WO2006054771A1 - ナノピンセットおよびこれを備える走査型プローブ顕微鏡 - Google Patents

ナノピンセットおよびこれを備える走査型プローブ顕微鏡 Download PDF

Info

Publication number
WO2006054771A1
WO2006054771A1 PCT/JP2005/021456 JP2005021456W WO2006054771A1 WO 2006054771 A1 WO2006054771 A1 WO 2006054771A1 JP 2005021456 W JP2005021456 W JP 2005021456W WO 2006054771 A1 WO2006054771 A1 WO 2006054771A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sample
movable arm
observation probe
gripping
Prior art date
Application number
PCT/JP2005/021456
Other languages
English (en)
French (fr)
Inventor
Gen Hashiguchi
Maho Hosogi
Takashi Konno
Original Assignee
National University Corporation Kagawa University
Aoi Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kagawa University, Aoi Electronics Co., Ltd. filed Critical National University Corporation Kagawa University
Priority to US11/791,262 priority Critical patent/US7849515B2/en
Priority to JP2006545207A priority patent/JP4631062B2/ja
Priority to EP05809524A priority patent/EP1816100A1/en
Priority to CN2005800398126A priority patent/CN101061059B/zh
Publication of WO2006054771A1 publication Critical patent/WO2006054771A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0005Apparatus specially adapted for the manufacture or treatment of microstructural devices or systems, or methods for manufacturing the same
    • B81C99/002Apparatus for assembling MEMS, e.g. micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/962Specified use of nanostructure for carrying or transporting

Definitions

  • the present invention relates to a nano tweezers for observing a sample surface and grasping a minute object and a scanning probe microscope including the same.
  • a cantilever probe In a scanning probe microscope (SPM), a cantilever probe is brought close to a sample at a distance of an atomic diameter level, and the probe is two-dimensionally scanned on the sample surface. Accordingly, for example, a force based on the interaction between the sample and the probe is detected, and the unevenness on the surface of the sample is observed based on the detected force.
  • Nano tweezers are used to grip nano-order sized objects by opening and closing the tip.
  • nanotweezers having both such an observation function and a gripping function are also known (for example, see Patent Document 1).
  • two carbon nanotubes are fixed to the tip of an atomic force microscope cantilever, and one of the carbon nanotubes is used as a probe for observation of a minute object, and the tip of the two carbon nanotubes is used for electrostatic force, etc. It is opened and closed to hold and release a minute sample.
  • Patent Document 1 US Patent Specification No. 4,927,254
  • the nanotweezers according to the first aspect of the present invention are arranged side by side with a support, an observation probe that projects from the support and observes the surface of the sample, and an observation probe that projects the support force.
  • a movable arm that opens and closes to grip and release the sample, and a drive mechanism that opens and closes the movable arm to and from the observation probe.
  • Each of the probe and the movable arm is manufactured by processing a semiconductor wafer by a photolithography process.
  • the nanotweezers according to the second aspect of the present invention is an observation pro- gram that is provided with a support, a probe portion for observing a sample surface, and a first grip for gripping the sample, extending in a predetermined direction from the support. And a movable arm formed in parallel with the observation probe so as to extend in a predetermined direction and formed with a second gripping portion facing the first gripping portion along the predetermined direction.
  • a driving mechanism that drives the movable arm in the extending direction so that the sample is gripped between the first and second gripping portions, and each of the support, the observation probe, and the movable arm takes a photo of the semiconductor wafer. It is manufactured by processing by a lithography process.
  • the first gripping portion is a projection protruding in the direction of the observation probe force sample surface, and has a first gripping surface orthogonal to the predetermined direction and a probe portion formed at the protruding tip.
  • the second gripping portion may have a second gripping surface for gripping the sample with the first gripping surface, and the first and second gripping surfaces may be in a predetermined direction. It may be formed to be orthogonal.
  • a semiconductor wafer is an SOI wafer in which an SiO layer is sandwiched between a pair of Si layers, and is an observation process.
  • the probe and the movable arm are formed side by side at a predetermined interval on one of the pair of Si layers, and the first gripping portion, the second gripping portion, and the probe portion are each provided with an observation probe force.
  • the first gripping part, the second gripping part, and the probe part may project in the direction perpendicular to the juxtaposition direction. It may be formed.
  • the observation probe may be a horseshoe-shaped beam in which a slit space extending in a predetermined direction is formed, and the movable arm may be slidably disposed in the predetermined direction in the slit space.
  • the drive mechanism may be configured to drive the movable arm by thermal deformation due to heat generated by energization.
  • the scanning probe microscope controls any of the above-described nanotweezers, a detection unit that detects displacement based on the interaction between the observation probe and the sample surface, and the drive operation of the drive mechanism Based on the displacement detected by the control unit and the detection unit, And a scanning unit for scanning and moving the observation probe with respect to the sample surface.
  • a display unit for visualizing the calculation result of the calculation unit may be further provided.
  • the detection unit includes a light source that irradiates light to the observation probe and a light receiving unit that detects light reflected by the observation probe, and the calculation unit determines the surface shape of the sample based on the detection signal of the light receiving unit force. Even if it is calculated, it is okay.
  • the nanotweezers manufacturing method according to the fourth aspect of the present invention is the above-described nanotweezers manufacturing method, wherein the semiconductor wafer is an SOI wafer, and one of the silicon layers of the SOI wafer is partially removed.
  • a nanotweezers according to a fifth aspect of the present invention is provided with a support, a pair of arms arranged in parallel so as to extend the support force, each provided with a gripping part for gripping a sample, and at least one of the pair of arms
  • the urging mechanism for urging the pair of arms in the closing direction so that the formed probe part for observing the sample surface and the gripping part of the pair of arms are in contact with each other, and the urging force by the urging mechanism
  • a drive mechanism that drives the pair of arms in the opening direction is provided.
  • Each of the support, the pair of arms, the urging mechanism, and the driving mechanism may be manufactured by processing a semiconductor wafer by a photolithography process.
  • a thermal actuator that functions as an urging mechanism and a drive mechanism is provided, and the thermal actuator is a member that is annealed by doping boron into the Si layer, and may have an energizing electrode.
  • a method for producing nanotweezers according to a sixth aspect of the present invention is a method for producing a semiconductor wafer using SiO.
  • a first process that uses a SOI wafer with two layers sandwiched between a pair of Si layers and etches one Si layer of the SOI wafer to form a pair of arms, a biasing mechanism, and a drive mechanism, and a biasing mechanism.
  • the second step of doping boron into the Si layer that constitutes the structure and the ball treatment of the boron-doped Si layer are used to apply the contraction stress to drive the pair of arms in the closing direction.
  • the pair of arms are formed so as to be juxtaposed at a predetermined interval.
  • the pair of arms are closed by applying a contraction stress to the biasing mechanism. May be.
  • the scanning probe microscope includes the above-described nanotweezers, a detection unit that detects displacement based on the interaction between the arm and the sample surface, and a control that controls the driving operation of the driving mechanism.
  • a scanning unit that calculates the physical and Z or chemical state of the surface of the sample based on the displacement detected by the detection unit, and a scanning unit that moves the tip of the arm relative to the sample surface. Is provided.
  • a display unit for visualizing the calculation result of the calculation unit may be provided.
  • the elements constituting the nano tweezers such as the support, the observation probe, the movable arm, and the gripping arm are manufactured by photolithography using a semiconductor wafer as a material. A simple sample can be observed and the sample can be securely grasped. In addition, the manufacturing cost can be reduced as compared with the nanotweezers in which the carbon nanotubes are fixed as in the conventional example. Furthermore, since the specimen is gripped between the gripping parts by linearly moving the gripping part of the movable arm toward the gripping part of the observation probe, reliable gripping can be easily performed.
  • FIG. 1 is a diagram showing a first embodiment of a scanning probe microscope according to the present invention.
  • FIG. 2 is a diagram showing the main part of the nanotweezers 1, (a) shows the observation probe 10 and the movable arm 20, and (b) shows the probe part of the observation probe 10.
  • FIG. 3 is a diagram for explaining a resonance frequency of an observation probe.
  • FIG. 4 is an enlarged view of the observation probe 10, the movable arm 20, the drive levers 23 and 24, and the power supply unit 6.
  • FIG. 5 (al) and (a2) are diagrams for explaining step a, (bl) and (b2) are diagrams for explaining step b, and (cl) and (c2) are for explaining step c. It is a figure to do.
  • FIG. 6 is a plan view showing a mask A.
  • FIG. 7 (a) and (b) are diagrams for explaining a process d.
  • FIG. 8 shows a cross section of the wafer 30 before and after etching in step d.
  • (A) is a II II cross sectional view of FIG. 7, and
  • (b) is an II cross sectional view of FIG.
  • FIG. 9 is a plan view showing a mask B.
  • FIGS. 10A and 10B are diagrams for explaining step e, in which (a) is a cross-sectional view taken along the line II, and (b) is a cross-sectional view taken along the line II.
  • FIGS. 11A and 11B are diagrams for explaining step f, wherein (a) is a cross-sectional view taken along the line II, and (b) is a cross-sectional view taken along the line II.
  • FIG. 12 is a perspective view showing the wafer 30 after the process f.
  • FIG. 13 (al) and (a2) are diagrams for explaining the step g, and (bl) is a diagram for explaining the step h.
  • FIG. 14 (a) is a plan view of the mask C, and (b) is a plan view of the mask D.
  • FIG. 15 is a diagram schematically showing the overall configuration of the AFM apparatus according to the second embodiment.
  • FIG. 16 (a) is a diagram showing the positional relationship between the observation probe 10 and the movable arm 20, and (b) is an enlarged view of the tip portion.
  • FIG. 18 (al) and (a2) are diagrams for explaining step a, (bl) and (b2) are diagrams for explaining step b, and (cl) to (c3) explain step c. It is a figure to do.
  • FIG. 19 (al) and (a2) are diagrams for explaining step d, (bl) to (b3) are diagrams for explaining step e, and (cl) and (c2) are for explaining step f. It is a figure to do.
  • FIG. 21 A diagram schematically showing the structure of the nanotweezers according to the third embodiment, where (a) shows the non-driven state of the drive mechanism 80, (b) shows the drive state of the drive mechanism 80, (C) is a partially enlarged view of the nano tweezers.
  • FIG. 22 is a schematic diagram showing the structure of the main part of nanotweezers 51.
  • FIG. 23 is a diagram for explaining an observation / gripping operation using the nanotweezers 51, (al) to (b2) showing an observation operation, and (cl) and (c2) showing a gripping operation.
  • FIG. 24 (al) to (a3) are diagrams for explaining step a, and (bl) and (b2) are diagrams for explaining step b.
  • FIG. 25 (al) to (a3) are diagrams for explaining the step c, and (bl) and (b2) are diagrams for explaining the step d.
  • FIG. 26 (al) and (a2) are diagrams for explaining step e, and (bl) and (b2) are diagrams for explaining step f.
  • FIG. 27 (al) and (a2) are diagrams for explaining step g, and (bl) and (b2) are diagrams for explaining step h.
  • FIG. 28 (al) to (a3) are diagrams for explaining step i, and (bl) to (b3) are diagrams for explaining step j.
  • FIG. 29 is a diagram for explaining a fourth embodiment, (a) is a plan view showing the sample surface side of nanotweezers 1, and (b) and (c) are tips of tip R of nanotweezers 1. It is an enlarged view explaining the structure.
  • FIG. 30 is a diagram for explaining the gripping operation of the sample S by the arms 201 and 202, where (a) shows an open state and (b) shows a closed state.
  • FIG. 31 (a) is a view showing nanotweezers 1 separated from SOI Ueno, and (b) is a view showing nanotweezers 1 after annealing.
  • FIG. 32 is a view showing a modification of the nanotweezers 1 in the fourth embodiment.
  • FIG. 1 is a diagram showing a first embodiment of a scanning probe microscope according to the present invention, and is a diagram schematically showing a configuration of an atomic force microscope apparatus (hereinafter referred to as an AFM apparatus).
  • FIG. 2 is a diagram showing the main part of the nanotweezers 1 provided in the AFM apparatus 100 of FIG. 1, wherein (a) shows the observation probe 10 and the movable arm 20, and (b) shows the probe of the observation probe 10. Shows the needle is doing.
  • the AFM apparatus 100 includes a nanotweezers 1, a laser light source 2, a two-divided photodiode 3, a calculation unit 4, an excitation unit 5, and a power supply unit 6. Yes.
  • the nanotweezers 1 has an observation probe 10 and a movable arm 20 integrally formed on a support 25, and is formed by processing an SOI wafer using a photolithography technique, as will be described later.
  • the observation probe 10 includes a lever 11 extending in the X direction in the figure and a probe portion 12 extending from the tip of the lever 11 in the X direction.
  • the movable arm 20 provided side by side with the observation probe 10 has a lever 21 extending in the X direction and a gripping portion 22 extending in the tip force X direction of the lever 21.
  • the probe portion 12 and the grip portion 22 that extend substantially in parallel are provided at a distance d.
  • the drive levers 23 and 24 provided integrally with the support body 25 function as thermal actuators for driving the movable arm 20.
  • the end portions of the drive levers 23 and 24 are connected to the movable arm 20 to form a link mechanism. Electric power is supplied from the power supply unit 6 to the drive levers 23 and 24 that function as thermal actuators.
  • the support 25 is detachably held by a holder (not shown) provided in the AFM apparatus 100.
  • the force AFM apparatus 100 includes a three-dimensional stage, and a holder for holding the support 25 is fixed to the three-dimensional stage. By driving the 3D stage, the entire nanotweezers 1 can be moved in the 3D direction.
  • the support 25 is slid and fitted into a groove or recess formed in the holder, or the support 25 is sandwiched by a panel panel attached to the holder. There are various methods.
  • the detection signal from the two-divided photodiode 3 is input to the calculation unit 4.
  • the calculation unit 4 calculates the amplitude of the observation probe 10 based on the detection signal, and calculates the surface shape of the sample S.
  • the calculation result is displayed on the monitor 7.
  • the excitation unit 5 includes a piezo element (not shown) for causing the observation probe 10 to resonate by vibrating the entire nanotweezers 1 and a drive circuit thereof.
  • the lever 11 of the observation probe 10 and the lever 21 of the movable arm 20 have a rectangular shape in the YZ section, and the length in the X direction and the thickness in the Z direction are set equal to each other.
  • Lever 11 has a larger width in the Y direction.
  • the probe portion 12 of the observation probe 10 and the grip portion 22 of the movable arm 20 are all set equal in length in the X direction, width in the Y direction, and height in the Z direction.
  • the probe section 12 and the gripping section 22 have a wedge shape tapered in the ⁇ Z direction, and the shape of each YZ section is a right triangle.
  • the cross-sectional shapes of the probe portion 12 and the grip portion 22 arranged at a distance d are symmetric with respect to the Z axis.
  • Opposing surfaces (hereinafter referred to as orthogonal surfaces) 12a and 22a of the probe portion 12 and the grip portion 22 are parallel to each other.
  • the ridgeline 12c where the orthogonal surface 12a and the inclined surface 12b of the probe section 12 intersect, and the ridgeline 22c where the orthogonal surface 22a and the inclined surface 22b of the gripping section 22 each extend parallel to the X axis. Is a part that functions as a sharp point (blade edge) that comes close to or contacts the sample S.
  • a piezo element (not shown) provided in the excitation unit 5 is driven to squeeze and vibrate the nano tweezers 1 in the direction indicated by the arrow V in FIG. 2 (Z direction). Scan in the XY direction and measure the surface shape of sample S. This method is generally called a tapping mode. At this time, the probe surface 12 of the observation probe 10 is brought close to the sample surface at the atomic diameter level, and then the sample surface is scanned two-dimensionally while vibrating in the Z direction.
  • the amplitude of lever 11 changes with the change.
  • the amount of change in amplitude is measured by an optical lever method using a laser light source 2 and a two-division photodiode.
  • the laser light L1 from the laser light source 2 is incident on the upper surface of the lever 11, and the reflected light L2 from the upper surface of the lever 11 is received by the two-divided photodiode 3 that is a light receiving unit. .
  • the two-divided photodiode 3 sends a detection signal corresponding to the light receiving position to the calculation unit 4.
  • the calculation unit 4 calculates the amount of change in the amplitude of the lever 11 based on the detection signal from the two-divided photodiode 3, and further calculates the surface shape of the sample S based on the amount of change in amplitude. This surface shape is displayed on the monitor 7.
  • the width of the lever 11 of the observation probe 10 is made wider than the width of the lever 21 of the movable arm 20, and the resonance frequency of the vibration in the thickness direction of the observation probe 10 is set to the resonance of the movable arm 20. Design to be higher than the frequency.
  • FIG. 3 is a diagram for explaining the resonance frequency of the observation probe 10, where the vertical axis represents amplitude and the horizontal axis represents frequency.
  • VI is a vibration curve of the observation probe 10
  • V2 is a vibration curve of the movable arm 20.
  • the frequency of vibration applied by the excitation unit 5 is fl
  • the observation probe 10 resonates and an amplitude peak occurs.
  • This frequency fl is the resonance frequency of the observation probe 10.
  • the resonance frequency of the movable arm 20 is f2, and an amplitude peak appears at the frequency f2.
  • the amplitude decreases rapidly, and the amplitude k at the frequency fl of the movable arm 20 is much smaller than the amplitude of the observation probe 10.
  • the widths of the levers 11 and 21 so that the resonance frequency fl of the observation probe 10 is higher than the resonance frequency f2 of the movable arm 20, only the observation probe 10 can be vibrated.
  • the resonance frequency may be set by adjusting the thickness of the levers 11 and 21.
  • the thickness of the lever 11 of the observation probe 10 may be set larger than the thickness of the lever 21 of the movable arm 20. Since the resonant frequency changes with the cube of the thickness, the resonant frequency can be changed by changing the thickness slightly.
  • FIG. 4 schematically shows an enlarged view of the observation probe 10, the movable arm 20, the drive levers 23, 24, and the power supply unit 6 shown in FIG.
  • the thermal actuator is composed of drive levers 23 and 24 and a power source 6, and a beam 23 a of the drive lever 23 and a beam 24 a of the drive lever 24 are connected to the movable arm 20. Thickness in the Z direction of the beam parts 23a, 24a is the same. The width in the X direction of the beam part 24a is set narrower than that of the beam part 23a.
  • the power supply unit 6 has two variable power supplies 6a and 6b connected in series. The pole is connected to the drive lever 23, and the positive electrode of the variable power source 6 b is connected to the drive lever 24. The connection point between the variable power supply 6a and the variable power supply 6b and the movable arm 20 are set to the ground potential.
  • the width in the X direction of the beam portion 24a is set to be narrower than that of the beam portion 23a, the resistance value of the beam portion 24a having a smaller cross-sectional area is greater than the resistance value of the beam portion 23a. Is also big. Therefore, when power is supplied from the power source 6 to the beam portions 23a and 24a, the Joule heat generated in the beam portion 24a is larger than that in the beam portion 23a, and the thermal expansion of the beam portion 24a is caused by the beam portion 23a. It will be bigger than that.
  • the drive levers 23 and 24 generally hold the movable arm 20 in the H direction parallel to the Y axis, with the narrow portion 20a where the width of the movable arm 20 is narrow as a fulcrum.
  • the amount of stagnation of the movable arm 20 is adjusted by feedback control of the voltage applied from the power source 6 to the beams 23a and 24a. Note that the voltages of the variable power supplies 6a and 6b are adjusted so that the region 21a of the movable arm 20 is at the ground level.
  • both the observation probe 20 and the movable arm 10 can be controlled to the ground potential. Therefore, unnecessary voltage is applied to the gripping sample S. It can prevent being applied.
  • the nanotweezers 1 When the sample S is held with the nanotweezers 1 having such a thermal actuator mechanism, the following operation is performed. First, the nanotweezers 1 are moved three-dimensionally along the sample surface, and the shape of the sample surface is observed with the observation probe 10 to find the sample S to be gripped. If the sample S is detected, the nanotweezers 1 are moved so that the sample S is positioned between the probe unit 12 and the grip unit 22. After stopping the tapping operation of the observation probe 10, the drive levers 23 and 24 are driven to move the movable arm 20 in the H direction in the figure to bring the gripping portion 22 closer to the probe portion 12, and the sample S Is sandwiched between the gripping part 22 and the probe part 12. At this time, only the movable arm 20 is pinched by the drive levers 23 and 24, and the observation probe 10 does not move.
  • the sample S is brought into contact with the orthogonal surface 12a of the probe portion 12 of the observation probe 10 (see FIG. 2B).
  • the movable arm 20 is clamped to bring the orthogonal surface 22a (see Fig. 2 (b)) of the gripping part 22 closer to the sample S, and the variable power supply so that the orthogonal surface 22a contacts the sample S with an appropriate pressing force. Adjust 6a and 6b.
  • sample S is held by nanotweezers 1.
  • the orthogonal surfaces 12a and 22a are configured to face each other in a parallel state, the sample S is reliably held by the parallel surfaces 12a and 22.
  • the sample S After gripping the sample S, the sample S can be moved three-dimensionally by driving the three-dimensional stage. Further, when releasing the gripped sample S, the voltage applied by the power supply unit 6 is set to zero, and the distance between the gripping unit 22 and the probe unit 12 is returned to the original distance d. By such an operation, the nanotweezers 1 having the observation probe 10 and the movable arm 20 can both observe and grasp the sample S.
  • Nanotweezers 1 is fabricated as a single piece from a SOKSilicon on Insulator wafer.
  • An SOI wafer is a SiO layer formed on one of two Si single crystal plates and bonded together with the SiO layer sandwiched between them.
  • the support 25 is composed of the upper Si layer 31 and the SiO constituting the SOI wafer.
  • the observation probe 10 the movable arm 20, and the drive levers 23 and 24 are formed of the upper Si layer 31 except for an electrode for connecting the power supply unit 6 and the like.
  • the force using SOI wafers of 6 m, 1 m, and 300 / z m in order of the thickness force of each layer 31, 32, 33 is not limited to such a dimensional combination.
  • FIGS. 5 to 14 are diagrams showing manufacturing steps of the nanotweezers 1 of the present embodiment, which are sequentially processed from steps a to h.
  • (Al) and (a2) in FIG. 5 are diagrams for explaining step a, (al) is a perspective view, and (a2) is a cross-sectional view.
  • step a upper Si layer 31, SiO layer 32 and lower Si layer 3
  • An SOI wafer 30 made of 3 is prepared, and a silicon nitride (SiN) film 34 having a thickness of 50 nm is formed on the upper Si layer 31.
  • the upper Si layer 31 of the SOI wafer 30 is configured such that the surface is the main surface (001) of the Si single crystal! RU
  • step b is a perspective view
  • step b2 is a cross-sectional view taken along I I.
  • the region A1 where the SiN film 34 is removed by etching is roughly a region where the tip of the observation probe 10 and the tip of the movable arm 20 are formed.
  • the area A2 is an area where the proximal end side of the observation probe 10 and the movable arm 20 and the drive levers 23 and 24 are formed. In the direction in which the observation probe 10 and the movable arm 20 extend, that is, an elongated region
  • the ⁇ 110> direction of the upper Si layer 31 is selected.
  • the mask A shown in FIG. 6 is a mask including the support 25, and FIG. 1 and FIG.
  • the portion shown in () is related to the region above the R1-R1 line in FIG. In the following description, the region above the Rl-R1 line will be described.
  • an oxide film 35 having a thickness of 0.1 m is formed on the surface of the upper Si layer 31 in the regions A1 and A2.
  • the oxidation method is steam oxidation, and the exposed surface of the upper Si layer 31 is oxidized using steam generated by reacting oxygen gas and hydrogen gas at a high temperature.
  • FIGS. 7A and 7B are diagrams for explaining the step d.
  • the mask B shown in FIG. 9 is used to perform etching by using ICP-reductively coupled plasma-reactive ion etching;
  • the mask B is formed with a tip shielding region B1, which is a portion covering the region A1 in FIG. 7 (cl).
  • a slit SL1 extending in the illustrated vertical direction (the ⁇ 110> direction of the upper Si layer 31) is formed.
  • the slits SL2 and SL3 are for producing the drive levers 23 and 24. Note that the upper region force from the line R2-R2 of the mask B shown in FIG. 9 corresponds to the portions shown in FIGS. 7 (a) and 7 (b).
  • FIG. 7 (a) shows the mask B placed on the wafer 30 formed in FIG. 6 (cl).
  • FIG. 7A the portion not covered with the mask B is etched up to the SiO 2 layer 32 by ICP-RIE. In this ICP-RIE, etching stops at SiO layer 32
  • the thickness of the observation probe 10 and the movable arm 20 can be formed uniformly and with high accuracy.
  • FIG. 7 (b) shows the wafer 30 after etching.
  • a slit groove 40 extending in the direction of 110> is formed. Both side surfaces of the slit groove 40 are perpendicular to the surface of the SiN film 34, and the depth of the slit groove 40 corresponds to the sum of the thicknesses of the SiN film 34 and the upper Si layer 31. Both side surfaces of the slit groove 40 become the orthogonal surface 12a of the probe portion 12 and the orthogonal surface 22a of the grip portion 22 (see FIG. 2) when the nanotweezers 1 are completed.
  • FIG. 8 shows a cross section of the wafer 30 before and after etching, and (a) shows II II in FIG. It is a sectional view, and (b) is a sectional view taken along the line II in FIG.
  • the silicon nitride (SiN) film 34, the oxide film 35, and the Si layer 31 are etched. As a result, in the etched portion, the surface of the SiO layer 32 and the side surface of the Si layer 31 are exposed.
  • FIG. 10 is a diagram illustrating step e, (a) is a diagram showing a cross section similar to the II cross section of FIG. 7, and (b) is a diagram showing a cross section similar to the II II cross section of FIG. It is.
  • step e an oxide film 36 for surface protection is formed on the side surface of the upper Si layer 31 exposed by the etching in step d.
  • This oxidation treatment is steam oxidation similar to step (c).
  • FIG. 11 is a diagram for explaining the process f, (a) is a II sectional view similar to FIG. 10 (a), and (b) is a sectional view similar to FIG. 10 (b). It is.
  • process f SiN is obtained by RIE using CF.
  • the film 34 is etched away. As a result, as shown in FIGS. 11 (a) and 11 (b), the upper surface of the upper Si layer 31 is exposed. This RIE process is performed without using a mask.
  • FIG. 12 is a perspective view showing the wafer 30 after processing, and the portions where the dots are hatched are the portions of the oxide films 35 and 36.
  • FIG. 13 (al) and (a2) are diagrams for explaining the step g, and (bl) is a diagram for explaining the step h.
  • FIG. 13 (a2) is a cross-sectional view taken along the line III-III in FIG. 13 (al).
  • the upper Si layer 31 is anisotropically etched using a 30% KO aqueous solution.
  • the upper Si layer 31 is anisotropically etched from that portion.
  • Slopes l lb, 21b, 12b, 22b are formed.
  • the surface of the upper Si layer 31 is selected as the main surface (001) of single crystal Si, the slopes 12b and 22b formed by anisotropic etching are on the ⁇ 1 11 ⁇ plane of single crystal Si. It has become.
  • the thickness of the lever 11 of the observation probe 10 is made thicker than the thickness of the lever 21 of the movable arm 20 to set the resonance frequency as described above, the area other than the lever 21 area is protected with a resist. Then, it is sufficient to heat or etch only the region of the lever 21 until a predetermined thickness is reached. Next, the upper Si layer 31 remaining in the peripheral region where the prototype of the observation probe 10 and the movable arm 20 is formed by ICP-RIE using the mask C shown in FIG.
  • step h shown in FIG. 13 (bl) unnecessary portions on the lower Si layer 33 side are etched away from the back surface of the SOI wafer 30 by ICP-RIE using the mask D shown in FIG. 14 (b). . This etching stops at the SiO layer 32. Then, the unnecessary part of the SiO layer 32 is removed with hydrofluoric acid solution
  • step h is a portion indicated by a two-dot chain line as shown in FIG. 13 (b 1). Note that the processing of the portion shown in FIG. 13 corresponds to the region above the R3-R3 lines of masks C and D.
  • the nanotweezers 1 in which the observation probe 10 and the movable arm 20 extend in the same direction integrally with the support body 25 are completed.
  • the drive levers 23 and 24 are also manufactured by the same method during the manufacturing process of the observation probe 10 and the movable arm 20.
  • the force explaining a series of manufacturing procedures for one nanotweezer 1 The actual manufacturing process is a so-called batch process performed in units of SOI wafers. In this batch process, a large number of nanotweezers 1 can be fabricated from a single SOI wafer by a single photolithography method, resulting in a significant reduction in manufacturing costs.
  • the nanotweezers 1 according to the present embodiment have the following operational effects when mounted on an AFM apparatus.
  • the resonance frequency fl of the observation probe 10 is higher than the resonance frequency f2 of the movable arm 20.
  • the width or thickness of the levers 11 and 21 is set, if the resonance frequency when exciting the observation probe 10 in the tapping mode is the resonance frequency of the observation probe 10, only the observation probe 10 is It can be vibrated close to the sample S, and even if the movable arm 20 is arranged in parallel, it will not interfere with the observation.
  • the movable arm 20 is configured to be driven by a thermal actuator, no voltage is applied to the movable arm 20 itself, and it is possible to easily hold either a conductive sample or a biological sample.
  • FIG. 15 is an overall configuration diagram schematically showing the configuration of the AFM apparatus according to the second embodiment. Note that the same parts as those in the first embodiment described above are denoted by the same reference numerals, and redundant description is omitted.
  • the movable arm 20 is driven in the M direction (X direction) by the drive mechanism 300.
  • the drive mechanism 300 is provided with a pair of electrodes 301, thermal deformation portions 302, insulator portions 303, connecting portions 304, and beam portions 305.
  • the support 25 of the nanotweezers 1 is detachably held by a holder (not shown), and the holder can be moved in a three-dimensional direction by a three-dimensional stage (not shown).
  • An electrode 301 is connected to the thermal deformation section 302, and the tip of the thermal deformation section 302 is in contact with the insulator section 303.
  • the insulator portion 303 is connected to the beam portion 305 via the connecting portion 304, and the beam portion 305 is connected to the base portion of the movable arm 20.
  • the pair of electrodes 301 is connected to the power supply unit 6, so that power can be supplied from the power supply unit 6 to the thermal deformation unit 302 via the electrode 301.
  • the thermal deformation section 302 is thermally expanded in the longitudinal direction by Joule heat, and the movable arm 20 is linearly moved in the + X direction. Therefore, the reciprocating motion M in the X direction is performed on the movable arm 20 by adjusting the power supplied to the drive mechanism 300 as a thermal expansion actuator, that is, by adjusting the current value flowing through the thermal deformation portion 32. Can be made.
  • the observation probe 10 and the movable arm 20 are aligned in the Y direction.
  • the movable arm 20 is driven in the Y direction by a thermal actuator.
  • the observation probe 10 and the movable arm 20 are arranged side by side so as to overlap in the vertical direction, and the movable arm 20 is slid in the X direction by the drive mechanism 300.
  • FIG. 16 (a) is a diagram showing the positional relationship between the observation probe 10 and the movable arm 20, and (b) is an enlarged view of the tip portion.
  • the drive mechanism 300 is schematically shown in a simplified manner.
  • the observation probe 10 includes a lever 11 extending in the X direction, a grip portion 12 provided at the tip of the lever 11 and protruding in the Z direction, and a probe portion 13 provided at the tip portion of the grip portion 12.
  • This observation probe 10 is formed integrally with the support 25 of the nanotweezers 1.
  • the movable arm 20 also has a lever 21 extending in the X direction and a grip portion 22 provided at the tip of the lever 21 and protruding in the Z direction.
  • a drive mechanism 300 is connected to the base of the movable arm 20.
  • the protruding length of the lever 11 from the support 25 is set longer than the protruding length of the lever 21.
  • the width of the lever 11 in the Y direction and the width of the lever 21 in the Y direction are arranged in parallel in the Z direction at a predetermined interval.
  • the gripping portion 12 and the gripping portion 22 are arranged along the X direction, and the portions of the gripping portions 12 and 22 facing each other are planar. Is formed.
  • the facing surfaces 12a and 22a are surfaces orthogonal to the X axis and are arranged in parallel to each other. The distance d between the opposing surfaces 12a and 22a can be changed by moving the movable arm 20 in the M direction.
  • the probe portion 13 and the tip 22b of the grip portion 22 are both sharp, and the line connecting the probe portion 13 and the tip 22b of the grip portion 22 is substantially parallel to the X axis. Therefore, when the movable arm 20 is moved linearly and the opposing surfaces 12a and 22a are brought into contact with each other, the probe portion 13 and the tip 22b of the grip portion 22 are matched.
  • the observation operation of the sample surface by the nanotweezers 1 and the gripping operation will be described.
  • the observation operation will be described.
  • the sample surface is observed in the same tapping mode as in the first embodiment.
  • the support 25 of the nanotweezers 1 is vibrated in the Z direction by the excitation unit 5 and the observation probe 10 Is resonantly oscillated.
  • a holder (not shown) that holds the nanotweezers 1 is moved three-dimensionally, and the nanotweezers 1 is inclined by a predetermined angle with respect to the sample surface P as shown in FIG. Roach.
  • the drive mechanism 300 is not operated, and the distance d between the gripping part 12 of the observation probe 10 and the gripping part 22 of the movable arm 20 is set to the maximum distance dO.
  • the probe portion 13 of the observation probe 10 is brought close to the sample surface P at the atomic diameter level, and the sample surface is observed by the same method as in the first embodiment. Detailed explanation is omitted here.
  • the probe portion 13 of the observation probe 10 is vibrated with a larger amplitude than the tip 22b of the movable arm 20, Must be close to sample surface P or micro sample S. Therefore, the thickness of the lever 11 of the observation probe 10 is made larger than the thickness of the lever 21 of the movable arm 20, and the resonance frequency of the vibration in the thickness direction of the lever 11 is set to the resonance of the lever 21 as in the first embodiment. Design to be higher than the frequency.
  • the support 25 of the nanotweezers 1 is vibrated at the resonance frequency by the excitation unit 5, only the lever 11 resonates and vibrates greatly in the Z direction. As a result, it is possible to perform AFM observation with the observation probe 10 without the movable arm 20 being an obstacle to observation.
  • the driving mechanism 300 is operated to perform the gripping operation of the micro sample S. Let it be done.
  • gripping operation is performed, the vibration operation by the excitation unit 5 is stopped.
  • the nanotweezers 1 are moved to the micro sample S with the distance d kept at dO.
  • an electric current is passed through the thermal deformation section 302 of the drive mechanism 300, the thermal deformation section 302 is thermally expanded due to the generation of Joule heat, and the amount of displacement in the + X direction due to the thermal expansion is expanded by the insulator section 303. Then, the beam portion 305 and the movable arm 20 are driven in the + X direction via the connecting portion 304.
  • the micro sample S is sandwiched between the grip portion 22 and the grip portion 12, so that the micro sample S is gripped between the parallel surfaces 12a and 22a.
  • the minute sample S can be gripped with an appropriate gripping force by adjusting the current value to the thermal deformation section 302.
  • the distance d between gripping part 12 and gripping part 22 during gripping is the size of micro sample S dl (dK dO).
  • the micro sample S is moved three-dimensionally by moving the holder holding the nanotweezers 1 in a three-dimensional direction by a three-dimensional stage (not shown). be able to.
  • the observation probe 10 and the movable arm 20 are provided so that the sample surface P and the minute sample S can be observed and the minute sample S can be grasped.
  • the minute sample S can be gripped while holding the facing surfaces 12a and 22a of the gripping portions 12 and 22 in parallel, the conventional nanotweezers that open and close by moving the gripping portion in an arc shape Compared to this, the micro sample S can be reliably gripped.
  • the nano tweezers 1 of the present embodiment is suitable for gripping a minute object having a spherical surface such as a cylindrical carbon nanotube or a spherical fullerene.
  • the distance d between the gripping part 22 and the gripping part 12 can be increased by reducing the applied voltage by the power source 6 to zero. Oh ,.
  • step a an S OI wafer 400 is prepared.
  • the SOI wafer 400 is composed of an upper Si layer 401 having a thickness of 50 / z m, an SiO layer 402 having a thickness of 1 m, and a lower Si layer 403 having a thickness of 400 ⁇ m.
  • the upper Si layer 401 is formed so that its surface becomes the main surface (001) of single crystal Si, and the horizontal direction in the figure is 100> direction.
  • step b the surface of the upper Si layer 401 is oxidized by steam oxidation (wet oxidation) using water vapor generated by reacting oxygen gas and hydrogen gas at a high temperature to form an oxide film 404 having a thickness of 0.0. Form on the entire surface.
  • steam oxidation wet oxidation
  • (cl), (c2), and (c3) in FIG. 18 are diagrams for explaining step c, (cl) is a plan view, (c2) is a sectional view, and (c3) is used in step c. It is a top view of mask MA.
  • Mask MA is a resist mask formed by photolithography.
  • BHF etching using the mask MA is performed to remove a part of the oxide film 404.
  • step d a silicon nitride film (Si3N4 film or SiN film) having a thickness of 0.05 m is formed on the oxide film 404 and the exposed upper Si layer 401 by LPCVD.
  • step e is a plan view
  • step e is an IA-IA sectional view
  • step e It is a top view of mask MB used by.
  • the SiN film 405 is etched by RIE, and then the oxide film 404 exposed by the etching is removed by etching using BHF.
  • the upper Si layer 401 exposed by BHF etching is etched by ICP-RIE (inductively coupled plasma-reactive ion etching). This ICP-RIE etching proceeds almost perpendicularly to the thickness direction and stops at the SiO layer 402. As a result, it is shown in Fig. 19 (b2).
  • a groove B11 having a depth of 50 / z m equal to the thickness of the upper Si layer 401 is formed.
  • the groove B11 is formed by etching from the non-shielding portion B12 of the mask B.
  • FIGS. 19 (cl) and (c2) are diagrams for explaining the step f, (cl) is a plan view, and (c2) is an IA-IA sectional view.
  • step f the exposed surface of the upper Si layer 401 is acidified with water vapor acid to form an oxide film 406 having a thickness of 0.3 / zm.
  • the oxide film 406 functions as a protective film for preventing the inner wall of the groove Bl 1 from being etched during anisotropic etching described later.
  • step g (al) is a plan view, and (a2) is an IA-IA cross-sectional view.
  • step g the SiN film 405 is removed by RIE.
  • step h the upper Si layer 41 in the region A10 where the SiN film 45 before removal has been formed is exposed.
  • step h anisotropic etching of the upper Si layer 401 in region A10 is performed using a TMAH (tetramethyl ammonium hydroxide) solution.
  • TMAH tetramethyl ammonium hydroxide
  • the oxide films 404 and 406 serve as a stop layer for this anisotropic etching which is difficult to be etched by TMAH.
  • TMAH TMAH
  • three triangular pyramids consisting of the upper Si layer 401 and having the slopes Cl, C2, C3 are formed.
  • the slopes C 1, C 2, and C 3 are (111) planes with a low etching rate.
  • KOH solution may be used instead of T MAH solution.
  • (cl), (c2), and (c3) in FIG. 20 are diagrams for explaining process i
  • (cl) is a plan view
  • (c2) is an IA-IA sectional view
  • (c3) is process i.
  • It is a mask MC used in.
  • Figure 20 (c3) Using the mask MC shown, unnecessary portions of the lower Si layer 403 are etched away from the back surface of the SOI wafer 400, that is, from the lower Si layer 403 side, and the remaining SiO layer 402 is also removed.
  • the lower Si layer 403 in the portion of the region A12 shielded by the shielding portion A13 of the mask MC remains as a portion of the support 25 without being etched as shown in FIG. 20 (c2).
  • the etching of the SiO layer 402 removes the thermal change of the movable arm 20 and the drive mechanism 300.
  • the width dimension of the observation probe 10 and the movable arm 20 is the force regulated by the thickness of the upper Si layer 401 (for example, 50 m in the above example).
  • the direction dimension can be freely designed by photolithography. Accordingly, it is easy to make the length and thickness of the observation probe 10 and the movable arm 20 suitable for the resonance frequency of the tapping mode vibration. Further, the distance d between the gripping portion 12 and the gripping portion 22 can be arbitrarily set.
  • the force explaining a series of manufacturing procedures for one nanotweezer 1 The actual manufacturing process is a so-called batch process performed in units of SOI wafers. In this batch process, a large number of nanotweezers 1 can be fabricated from a single SOI wafer by a single photolithography method, resulting in a significant reduction in manufacturing costs.
  • the nanotweezers 1 according to the present embodiment have the following operational effects when mounted on the AFM apparatus.
  • the SOI wafer force is also low-cost and the dimensional accuracy of the micro sample S by the observation probe 10 and the movable arm 20 is high. Grasping can be performed reliably.
  • the gripping part 22 of the movable arm 20 is linearly slid toward the gripping part 12 of the observation probe 10 and the micro sample S is gripped between both gripping parts. it can.
  • the movable arm 20 is configured to be driven by a thermal actuator, the movable arm No voltage is applied to 20 itself, and it can be easily grasped by either a conductive sample or a biological sample.
  • FIG. 21 is a plan view schematically showing the structure of the nanotweezers according to the third embodiment.
  • FIG. 21 (a) is a non-driven state of the drive mechanism 80
  • FIG. 21 (b) is a drive mechanism.
  • FIG. 21 (c) is a partially enlarged view of the nanotweezers of FIGS. 21 (a) and (b).
  • the nanotweezers 51 has an observation probe 60, a movable arm 70, a support 75, and a drive mechanism 80.
  • the observation probe 60 is provided integrally with the support body 75, and includes a U-shaped (horse-shoe-shaped) lever 61 extending in the X direction, and a gripping portion 62 protruding in the Z direction near the tip of the lever 61. And a probe portion 63 disposed at the tip portion of the grip portion 62.
  • the probe part 63 is provided at the tip of the grip part 62.
  • the movable arm 70 is slidably disposed in a U-shaped space formed by the lever 61.
  • a gripping portion 72 protruding in the Z direction is formed at the tip of the lever 71 extending in the X direction of the movable arm 70.
  • the lever 61 and the lever 71 are on the same plane, and the thickness of the lever 61 and the lever 71 in the Z direction is equal to the height position of the probe portion 63 and the gripping portion 72 in the Z direction.
  • FIG. 22 schematically shows the structure of the main part of the nanotweezers 51 according to the third embodiment.
  • the facing surface 62a of the grip portion 62 and the facing surface 72a of the grip portion 72 are formed in parallel to each other.
  • both the probe part 63 and the tip 72b of the grip part 72 are sharply formed, and the line connecting the probe part 63 and the tip 72b of the grip part 72 is substantially in the sliding direction M of the lever 71. It arrange
  • the base of the movable arm 70 is connected to the drive mechanism 80, and the movable arm 70 is slid in the M direction by the drive mechanism 80.
  • the structure of the drive mechanism 80 is the same as that of the second embodiment. This is the same as the drive mechanism 300, and detailed description thereof is omitted.
  • the nanotweezer 51 of the third embodiment similarly to the nanotweezer 1 of the first embodiment, it is mounted on the AFM apparatus 100 of FIG. Hold it.
  • FIG. 23 is a diagram for explaining the observation operation using the nanotweezers 51.
  • the nanotweezers 51 are inclined with respect to the sample surface P by a predetermined angle. And then broach. At this time, the distance d between the gripping part 62 of the observation probe 60 and the gripping part 72 of the movable arm 70 is maintained at the maximum distance dO.
  • L1 is light from the laser light source 2, and the light L1 is applied to the upper surface of the observation probe 60.
  • the light L 2 reflected from the upper surface of the observation probe 60 enters the two-divided photodiode 3.
  • the probe 63 is brought close to the sample surface P at the atomic diameter level while the distance d between the opposing surfaces 62a and 72a is held at dO. And observe by tapping mode.
  • the width of the lever 61 of the observation probe 60 to be wider than the width of the lever 71 of the movable arm 70, only the lever 61 is resonated to increase the amplitude. Vibrate with.
  • FIG. 23 (cl) and (c2) are diagrams for explaining the gripping operation of the micro sample S by the nanotweezers 51.
  • the nanotweezers 51 similarly to the nanotweezers 31 of the second embodiment, the nanotweezers 51 is arranged so that the micro sample S is positioned between the gripping portions 72 and 62 held at the distance dO. Moving. After that, the movable arm 70 is slid in the + X direction so that the micro sample S is sandwiched between the grip portion 72 and the grip portion 62. Also in this embodiment, since the opposing surfaces 62a and 72a holding the micro sample S are parallel to each other, the micro sample S can be reliably held.
  • FIG. 24 are diagrams for explaining step a, (al) is a plan view, (a2) is a cross-sectional view taken along line ⁇ , and (a3) is a mask ME used in step a.
  • An SOI wafer 90 having a thickness of 92 (thickness 1 ⁇ m) and a lower Si layer 93 (thickness 400 ⁇ m) is prepared, and a 0.05 nm / zm thick silicon nitride film (Si N film or SiN film) 94 LP
  • a groove D1 having a depth of 10 / z m equal to the thickness of the upper Si layer 91 is formed.
  • an oxide film 95 having a thickness of 0.3 m is formed on the exposed portion of the upper Si layer 91 (inner wall of the trench Dl) by steam oxidation.
  • step c is a plan view
  • (a2) is a cross-sectional view taken along line II-A
  • (a3) is a view showing a mask MF. It is.
  • step c shown in FIGS. 25 (al) and (a2) using the mask MF shown in FIG. 24 (a3), the SiN film 94 in the region E1 on the left side of the ⁇ - ⁇ line is removed by etching only in the region F1.
  • the Si layer 91 is exposed.
  • Region F1 corresponds to non-obscured portion F2 of mask MF.
  • FIGS. 25 (bl) and (b2) are diagrams for explaining the step d, (bl) is a plan view, and (b2) is a cross-sectional view along the line II-A.
  • step d anisotropic etching of the upper Si layer 91 in the region F1 is performed using a KOH solution.
  • a KOH solution may be used instead of the KOH solution.
  • FIG. 26 (al) and (a2) are diagrams for explaining the step e, (al) is a plan view, and (a2) is a cross-sectional view along line II-A.
  • step e an oxide film 96 is formed on the exposed surface (region F1) of the upper Si layer 91.
  • FIGS. 26 (bl) and (b2) are diagrams for explaining step f, (bl) is a plan view, and (b2) is a cross-sectional view taken along line ⁇ .
  • step f the remaining SiN film 94 is completely removed by RIE. Therefore, the upper Si layer 91 is exposed also in the region E2 on the right side of the IIA- ⁇ line.
  • FIG. 27 (al) and (a2) are diagrams for explaining the step g, (al) is a plan view, and (a2) is a cross-sectional view along the line II-A.
  • Step g is the same step as step d shown in FIGS. 27B and 27B, and anisotropic etching is performed on the upper Si layer 91 in the region E2. Even in the anisotropic etching of region E2, the etching is stopped when the etching depth reaches 5 / zm. As a result, two new triangular pyramids with slopes G3 and G4 across the ⁇ - ⁇ line are formed. Slopes G3 and G4 are (111) planes as well as slopes Gl and G2.
  • step h the oxide film 96 formed to protect the region F1 is removed by etching.
  • Triangular pyramid with triangular pyramid with slope G1 and triangular pyramid with slope G3 becomes gripping part 62 and probe part 63
  • triangular pyramid with triangular pyramid with slope G2 and triangular pyramid with slope G4 It becomes the grip part 72. Since the region D1 is formed in a rectangular shape, the opposing surfaces of the grip portion 62 and the grip portion 72 are parallel to each other.
  • (al) to (a3) in FIG. 28 are diagrams for explaining step i, (al) is a plan view, (a2) is a cross-sectional view taken along the line II-IA, and (a3) is a diagram showing a mask MG. It is. Also, (bl) to (b3) in FIG. 28 are diagrams for explaining step j, (bl) is a plan view, and (b2) and (a3) show the formed observation probe 60 and movable arm 70. It is the top view and perspective view which show. In FIGS. 28 (al), (a3), (bl), and (b3), a wider area is shown than the areas shown in FIGS.
  • step i shown in FIGS. 28 (al) and (a2) etching is performed to form the outer shape of the observation probe 60 and the movable arm 70 by ICP-RIE using the mask MG. With this etching, a part of the outer shape of the support 75 is also formed at the same time.
  • the upper Si layer 91 in the boundary between the observation probe 60 and the movable arm 70 and the peripheral region is removed, so that the prototype of the observation probe 60 and the movable arm 70 is removed from the upper Si layer 91. Produced. Of course, the SiO layer 92 is exposed in the portion where the upper Si layer 91 is removed.
  • step j shown in FIGS. 28 (bl) and (b2) the ICP—RIE using the mask MH is used to separate the observation probe 60 and the movable arm 70 and to etch the outer shape of the support 75. I do.
  • step j unnecessary portions of the lower Si layer 93 and the SiO layer 92 are removed from the back surface of the SOI wafer 90, that is, from the lower Si layer 93 side. As a result, the support body 75 and the
  • the nano tweezers 51 in which the observation probe 60 and the movable arm 70 extend in the same direction is completed. Further, the drive mechanism 80 is simultaneously manufactured by the same method during the manufacturing process of the observation probe 60 and the movable arm 70. The drive mechanism 80 is also made from the upper Si layer 91 in the same manner as the observation probe 60 and the movable arm 70.
  • the length (X direction), width (Y direction), and thickness (Z direction) of the observation probe 60 and the movable arm 70 are freely designed by photolithography, Can be manufactured.
  • the thickness dimension of the lever parts 61 and 71 and the height dimension of the gripping part 62 and the gripping part 72 including the probe part 63 are determined by the etching amount of the upper Si layer 91. to manage.
  • the nanotweezers 51 according to the third embodiment has the same effects as the nanotweezers according to the second embodiment by being mounted on the AFM apparatus.
  • adjusting the width dimension of the lever 61 of the observation probe 60 is more accurate than adjusting the thickness dimension.
  • FIG. 29 is a diagram for explaining the fourth embodiment, (a) is a plan view showing the sample surface side of nanotweezers 1, and (b) and (c) are the tips R of nanotweezers 1. It is an enlarged view explaining a structure.
  • Arms 201 and 202 are formed on the support 25.
  • 203 and 204 are drive units that drive the arms 201 and 202 to open and close in the direction of the arrow in the figure.
  • the drive units 203 and 204 are thermal expansion actuators that perform an expansion operation by Joule heat, and operate by electric power from the power source 209.
  • the structure of the tip portion R of each of the arms 201 and 202 may be the structure shown in Fig. 29 (b) or the structure shown in Fig. 29 (c).
  • the arm is shown in an open state so that the structure of the tip can be easily divided.
  • the gripping parts 201a and 202a having the same cross-sectional shape as a right triangle are formed, which has the same structure as the nanotweezers of the first embodiment described above.
  • pyramidal projections 201b and 202b are formed on the sample side plane of the arms 201 and 202, as in the case of the nanotweezers of the third embodiment. .
  • FIG. 30 is a view for explaining the gripping operation of the sample S by the arms 201 and 202.
  • the arms 201 and 202 are closed as shown in FIG.
  • the silicon layers of the drive units 203 and 204 are doped with boron, and the drive units 203 and 204 contract as shown by the vertical arrows in FIG. Stress is acting in the direction to do.
  • gripping the sample S it moves to the vicinity of the sample S with the nanotweezers 1 closed.
  • the nanotweezers 1 are moved so that the sample S is positioned between the arms 201 and 202.
  • the contact between the arm 201 and the arm 202 is released and no current flows.
  • the temperature of the drive units 203 and 204 drops, and the expanded drive units 203 and 204 try to return to the original state.
  • the arms 201 and 202 move in the closing direction, and the sample S is gripped as shown in FIG.
  • a gripping force for gripping the sample S is generated by the stress that the drive units 203 and 204 tend to contract.
  • the power source 209 is turned off, and the sample S is gripped in the power off state.
  • the power source 209 is turned off and the arm is closed as shown in Fig. 29 (a), and the support 25 is excited for the AFM apparatus. Vibrate by part. Laser light may be applied to either of the arms 201 and 202.
  • the tips of the arms 201 and 202 that is, the tips of the gripping portions 201a and 202a shown in FIG. 29 (a) and the tips of the projections 201b and 202b shown in FIG. Function as part
  • the manufacturing process of the nanotweezers 1 is the same as that in the first or third embodiment except that a step of doping boron and a step of generating stress by annealing the boron doped drive units 203 and 204 are added. The same manufacturing method is applied.
  • the drive units 203 and 204 are formed from the upper Si layer 31 (see FIG. 1) of the SOI wafer, as in the first and third embodiments.
  • a mask pattern is formed on the upper Si layer 31 of the prepared SOI wafer, and boron is doped in the region where the drive units 203 and 204 are formed.
  • ion implantation equipment A boron ion is ion-implanted into the driver region using the apparatus.
  • the support portion 25, the arms 201, 202, the horse ward trolley 204, and the like constituting the nanotweezers 1 are formed by the same manufacturing method as in the first or third embodiment. If nano tweezers 1 force is formed on the SOI wafer, the nano tweezers 1 is separated from the SOI wafer by etching and heat treatment is performed, and annealing of the horse block 204 is performed.
  • FIG. 31 (a) shows the nanotweezers 1 separated from the SOI wafer, and the arms 201 and 202 are open at this stage. That is, when the arms 201 and 202 are formed by etching, the arms 201 and 202 are etched into an open shape. After that, annealing is performed to replace the implanted boron with Si lattice sites. Since the atomic radius of boron is smaller than that of Si, if boron is replaced by lattice sites, stress acts in the compression direction. As a result, after the heat treatment, as shown in FIG. 31 (b), the drive units 203, 204 contract and the tips of the arms 201, 202 are closed. The bonding of the driving units 203 and 204 may be performed by masking with a resist after the structure of the nanotweezers 1 is etched.
  • FIG. 32 is a view showing a modification of the nanotweezers 1 shown in FIG.
  • electrodes 207 and 208 are provided on the bases of the arms 201 and 202
  • a power source 209A is connected between the electrodes 205 and 207
  • a power source 209B is provided between the electrodes 206 and 208, respectively. Therefore, opening / closing drive can be performed for each of the arms 201 and 202, and the gripping force can be adjusted by passing a current through the drive units 203 and 204 while the sample is gripped.
  • the power supplies 209A and 209B cannot be turned off while the sample is being gripped. Note that even in the nanotweezers 1 shown in the modification, the same opening / closing operation as the nanotweezers shown in FIGS. 29 and 30 can be performed by connecting a power source only between the electrodes 205 and 206.
  • a current is passed through the drive units 203 and 204 to thermally expand the drive units 203 and 204 to open the arms 201 and 202.
  • the drive unit 20 3 doped with boron 20 3 , 204 may be provided with a drive mechanism for driving the arms 201, 202 in the opening direction.
  • the drive units 203 and 204 function only as an urging mechanism that applies an urging force in the closing direction to the arms 201 and 202.
  • the drive units 203 and 204 serve as both an urging mechanism and a drive mechanism.
  • thermal expansion Thermal actuators that use them can be used, and electrostatic actuators that use electrostatic force can also be used. If the urging mechanism and drive mechanism are configured separately, the arm before annealing is performed.
  • the arms 201 and 202 can be opened by the drive mechanism.
  • the tip of the gripping part or the protrusion formed on the nanotweezers is used as the probe part at the time of sample observation, but the nanotweezers of the fourth embodiment
  • the sample can be held between the arms 201 and 202 with the power off, so it is also possible to hold the probe member and observe the sample .
  • the nanotweezers of the fourth embodiment are in the closed state when the power is turned off, so that the sample can be held in a state of being turned off. Therefore, power consumption can be reduced as compared with the nano tweezers of the first to third embodiments of the normally open type.
  • the normally closed configuration has been described for the type of nanotweezers that opens and closes to the left and right.
  • the slide type as shown in the second and third embodiments described above has been described.
  • a normally closed type can also be constructed.
  • a force single crystal Si wafer using an SOI wafer can also be used.
  • Si wafer since there is no SiO layer 32 that stops the etching action of ICP-RIE, it is necessary to control the conditions of ICP-RIE.
  • etching depth of 5 m for the ⁇ 100 ⁇ surface of the Si wafer for example, use (SF + CF) mixed gas as the reaction gas and perform processing for about 1.7 minutes at a high frequency output of 600 W. .
  • Si wafers are cheaper than SOI wafers, and only the ICP-RIE process described above is changed, and all other processes are the same as in the above-described embodiment. Can be reduced.
  • the present invention is not limited to the above-described embodiment as long as the characteristics are not impaired.
  • various measurement methods such as a change in force capacitance obtained by measuring the amount of change in the amplitude of the observation probe by an optical lever method can be used.
  • the nanotweezers of this embodiment are
  • the present invention can be applied not only to an AFM apparatus but also to a scanning probe microscope apparatus (SPM apparatus) that detects electrostatic force or frictional force.
  • SPM apparatus scanning probe microscope apparatus
  • the driving of the movable arms 20, 70 and the arms 201, 202 is not limited to the thermal actuator, and electrostatic force or expansion / contraction of the piezoelectric film may be used.
  • the gripping portion 22 of the movable arm 20 can be considered for various shapes.
  • the gripping portion 72 of the movable arm 70 can be considered for the gripping portion 22 of the movable arm 20, the gripping portion 72 of the movable arm 70, the gripping portions 201a and 201a of the arms 201 and 202, and the protrusions 201b and 202b.
  • the observation using the observation probes 10, 60 and the arms 201, 202 is not limited to the tapping mode, and a contact mode may be adopted.
  • a moving function for gripping the sample such as the movable arms 20 and 70, which is not only for observation, may be added to the observation probes 10 and 60.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

明 細 書
ナノピンセットおよびこれを備える走査型プローブ顕微鏡
技術分野
[0001] 試料表面の観察と微小物体の把持を行うナノピンセットおよびこれを備える走査型 プローブ顕微鏡に関する。 背景技術
[0002] 走査型プローブ顕微鏡 (SPM: Scanning Probe Microscope)では、カンチレバーの 探針を試料に対して原子径レベルの距離まで近接させ、探針を試料表面に対して 2 次元走査する。それによつて、例えば、試料と探針との相互作用に基づく力を検出し 、検出した力に基づいて試料表面の凹凸などを観察する。また、ナノピンセットは、先 端部の開閉動作により、ナノオーダーサイズの微小物体を把持したりするものである 。また、このような観察機能と把持機能とを併せ持つナノピンセットも知られている (例 えば、特許文献 1参照)。その装置では、原子間力顕微鏡のカンチレバーの先端に 2 本のカーボンナノチューブを固定し、一方のカーボンナノチューブを探針として微小 物体の観察に用いるとともに、 2本のカーボンナノチューブの先端部を静電力などに より開閉させて、微少試料の把持'解放を行わせている。
[0003] 特許文献 1 :米国特許明細書第 4, 927, 254号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、特許文献 1に記載のナノピンセットでは、従来のナノピンセットの製造 方法と比較して、カンチレバーの先端に 2本のカーボンナノチューブを固定すると ヽ う難しい製造工程がさらに必要となる。
課題を解決するための手段
[0005] 本発明の第 1の態様によるナノピンセットは、支持体と、支持体から突出して試料の 表面を観察する観察プローブと、支持体力 突出した観察プローブと並んで配設さ れ、観察プローブとの間で試料を把持解放するために開閉する可動アームと、観察 プローブとの間で可動アームを開閉駆動する駆動機構とを備え、支持体、観察プロ ーブおよび可動アームのそれぞれは、半導体ウェハをフォトリソグラフィープロセスに より加工して製作されるものである。
本発明の第 2の態様によるナノピンセットは、支持体と、支持体から所定方向に延 在し、試料表面観察用の探針部と試料把持用の第 1の把持部が設けられた観察プロ ーブと、支持体力 所定方向に延在するように観察プローブと並設され、第 1の把持 部に対して所定方向に沿って対向する第 2の把持部が形成された可動アームと、第 1および第 2の把持部間に試料が把持されるように、可動アームをその延在方向に駆 動する駆動機構とを備え、支持体、観察プローブおよび可動アームのそれぞれは、 半導体ウェハをフォトリソグラフィープロセスにより加工して製作されるものである。 なお、第 1の把持部は観察プローブ力 試料面方向に突出する突部であって、所 定方向と直交する第 1の把持面と突出先端に形成された探針部とを有し、第 2の把持 部は、第 1の把持面との間で試料を把持する第 2の把持面を有するようにしても良い し、さらに、第 1および第 2の把持面が、所定方向に対して直交するように形成されて いても良い。
半導体ウェハは、 SiO層を一対の Si層で挟持した SOIウェハであって、観察プロ
2
ーブおよび可動アームを、前記一対の Si層内の一方の層に所定間隔で並設して形 成し、第 1の把持部、第 2の把持部および探針部は、それぞれ観察プローブ力 並設 の方向に突出して形成されていても良いし、第 1の把持部、第 2の把持部および探針 部は、並設の方向に直交する方向に、それぞ^察プローブ力 突出して形成され ていても良い。
また、観察プローブを、所定方向に延在するスリット空間が形成された馬蹄形状の 梁とし、可動アームを、スリット空間において所定方向にスライド自在に配設するよう にしても良い。
さらにまた、駆動機構を、通電によって発生する熱による熱変形で可動アームを駆 動する構成としても良い。
本発明の第 3の態様による走査型プローブ顕微鏡は、上述したいずれかのナノピン セットと、観察プローブと試料表面との相互作用に基づく変位を検出する検出部と、 駆動機構の駆動動作を制御する制御部と、検出部で検出した変位に基づ 、て試料 の表面の物理的および zまたは化学的状態を演算する演算部と、観察プローブを試 料表面に対して走査移動させる走査手段とを備えるものである。なお、演算部の演算 結果を可視化する表示部をさらに備えるようにしても良 、。
また、検出部は、観察プローブに光を照射する光源と、観察プローブで反射された 光を検出する受光部とを備え、演算部は、受光部力 の検出信号に基づいて試料の 表面形状を演算するようにしても良 ヽ。
さらに、タッピングモードにより前記試料を観察するために、観察プローブをその共 振周波数で試料方向に振動させる励振部を備え、可動アームは、その共振周波数 が観察プローブの共振周波数力 離れた値となるように構成されるようにしても良い。 本発明の第 4の態様によるナノピンセットの製造方法は、上述したナノピンセットの 製造方法であって、半導体ウェハを SOIウェハとし、 SOIウェハの一方のシリコン層 を部分除去することにより、観察プローブおよび可動アームの原型となる 2本の帯状 突起を形成する工程と、観察プローブの原型となる帯状突起の先端部分に、試料に 近接または接触する尖鋭部を形成する工程と、 SOIウェハの他方のシリコン層と酸ィ匕 シリコン層を部分除去することにより、 2本の帯状突起から、観察プローブおよび可動 アームを形成するとともに、除去しない部分を支持体として形成する工程とを有するこ とを特徴とする。
本発明の第 5の態様によるナノピンセットは、支持体と、支持体力 延在するように 並設され、試料把持用の把持部が各々設けられた一対のアームと、一対のアームの 少なくとも一方に形成された試料表面観察用の探針部と、一対のアームの把持部が 互いに接触するように、一対のアームを閉方向へとそれぞれ付勢する付勢機構と、 付勢機構による付勢力に抗して、一対のアームを開方向へと駆動する駆動機構とを 備えるものである。
なお、支持体、一対のアーム、付勢機構および駆動機構のそれぞれは、半導体ゥ ェハをフォトリソグラフィープロセスにより加工して製作されても良い。
また、付勢機構および駆動機構の機能を兼ねる熱ァクチユエータを備え、熱ァクチ ユエータは、 Si層にボロンをドープしてァニール処理した部材であって、通電用の電 極を有するようにしても良 、。 本発明の第 6の態様によるナノピンセットの製造方法は、半導体ウェハとして SiO
2 層を一対の Si層で挟持した SOIウェハを用い、 SOIウェハの一方の Si層をエツチン グして、一対のアーム、付勢機構および駆動機構を形成する第 1の工程と、付勢機構 を構成する Si層にボロンをドープする第 2の工程と、ボロンがドープされた Si層をァ- ール処理して、一対のアームを閉方向に駆動するための収縮応力を付勢機構に与 える第 3の工程とを有するものである。
なお、第 1の工程では、一対のアームは所定の間隔で並設されるように形成され、 第 3の工程では、付勢機構に収縮応力を与えて一対のアームを閉状態にさせるよう にしても良い。
本発明の第 7の態様による走査型プローブ顕微鏡は、上述したナノピンセットと、ァ ームと試料表面との相互作用に基づく変位を検出する検出部と、駆動機構の駆動動 作を制御する制御部と、検出部で検出した変位に基づ 、て試料の表面の物理的お よび Zまたは化学的状態を演算する演算部と、アームの先端を試料表面に対して走 查移動させる走査手段とを備えるものである。
さらに、演算部の演算結果を可視化する表示部を備えるようにしても良 、。 発明の効果
[0006] 本発明によれば、支持体、観察プローブ、可動アームおよび把持アームなどのナノ ピンセットを構成する要素を、半導体ウェハを素材としてフォトリソグラフィ一により作 製したので、寸法精度が高ぐ正確な試料の観察と確実な試料の把持が可能となる。 また、従来例のようなカーボンナノチューブが固定されたナノピンセットに比べて、製 造コストを低減することができる。さらに、可動アームの把持部を観察プローブの把持 部に向けて直線移動させて両把持部間で試料を把持するので、確実な把持を容易 に行うことができる。
図面の簡単な説明
[0007] [図 1]本発明による走査型プローブ顕微鏡の第 1の実施の形態を示す図である。
[図 2]ナノピンセット 1の主要部を示す図であり、 (a)は観察プローブ 10と可動アーム 2 0とを示し、(b)は観察プローブ 10の探針部を示す。
[図 3]観察プローブの共振周波数を説明する図である。 [図 4]観察プローブ 10,可動アーム 20,駆動レバー 23, 24および電源部 6の拡大図 である。
[図 5] (al) , (a2)は工程 aを説明する図であり、 (bl) , (b2)は工程 bを説明する図で あり、 (cl) , (c2)は工程 cを説明する図である。
[図 6]マスク Aを示す平面図である。
[図 7] (a) , (b)は、工程 dを説明する図である。
[図 8]工程 dにおけるエッチング前後のウェハ 30の断面を示したものであり、 (a)は図 7の II II断面図で、(b)は図 7の I I断面図である。
[図 9]マスク Bを示す平面図である。
圆 10]工程 eを説明する図であり、(a)は I-I断面図、(b)は Π— II断面図である。 圆 11]工程 fを説明する図であり、(a)は I-I断面図、(b)は Π— II断面図である。
[図 12]工程 fの処理後のウェハ 30を示す斜視図である。
[図 13] (al) , (a2)は工程 gを説明する図であり、(bl)は工程 hを説明する図である。
[図 14] (a)はマスク Cの平面図、(b)はマスク Dの平面図である。
圆 15]第 2の実施形態による AFM装置の全体構成を、模式的に示す図である。
[図 16] (a)は観察プローブ 10および可動アーム 20の配置関係を示す図であり、 (b) は先端部分の拡大図である。
圆 17] (a)は観察動作を説明する図であり、 (b) , (c)は把持動作を説明する図である
[図 18] (al) , (a2)は工程 aを説明する図であり、 (bl) , (b2)は工程 bを説明する図 であり、 (cl)〜(c3)は工程 cを説明する図である。
[図 19] (al) , (a2)は工程 dを説明する図であり、(bl)〜 (b3)は工程 eを説明する図 であり、 (cl) , (c2)は工程 fを説明する図である。
圆 20] (al) , (a2)は工程 gを説明する図であり、 (bl) , (b 2)は工程 hを説明する図 であり、 (cl)〜(c3)は工程 iを説明する図である。
圆 21]第 3の実施の形態によるナノピンセットの構造を模式的に示す図であり、 (a)は 駆動機構 80の非駆動状態を示し、(b)は駆動機構 80の駆動状態を示し、(c)はナノ ピンセットの部分拡大図である。 [図 22]ナノピンセット 51の主要部の構造を示す模式図である。
[図 23]ナノピンセット 51を用いた観察 ·把持動作を説明する図であり、(al)〜(b2)は 観察動作を示し、(cl)、(c2)は把持動作を示す。
[図 24] (al)〜(a3)は工程 aを説明する図であり、 (bl) , (b2)は工程 bを説明する図 である。
[図 25] (al)〜(a3)は工程 cを説明する図であり、 (bl) , (b 2)は工程 dを説明する図 である。
[図 26] (al) , (a2)は工程 eを説明する図であり、 (bl) , (b 2)は工程 fを説明する図で ある。
[図 27] (al) , (a2)は工程 gを説明する図であり、 (bl) , (b 2)は工程 hを説明する図 である。
[図 28] (al)〜 (a3)は工程 iを説明する図であり、 (bl)〜 (b3)は工程 jを説明する図 である。
[図 29]第 4の実施形態を説明する図であり、 (a)はナノピンセット 1の試料面側を示す 平面図であり、(b)、(c)はナノピンセット 1の先端部 Rの構造を説明する拡大図であ る。
[図 30]アーム 201 , 202による試料 Sの把持動作を説明する図であり、(a)は開状態、 (b)は閉状態を示す。
[図 31] (a)は SOIウエノ、から分離されたナノピンセット 1を示す図であり、 (b)はァニー ル処理後のナノピンセット 1を示す図である。
[図 32]第 4の実施形態におけるナノピンセット 1の変形例を示す図である。
発明を実施するための最良の形態
以下、本発明の実施の形態を、図面に基づいて説明する。
〔第 1の実施形態〕
図 1は、本発明による走査型プローブ顕微鏡の第 1の実施の形態を示す図であり、 原子間力顕微鏡装置 (以下、 AFM装置と言う)の構成を模式的に示す図である。図 2は、図 1の AFM装置 100に設けられたナノピンセット 1の主要部を示す図であり、 (a )は観察プローブ 10と可動アーム 20とを示し、 (b)は観察プローブ 10の探針部を示 している。
[0009] 図 1に示すように、 AFM装置 100は、ナノピンセット 1と、レーザ光源 2と、 2分割フォ トダイオード 3と、演算部 4と、励振部 5と、電源部 6とを備えている。ナノピンセット 1は 、支持体 25に一体に形成された観察プローブ 10および可動アーム 20を有し、後述 するように、 SOIウェハをフォトリソグラフィー技術を用いて加工することにより形成さ れる。
[0010] 観察プローブ 10は、図の X方向に延在するレバー 11と、レバー 11の先端から X方 向に延在する探針部 12とを有して 、る。観察プローブ 10と並設されて 、る可動ァー ム 20は、 X方向に延在するレバー 21とレバー 21の先端力 X方向に延在する把持 部 22とを有している。ほぼ平行に延在する探針部 12と把持部 22とは、距離 dを隔て て設けられている。支持体 25と一体に設けられている駆動レバー 23, 24は、可動ァ ーム 20を駆動するための熱ァクチユエータとして機能するものである。駆動レバー 23 , 24は、それぞれの端部が可動アーム 20に接続され、リンク機構を形成している。熱 ァクチユエータとして機能する駆動レバー 23, 24には、電源部 6から電力が供給され る。
[0011] 支持体 25は、 AFM装置 100に設けられたホルダー(不図示)に着脱可能に保持さ れている。なお、図 1では、支持体 25の一部のみが図示されている。図示していない 力 AFM装置 100は 3次元ステージを備えており、支持体 25が保持されるホルダー はこの 3次元ステージに固定される。その 3次元ステージを駆動することにより、ナノピ ンセット 1全体を 3次元方向に移動させることができる。支持体 25のホルダーへの装 着方法としては、例えば、ホルダーに形成された溝部または凹部に支持体 25をスラ イドさせて嵌め込んだり、ホルダーに取り付けられた板パネで支持体 25を挟持するな ど、種々の方法がある。
[0012] 2分割フォトダイオード 3からの検出信号は、演算部 4に入力される。演算部 4は、検 出信号に基づいて観察プローブ 10の振幅を算出し、試料 Sの表面形状を演算する。 演算結果はモニタ 7に表示される。励振部 5は、ナノピンセット 1全体を振動させて観 察プローブ 10を共振させるためのピエゾ素子 (不図示)と、その駆動回路とを備えて いる。 [0013] 図 2に示すように、観察プローブ 10のレバー 11および可動アーム 20のレバー 21は YZ断面の形状が矩形となっており、 X方向の長さと Z方向の厚さは等しく設定され、 Y方向の幅についてはレバー 11の方が大きく設定されている。また、観察プローブ 1 0の探針部 12と可動アーム 20の把持部 22は、 X方向の長さ、 Y方向の幅、 Z方向の 高さのすべてが等しく設定されている。探針部 12および把持部 22は、— Z方向に先 細りとなったゥエッジ型形状をしており、それぞれの YZ断面の形状は直角三角形に なっている。距離 dを隔てて配置された探針部 12および把持部 22の断面形状は、 Z 軸に関して対称となっている。探針部 12および把持部 22の対向する面(以下では、 直交面と呼ぶ) 12a, 22aは、互いに平行となっている。探針部 12の直交面 12aと斜 面 12bが交わる稜線 12cと、把持部 22の直交面 22aと斜面 22bが交わる稜線 22cと は、それぞれ X軸に対して平行に延在しており、これらは試料 Sに近接または接触す る先鋭部 (刃先)として機能する部分である。
[0014] 図 1, 2を参照しながら試料の観察方法について説明する。本実施の形態では、励 振部 5に設けられた不図示のピエゾ素子を駆動して、観察プローブ 10を図 2の矢印 Vで示す方向(Z方向)に橈み振動させつつナノピンセット 1を XY方向に走査し、試 料 Sの表面形状を計測する。この方式は、一般にタッピングモードと呼ばれる。このと き、観察プローブ 10の探針部 12を試料表面に原子径レベルで近接させた上で、 Z 方向に振動させながら 2次元的に試料表面を走査する。試料表面の凹凸により、探 針部 12の先端と試料 Sとの距離 (探針部 12は振動しているので平均距離)が変化す ると、試料表面および探針部 12間の相互作用の変化によってレバー 11の振幅が変 化する。この振幅の変化量をレーザ光源 2と 2分割フォトダイオードとを利用した光て こ方式の計測方法により測定する。
[0015] 光てこ方式の計測方法では、レーザ光源 2からのレーザ光 L1をレバー 11の上面に 入射させ、レバー 11の上面からの反射光 L2を受光部である 2分割フォトダイオード 3 で受光する。 2分割フォトダイオード 3は、その受光位置に応じた検出信号を演算部 4 へ送出する。演算部 4は、 2分割フォトダイオード 3からの検出信号に基づいてレバー 11の振幅の変化量を算出し、さらに、振幅変化量に基づいて試料 Sの表面形状を演 算する。この表面形状はモニタ 7に表示される。 [0016] 上述したタッピングモードによる観察では、ピエゾ素子で支持体 25全体を Z方向に 振動して観察プローブ 10を共振させる必要がある。そのため、上述したように観察プ ローブ 10のレバー 11の幅を可動アーム 20のレバー 21の幅よりも広くして、観察プロ ーブ 10の厚さ方向の振動の共振周波数を可動アーム 20の共振周波数よりも高くな るように設計する。そして、励振部 5により観察プローブ 10の共振周波数で支持体 25 全体を振動させると、観察プローブ 10のみが共振して Z方向に振動する。
[0017] 図 3は、観察プローブ 10の共振周波数を説明する図であり、縦軸は振幅を、横軸 は周波数をそれぞれ表している。図 3において、 VIは観察プローブ 10の振動曲線 であり、 V2は可動アーム 20の振動曲線である。励振部 5により加える振動の周波数 が flのときに、観察プローブ 10は共振して振幅のピークが発生する。この周波数 fl が観察プローブ 10の共振周波数である。一方、可動アーム 20の共振周波数は f2で あり、周波数 f2に振幅のピークが現れる。周波数が f2よりも高くなると振幅は急激に 小さくなり、可動アーム 20の周波数 flにおける振幅量 kは観察プローブ 10の振幅に 比べてはるかに小さい値となる。このように、観察プローブ 10の共振周波数 flが可動 アーム 20の共振周波数 f2よりも高くなるように、レバー 11、 21の幅を設定することに より、観察プローブ 10のみを振動させることができる。
[0018] また、レバー 11、 21の幅を調整して共振周波数を設定する代わりに、レバー 11、 2 1の厚さを調整することで共振周波数を設定してもよい。この場合、観察プローブ 10 のレバー 11の厚さを可動アーム 20のレバー 21の厚さよりも厚く設定すればよい。共 振周波数は厚さの 3乗で変化するので、厚さをわずかに変えるだけで共振周波数を 変ィ匕させることができる。
[0019] 次に、図 1, 4を参照しながら可動アーム 20を駆動する熱ァクチユエータについて 説明する。図 4は、図 1に示した観察プローブ 10,可動アーム 20,駆動レバー 23, 2 4および電源部 6を拡大して模式的に示したものである。熱ァクチユエータは駆動レ バー 23, 24と電源部 6とで構成され、駆動レバー 23の梁部 23aと駆動レバー 24の 梁部 24aとが可動アーム 20にそれぞれ接続されている。梁部 23a, 24aの Z方向の 厚さは同一である力 梁部 24aの X方向の幅は梁部 23aのそれよりも狭く設定されて いる。電源部 6は直列に接続された 2つの可変電源 6a, 6bを有し、可変電源 6aの負 極は駆動レバー 23に、可変電源 6bの正極は駆動レバー 24に接続されている。可変 電源 6aと可変電源 6bとの接続点、および可動アーム 20は接地電位とされて 、る。
[0020] 上述したように、梁部 24aの X方向の幅は梁部 23aのそれよりも狭く設定されている ので、断面積のより小さな梁部 24aの抵抗値は梁部 23aの抵抗値よりも大きい。その ため、電源部 6から梁部 23a, 24aへ電力が供給されると、梁部 23aに比べて梁部 24 aの方が発生するジュール熱が大きく、梁部 24aの熱膨張は梁部 23aのそれよりも大 きくなる。その結果、駆動レバー 23, 24は、概ね、可動アーム 20の幅が狭くなつてい る狭隘部 20aを支点として、可動アーム 20を Y軸と平行な H方向に橈ませることにな る。可動アーム 20の橈み量は、電源部 6から梁部 23a, 24aへ印加する電圧をフィー ドバック制御することにより調節する。なお、可動アーム 20の領域 21aがグランドレべ ルになるように、可変電源 6a, 6bの電圧を調整する。
[0021] このように、可動アーム 20の領域 21aの電位をグランドレベルに制御することにより 、観察プローブ 20と可動アーム 10をともに接地電位に制御できるので、把持する試 料 Sに不要な電圧が印加されるのを防止できる。
[0022] このような熱ァクチユエータ機構を備えたナノピンセット 1で試料 Sを把持する場合に は、以下のような動作を行わせる。先ず、ナノピンセット 1を試料表面に沿って 3次元 的に移動させ、観察プローブ 10で試料表面の形状を観察することにより、把持したい 試料 Sを探す。試料 Sが検出されたならば、探針部 12と把持部 22との間に試料 Sが 位置するように、ナノピンセット 1を移動する。そして、観察プローブ 10のタッピング動 作を停止した後に、駆動レバー 23, 24を駆動して可動アーム 20を図の H方向に橈 ませることにより把持部 22を探針部 12へ接近させ、試料 Sを把持部 22と探針部 12の 間に挟み込む。このとき、可動アーム 20だけが駆動レバー 23, 24により橈み、観察 プローブ 10は動かない。
[0023] 具体的な把持手順は、まず、試料 Sに観察プローブ 10の探針部 12の直交面 12a ( 図 2 (b)参照)を接触させる。その後、可動アーム 20を橈ませて把持部 22の直交面 2 2a (図 2 (b)参照)を試料 Sに接近させ、直交面 22aが試料 Sに適切な押圧力で接触 するように可変電源 6a, 6bを調節する。その結果、試料 Sがナノピンセット 1により把 持される。 [0024] 直交面 12a, 22aは平行状態で互いに対向するように構成されているので、試料 S は平行な面 12a, 22により確実に把持される。試料 Sを把持した後は、 3次元ステー ジを駆動することにより、試料 Sを 3次元的に移動させることができる。また、把持した 試料 Sを解放するときには、電源部 6による印加電圧を零にして、把持部 22と探針部 12との間隔を元の距離 dに戻せばよい。このような動作により、観察プローブ 10と可 動アーム 20とを有するナノピンセット 1は、試料 Sの観察と把持の両方を行うことがで きる。
[0025] 次に、本実施の形態のナノピンセット 1の製造方法について説明する。ナノピンセッ ト 1は、 SOKSilicon on Insulator)ウェハから一体で作製される。 SOIウェハは、 2枚の Si単結晶板の一方に SiO層を形成し、その SiO層を挟むように貼り合わせたもので
2 2
ある。図 1に示されるように、支持体 25は、 SOIウェハを構成する上部 Si層 31、 SiO
2 層 32および下部 Si層 33で形成されている。また、観察プローブ 10、可動アーム 20 および駆動レバー 23, 24は、電源部 6を接続するための電極などを除くと上部 Si層 31で形成されている。本実施の形態では、各層 31, 32, 33の厚さ力順に 6 m, 1 m, 300 /z mである SOIウェハが用いられている力 このような寸法組み合わせに 限定されるものではない。
[0026] 図 5〜14は、本実施の形態のナノピンセット 1の製造工程を示す図であり、工程 aか ら hまで順に処理される。図 5の(al) , (a2)は工程 aを説明する図であり、(al)は斜 視図、(a2)は断面図である。工程 aでは、上部 Si層 31、 SiO層 32および下部 Si層 3
2
3から成る SOIウェハ 30を用意し、上部 Si層 31の上に厚さ 50nmの窒化珪素(SiN) 膜 34を形成する。なお、 SOIウェハ 30の上部 Si層 31は、表面が Si単結晶の主面(0 01)となるように構成されて!、る。
[0027] 図 5の(bl)および (b2)は工程 bを説明する図であり、(bl)は斜視図、(b2)は I I 断面図である。工程 bでは、図 6に示すマスク Aを用いて、 C Fによる RIEで SiN膜 3
2 6
4を部分的にエッチング除去し、上部 Si層 31の一部(白抜きの領域 Al, A2)を露出 させる。 SiN膜 34がエッチング除去された領域 A1は、概略、観察プローブ 10の先端 および可動アーム 20の先端が形成される領域である。一方、領域 A2は、観察プロ一 ブ 10および可動アーム 20の基端側と駆動レバー 23, 24が形成される領域である。 観察プローブ 10および可動アーム 20が延在する方向には、すなわち、細長い領域
Aの伸延方向には、上部 Si層 31の < 110>方向を選ぶ。
[0028] なお、図 6に示したマスク Aは支持体 25も含めたマスクとなっており、図 1や図 5 (bl
)に示す部分は、図 6の R1— R1線よりも上側の領域が関係している。以下の説明で は、 Rl—R1線よりも上側の領域にっ 、て説明する。
[0029] 図 5の(cl) , (c2)に示す工程 cでは、領域 A1および A2の上部 Si層 31の表面に厚 さ 0. 1 mの酸化膜 35を形成する。酸化方法は水蒸気酸化であり、酸素ガスと水素 ガスを高温で反応させて生成した水蒸気を用いて、上部 Si層 31の露出面を酸ィ匕す る。
[0030] 図 7の(a) , (b)は、工程 dを説明する図である。工程 dでは、図 9に示すマスク Bを用 ヽて、 ICP— RIE nductively coupled plasma - reactive ion etching;【こよりエッテン グを行う。図 9に示すように、マスク Bには、図 7 (cl)の領域 A1を覆う部分である先端 遮蔽領域 B1が形成されている。その先端遮蔽領域 B1には、図示上下方向(上部 Si 層 31の < 110>方向)に延在するスリット SL1が形成されている。また、スリット SL2, SL3は、駆動レバー 23, 24を作製するためのものである。なお、図 9に示すマスク B の R2— R2線より上部領域力 図 7 (a) , (b)に示した部分に対応している。
[0031] 図 7 (a)の破線は、図 6 (cl)で形成されたウェハ 30上にマスク Bを配置して示したも のである。図 7 (a)において、マスク Bで覆われていない部分は、 ICP— RIEにより、 Si O層 32までエッチングされる。この ICP— RIEでは、エッチングは SiO層 32で停止
2 2
するので、観察プローブ 10および可動アーム 20の厚さを均一かつ高精度に形成す ることがでさる。
[0032] 図 7 (b)はエッチング後のウェハ 30を示したものである。マスク Bのスリット SL1の部 分からのエッチングにより、く 110>方向に延在するスリット溝 40が形成される。スリ ット溝 40の両側面は、 SiN膜 34の表面に対して垂直になっており、スリット溝 40の深 さは、 SiN膜 34と上部 Si層 31の厚さの和に相当する。スリット溝 40の両側面は、ナノ ピンセット 1の完成段階で、探針部 12の直交面 12aと把持部 22の直交面 22a (図 2参 照)となる。
[0033] 図 8は、エッチング前後のウェハ 30の断面を示したものであり、(a)は図 7の II II 断面図で、(b)は図 7の I I断面図である。マスク Bで覆われていない部分では、窒 化珪素(SiN)膜 34,酸化膜 35, Si層 31がエッチングされている。その結果、エッチ ングされた部分では、 SiO層 32の表面および Si層 31の側面が露出することになる。
2
[0034] 図 10は工程 eを説明する図であり、(a)は図 7の I I断面と同様の断面を示す図で あり、(b)は図 7の II II断面同様の断面を示す図である。工程 eでは、工程 dのエツ チングにより露出した上部 Si層 31の側面に、表面保護のための酸ィ匕膜 36を形成す る。この酸化処理は、工程 (c)と同様の水蒸気酸化である。
[0035] 図 11は工程 fを説明する図であり、(a)は図 10 (a)と同様の I I断面図であり、 (b) は図 10 (b)と同様の Π— II断面図である。工程 fでは、 C Fを用いた RIEにより SiN
2 6
膜 34をエッチング除去する。その結果、図 11 (a) , (b)に示すように、上部 Si層 31の 上面が露出する。この RIE処理はマスクを用いずに行われる力 C Fのガス圧力を
2 6
高めることによって、 SiN膜 34を酸ィ匕膜 35, 36よりも大きいエッチングレートで除去 できるようなエッチング条件に設定し、 SiN膜 34だけを除去する。そのため、上部 Si 層 31上の酸ィ匕膜 35および上部 Si層 31側面の酸ィ匕膜 36はエッチングされずに残る ことになる。図 12は処理後のウェハ 30を示す斜視図であり、ドットのハッチングを施し た部分が酸化膜 35, 36の部分である。
[0036] 図 13において、(al) , (a2)は工程 gを説明する図であり、(bl)は工程 hを説明す る図である。図 13 (a2)は、図 13 (al)の III— III断面図である。工程 gでは、 30%KO Η水溶液を用いて上部 Si層 31を異方性エッチングする。この場合、図 11に示すよう に、上部 Si層 31は酸ィ匕膜 35, 36が形成されていない上面部分のみが露出している ので、上部 Si層 31はその部分から異方性エッチングされ、斜面 l lb、 21b、 12b、 22 bが形成される。前述したように、上部 Si層 31の表面を単結晶 Siの主面(001)に選 んでいるので、異方性エッチングによって形成される斜面 12b、 22bは単結晶 Siの { 1 11 }面になっている。
[0037] なお、前述した共振周波数の設定のために、観察プローブ 10のレバー 11の厚さを 可動アーム 20のレバー 21の厚さよりも厚く形成する場合は、レバー 21の領域以外を レジストで保護して、レバー 21の領域のみを所定厚さになるまで熱酸ィ匕あるいはエツ チングすればよい。 [0038] 次いで、図 14 (a)に示すマスク Cを用いて ICP— RIEにより、観察プローブ 10およ び可動アーム 20の原型が形成されている周辺領域に残存する上部 Si層 31を、 SiO
2 層 32の表面が露出するまで厚さ方向にエッチング除去する。その後、酸化膜 35, 36 をエッチング除去する。このマスク Cを用いたエッチングにより、探針部 12および把持 部 22の長さを調節することができる。また、端面 12e, 22eが探針部 12および把持部 22の延在方向と位置を揃えて垂直になるので、試料 Sの把持をより一層確実に行う ことができる。
[0039] 図 13 (bl)に示す工程 hでは、図 14 (b)に示すマスク Dを用いて SOIウェハ 30の裏 面から、下部 Si層 33側の不要部分を ICP—RIEによりエッチング除去する。このエツ チングは、 SiO層 32で停止する。そして、フッ酸溶液により SiO層 32の不要部分を
2 2
除去すればナノピンセット 1の形状となる。なお、工程 hで除去された部分は、図 13 (b 1)に示すように二点鎖線で示した部分である。なお、図 13で示した部分の処理には 、マスク C、 Dの R3— R3線より上部領域が対応している。
[0040] 以上により、支持体 25と一体に観察プローブ 10および可動アーム 20が同一方向 に延在するナノピンセット 1が完成する。このとき、駆動レバー 23, 24も、観察プロ一 ブ 10および可動アーム 20の製造工程中で同様の手法により作製される。
[0041] 上記の製造工程では、 1個のナノピンセット 1についての一連の作製手順を説明し た力 実際の製造工程は、 SOIウェハ単位で行われる、いわゆるバッチ処理である。 このバッチ処理では、フォトリソグラフィ一法により、 1枚の SOIウェハから多数のナノ ピンセット 1を一括で作製することができ、大幅な製造コストの削減をもたらすものであ る。
[0042] 以上説明したように、本実施の形態によるナノピンセット 1は、 AFM装置に搭載する ことにより、次のような作用効果を奏する。
(l) SOIウェハ力もフォトリソグラフィ一法により観察プローブ 10と可動アーム 20とを 一体で作製するので、低コストでナノピンセットを作製できるとともに、寸法精度が高 いので、観察プローブ 10と可動アーム 20による試料 Sの把持を確実に行うことができ る。
[0043] (2)観察プローブ 10の共振周波数 flが可動アーム 20の共振周波数 f2よりも高くな るように、レバー 11、 21の幅または厚さを設定しているので、タッピングモードで観察 プローブ 10を励振する際の共振周波数を、観察プローブ 10の共振周波数とすれば 、観察プローブ 10だけを試料 Sに近接させて振動させることができ、可動アーム 20が 並設されて 、ても観察に支障をきたすことがな 、。
(3)可動アーム 20を熱ァクチユエータで駆動するように構成するので、可動アーム 20自体には電圧が印加されず、導電性試料でも生物試料でも容易に把持すること ができる。
(4)熱ァクチユエータで可動アーム 20を駆動する際、可動アーム 20と観察プロ一 ブ 10とをほぼ接地電位になるように電圧をフィードバックした。この結果、把持する試 料 Sに不所望な電位が印加されることが抑制される。
[0044] 〔第 2の実施形態〕
図 15は、第 2の実施形態による AFM装置の構成を模式的に示す全体構成図であ る。なお、上述した第 1の実施形態と同一部分には同一の符号を付し、重複する説明 については省略する。可動アーム 20は、駆動機構 300により M方向(X方向)に駆動 される。駆動機構 300には、電極 301、熱変形部 302、梃子部 303、連結部 304およ び梁部 305が、それぞれ一対ずつ設けられている。第 1の実施形態と同様に、ナノピ ンセット 1の支持体 25は不図示のホルダーに着脱可能に保持され、そのホルダーは 、不図示の 3次元ステージにより 3次元方向に移動することができる。
[0045] 熱変形部 302には電極 301が接続され、熱変形部 302の先端は梃子部 303に当 接している。梃子部 303は連結部 304を介して梁部 305と接続され、梁部 305は可 動アーム 20の基部に接続されている。一対の電極 301は電源部 6に接続されており 、電源部 6から電極 301を介して熱変形部 302に電力が供給できるようになつている 。熱変形部 302に電力が供給されると、ジュール熱により熱変形部 302が長手方向 に熱膨張し、可動アーム 20を +X方向に直線移動させる。したがって、熱膨張ァクチ ユエータとしての駆動機構 300に供給する電力を調整することにより、すなわち、熱 変形部 32に流す電流値を調節することにより、可動アーム 20に X方向への往復運動 Mを行わせることができる。
[0046] 上述した第 1の実施形態では、観察プローブ 10および可動アーム 20は Y方向に並 設され、熱ァクチユエータにより可動アーム 20を Y方向に駆動するような構成とした。 一方、第 2の実施形態では、観察プローブ 10および可動アーム 20を Ζ方向に上下に 重なるように並設し、駆動機構 300により可動アーム 20を X方向にスライド移動させる ような構成としている。
[0047] 図 16において、(a)は観察プローブ 10および可動アーム 20の配置関係を示す図 であり、(b)は先端部分の拡大図である。なお、図 16では、駆動機構 300に関しては 、模式的に簡略化して示した。観察プローブ 10は、 X方向に延在するレバー 11と、レ バー 11の先端に設けられて Z方向に突出する把持部 12と、把持部 12の先端部分に 設けられた探針部 13とを有している。この観察プローブ 10は、ナノピンセット 1の支持 体 25と一体に形成されている。一方、可動アーム 20も、 X方向に延在するレバー 21 と、レバー 21の先端に設けられて Z方向に突出する把持部 22とを有している。可動 アーム 20の基部には、駆動機構 300が連結されている。
[0048] レバー 11の支持体 25からの突出長さは、レバー 21の突出長さよりも長く設定され ている。また、レバー 11の Y方向の幅とレバー 21の Y方向の幅は等しぐ所定間隔で Z方向に並設されている。
[0049] 図 16 (b)の拡大図に示したように、把持部 12と把持部 22とは X方向に沿って配置 されており、把持部 12および 22の互いの対向する部分は平面状に形成されている。 それらの対向面 12a, 22aは X軸に直交する面となっており、互いに平行に配置され ている。対向面 12a, 22a間の距離 dは可動アーム 20を M方向に移動することにより 、変ィ匕させることができる。
[0050] 探針部 13と把持部 22の先端 22bは、いずれも先鋭であり、探針部 13と把持部 22 の先端 22bとを結ぶ線は X軸にほぼ平行となっている。従って、可動アーム 20を直線 移動させて、対向面 12aと 22aを接触させたときには、探針部 13と把持部 22の先端 2 2bとが合致する。
[0051] 図 17を参照しながら、ナノピンセット 1による試料表面の観察動作と、把持動作につ いて説明する。最初に、観察動作について説明する。第 2の実施形態においても、 第 1の実施形態と同様のタッピングモードにより試料表面の観察を行う。この場合も、 ナノピンセット 1の支持体 25を励振部 5により Z方向に振動させて、観察プローブ 10 を共振振動させる。
[0052] まず、ナノピンセット 1を保持する不図示のホルダーを 3次元的に移動させ、図 17 (a )に示すように、ナノピンセット 1を試料表面 Pに対して所定角度だけ傾斜させてアブ ローチする。観察動作を行う際には駆動機構 300を動作させず、観察プローブ 10の 把持部 12と可動アーム 20の把持部 22との間隔 dを最大間隔 dOに設定しておく。そ して、観察プローブ 10の探針部 13を試料表面 Pに原子径レベルで近接させ、第 1の 実施形態と同様の方法により試料表面の観察を行う。ここでは、詳しい説明は省略す る。
[0053] 観察プローブ 10を用いてタッピングモードによる試料表面 Pまたは微小試料 Sの観 察を行う場合、観察プローブ 10の探針部 13を可動アーム 20の先端 22bよりも大きい 振幅で振動させて、試料表面 Pまたは微小試料 Sに近接させる必要がある。そこで、 観察プローブ 10のレバー 11の厚さを可動アーム 20のレバー 21の厚さよりも厚くし、 第 1の実施形態と同様にレバー 11の厚さ方向の振動の共振周波数をレバー 21の共 振周波数よりも高くなるように設計する。励振部 5によりナノピンセット 1の支持体 25を その共振周波数で振動させると、レバー 11のみが共振して Z方向に大きく振動する。 その結果、可動アーム 20が観察の障害となることなぐ観察プローブ 10による AFM 観察を行うことができる。
[0054] 図 17 (b)に示すように、微小試料 Sが把持部 12, 22間となる位置にナノピンセット 1 を移動したならば、駆動機構 300を動作させて微小試料 Sの把持動作を行わせる。 把持動作を行う場合には、励振部 5による振動動作を停止する。ナノピンセット 1は、 間隔 dを dOに保った状態で微小試料 Sへと移動させる。駆動機構 300の熱変形部 30 2に電流を流すと、熱変形部 302はジュール熱の発生により熱膨張し、熱膨張による +X方向への変位量は梃子部 303により拡大される。そして、連結部 304を介して、 梁部 305および可動アーム 20が +X方向に駆動される。
[0055] このような動作により、微小試料 Sを把持部 22と把持部 12との間に挟み込むことに より、微小試料 Sは互いに平行な面 12a, 22aの間に把持されることになる。このとき、 熱変形部 302への電流値を調節することにより、適切な把持力で微小試料 Sを把持 することができる。把持中の把持部 12と把持部 22との間隔 dは、微小試料 Sの大きさ dl (dK dO)となる。
[0056] その後、図 17 (c)に示すように、ナノピンセット 1を保持するホルダーを不図示の 3 次元ステージにより 3次元方向に移動することによって、微小試料 Sを 3次元的に移 動することができる。本実施の形態のナノピンセット 1においても、観察プローブ 10と 可動アーム 20とを有することにより、試料面 Pや微小試料 Sの観察と、微小試料 Sの 把持とを行うことができる。また、把持部 12, 22の対抗面 12a, 22aを平行に保持した 状態で微小試料 Sを把持することができるので、把持部が円弧状に移動して開閉動 作を行う従来のナノピンセットと比べて、確実に微小試料 Sを把持することができる。 そのため、本実施の形態のナノピンセット 1は、円筒状のカーボンナノチューブや球 状のフラーレンといった球面を有する微小物体の把持に好適である。なお、ナノピン セット 1による微小試料 Sの把持を解除する場合には、電源部 6による印加電圧を低 下させる力零とすることにより、把持部 22と把持部 12との間隔 dを拡げればょ 、。
[0057] 次に、第 2の実施形態におけるナノピンセット 1の製造工程について説明する。ここ では、工程 aから工程 iの 9つの工程に分けて順に説明する。図 18の(al)および (a2 )は工程 aを説明する図であり、(al)は平面図、(a2)は断面図である。工程 aでは、 S OIウェハ 400を用意する。本実施の形態では、 SOIウエノ、 400は、厚さ 50 /z mの上 部 Si層 401と、厚さ 1 mの SiO層 402と、厚さ 400 μ mの下部 Si層 403と力ら成る
2
。上部 Si層 401は、その表面が単結晶 Siの主面(001)となるように形成されており、 図の左右方向がく 100 >方向になっている。
[0058] 図 18の(bl) , (b2)は工程 bを説明する図であり、(bl)は平面図、(b2)は断面図 である。工程 bでは、酸素ガスと水素ガスを高温で反応させて生成する水蒸気を用い た水蒸気酸化(ウエット酸化)により、上部 Si層 401の表面を酸ィ匕して厚さ 0. の 酸化膜 404を全面に形成する。
[0059] 図 18の(cl) , (c2) , (c3)は工程 cを説明する図であり、(cl)は平面図、(c2)は断 面図、(c3)は工程 cで用いるマスク MAの平面図である。マスク MAは、フォトリソグラ フィ一で形成したレジストマスクである。工程 cでは、マスク MAを用いた BHFによるェ ツチングを行って、酸ィ匕膜 404の一部を除去する。
[0060] 図 19の(al) , (a2)は工程 dを説明する図であり、(al)は平面図、(a2)は断面図 である。工程 dでは、酸化膜 404上および露出した上部 Si層 401上に、 LPCVDによ り、厚さ 0. 05 mのシリコン窒化膜 (Si3N4膜や SiN膜)を形成する。
[0061] 図 19の(bl) , (b2) , (b3)は工程 eを説明する図であり、 (bl)は平面図、(b2)は I A— IA断面図、(b3)は工程 eで用いるマスク MBの平面図である。工程 eでは、マス ク MBを形成した後に、 RIEにより SiN膜 405をエッチングし、その後、エッチングによ り露出した酸ィ匕膜 404を BHFを用いてエッチング除去する。そして、 BHFによるエツ チングにより露出した部分の上部 Si層 401を、 ICP—RIE (inductively coupled plasm a - reactive ion etching)によりエッチングする。この ICP—RIE〖こよるエッチングは、 厚さ方向にほぼ垂直に進行し、 SiO層 402で停止する。その結果、図 19 (b2)に示
2
すように、上部 Si層 401の厚さに等しい深さ 50 /z mの溝 B11が形成される。なお、こ の溝 B11はマスク Bの非遮蔽部分 B12からのエッチングによって形成される。
[0062] 図 19の(cl) , (c2)は工程 fを説明する図であり、(cl)は平面図、(c2)は IA— IA 断面図である。工程 fでは、水蒸気酸ィ匕により上部 Si層 401の露出面を酸ィ匕して、厚 さ 0. 3 /z mの酸ィ匕膜 406を形成する。この酸ィ匕膜 406は、後述する異方性エツチン グの際に、溝 Bl 1の内壁などがエッチングされるのを防止するための保護膜として機 能する。
[0063] 図 20の(al) , (a2)は工程 gを説明する図であり、(al)は平面図、(a2)は IA— IA 断面図である。工程 gでは、 RIEにより SiN膜 405を除去する。その結果、除去前の S iN膜 45が形成されていた領域 A10の上部 Si層 41が露出することになる。図 20 (bl ) , (b2)は工程 hを説明する図であり、(bl)は平面図、(b2)は IA— IA断面図である 。工程 hでは、 TMAH (tetra methyl ammonium hydroxide)溶液を用いて領域 A10の 上部 Si層 401の異方性エッチングを行う。酸ィ匕膜 404, 406は TMAHにエッチング され難ぐこの異方性エッチングの停止層として働く。この異方性エッチングの結果、 上部 Si層 401から成り斜面 Cl, C2, C3を有する 3つの三角錐が形成される。斜面 C 1, C2, C3は、エッチングレートが小さい(111)面である。なお、この工程 hでは、 T MAH溶液の代わりに KOH溶液を使用してもよ 、。
[0064] 図 20の(cl) , (c2) , (c3)は工程 iを説明する図であり、(cl)は平面図、(c2)は IA — IA断面図、(c3)は工程 iで用いられるマスク MCである。工程 iでは、図 20 (c3)に 示すマスク MCを用いて SOIウェハ 400の裏面から、すなわち下部 Si層 403側から、 下部 Si層 403の不要部分をエッチング除去し、さらに残った SiO層 402も除去する。
2
その結果、マスク MCの遮蔽部分 A13により遮蔽された領域 A12の部分の下部 Si層 403は、図 20 (c2)に示すように、支持体 25の部分としてエッチングされずに残る。ま た、 SiO層 402のエッチング除去により、可動アーム 20および駆動機構 300の熱変
2
形部から梁部までの部分においては、 Si層 401と下部 Si層 403との間の SiO層 402
2 は、上述したエッチング除去処理の際に除去されて支持体 25から浮いた状態となり、 熱変形による動きが可能となる。
[0065] 上記の製造方法では、観察プローブ 10および可動アーム 20の幅寸法は、上部 Si 層 401の厚さ(例えば、上述した例では 50 m)で規制される力 長さ方向と厚さ方 向の寸法は、フォトリソグラフィ一により自由に設計することができる。従って、観察プ ローブ 10および可動アーム 20の長さ寸法や厚さ寸法につ!、ては、タッピングモード の振動の共振周波数に適した寸法にすることは容易である。また、把持部 12と把持 部 22の間隔 dも任意に設定することができる。
[0066] 上記の製造工程では、 1個のナノピンセット 1についての一連の作製手順を説明し た力 実際の製造工程は、 SOIウェハ単位で行われる、いわゆるバッチ処理である。 このバッチ処理では、フォトリソグラフィ一法により、 1枚の SOIウェハから多数のナノ ピンセット 1を一括で作製することができ、大幅な製造コストの削減をもたらすものであ る。
[0067] 以上説明したように、本実施の形態によるナノピンセット 1は、 AFM装置に搭載する ことにより、次のような作用効果を奏する。
(1) SOIウェハ力もフォトリソグラフィ一法により観察プローブ 10と可動アーム 20とを 一体で作製するので、低コストであり、また、寸法精度が高ぐ観察プローブ 10と可動 アーム 20による微小試料 Sの把持を確実に行うことができる。
(2)可動アーム 20の把持部 22を観察プローブ 10の把持部 12に向けて直線的に スライド移動させて両把持部間で微小試料 Sを把持するので、把持動作を容易に行 うことができる。
(3)可動アーム 20を熱ァクチユエータで駆動するように構成するので、可動アーム 20自体には電圧が印加されず、導電性試料でも生物試料でも容易に把持すること ができる。
(4)観察プローブ 10の共振周波数が可動アーム 20の共振周波数よりも高くなるよ うに、レバー 11、 21の厚さを設定しているので、観察プローブ 10のみを試料表面 P に近接させて振動させることができ、可動アーム 20が観察に支障をきたすことはない
[0068] 〈第 3の実施の形態〉
図 21は、第 3の実施の形態によるナノピンセットの構造を模式的に示す平面図であ り、図 21 (a)は、駆動機構 80の非駆動状態、図 21 (b)は、駆動機構 80の駆動状態 を示し、図 21 (c)は、図 21 (a) , (b)のナノピンセットの部分拡大図である。図 21 (a) に示すように、ナノピンセット 51は、観察プローブ 60、可動アーム 70、支持体 75およ び駆動機構 80を有する。観察プローブ 60は支持体 75と一体に設けられており、 X方 向に延在する U字型 (馬蹄形状)のレバー 61と、レバー 61の先端付近に Z方向に突 出する把持部 62と、把持部 62の先端部分に配置される探針部 63とを有して ヽる。
[0069] 探針部 63は把持部 62の先端に設けられている。可動アーム 70は、レバー 61によ つて形成される U字型空間内にスライド可能に配設されている。可動アーム 70の X方 向に延在するレバー 71の先端には、 Z方向に突出する把持部 72が形成されて 、る。 レバー 61とレバー 71とは同一面にあり、レバー 61およびレバー 71の Z方向の厚さは 等しぐ探針部 63および把持部 72の Z方向の高さ位置も等しい。
[0070] 図 22は、第 3の実施の形態によるナノピンセット 51の主要部の構造を模式的に示し たものである。把持部 62の対向面 62aと把持部 72の対向面 72aは互いに平行に形 成されている。また、探針部 63と把持部 72の先端 72bはいずれも先鋭に形成されて おり、探針部 63と把持部 72の先端 72bとを結ぶ線は、レバー 71のスライド方向 Mに 対してほぼ平行となるように配設されている。ナノピンセット 51により微小試料が把持 する際には、これらの対向面 62a, 72aの間に微少試料が把持され、試料表面を AF M観察する場合には探針部 63を用いて観察が行われる。
[0071] 可動アーム 70の基部は駆動機構 80に連結されており、可動アーム 70は駆動機構 80によって M方向にスライド駆動される。駆動機構 80の構成は第 2の実施の形態の 駆動機構 300と同様であり、詳細説明は省略する。また、第 3の実施の形態のナノピ ンセット 51の場合も、第 1の実施の形態のナノピンセット 1と同様に、図 15の AFM装 置 100に搭載して試料表面の AFM観察や微小試料の把持を行う。
[0072] 図 23はナノピンセット 51を用いた観察動作を説明する図であり、図 23 (al) , (a2) に示すように、ナノピンセット 51を試料表面 Pに対して所定角度だけ傾斜させてアブ ローチする。このときは、観察プローブ 60の把持部 62と可動アーム 70の把持部 72と の間隔 dは最大間隔 dOに保持される。なお、 L1はレーザ光源 2からの光であり、光 L 1は観察プローブ 60の上面に照射される。観察プローブ 60の上面で反射された光 L 2は、 2分割フォトダイオード 3に入射する。
[0073] 次いで、図 23 (bl) , (b2)に示すように、対向面 62a, 72a間の間隔 dを dOに保持 した状態で、探針部 63を試料表面 Pに原子径レベルで近接させ、タッピングモードに よる観察を行う。第 3の実施の形態のナノピンセット 51の場合には、観察プローブ 60 のレバー 61の幅を可動アーム 70のレバー 71の幅よりも広く設定することにより、レバ 一 61のみを共振させて大きな振幅で振動させる。
[0074] 図 23の(cl)、 (c2)は、ナノピンセット 51による微小試料 Sの把持動作を説明する 図である。ナノピンセット 51の場合にも、第 2の実施形態のナノピンセット 31と同様に 、間隔 dOに保持された把持部 72と把持部 62との間に微小試料 Sが位置するように ナノピンセット 51を移動する。その後、可動アーム 70を +X方向にスライド移動させる ことにより、微小試料 Sを把持部 72と把持部 62の間に挟み込むようにする。本実施の 形態の場合も、微小試料 Sを把持している対向面 62a, 72aが互いに平行となってい るので、微小試料 Sを確実に把持することができる。
[0075] 次に、ナノピンセット 51の製造工程について説明する。図 24の(al)〜(a3)は工程 aを説明する図であり、(al)は平面図、(a2)は ΠΑ— ΠΑ断面図、(a3)は工程 aで用 いられるマスク MEを示す図である。まず、先ず、上部 Si層 91 (厚さ 10 μ m)、 SiO層
2
92 (厚さ 1 μ m)および下部 Si層 93 (厚さ 400 μ m)力も成る SOIウェハ 90を用意し、 その上部 Si層 91上に、厚さ 0. 05 /z mのシリコン窒化膜 (Si N膜や SiN膜) 94を LP
3 4
CVDにより形成する。
[0076] その後、図 24 (a3)に示すマスク MEを用いた RIEにより、マスク MEの開口 D2に対 応する領域 Dlの SiN膜 94をエッチング除去し、さらに、 ICP— RIEを用いて上部 Si 層 91を厚さ方向にエッチングする。 ICP— RIEによるエッチングは SiO層 92で停止
2
するので、図 24 (a2)に示すように、上部 Si層 91の厚さに等しい深さ 10 /z mの溝 D1 が形成される。図 24 (bl) , (b2)に示す工程 bでは、上部 Si層 91の露出部分 (溝 Dl の内壁)に水蒸気酸化により厚さ 0. 3 mの酸化膜 95を形成する。
[0077] 図 25の(al)〜(a3)は工程 cを説明する図であり、 (al)は平面図、(a2)は ΠΑ— II A断面図、(a3)はマスク MFを示す図である。図 25 (al) , (a2)に示す工程 cでは、 図 24 (a3)に示すマスク MFを用いて、 ΠΑ—ΠΑ線の左側領域 E1の SiN膜 94を領 域 F1だけエッチング除去し、上部 Si層 91を露出させる。領域 F1はマスク MFの非遮 蔽部分 F2に対応する。
[0078] 図 25の(bl) , (b2)は工程 dを説明する図であり、(bl)は平面図、(b2)は ΠΑ— II A断面図である。工程 dでは、 KOH溶液を用いて領域 F1の上部 Si層 91の異方性ェ ツチングを行う。この場合、例えば、エッチング深さが上部 Si層 91の厚さの半分の 5 /z mになった時点でエッチングを中止すると、溝 D1を挟んで斜面 Gl, G2を有する 高さ 5 mの 2つの三角錐が形成される。斜面 Gl, G2は Si結晶の(111)面であり、 基板面に平行な(001)面に比べてエッチングレートが小さい。なお、この工程 dでは 、 KOH溶液の代わりに TMAH溶液を使用してもよい。
[0079] 図 26の(al) , (a2)は工程 eを説明する図であり、(al)は平面図、(a2)は ΠΑ— II A断面図である。工程 eでは、上部 Si層 91の露出面 (領域 F1)に酸ィ匕膜 96を形成す る。図 26の(bl) , (b2)工程 fを説明する図であり、(bl)は平面図、(b2)は ΠΑ— ΠΑ 断面図である。工程 fでは、 RIEにより残存する SiN膜 94をすベて除去する。従って、 IIA - ΠΑ線の右側領域 E2でも上部 Si層 91が露出する。
[0080] 図 27の(al) , (a2)は工程 gを説明する図であり、(al)は平面図、(a2)は ΠΑ— II A断面図である。工程 gは、図 27 (bl) , (b2)に示す工程 dと同様の工程であり、領域 E2の上部 Si層 91の異方性エッチングを行う。領域 E2の異方性エッチングでも、エツ チング深さが 5 /z mになった時点でエッチングを中止する。その結果、 ΠΑ—ΠΑ線を 挟んで斜面 G3, G4を有する 2つの三角錐が新たに形成される。斜面 G3, G4も、斜 面 Gl, G2と同じく(111)面である。 [0081] 図 27の(bl) , (b2)は工程 hを説明する図であり、(bl)は平面図、(b2)は ΠΑ— II A断面図である。工程 hでは、領域 F1を保護するために形成した酸ィ匕膜 96をエッチ ング除去する。斜面 G1を有する三角錐と斜面 G3を有する三角錐とが合体した三角 錐が把持部 62、探針部 63となり、斜面 G2を有する三角錐と斜面 G4を有する三角錐 とが合体した三角錐が把持部 72となる。領域 D1は矩形状に形成されているので、把 持部 62と把持部 72の対向する面は平行となっている。
[0082] 図 28の(al)〜(a3)は工程 iを説明する図であり、 (al)は平面図、(a2)は ΠΙΑ— II IA断面図、(a3)はマスク MGを示す図である。また、図 28の(bl)〜(b3)は工程 jを 説明する図であり、(bl)は平面図、(b2)、(a3)は形成された観察プローブ 60およ び可動アーム 70を示す平面図および斜視図である。なお、図 28 (al) , (a3) , (bl) , (b3)では、図 24〜27で示した領域よりも広域を示している。
[0083] 図 28 (al) , (a2)に示す工程 iでは、マスク MGを用いた ICP— RIEにより、観察プ ローブ 60および可動アーム 70の外形を形作るためのエッチングを行う。このエツチン グで支持体 75の外形の一部も同時に形成される。図 28 (al)に示されるように、観察 プローブ 60と可動アーム 70の境界および周辺領域の上部 Si層 91が除去されたこと により、観察プローブ 60および可動アーム 70の原型が上部 Si層 91から作製される。 もちろん、上部 Si層 91が除去された部分には、 SiO層 92が露出している。
2
[0084] 図 28 (bl) , (b2)に示す工程 jでは、マスク MHを用いた ICP— RIEにより、観察プ ローブ 60および可動アーム 70の分離および支持体 75の外形を形作るためのエッチ ングを行う。この工程 jでは、 SOIウェハ 90の裏面から、すなわち下部 Si層 93側から 下部 Si層 93と SiO層 92の不要部分を除去する。以上により、支持体 75と一体に観
2
察プローブ 60および可動アーム 70が同一方向に延在するナノピンセット 51が完成 する。また、駆動機構 80も、観察プローブ 60および可動アーム 70の製造工程中で 同様の手法により同時に作製される。駆動機構 80も、観察プローブ 60および可動ァ ーム 70と同様に上部 Si層 91から作製される。
[0085] 上記の製造方法では、観察プローブ 60および可動アーム 70の長さ (X方向)、幅( Y方向)、厚さ (Z方向)の各寸法は、フォトリソグラフィ一により自由に設計し、製造す ることができる。長さと幅の寸法は、マスクの寸法で決まるものであり、観察プローブ 6 0のレバー 61の幅をタッピングモードの振動の共振周波数に適した寸法とすることも 容易である。また、把持部 62と把持部 72の間隔 d (=最大間隔 dO)も任意に設定す ることができる。一方、レバー部 61, 71の厚さ寸法、および探針部 63を併せた把持 部 62、把持部 72の高さ寸法は、上部 Si層 91のエッチング量で決まるものであるから 、製造工程で管理する。
[0086] この第 3の実施の形態によるナノピンセット 51は、 AFM装置に搭載することにより、 第 2の実施の形態によるナノピンセットと同じ効果を奏する。但し、上述したように、タ ッビングモードの振動の共振周波数に適した寸法とする場合、観察プローブ 60のレ バー 61の幅寸法を調節する方が厚さ寸法を調節するよりも精度が高い。
[0087] 〈第 4の実施の形態〉
図 29は第 4の実施形態を説明する図であり、 (a)はナノピンセット 1の試料面側を示 す平面図であり、(b)、(c)はナノピンセット 1の先端部 Rの構造を説明する拡大図で ある。支持体 25にはアーム 201, 202力形成されている。 203, 204は、アーム 201, 202を図の矢印方向に開閉駆動する駆動部である。駆動部 203, 204はジュール熱 によって膨張動作を行う熱膨張ァクチ ータであり、電源 209からの電力によって動 作する。 205, 206ίま馬区動咅 203, 204の電極であり、電源 209力 ^接続されて!/、る。
[0088] アーム 201、 202の先端部 Rの構造としては、図 29 (b)に示すような構造としても良 いし、図 29 (c)に示すような構造としても良い。なお、図 29 (b) , (c)では、先端部の 構造が分力りやすいように、アームが開いた状態で図示している。図 29 (b)では、上 述した第 1の実施形態のナノピンセットと同様の構造を有しており、直角三角形の断 面形状を有する把持部 201a, 202aが形成されている。一方、図 29 (c)に示す先端 構造は、第 3の実施形態のナノピンセットの場合と同様に、アーム 201, 202の試料 側平面上に角錐形状の突部 201b, 202bが形成されている。
[0089] 図 30はアーム 201, 202による試料 Sの把持動作を説明する図である。電源 209が オフ状態では、図 29 (a)に示すようにアーム 201, 202は閉じている。本実施の形態 では、駆動部 203, 204のシリコン層にはボロンがドーピングされていて、電源 209力 S オフの状態では、図 20の上下方向の矢印で示すように駆動部 203, 204が収縮する 方向に応力が働いている。 [0090] 試料 Sの把持を行う場合には、ナノピンセット 1を閉じた状態で試料 Sの近傍まで移 動する。次に、電源 209を才ンして電極 205, 206に電圧を印カロすると、電極 205→ 駆動部 203→アーム 201→アーム 202→駆動部 204→電極 206のように電流が流 れる。断面積が小さくなつている駆動部 203, 204ではジュール熱の発生が大きぐ 駆動部 203, 204は図 30 (a)の矢印方向(図示上下方向)に熱膨張する。その結果 、アーム 201 ίま右方向【こ、アーム 202ίま左方向【こそれぞれ移動し、アーム 201, 202 力 いた状態となる。
[0091] 図 30 (a)のようにアーム 201, 202が開状態となったならば、アーム 201, 202間に 試料 Sが位置するようにナノピンセット 1を移動する。ところで、アーム 201, 202が開 状態となると、アーム 201とアーム 202との接触が解除され電流が流れなくなる。その 結果、駆動部 203, 204の温度が降下し、膨張していた駆動部 203, 204が元の状 態に戻ろうとする。温度降下とともにアーム 201, 202は閉じる方向に移動し、図 30 ( b)に示すように試料 Sを把持することになる。そして、駆動部 203, 204が収縮しようと する応力によって、試料 Sを把持する把持力が発生する。なお、アーム 201, 202が 開状態となったならば電源 209をオフし、電源オフ状態で試料 Sを把持する。
[0092] また、ナノピンセット 1を AFM装置の観察プローブとして用いる場合には、電源 209 をオフにして図 29 (a)のようにアームを閉じた状態とし、支持体 25を AFM装置の励 振部により振動させる。レーザ光はアーム 201, 202のいずれに照射しても良い。こ の場合、アーム 201, 202の先端部分、すなわち、図 29 (a)に示した把持部 201a, 2 02aの先端や、図 29 (b)に示した突部 201b, 202bの先端が探針部として機能する
[0093] ナノピンセット 1の製造工程については、ボロンをドーピングする工程やボロンドーピ ングされた駆動部 203, 204をァニールして応力を発生させる工程が加わる他は、第 1または第 3の実施の形態と同様の製造方法が適用される。駆動部 203, 204は、第 1及び第 3の実施の形態と同様に SOIウェハの上部 Si層 31 (図 1参照)から形成され る。
[0094] そこで、用意された SOIウェハの上部 Si層 31上にマスクパターンを形成し、駆動部 203, 204が形成される領域にボロンのドーピングを行う。具体的には、イオン注入装 置を用いて駆動部領域にボロンイオンをイオン注入する。その後、第 1または第 3の 実施の形態と同様の製造方法により、ナノピンセット 1を構成する支持部 25、アーム 2 01, 202、馬区動咅 204等を形成する。 SOIウエノヽ上にナノピンセット 1力 ^形成さ れたならば、エッチングにより SOIウエノ、からナノピンセット 1を分離し、熱処理を施す ことにより馬区動咅 204のアニーリングを行う。
[0095] 図 31の(a)は SOIウェハから分離されたナノピンセット 1を示したものであり、この段 階ではアーム 201, 202は開いた状態となっている。すなわち、アーム 201, 202を エッチングにより形成する際には、開いた状態の形状にエッチングする。その後、ァ ニーリングすることによって、注入されたボロンが Siの格子サイトに置換される。ボロン の原子半径は Siに比べて小さ 、ので、ボロンを格子サイトに置換すると圧縮方向に 応力が働く。その結果、熱処理後は、図 31 (b)に示すように駆動部 203, 204が収縮 してアーム 201, 202の先端が閉じた状態となる。なお、駆動部 203, 204のボロンド 一ビングは、ナノピンセット 1の構造をエッチングした後にレジストでマスクをかけて行 つても良い。
[0096] 図 32は、図 29に示したナノピンセット 1の変形例を示す図である。この変形例では 、アーム 201, 202の基咅に電極 207, 208を設け、電極 205, 207間に電源 209A を接続し、電極 206, 208間に電源 209Bをそれぞれ設けた。そのため、アーム 201 、 202毎に開閉駆動を行うことができるとともに、試料を把持している間も駆動部 203 , 204に電流を流すことにより、把持力を調整することが可能となる。もちろん、試料 把持中に、電源 209A, 209Bをオフ状態としても力まわない。なお、変形例に示す ナノピンセット 1であっても、電極 205, 206間のみに電源を接続することにより、図 29 , 30に示したナノピンセットと同様の開閉動作を行わせることができる。
[0097] 図 30, 32に示すナノピンセットでは、駆動部 203, 204に電流を流して駆動部 203 , 204を熱膨張させてアーム 201, 202を開いた力 ボロンがドープされた駆動部 20 3, 204とは別に、アーム 201, 202を開方向に駆動する駆動機構をさらに設けるよう にしても良い。この場合、駆動部 203, 204はアーム 201, 202に閉方向の付勢力を 与える付勢機構としてのみ機能する。一方、図 30, 32に示したナノピンセットは、駆 動部 203, 204が付勢機構と駆動機構とを兼ねている。駆動機構としては、熱膨張を 利用した熱ァクチエータでも良 ヽし、静電力を利用した静電ァクチユエータ等でも良 い。また、付勢機構と駆動機構とを別構成とした場合、アニーリングを行う前のアーム
201, 202の間隔をゼロと見なせるくらい狭くしても、駆動機構によりアーム 201, 202 を開状態とすることが可能である。
[0098] 上述した第 1〜第 4の実施形態では、ナノピンセットに形成された把持部や突部の 先端を試料観察時の探針部として使用したが、第 4の実施の形態のナノピンセットの ようにノーマリークローズタイプのナノピンセットの場合、電源オフ状態で試料をァー ム 201, 202間に把持することができるので、探針部材を把持して試料観察を行うこと も可能である。この場合、図 29 (c)に示すような突部 201b, 202bを形成する必要が ない。
[0099] このように、第 4の実施形態のナノピンセットでは、電源オフ時に閉状態となるため、 電源にオフにしたまま試料の把持状態を保持することができる。そのため、ノーマリー オープンタイプの第 1〜3の実施形態のナノピンセットに比べて、電力消費を低減す ることができる。なお、第 4の実施形態では、左右に開閉するタイプのナノピンセットに 関して、ノーマリークローズ型の構成を説明したが、上述した第 2および第 3の実施形 態に示したようなスライドタイプのナノピンセットに関しても、同様にノーマリークローズ 型を構成することができる。
[0100] なお、上述した実施の形態では、 SOIウェハを用いた力 単結晶の Siウェハを用い ることもできる。 Siウェハを用いる場合は、 ICP— RIEのエッチング作用を停止させる 働きをもつ SiO層 32が存在しないので、 ICP— RIEの条件を制御する必要がある。
2
Siウェハの {100}面に対して、 5 mのエッチング深さを得るには、例えば、反応ガス として(SF +C F )混合ガスを用い、高周波出力 600Wで約 1. 7分の処理を行う。
6 4 8
Siウェハは、 SOIウェハよりも安価であり、上述した ICP— RIEの工程のみを変更す るだけで、他の総ての工程は上述した実施の形態と同様であるので、更なる製造コス トの削減が可能となる。
[0101] 本発明は、その特徴を損なわない限り、以上説明した実施の形態に何ら限定され ない。例えば、観察プローブの振幅の変化量を光てこ方式で計測した力 静電容量 の変化等種々の計測方法を用いることができる。本実施の形態のナノピンセットは、 AFM装置に限らず、例えば、静電力や摩擦力を検出する走査型プローブ顕微鏡装 置(SPM装置)にも適用できる。また、可動アーム 20, 70およびアーム 201, 202の 駆動には、熱ァクチユエータに限らず、静電力または圧電膜の伸縮を利用してもよい 。また、可動アーム 20の把持部 22、可動アーム 70の把持部 72、アーム 201, 202の 把持部 201a, 201aや突部 201b、 202bに関しては様々な形状が考えられ、さらに は突起状に形成しなくともよい。さらに、観察プローブ 10, 60およびアーム 201, 20 2を用いた観察には、タッピングモードに限らず、コンタクトモードを採用してもよい。 また、観察プローブ 10, 60に対して、観察だけではなぐ可動アーム 20, 70のような 試料を把持するための移動機能を追加してもよ ヽ。
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2004年第 337842号(2004年 11月 22日出願)
日本国特許出願 2005年第 42883号(2005年 2月 18日出願)

Claims

請求の範囲
[1] ナノピンセットは、
支持体と、
前記支持体から突出して試料の表面を観察する観察プローブと、
前記支持体から突出した前記観察プローブと並んで配設され、前記観察プローブ との間で前記試料を把持解放するために開閉する可動アームと、
前記観察プローブとの間で前記可動アームを開閉駆動する駆動機構とを備え、 前記支持体、前記観察プローブおよび前記可動アームのそれぞれは、半導体ゥェ ハをフォトリソグラフィープロセスにより加工して製作される。
[2] ナノピンセットは、
支持体と、
前記支持体から所定方向に延在し、試料表面観察用の探針部と試料把持用の第 1の把持部が設けられた観察プローブと、
前記支持体から前記所定方向に延在し、前記観察プローブと並設され、前記第 1 の把持部に対して前記所定方向に沿って対向する第 2の把持部が形成された可動 アームと、
前記第 1および第 2の把持部間に試料が把持されるように、前記可動アームをその 延在方向に駆動する駆動機構とを備え、
前記支持体、観察プローブおよび可動アームのそれぞれは、半導体ウェハをフォト リソグラフィープロセスにより加工して製作される。
[3] 請求項 2に記載のナノピンセットにおいて、
前記第 1の把持部は前記観察プローブ力 試料面方向に突出する突部であって、 前記所定方向と直交する第 1の把持面と突出先端に形成された前記探針部とを有し 前記第 2の把持部は、前記第 1の把持面との間で前記試料を把持する第 2の把持 面を有する。
[4] 請求項 3に記載のナノピンセットにおいて、
前記第 1および第 2の把持面は、前記所定方向に対して直交するように形成されて いる。
[5] 請求項 2〜4のいずれか一項に記載のナノピンセットにおいて、
前記半導体ウェハは、 SiO層を一対の Si層で挟持した SOIウェハであって、
2
前記観察プローブおよび可動アームを、前記一対の Si層内の一方の層に所定間 隔で並設して形成し、
前記第 1の把持部、第 2の把持部および前記探針部は、それぞれ前記観察プロ一 ブから前記並設の方向に突出して形成されて ヽる。
[6] 請求項 2〜4のいずれか一項に記載のナノピンセットにおいて、
前記半導体ウェハは、 SiO層を一対の Si層で挟持した SOIウェハであって、
2
前記観察プローブおよび可動アームは、前記一対の Si層内の一方の層に所定間 隔で並設して形成され、
前記第 1の把持部、第 2の把持部および前記探針部は、前記並設の方向に直交す る方向に、それぞれ前記観察プローブ力も突出して形成されている。
[7] 請求項 6に記載のナノピンセットにおいて、
前記観察プローブは、前記所定方向に延在するスリット空間が形成された馬蹄形 状の梁であって、
前記可動アームは、前記スリット空間にお!ヽて前記所定方向にスライド自在に配設 される。
[8] 請求項 1〜7のいずれか一項に記載のナノピンセットにおいて、
前記駆動機構は、通電によって発生する熱による熱変形で前記可動アームを駆動 する。
[9] 走査型プローブ顕微鏡は、
請求項 1〜8のいずれか一項に記載のナノピンセットと、
前記観察プローブと試料表面との相互作用に基づく変位を検出する検出部と、 前記駆動機構の駆動動作を制御する制御部と、
前記検出部で検出した変位に基づいて前記試料の表面の物理的および Zまたは 化学的状態を演算する演算部と、
前記観察プローブを前記試料表面に対して走査移動させる走査手段とを備える。
[10] 請求項 9に記載の走査型プローブ顕微鏡において、
前記演算部の演算結果を可視化する表示部をさらに備える。
[11] 請求項 9または 10に記載の走査型プローブ顕微鏡において、
前記検出部は、前記観察プローブに光を照射する光源と、前記観察プローブで反 射された前記光を検出する受光部とを備え、
前記演算部は、前記受光部からの検出信号に基づいて前記試料の表面形状を演 算する。
[12] 請求項 9〜: L 1の 、ずれかに記載の走査型プローブ顕微鏡にお!、て、
タッピングモードにより前記試料を観察するために、前記観察プローブをその共振 周波数で試料方向に振動させる励振部をさらに備え、
前記可動アームは、その共振周波数が前記観察プローブの共振周波数力も離れ た値となるように構成される。
[13] 請求項 1に記載のナノピンセットの製造方法であって、
前記半導体ウェハを SOIウェハとし、
前記 SOIウェハの一方のシリコン層を部分除去することにより、前記観察プローブ および前記可動アームの原型となる 2本の帯状突起を形成する工程と、
前記観察プローブの原型となる帯状突起の先端部分に、前記試料に近接または接 触する尖鋭部を形成する工程と、
前記 SOIウェハの他方のシリコン層と酸ィ匕シリコン層を部分除去することにより、前 記 2本の帯状突起から、前記観察プローブおよび前記可動アームを形成するとともに 、除去しな!ヽ部分を前記支持体として形成する工程とを有する。
[14] ナノピンセットは、
支持体と、
前記支持体から延在するように並設され、試料把持用の把持部が各々設けられた 一対のアームと、
前記一対のアームの少なくとも一方に形成された試料表面観察用の探針部と、 前記一対のアームの把持部が互いに接触するように、前記一対のアームを閉方向 へとそれぞれ付勢する付勢機構と、 前記付勢機構による付勢力に杭して、前記一対のアームを開方向へと駆動する駆 動機構とを備える。
[15] 請求項 14に記載のナノピンセットにおいて、
前記支持体、前記一対のアーム、前記付勢機構および前記駆動機構のそれぞれ は、半導体ウェハをフォトリソグラフィープロセスにより加工して製作される。
[16] 請求項 15に記載のナノピンセットにおいて、
前記付勢機構および前記駆動機構の機能を兼ねる熱ァクチユエータを備え、 前記熱ァクチユエータは、前記 Si層にボロンをドープしてァニール処理した部材で あって、通電用の電極を有する。
[17] 請求項 15に記載のナノピンセットの製造方法であって、
前記半導体ウェハとして SiO層を一対の Si層で挟持した SOIウェハを用い、
2
前記 SOIウェハの一方の Si層をエッチングして、前記一対のアーム、前記付勢機 構および前記駆動機構を形成する第 1の工程と、
前記付勢機構を構成する Si層にボロンをドープする第 2の工程と、
前記ボロンがドープされた Si層をァニール処理して、前記一対のアームを閉方向に 駆動するための収縮応力を前記付勢機構に与える第 3の工程とを有する。
[18] 請求項 17に記載のナノピンセットの製造方法において、
前記第 1の工程では、前記一対のアームは所定の間隔で並設されるように形成さ れ、
前記第 3の工程では、前記付勢機構に前記収縮応力を与えて前記一対のアーム を閉状態にさせる。
[19] 走査型プローブ顕微鏡は、
請求項 14〜16のいずれか一項に記載のナノピンセットと、
前記アームと試料表面との相互作用に基づく変位を検出する検出部と、 前記駆動機構の駆動動作を制御する制御部と、
前記検出部で検出した変位に基づいて前記試料の表面の物理的および Zまたは 化学的状態を演算する演算部と、
前記アームの先端を前記試料表面に対して走査移動させる走査手段とを備える。 請求項 19に記載の走査型プローブ顕微鏡において、 前記演算部の演算結果を可視化する表示部をさらに備える。
PCT/JP2005/021456 2004-11-22 2005-11-22 ナノピンセットおよびこれを備える走査型プローブ顕微鏡 WO2006054771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/791,262 US7849515B2 (en) 2004-11-22 2005-11-22 Nanotweezer and scanning probe microscope equipped with nanotweezer
JP2006545207A JP4631062B2 (ja) 2004-11-22 2005-11-22 ナノピンセットおよびこれを備える走査型プローブ顕微鏡
EP05809524A EP1816100A1 (en) 2004-11-22 2005-11-22 Nano tweezers and scanning probe microscope having the same
CN2005800398126A CN101061059B (zh) 2004-11-22 2005-11-22 纳米镊子及其制造方法以及配备有该纳米镊子的扫描探针显微镜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-337842 2004-11-22
JP2004337842 2004-11-22
JP2005042883 2005-02-18
JP2005-042883 2005-02-18

Publications (1)

Publication Number Publication Date
WO2006054771A1 true WO2006054771A1 (ja) 2006-05-26

Family

ID=36407301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021456 WO2006054771A1 (ja) 2004-11-22 2005-11-22 ナノピンセットおよびこれを備える走査型プローブ顕微鏡

Country Status (5)

Country Link
US (1) US7849515B2 (ja)
EP (1) EP1816100A1 (ja)
JP (1) JP4631062B2 (ja)
CN (1) CN101061059B (ja)
WO (1) WO2006054771A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322363A (ja) * 2006-06-05 2007-12-13 Sii Nanotechnology Inc プローブ構造体及び走査型プローブ顕微鏡
JP2008298671A (ja) * 2007-06-01 2008-12-11 Sii Nanotechnology Inc 試料操作装置
JP2009002870A (ja) * 2007-06-22 2009-01-08 Aoi Electronics Co Ltd Afmピンセット、afmピンセットの製造方法および走査型プローブ顕微鏡
JP2009008671A (ja) * 2007-06-01 2009-01-15 Aoi Electronics Co Ltd ピンセット付き走査型プローブ顕微鏡および搬送方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023768A1 (de) * 2006-05-20 2007-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrogreifer
CA2551191C (en) * 2006-06-23 2016-04-05 Keekyoung Kim Electrothermally-driven mems microgrippers with integrated dual-axis capacitive force sensors
JP5378830B2 (ja) * 2009-02-20 2013-12-25 株式会社日立ハイテクサイエンス 集束イオンビーム装置、及びそれを用いた試料の加工方法
DE102010052037B4 (de) * 2010-11-23 2013-04-18 Franz Josef Giessibl Sensor und Verfahren zum berührungslosen Abtasten einer Oberfläche
FR2975935B1 (fr) * 2011-06-06 2013-07-05 Centre Nat Rech Scient Outil pour pince microtechnique
US9857216B2 (en) * 2014-12-26 2018-01-02 Ricoh Company, Ltd. Minute object characteristics measuring apparatus
WO2018073833A1 (en) * 2016-10-18 2018-04-26 Bendflex Research And Development Private Limited Sample manipulator
CN109956321B (zh) * 2019-03-01 2020-09-08 北京理工大学 基于磁力驱动的微小目标抓取装置及其制备与抓取方法
KR20220158808A (ko) * 2020-05-01 2022-12-01 주식회사 히타치하이테크 핀셋, 반송 장치 및 시료편의 반송 방법
JP7310717B2 (ja) * 2020-05-27 2023-07-19 株式会社島津製作所 表面分析装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584389U (ja) * 1981-06-30 1983-01-12 富士通株式会社 ハンド
JPH0890431A (ja) * 1994-09-27 1996-04-09 Shimadzu Corp マイクログリッパおよびその製造方法
JPH1144697A (ja) * 1997-07-28 1999-02-16 Seiko Instr Inc サンプリング走査プローブ顕微鏡
JP2001252900A (ja) * 2000-03-08 2001-09-18 Yoshikazu Nakayama ナノピンセット及びこれを用いたナノマニピュレータ装置
US20020061662A1 (en) * 2000-08-25 2002-05-23 Peter Boggild Fabrication and application of nano-manipulators with induced growth
US20020122766A1 (en) * 2000-09-29 2002-09-05 Lieber Charles M. Direct growth of nanotubes, and their use in nanotweezers
WO2003045838A1 (en) * 2001-11-29 2003-06-05 Aoi Electronics., Co., Ltd Nano gripper and method of manufacturing the nano gripper
JP2004028830A (ja) * 2002-06-26 2004-01-29 Japan Science & Technology Corp 複数の電極を有するカンチレバーおよびその製造方法
JP2004317255A (ja) * 2003-04-15 2004-11-11 Sii Nanotechnology Inc 分割探針の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584389A (ja) 1981-06-29 1983-01-11 キタムラ機械株式会社 ロボツトの安全装置
US4927254A (en) * 1987-03-27 1990-05-22 The Board Of Trustees Of The Leland Stanford Junior University Scanning confocal optical microscope including an angled apertured rotating disc placed between a pinhole and an objective lens
US5675154A (en) * 1995-02-10 1997-10-07 Molecular Imaging Corporation Scanning probe microscope
WO2001066460A1 (en) * 2000-03-08 2001-09-13 Daiken Chemical Co., Ltd. Nanotweezers and nanomanipulator
US6862921B2 (en) * 2001-03-09 2005-03-08 Veeco Instruments Inc. Method and apparatus for manipulating a sample
US7168301B2 (en) * 2002-07-02 2007-01-30 Veeco Instruments Inc. Method and apparatus of driving torsional resonance mode of a probe-based instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584389U (ja) * 1981-06-30 1983-01-12 富士通株式会社 ハンド
JPH0890431A (ja) * 1994-09-27 1996-04-09 Shimadzu Corp マイクログリッパおよびその製造方法
JPH1144697A (ja) * 1997-07-28 1999-02-16 Seiko Instr Inc サンプリング走査プローブ顕微鏡
JP2001252900A (ja) * 2000-03-08 2001-09-18 Yoshikazu Nakayama ナノピンセット及びこれを用いたナノマニピュレータ装置
US20020061662A1 (en) * 2000-08-25 2002-05-23 Peter Boggild Fabrication and application of nano-manipulators with induced growth
US20020122766A1 (en) * 2000-09-29 2002-09-05 Lieber Charles M. Direct growth of nanotubes, and their use in nanotweezers
WO2003045838A1 (en) * 2001-11-29 2003-06-05 Aoi Electronics., Co., Ltd Nano gripper and method of manufacturing the nano gripper
JP2004028830A (ja) * 2002-06-26 2004-01-29 Japan Science & Technology Corp 複数の電極を有するカンチレバーおよびその製造方法
JP2004317255A (ja) * 2003-04-15 2004-11-11 Sii Nanotechnology Inc 分割探針の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASHIGUCHI G. ET AL: "Micromachining Gijutsu ni yoru Netsu Bocho Actuator Ittaigata Nanogripper no Kaihatsu", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN E, vol. 123-E, 2003, pages 1 - 8, XP003007775 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322363A (ja) * 2006-06-05 2007-12-13 Sii Nanotechnology Inc プローブ構造体及び走査型プローブ顕微鏡
JP2008298671A (ja) * 2007-06-01 2008-12-11 Sii Nanotechnology Inc 試料操作装置
JP2009008671A (ja) * 2007-06-01 2009-01-15 Aoi Electronics Co Ltd ピンセット付き走査型プローブ顕微鏡および搬送方法
US7987703B2 (en) 2007-06-01 2011-08-02 Aoi Electronics Co., Ltd. Tweezer-equipped scanning probe microscope and transfer method
JP2009002870A (ja) * 2007-06-22 2009-01-08 Aoi Electronics Co Ltd Afmピンセット、afmピンセットの製造方法および走査型プローブ顕微鏡
US8028567B2 (en) 2007-06-22 2011-10-04 Aoi Electronics Co., Ltd. AFM tweezers, method for producing AFM tweezers, and scanning probe microscope

Also Published As

Publication number Publication date
US7849515B2 (en) 2010-12-07
US20090000362A1 (en) 2009-01-01
EP1816100A1 (en) 2007-08-08
CN101061059B (zh) 2012-08-29
JPWO2006054771A1 (ja) 2008-06-05
JP4631062B2 (ja) 2011-02-16
CN101061059A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
WO2006054771A1 (ja) ナノピンセットおよびこれを備える走査型プローブ顕微鏡
US8756710B2 (en) Miniaturized cantilever probe for scanning probe microscopy and fabrication thereof
US6891151B2 (en) Probe with hollow waveguide and method for producing the same
US8028567B2 (en) AFM tweezers, method for producing AFM tweezers, and scanning probe microscope
US7926328B2 (en) Sample manipulating apparatus
JP4461277B2 (ja) 走査型プローブ顕微鏡装置および試料表面形状観察方法
JPH1090287A (ja) 原子間力顕微鏡用プローブ及びその製造方法
JP4739121B2 (ja) 走査型プローブ顕微鏡
JP4751190B2 (ja) 温度測定用プローブ
JP4785537B2 (ja) プローブ、走査型プローブ顕微鏡、及びプローブの製造方法
JP4931708B2 (ja) 顕微鏡用プローブ及び走査型プローブ顕微鏡
JP2004020353A (ja) 近接場光用の探針、該探針を用いた近接場光発生方法、該探針を有するプローブ、該プローブを有するストレージ装置、表面観察装置、露光装置、デバイス製造方法、近接場光用の探針を有するプローブの製造方法
JP4535706B2 (ja) 走査型プローブ顕微鏡用カンチレバーおよびその製造方法
JP4931640B2 (ja) 走査型プローブ顕微鏡
US7861315B2 (en) Method for microfabricating a probe with integrated handle, cantilever, tip and circuit
Gellineau et al. Optical fiber atomic force microscope with photonic crystal force sensor
JPH11337563A (ja) 走査型プロ―ブ顕微鏡用カンチレバ―の作製方法
JPH03102209A (ja) 原子間力顕微鏡
Wang Silicon waveguides, coupler and high aspect-ratio nano-tips for enabling on-chip parallel high speed atomic force microscopy
JPH1138020A (ja) 走査型プローブ顕微観察法と走査型プローブ顕微鏡用プローブと走査型プローブ顕微鏡
JP2005172456A (ja) 走査型プローブ顕微鏡用カンチレバーおよびその製造方法
JPH11337561A (ja) 走査型プロ―ブ顕微鏡用カンチレバ―とその保持機構

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545207

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580039812.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005809524

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005809524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11791262

Country of ref document: US