2006547929A 2004-11-29 2005-11-29 Treatment of organic matter containing chitin Expired - Fee Related JP5013878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006547929A JP5013878B2 (en) 2004-11-29 2005-11-29 Treatment of organic matter containing chitin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004343654 2004-11-29
JP2004343654 2004-11-29
PCT/JP2005/021845 WO2006057398A1 (en) 2004-11-29 2005-11-29 Method for processing organic matter containing chitin
JP2006547929A JP5013878B2 (en) 2004-11-29 2005-11-29 Treatment of organic matter containing chitin

Publications (2)

Publication Number Publication Date
JPWO2006057398A1 JPWO2006057398A1 (en) 2008-06-05
JP5013878B2 true JP5013878B2 (en) 2012-08-29

Family

ID=36498131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547929A Expired - Fee Related JP5013878B2 (en) 2004-11-29 2005-11-29 Treatment of organic matter containing chitin

Country Status (2)

Country Link
JP (1) JP5013878B2 (en)
WO (1) WO2006057398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432538A (en) * 2015-08-13 2017-02-22 中国科学院金属研究所 Method for preparing chitin oligosaccharides, chitooligosaccharides and chitosan oligosaccharides

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215408A (en) * 2008-03-10 2009-09-24 Kyosei Seiyaku Kk Alpha-glucosidase inhibitor and process for producing the same
EP2274337B1 (en) * 2008-03-19 2017-01-04 Agratech International, Inc. Chitosan manufacturing process
JP5773404B2 (en) * 2010-01-21 2015-09-02 独立行政法人国立高等専門学校機構 Method for producing chitin degradation products
JP5733717B2 (en) * 2011-01-20 2015-06-10 独立行政法人国立高等専門学校機構 Method and apparatus for producing chitin monosaccharide derivative
JP6260949B2 (en) * 2013-08-30 2018-01-17 独立行政法人国立高等専門学校機構 Organic substance manufacturing apparatus and method
CN104231108B (en) * 2014-10-15 2016-05-18 中国林业科学研究院林产化学工业研究所 A kind of production method that adopts Subcritical Water Extraction-hot water lixiviate two-step method to extract tremella polysaccharides
CN105754015A (en) * 2016-02-29 2016-07-13 苏州市贝克生物科技有限公司 Method for extracting chitin from oyster shell
WO2024175731A1 (en) * 2023-02-22 2024-08-29 Katholieke Universiteit Leuven Isolation of chitin from biomaterial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531000A (en) * 1990-09-08 1993-02-09 Kobe Steel Ltd Selective hydrolysis and/or thermal decomposition of natural or synthetic polymer
JP2005040025A (en) * 2003-07-24 2005-02-17 Hitachi Zosen Corp Method for hydrolyzing polysaccharide substance
JP2006176765A (en) * 2004-11-24 2006-07-06 Nagaoka Univ Of Technology Pressurized hot water treatment method for waste mushroom cultivation bed, method for producing compost using the same, and compost obtained by the production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298192A (en) * 1997-04-30 1998-11-10 Ajinomoto Co Inc Production of erythrose
JP4083374B2 (en) * 2000-07-11 2008-04-30 トヨタ自動車株式会社 Method for producing cellulose
JP3593024B2 (en) * 2000-10-30 2004-11-24 石川県 Method for depolymerizing polysaccharide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531000A (en) * 1990-09-08 1993-02-09 Kobe Steel Ltd Selective hydrolysis and/or thermal decomposition of natural or synthetic polymer
JP2005040025A (en) * 2003-07-24 2005-02-17 Hitachi Zosen Corp Method for hydrolyzing polysaccharide substance
JP2006176765A (en) * 2004-11-24 2006-07-06 Nagaoka Univ Of Technology Pressurized hot water treatment method for waste mushroom cultivation bed, method for producing compost using the same, and compost obtained by the production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432538A (en) * 2015-08-13 2017-02-22 中国科学院金属研究所 Method for preparing chitin oligosaccharides, chitooligosaccharides and chitosan oligosaccharides
CN106432538B (en) * 2015-08-13 2020-05-15 中国科学院金属研究所 Chitin oligosaccharide, chitooligosaccharide and preparation method of chitooligosaccharide

Also Published As

Publication number Publication date
WO2006057398A1 (en) 2006-06-01
JPWO2006057398A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5013878B2 (en) Treatment of organic matter containing chitin
Brück et al. Chitin and chitosan from marine organisms
CN104788584B (en) Novel process for cleanly producing chitosan and carboxymethyl chitosan by using crustacean raw materials
Ajavakom et al. Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin
Benavente et al. Production of glucosamine hydrochloride from crustacean shell
Rasweefali et al. Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii)
JP2014522240A (en) Extraction of chitin in a single process using enzymatic hydrolysis in acidic media
CN106831894B (en) A kind of method of deacetylation Coupling Adsorption separation D-Glucosamine Hydrochloride
CN109527196B (en) Method for improving enzymolysis efficiency and yield of soybean protein
Pambudi et al. Synthesis of water-soluble chitosan from crab shells (Scylla serrata) waste
JP2870871B2 (en) A method for treating crustacean shells using enzymes
WO2008093239A1 (en) Methods for producing glucosamine from microbial biomass
KR100390529B1 (en) Method of extracting nucleic acid complex material from tuna testes and nucleic acid complex material obtained therefrom
CN113150186A (en) Method for utilizing complete components of shrimp and crab shells
CN114014952A (en) Method for preparing chitosan by catalyzing shrimp and crab shells through hydrothermal method
JPS6121102A (en) Preparation of chitosan oligosaccharide
KR101938200B1 (en) Novel Method for Recovery of Xylose from Byproducts Generated in Biomass-Pretreatment Processes and Use Thereof
Rana et al. Bioadsorbtion of arsenic by prepared and commercial crab shell chitosan
CN101828627A (en) Extract method of muscle protein isolate
Putri et al. Isolation of glucosamine hcl from scylla paramamosain and determination by HPLC
CN110724211A (en) High-value comprehensive utilization method of shrimp and crab shells based on reducing sugar catalytic oxidation and application thereof
JP2009215231A (en) Method of preparing crystalline 1,5-d-anhydroglucitol
CN113789065B (en) Melanin separation and extraction method based on ionic liquid
Rahmadani et al. ADSORPTION ISOTHERMS OF LEAD ION BY CHITOSAN FROM SHRIMP SHELL
KR100834518B1 (en) Method for preparing glucosamine organic acid with improved taste by an enzymatic process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees