WO2006054406A1 - Electrostatic chuck for vacuum bonding system - Google Patents

Electrostatic chuck for vacuum bonding system Download PDF

Info

Publication number
WO2006054406A1
WO2006054406A1 PCT/JP2005/018678 JP2005018678W WO2006054406A1 WO 2006054406 A1 WO2006054406 A1 WO 2006054406A1 JP 2005018678 W JP2005018678 W JP 2005018678W WO 2006054406 A1 WO2006054406 A1 WO 2006054406A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
dielectric layer
electrode
comb
electrostatic
Prior art date
Application number
PCT/JP2005/018678
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Ohtani
Takeshi Shima
Original Assignee
Shin-Etsu Engineering Co., Ltd.
Tomoegawa Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Engineering Co., Ltd., Tomoegawa Paper Co., Ltd. filed Critical Shin-Etsu Engineering Co., Ltd.
Publication of WO2006054406A1 publication Critical patent/WO2006054406A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0294Vehicle bodies
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • glass substrates such as CF glass and TFT glass are adsorbed and held in a vacuum during the manufacturing process of flat panel displays such as liquid crystal displays (LCDs) and plasma displays (PDPs).
  • LCDs liquid crystal displays
  • PDPs plasma displays
  • the present invention relates to an electrostatic chuck for a vacuum bonding apparatus used for bonding.
  • the present invention relates to an electrostatic chuck for a vacuum bonding apparatus that includes two or more electrodes and a dielectric layer that covers the electrode, and holds the dielectric layer in vacuum in contact with a glass substrate by suction.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-273194 (Page 2-3, Figure 1- Figure 2)
  • the comb electrode has a narrow width dimension
  • the invention described in claim 1 is intended to achieve stable adsorption holding while preventing damage to the electrostatic adsorption function part due to the penetration of foreign matter.
  • the invention according to claim 1 of the present invention is characterized in that the thickness dimension of the dielectric layer is 50 to 200 ⁇ m.
  • the invention described in claim 2 is characterized in that the electrode has a two-pole comb-like structure, and the width dimension of the comb-teeth electrode is 0.5 to 1.5 mm.
  • the invention described in claim 3 is characterized in that the electrode has a two-pole comb-teeth structure, and the interval between the comb-teeth electrodes is set to 0.5 to 1.5 mm.
  • the above-described electrostatic chuck for a vacuum bonding apparatus is provided on both or only one of the opposing surfaces of a pair of upper and lower holding plates, and holds and opposes the glass substrates so that the two glass substrates are vacuumed.
  • the invention according to claim 1 is characterized in that the smaller the thickness dimension of the dielectric layer, the electrostatic adsorption Although the force increases, the physical strength becomes extremely weak at less than 50 m, and the electrode is exposed due to the penetration of foreign matter between the glass substrate and may cause plasma discharge at a certain timing in the vacuum. On the other hand, if the thickness is greater than 200 m, the electrostatic adsorption force decreases, so even if an adsorption force exceeding the weight of the glass substrate is obtained, the airflow generated around it and the glass substrate The thickness of the dielectric layer is set to 50 to 200 ⁇ m because there is a risk of falling due to variations in adsorption force.
  • the dielectric layer is too thin, the electrostatic adsorption function part is likely to be damaged due to the penetration of foreign matters.Damage to the glass substrate due to plasma discharge can prevent the decrease in electrostatic adsorption force compared to the conventional one. Durability is improved and it can be used for a long period of time, improving reliability.
  • the width dimension of the comb-shaped electrode is narrower than 0.5 mm, electric field concentration occurs, and there is a high possibility of dielectric breakdown or disconnection. If the width is larger than mm, the total amount of the bipolar electric field that becomes the root of the attractive force will decrease, and the electrostatic attractive force will decrease and may fall. Therefore, the width of the comb-shaped electrode was set to 0.5 to 1.5 mm. .
  • the width of the comb-shaped electrode is too narrow, and electric field concentration occurs, resulting in the possibility of dielectric breakdown or wire breakage.
  • the yield and reliability can be improved compared to conventional ones.
  • the gap between the comb-shaped electrodes is too narrow, resulting in electric field concentration and dielectric breakdown. Yield and reliability can be improved compared to conventional products that have a high possibility of occurrence of breakage or disconnection.
  • an electrostatic chuck A force electrode 1 for a vacuum bonding apparatus has an electrostatic adsorption function unit 1 in which a dielectric layer lb is laminated on the surface of a la.
  • the electrode la has a two-pole comb-teeth structure, and the width dimension L of the comb-teeth electrode la and the interval S between the comb-teeth electrodes la are set within a predetermined range (experimental force described later). By setting the distance within the range of 0.5 to 1.5 mm, it is preferable to prevent accidents such as dielectric breakdown and disconnection and achieve good adsorption and holding of the glass substrate (insulating substrate) B at the same time.
  • a base material layer 2 is provided so as to cover the electrode la with an adhesive layer 2a such as an adhesive material or an adhesive in between.
  • an adhesive layer 2a such as an adhesive material or an adhesive in between.
  • the surface of the base member 3 formed in a plate shape with a hard insulating material such as engineering plastic or ceramics or a metal such as aluminum is attached with an adhesive layer 4 such as an adhesive or adhesive sandwiched between them. It is done.
  • the dielectric layer lb and the base material layer 2 will be described later by using a cushioning organic material such as polyimide, polyetheretherketone (PEEK), polyethylene naphthalate (PEN) or the like as the main constituent material.
  • a cushioning organic material such as polyimide, polyetheretherketone (PEEK), polyethylene naphthalate (PEN) or the like.
  • PEEK polyetheretherketone
  • PEN polyethylene naphthalate
  • the electrostatic chuck A is a holding plate C, D which is a force such as a surface plate arranged opposite to the vertical direction in a vacuum bonding apparatus for manufacturing a liquid crystal display or a plasma display, for example. It is incorporated by attaching to almost the entire surface or part of only one or both of the opposite surfaces of the electrostatic chuck A, and the electrostatic chuck A is made of, for example, TFT glass or CF glass.
  • the glass substrate B is sucked and held so as to face each other, and the two substrates B and B are adjusted and moved relative to each other in the XY 0 direction, and then they are brought into close contact with each other in a vacuum.
  • each electrostatic chuck A as shown in FIGS. 1 (a) and 1 (b) is formed in a rectangle smaller than the size of the glass substrate B, and is formed on the opposing surfaces of the upper and lower holding plates C and D.
  • a plurality of electrostatic chucks A are arranged in parallel with each other close to each other, and each surface is arranged in a plane so that pressure unevenness does not occur. Divide and hold the entire surface of a large glass substrate B, B over 1000mm in size!
  • each electrostatic chuck A On the back surface of each electrostatic chuck A, an input terminal (not shown) communicating with the electrode la is provided. ) Is exposed, and on the opposite surface side of the upper and lower holding plates C and D, there is an output terminal (not shown) on the device side that leads to the high voltage power supply and the input terminal of each electrostatic chuck A
  • the upper and lower holding plates C and D are brought closer to each other or the upper substrate B is forcibly separated from the upper electrostatic chuck A and the annular adhesive on the lower substrate B ( (Seal material)
  • the liquid crystal is sealed and overlapped between the two, and then the atmosphere in the closed space E is returned to atmospheric pressure, so that the inside and outside of both substrates B and B
  • the bonding process is completed by pressurizing between the substrates B and B to a predetermined gap by the generated pressure difference.
  • the thickness of the dielectric layer lb An electrostatic chuck with a dimension T of 40 to 210 / zm, an electrostatic chuck with a width L of the comb-shaped electrode la and an interval S between the comb-shaped electrodes la of 0.4 to 1.6 mm are prepared for the liquid crystal substrate.
  • Tables 1 to 3 below show the results of adsorption experiments on CF glass with color filters, TFT glass with TFT elements, and basic glass used for testing.
  • test glasses of the same size were made from the CF glass, TFT glass, and raw glass, and these test glasses were brought into contact with the respective electrostatic chucks and pulled up under the same conditions. The electrostatic attraction force was measured sequentially.
  • Table 1 shows the electrostatic adsorption force (unit: mN) when the test glass having CF glass force is pulled up by each electrostatic chuck.
  • Table 2 shows the electrostatic attraction force (unit: mN) when the test glass with TFT glass force is pulled up by each electrostatic chuck.
  • Table 3 shows the electrostatic adsorption force (unit: mN) when the test glass, which has a glass strength, is pulled up by each electrostatic chuck.
  • the dielectric layer lb becomes a very thin film having a thickness of less than 50 m
  • the surface of the dielectric layer lb is brought into contact with the glass substrate B to be adsorbed and held, even if a minute foreign matter is present between the two. If it enters the surface, for example, by adhering to the surface, the electrostatic adsorption force generated around this foreign material squeezes into the dielectric layer lb, and the surface of the thin dielectric layer lb is damaged. If the electrode la is exposed and the electrode la is energized in this exposed state, it may cause a plasma discharge at a certain timing in the vacuum. For this reason, electrostatic chuck A cannot be used in a pressure region where discharge is easily caused by a Noschen curve.
  • the thickness dimension T of the dielectric layer lb T force 3 ⁇ 400 m thicker, the strength increases.
  • the electrostatic adsorption force decreases, so the adsorption force more than the weight of the glass substrate B.
  • the closed space E force may drop due to variations in airflow and suction force during evacuation.
  • the thickness T of the dielectric layer lb is suitably about 50 to 200 / ⁇ ⁇ .
  • an adsorption force greater than the weight of the glass substrate B can be obtained in the range of 0.5 to 1.5 mm, but when it becomes narrower than 0.5 mm, electric field concentration occurs. There is a high possibility of dielectric breakdown and disconnection.
  • the width of the comb-shaped electrode la is larger than 1.5 mm, and the total amount of the two-pole electric field that is the source of the attractive force decreases, so that the electrostatic attractive force decreases and the glass substrate B Even if an adsorption force greater than its own weight is obtained, there is a risk of falling due to the air current generated around it when vacuuming or variations in the adsorption force to the glass substrate B.
  • an adsorption force equal to or greater than the self-weight of the glass substrate B is obtained in the range of 0.5 to 1.5 mm. If it is narrower than 0.5mm, the voltage difference between adjacent ones is large because of the bipolar type, so there is a high possibility of dielectric breakdown or disconnection.
  • the width dimension L of the comb-shaped electrode la and the interval S between the comb-shaped electrodes la are appropriately about 0.5 to 1.5 mm, which is equivalent to the electrode pattern formation process. is there.
  • the force shown in the case where the electrostatic chuck A for the vacuum bonding apparatus is a bipolar electrostatic chuck having the two-pole comb-teeth electrode la is limited to this.
  • the electrode la may be other than the comb-tooth type or two or more electrodes.
  • the plate-like laminated structure is not limited, If at least the electrostatic attraction function unit 1 exists, other structures such as integration of the base member 3 and the holding plates C and D of the vacuum bonding apparatus may be used.
  • a plurality of electrostatic chucks A are arranged in parallel on the opposing surfaces of the upper and lower holding plates C and D, but are not limited to this.
  • One electrostatic chuck A may be disposed over substantially the entire facing surface.
  • the method of applying a high voltage to the electrode la of the electrostatic chuck A is not limited to the above-described method, and other energization methods may be used.
  • FIG. 1 (a) is a longitudinal sectional view of an electrostatic chuck for a vacuum bonding apparatus showing an embodiment of the present invention, and (b) is a cross-sectional plan view showing an enlarged main part. It is.
  • Electrostatic adsorption function part la electrode (comb-shaped electrode)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Disclosed is an electrostatic chuck (A) for suction-holding a glass substrate (B) wherein the thickness (T) of a dielectric layer (1b) is set at 50-200 μm, the width (L) of electrodes (1a) is set at 0.5-1.5 mm, and the interval (S) between the electrodes (1a) is set at 0.5-1.5 mm.

Description

明 細 書  Specification
真空貼り合わせ装置用静電チャック  Electrostatic chuck for vacuum bonding equipment
技術分野  Technical field
[0001] 本発明は、例えば液晶ディスプレー(LCD)やプラズマディスプレー(PDP)などの フラットパネルディスプレーの製造過程にぉ 、て、 CFガラスや TFTガラスなどのガラ ス基板を真空中で吸着保持して貼り合わせる際に使用する真空貼り合わせ装置用 静電チャックに関する。  [0001] In the present invention, glass substrates such as CF glass and TFT glass are adsorbed and held in a vacuum during the manufacturing process of flat panel displays such as liquid crystal displays (LCDs) and plasma displays (PDPs). The present invention relates to an electrostatic chuck for a vacuum bonding apparatus used for bonding.
詳しくは、 2極以上の電極と、それを覆う誘電層とを備え、真空中で誘電層をガラス 基板に接触させて吸着保持する真空貼り合わせ装置用静電チャックに関する。 背景技術  More specifically, the present invention relates to an electrostatic chuck for a vacuum bonding apparatus that includes two or more electrodes and a dielectric layer that covers the electrode, and holds the dielectric layer in vacuum in contact with a glass substrate by suction. Background art
[0002] 従来、この種の真空貼り合わせ装置用静電チャックには、液晶用ガラス基板を保持 搬送する手段として、ガラス製基材の表面に、 Cuを 0.3 m程度全面に真空蒸着した 後、フォトエッチング加工により、 2極の櫛歯型電極の幅寸法 (線幅 ) 80 m、該櫛歯 型電極同士の間隔(ピッチ) 200 μ mをパターンユングし、更にエアロゾルデポジショ ン法により、酸ィ匕アルミニウムの誘電層(誘電体層)を 10 m製膜するか、又は CVD 法によって酸ィ匕アルミニウム、酸化珪素、ポリイミドなどの誘電層の厚みを薄くして、よ り低い電圧でより高い吸着力を発生可能にする力、或いはイオンプレーティング法に よって酸ィ匕アルミニウム、酸ィ匕珪素などの誘電層の厚みを薄くして、より低い電圧でよ り高い吸着力を発生可能にしたものがある(例えば、特許文献 1参照)。  Conventionally, in this type of electrostatic chuck for a vacuum bonding apparatus, as a means for holding and transporting a liquid crystal glass substrate, Cu is vacuum-deposited on the entire surface of a glass substrate by about 0.3 m, By photoetching, pattern width of the width dimension (line width) of the two-pole comb-shaped electrodes is 80 m, and the interval between the comb-shaped electrodes (pitch) is 200 μm, and then the acid is deposited by aerosol deposition method. The dielectric layer (dielectric layer) of aluminum is deposited to 10 m, or the thickness of the dielectric layer of aluminum oxide, silicon oxide, polyimide, etc. is reduced by CVD, so that it is higher at a lower voltage. The ability to generate an attractive force or the thickness of a dielectric layer such as acid-aluminum or silicon-oxide silicon by the ion plating method has been reduced, enabling higher adsorptive power to be generated at a lower voltage. There is something (eg See Patent Document 1).
[0003] 特許文献 1 :特開 2003— 273194号公報(第 2— 3頁、図 1—図 2)  [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-273194 (Page 2-3, Figure 1-Figure 2)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし乍ら、このような従来の真空貼り合わせ装置用静電チャックでは、誘電層が薄 い(10 m)ために高 ヽ静電吸着力を得られるが、その物理的強度が極端に弱くなる ため、この誘電層の表面をガラス基板に接触させて吸着保持する際、これら両者間 に異物がガラス基板の表面に付着するなどして侵入すると、この異物の周囲に発生 した静電吸着力により誘電層の中に嚙み込んでしまい、その結果、薄い誘電層の表 面が傷付くだけでなく、電極にもダメージを与えて静電吸着機能部が破損し易 、と ヽ う問題があった。 [0004] However, such a conventional electrostatic chuck for a vacuum bonding apparatus can obtain a high electrostatic adsorption force because the dielectric layer is thin (10 m), but its physical strength is extremely low. When the surface of the dielectric layer is brought into contact with the glass substrate and held by adsorption, if foreign matter enters between the two by adhering to the surface of the glass substrate, the static electricity generated around the foreign material is generated. As a result, the surface of the thin dielectric layer is absorbed by the adsorption force. In addition to scratching the surface, there was a problem that the electrostatic adsorption function part was easily damaged by damaging the electrode.
このような従来の静電チャックで上下一対のガラス基板を吸着保持したまま真空中 で接近して圧着させると、異物の嚙み込みによる傷で電極が露出し、この状態で電 極へ通電すると、真空中のあるタイミングでプラズマ放電を引き起こし、ガラス基板へ のダメージゃ静電吸着力の低下につながるという問題もあった。  If a pair of upper and lower glass substrates are attracted and held with such a conventional electrostatic chuck and pressed close together in a vacuum, the electrode will be exposed due to scratches caused by foreign objects, and if the electrode is energized in this state, There was also a problem that plasma discharge was caused at a certain timing in a vacuum, and damage to the glass substrate led to a decrease in electrostatic adsorption power.
また、従来の真空貼り合わせ装置用静電チャックでは、櫛歯電極の幅寸法が狭い( Further, in the conventional electrostatic chuck for vacuum bonding apparatus, the comb electrode has a narrow width dimension (
80 m)ために電界集中が起きて絶縁破壊が生じたり断線の可能性も高くなると共に 、電極同士の間隔が狭い(200 m)ために高い静電吸着力を得られる力 隣同士の 電圧差が大きいために絶縁破壊が起こる可能性が高ぐ歩留まりや信頼性に劣ると いう問題があった。 80 m), electric field concentration occurs, causing breakdown and increased possibility of breakage, and the distance between the electrodes is narrow (200 m), resulting in high electrostatic attraction force. Therefore, there is a problem that the yield is high and the reliability is inferior because the dielectric breakdown is high.
[0005] 本発明のうち請求項 1記載の発明は、異物の嚙み込みによる静電吸着機能部の破 損を防止しながら安定した吸着保持を達成することを目的としたものである。  [0005] Of the present invention, the invention described in claim 1 is intended to achieve stable adsorption holding while preventing damage to the electrostatic adsorption function part due to the penetration of foreign matter.
請求項 2、 3記載の発明は、絶縁破壊や断線などの事故を防止しながら安定した吸 着保持を達成することを目的としたものである。  The inventions described in claims 2 and 3 are intended to achieve stable adsorption and retention while preventing accidents such as dielectric breakdown and disconnection.
課題を解決するための手段  Means for solving the problem
[0006] 前述した目的を達成するために、本発明のうち請求項 1記載の発明は、誘電層の 厚さ寸法を 50〜200 μ mにしたことを特徴とするものである。 In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is characterized in that the thickness dimension of the dielectric layer is 50 to 200 μm.
請求項 2記載の発明は、電極が 2極の櫛歯型構造であり、この櫛歯型電極の幅寸 法を 0.5〜1.5mmにしたことを特徴とするものである。  The invention described in claim 2 is characterized in that the electrode has a two-pole comb-like structure, and the width dimension of the comb-teeth electrode is 0.5 to 1.5 mm.
請求項 3記載の発明は、電極が 2極の櫛歯型構造であり、この櫛歯型電極同士の 間隔を 0.5〜1.5mmにしたことを特徴とするものである。  The invention described in claim 3 is characterized in that the electrode has a two-pole comb-teeth structure, and the interval between the comb-teeth electrodes is set to 0.5 to 1.5 mm.
ここで、上述した真空貼り合わせ装置用静電チャックとは、上下一対の保持板の対 向面の両方又は一方のみに設けられ、ガラス基板を吸着保持して対向させ、これら 両ガラス基板を真空中で接近して圧着させる真空貼り合わせ装置に用いられる静電 チャックをいう。  Here, the above-described electrostatic chuck for a vacuum bonding apparatus is provided on both or only one of the opposing surfaces of a pair of upper and lower holding plates, and holds and opposes the glass substrates so that the two glass substrates are vacuumed. An electrostatic chuck used in a vacuum laminating device that presses close together.
発明の効果  The invention's effect
[0007] 本発明のうち請求項 1記載の発明は、誘電層の厚さ寸法が薄くなるほど静電吸着 力は高くなるが、 50 m未満になると物理的強度が極端に弱くなつて、ガラス基板と の間に異物の嚙み込みで電極が露出し、真空中のあるタイミングでプラズマ放電を 引き起こす恐れがあり、これと逆に 200 mより厚くなると、静電吸着力が低下するた めにガラス基板の自重以上の吸着力が得られても、その周囲に発生する真空引き時 の気流やガラス基板に対する吸着力のバラツキなどで落下の恐れがあるので、誘電 層の厚さ寸法を 50〜200 μ mに設定した。 [0007] Among the present inventions, the invention according to claim 1 is characterized in that the smaller the thickness dimension of the dielectric layer, the electrostatic adsorption Although the force increases, the physical strength becomes extremely weak at less than 50 m, and the electrode is exposed due to the penetration of foreign matter between the glass substrate and may cause plasma discharge at a certain timing in the vacuum. On the other hand, if the thickness is greater than 200 m, the electrostatic adsorption force decreases, so even if an adsorption force exceeding the weight of the glass substrate is obtained, the airflow generated around it and the glass substrate The thickness of the dielectric layer is set to 50 to 200 μm because there is a risk of falling due to variations in adsorption force.
従って、異物の嚙み込みによる静電吸着機能部の破損を防止しながら安定した吸 着保持を達成することができる。  Therefore, it is possible to achieve stable adsorption holding while preventing damage to the electrostatic adsorption function part due to the stagnation of foreign matter.
その結果、誘電層が薄過ぎるために異物の嚙み込みによって静電吸着機能部が 破損し易 ヽ従来のものに比べ、プラズマ放電によるガラス基板へのダメージゃ静電 吸着力の低下を防止でき、耐久性が向上して長期に亘り使用できて、信頼性の向上 が図れる。  As a result, because the dielectric layer is too thin, the electrostatic adsorption function part is likely to be damaged due to the penetration of foreign matters.Damage to the glass substrate due to plasma discharge can prevent the decrease in electrostatic adsorption force compared to the conventional one. Durability is improved and it can be used for a long period of time, improving reliability.
[0008] 請求項 2の発明は、櫛歯型電極の幅寸法については、 0.5mmより狭いと、電界集 中が起きて絶縁破壊が生じたり断線の可能性も高くなり、これと逆に 1.5mmより広い と吸着力の根源となる 2極電界の総量が減少するため、静電吸着力が低下して落下 の恐れがあるので、櫛歯型電極の幅寸法を 0.5〜1.5mmに設定した。  [0008] In the invention of claim 2, if the width dimension of the comb-shaped electrode is narrower than 0.5 mm, electric field concentration occurs, and there is a high possibility of dielectric breakdown or disconnection. If the width is larger than mm, the total amount of the bipolar electric field that becomes the root of the attractive force will decrease, and the electrostatic attractive force will decrease and may fall. Therefore, the width of the comb-shaped electrode was set to 0.5 to 1.5 mm. .
従って、絶縁破壊や断線などの事故を防止しながら安定した吸着保持を達成する ことができる。  Therefore, stable adsorption retention can be achieved while preventing accidents such as dielectric breakdown and disconnection.
その結果、櫛歯型電極の幅寸法が狭過ぎるために電界集中が起きて絶縁破壊が 生じたり断線の可能性が高 、従来のものに比べ、歩留まりや信頼性の向上が図れる  As a result, the width of the comb-shaped electrode is too narrow, and electric field concentration occurs, resulting in the possibility of dielectric breakdown or wire breakage. The yield and reliability can be improved compared to conventional ones.
[0009] 請求項 3の発明は、櫛歯型電極同士の間隔が 0.5mmより狭いと、大きな吸着力が 得られるものの、隣同士の電圧差が大き 、ために絶縁破壊や断線などが起こる可能 性が高ぐこれと逆に 1.5mmより離れると、静電吸着力が低下して落下の恐れがある ので、櫛歯型電極同士の間隔を 0.5〜1.5mmに設定した。 [0009] In the invention of claim 3, when the distance between the comb-shaped electrodes is narrower than 0.5 mm, a large adsorption force can be obtained, but the voltage difference between adjacent ones is large, and therefore dielectric breakdown or disconnection may occur. On the contrary, if the distance is less than 1.5 mm, the electrostatic attractive force decreases and there is a risk of dropping, so the interval between the comb-shaped electrodes was set to 0.5 to 1.5 mm.
従って、絶縁破壊や断線などの事故を防止しながら安定した吸着保持を達成する ことができる。  Therefore, stable adsorption retention can be achieved while preventing accidents such as dielectric breakdown and disconnection.
その結果、櫛歯型電極同士の間隔が狭過ぎるために電界集中が起きて絶縁破壊 が生じたり断線の可能性が高い従来のものに比べ、歩留まりや信頼性の向上が図れ る。 As a result, the gap between the comb-shaped electrodes is too narrow, resulting in electric field concentration and dielectric breakdown. Yield and reliability can be improved compared to conventional products that have a high possibility of occurrence of breakage or disconnection.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の一実施例を図面に基づいて説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
この実施例は、図 1 (a) (b)に示す如ぐ本発明の真空貼り合わせ装置用静電チヤ ック A力 電極 laの表面に誘電層 lbを積層した静電吸着機能部 1と、この電極 laの 裏面側に設けられた基材層 2と、この基材層 2の裏面に貼り合わせた台座部材 3とか らなる板状の積層構造体である場合を示すものである。  In this embodiment, as shown in FIGS. 1 (a) and 1 (b), an electrostatic chuck A force electrode 1 for a vacuum bonding apparatus according to the present invention has an electrostatic adsorption function unit 1 in which a dielectric layer lb is laminated on the surface of a la. This shows a case of a plate-like laminated structure comprising a base material layer 2 provided on the back surface side of the electrode la and a pedestal member 3 bonded to the back surface of the base material layer 2.
[0011] 上記電極 laは、 2極の櫛歯型構造であり、この櫛歯型電極 laの幅寸法 Lと櫛歯型 電極 la同士の間隔 Sを、後述する実験力も得た所定範囲 (約 0.5〜1.5mm)内に設 定することで、絶縁破壊や断線などの事故防止とガラス基板 (絶縁基板) Bの良好な 吸着保持を同時に達成することが好ましい。  [0011] The electrode la has a two-pole comb-teeth structure, and the width dimension L of the comb-teeth electrode la and the interval S between the comb-teeth electrodes la are set within a predetermined range (experimental force described later). By setting the distance within the range of 0.5 to 1.5 mm, it is preferable to prevent accidents such as dielectric breakdown and disconnection and achieve good adsorption and holding of the glass substrate (insulating substrate) B at the same time.
[0012] 上記電極 laの裏面側には、粘着材又は接着剤などの接着層 2aを挟んで基材層 2 が該電極 laを被覆するように設けられ、この基材層 2の裏面と、例えばエンジニアリン グプラスチックやセラミックスなど力も選ばれる硬質な絶縁材料又はアルミニウムなど の金属で板状に形成された台座部材 3の表面とが、粘着材又は接着剤などの接着 層 4を挟んで貼り付けられる。  [0012] On the back surface side of the electrode la, a base material layer 2 is provided so as to cover the electrode la with an adhesive layer 2a such as an adhesive material or an adhesive in between. For example, the surface of the base member 3 formed in a plate shape with a hard insulating material such as engineering plastic or ceramics or a metal such as aluminum is attached with an adhesive layer 4 such as an adhesive or adhesive sandwiched between them. It is done.
[0013] 上記誘電層 lbと基材層 2は、その主要構成材料として例えばポリイミド、ポリエーテ ルエーテルケトン(PEEK)、ポリエチレンナフタレート (PEN)などのクッション性がある 有機材料を用いることにより、後述する真空貼り合わせ装置のプレス工程で、例えば TFTガラスや CFガラスなどのガラス基板 Bへダメージをできる限り低減させる共に、 少なくとも誘電層 lbの厚さ寸法 Tを、後述する実験から得た所定範囲 (約 50〜200 μ m)内に設定することで、異物の嚙み込みによる静電吸着機能部 1の破損防止とガラ ス基板 Bの良好な吸着保持を同時に達成することが好ましい。  [0013] The dielectric layer lb and the base material layer 2 will be described later by using a cushioning organic material such as polyimide, polyetheretherketone (PEEK), polyethylene naphthalate (PEN) or the like as the main constituent material. In the pressing process of the vacuum bonding apparatus, for example, damage to the glass substrate B such as TFT glass or CF glass is reduced as much as possible, and at least the thickness dimension T of the dielectric layer lb is determined within a predetermined range (about approximately) By setting the distance within the range of 50 to 200 μm, it is preferable to simultaneously prevent damage to the electrostatic chucking function part 1 due to foreign material penetration and to hold the glass substrate B well.
[0014] そして、前記静電チャック Aは、例えば液晶ディスプレーやプラズマディスプレーな どを製造するための真空貼り合わせ装置において、上下方向へ対向して配置された 定盤など力 なる保持板 C, Dの対向面の両方又は一方のみの略全面或いは一部 に取り付けることで組み込まれ、該静電チャック Aに例えば TFTガラスや CFガラスな どのガラス基板 Bを吸着保持して上下対向させると共に、これら両基板 B, Bを相対的 に XY 0方向へ調整移動して位置決めを行った後に、両者を真空中で接近して圧着 させる。 [0014] The electrostatic chuck A is a holding plate C, D which is a force such as a surface plate arranged opposite to the vertical direction in a vacuum bonding apparatus for manufacturing a liquid crystal display or a plasma display, for example. It is incorporated by attaching to almost the entire surface or part of only one or both of the opposite surfaces of the electrostatic chuck A, and the electrostatic chuck A is made of, for example, TFT glass or CF glass. The glass substrate B is sucked and held so as to face each other, and the two substrates B and B are adjusted and moved relative to each other in the XY 0 direction, and then they are brought into close contact with each other in a vacuum.
[0015] 図示例の場合には図 1 (a) (b)に示す如ぐ各静電チャック Aがガラス基板 Bの大き さよりも小さな矩形に形成され、上下保持板 C, Dの対向面の両方に対して、複数枚 の静電チャック Aを互いに接近させて並列状に配置すると共に、夫々の表面を面一 状に配置して加圧ムラが発生しないようにすることにより、一辺が例えば 1000mm以 上の大型なガラス基板 B, Bの全面を夫々分割して吸着保持するようにして!/ヽる。  In the case of the illustrated example, each electrostatic chuck A as shown in FIGS. 1 (a) and 1 (b) is formed in a rectangle smaller than the size of the glass substrate B, and is formed on the opposing surfaces of the upper and lower holding plates C and D. For both, a plurality of electrostatic chucks A are arranged in parallel with each other close to each other, and each surface is arranged in a plane so that pressure unevenness does not occur. Divide and hold the entire surface of a large glass substrate B, B over 1000mm in size!
[0016] 更に、これら各静電チャック Aと上下保持板 C, Dと取り付け構造の一例を説明すれ ば、各静電チャック Aの裏面には、前記電極 laと連通する入力端子(図示せず)が露 出するように配設され、上下保持板 C, Dの対向面側には、高電圧電源に通じる装置 側の出力端子(図示せず)が、各静電チャック Aの入力端子と対向するように配設さ れ、上下保持板 C, Dの対向面側に各静電チャック Aを例えばボルトゃネジなどで夫 々着脱自在に取り付けることにより、夫々の入力端子と出力端子が接触して各静電 チャック Aの電極 laへ高電圧を印加するようにして!/、る。  Further, an example of the mounting structure of each electrostatic chuck A, upper and lower holding plates C and D will be described. On the back surface of each electrostatic chuck A, an input terminal (not shown) communicating with the electrode la is provided. ) Is exposed, and on the opposite surface side of the upper and lower holding plates C and D, there is an output terminal (not shown) on the device side that leads to the high voltage power supply and the input terminal of each electrostatic chuck A By placing each electrostatic chuck A detachably on the opposing surface side of the upper and lower holding plates C, D with, for example, bolts and screws, the input terminals and the output terminals are in contact with each other. Apply a high voltage to the electrode la of each electrostatic chuck A!
[0017] 上述した真空貼り合わせ装置の作動を図示例に従って詳しく説明すれば、図 1 (a) に実線で示す如ぐ大気中で上下保持板 C, Dの対向面に配置された上下の静電チ ャック A, Aに、二枚のガラス基板 B, Bを夫々吸着して保持させ、上下保持板 C, Dの 接近移動によって両者間に上下へ開閉自在な閉空間 Eが上下基板 B, Bを囲むよう に区画形成され、この閉空間 E内が所定の真空度に達してから、上下保持板 C, D及 び静電チャック A, Aを相対的に ΧΥ Θ方向へ調整移動して、上下基板 B, B同士の 位置合わせが行われる。  [0017] The operation of the above-described vacuum bonding apparatus will be described in detail with reference to the illustrated example. The upper and lower static plates disposed on the opposing surfaces of the upper and lower holding plates C and D in the atmosphere as indicated by the solid line in FIG. The two glass substrates B and B are attracted and held on the electric chucks A and A, respectively, and the closed space E that can be opened and closed vertically is moved between the upper and lower substrates B and B by the close movement of the upper and lower holding plates C and D. After the inside of this closed space E reaches a predetermined degree of vacuum, the upper and lower holding plates C and D and the electrostatic chucks A and A are relatively adjusted and moved in the ΘΘ direction. The upper and lower substrates B and B are aligned with each other.
[0018] その後、二点鎖線で示す如ぐ上下保持板 C, Dを更に接近させる力 又は上方の 静電チャック Aから上基板 Bを強制的に剥離して下基板 B上の環状接着剤 (シール 材) Fへ瞬間的に圧着することにより、両者間に液晶を封止して重ね合わせ、その後 は、閉空間 E内の雰囲気を大気圧に戻し、それにより両基板 B, Bの内外に生じる気 圧差で両基板 B, Bの間を所定のギャップまで加圧して貼り合わせ工程が完了する。  [0018] After that, as shown by the two-dot chain line, the upper and lower holding plates C and D are brought closer to each other or the upper substrate B is forcibly separated from the upper electrostatic chuck A and the annular adhesive on the lower substrate B ( (Seal material) By momentarily pressing on F, the liquid crystal is sealed and overlapped between the two, and then the atmosphere in the closed space E is returned to atmospheric pressure, so that the inside and outside of both substrates B and B The bonding process is completed by pressurizing between the substrates B and B to a predetermined gap by the generated pressure difference.
[0019] 次に、前記静電チャック Aによる良好な吸着条件を求めるために、誘電層 lbの厚さ 寸法 Tが 40〜210 /z mの静電チャックと、櫛歯型電極 laの幅寸法 L及び櫛歯型電極 la同士の間隔 Sが夫々 0.4〜1.6mmの静電チャックを用意し、液晶基板用に良く使 われるカラーフィルター付きの CFガラス、 TFT素子付きの TFTガラス、テスト時など に用いられる素ガラスについて吸着実験を行った結果を、下記の表 1〜表 3に示す。 [0019] Next, in order to obtain favorable adsorption conditions by the electrostatic chuck A, the thickness of the dielectric layer lb An electrostatic chuck with a dimension T of 40 to 210 / zm, an electrostatic chuck with a width L of the comb-shaped electrode la and an interval S between the comb-shaped electrodes la of 0.4 to 1.6 mm are prepared for the liquid crystal substrate. Tables 1 to 3 below show the results of adsorption experiments on CF glass with color filters, TFT glass with TFT elements, and basic glass used for testing.
[0020] [表 1] [0020] [Table 1]
* CFガラス、印加電圧 (5kV)における静鼋吸着力(mN)
Figure imgf000008_0001
* Silent adsorption force (mN) at CF glass, applied voltage (5kV)
Figure imgf000008_0001
[0021] [表 2] [0021] [Table 2]
* TFTガラス、印加電圧(5kV)における静電吸着力(mN)
Figure imgf000008_0002
* Electrostatic adsorption force (mN) at TFT glass, applied voltage (5kV)
Figure imgf000008_0002
[0022] [表 3] *素ガラス、印加電圧(5kV)における静鼋吸着力(mN) [0022] [Table 3] * Silent adsorption force (mN) at bare glass, applied voltage (5kV)
Figure imgf000009_0001
Figure imgf000009_0001
[0023] この吸着実験では、上記 CFガラス、 TFTガラス、素ガラスで同じ大きさ(直径 200m m)の試験ガラスを作成し、これら試験ガラスを各静電チャックに夫々接触させ、同じ 条件で引き上げた時の静電吸着力を順次計測した。 [0023] In this adsorption experiment, test glasses of the same size (diameter 200 mm) were made from the CF glass, TFT glass, and raw glass, and these test glasses were brought into contact with the respective electrostatic chucks and pulled up under the same conditions. The electrostatic attraction force was measured sequentially.
上記計測条件として櫛歯型電極 laに 3kVの電圧を印加した場合と、 5kVの電圧を 印加した場合と、 7kVの電圧を印加した場合を夫々計測した力 その結果は、これら は全て同様な結果だったので、ここでは印加電圧が 5kVの計測データのみを記載し た。  Force measured when applying 3kV voltage, 5kV voltage, and 7kV voltage applied to comb electrode la as the above measurement conditions. Therefore, only the measurement data with an applied voltage of 5 kV is shown here.
[0024] 表 1では、各静電チャックによって CFガラス力もなる試験ガラスを引き上げた時の静 電吸着力(単位は mN)を記載した。  [0024] Table 1 shows the electrostatic adsorption force (unit: mN) when the test glass having CF glass force is pulled up by each electrostatic chuck.
表 2では、各静電チャックによって TFTガラス力もなる試験ガラスを引き上げた時の 静電吸着力(単位は mN)を記載した。  Table 2 shows the electrostatic attraction force (unit: mN) when the test glass with TFT glass force is pulled up by each electrostatic chuck.
表 3では、各静電チャックによって素ガラス力 なる試験ガラスを引き上げた時の静 電吸着力(単位は mN)を記載した。  Table 3 shows the electrostatic adsorption force (unit: mN) when the test glass, which has a glass strength, is pulled up by each electrostatic chuck.
[0025] その結果、誘電層 lbの厚さ寸法 Tについては、薄くなるほど静電吸着力は高くなる ものの、 50 m未満のごく薄い膜になると、その物理的強度が極端に弱くなることが 別の実験で解った。 [0025] As a result, regarding the thickness dimension T of the dielectric layer lb, the electrostatic attraction force increases as the thickness decreases, but the physical strength of the dielectric layer lb becomes extremely weak when it is a very thin film of less than 50 m. It was solved by the experiment.
[0026] 即ち、誘電層 lbが 50 m未満のごく薄い膜になると、この誘電層 lbの表面をガラス 基板 Bに接触させて吸着保持する際、これら両者間に微小な異物でもガラス基板 B の表面に付着するなどして侵入すると、この異物の周囲に発生した静電吸着力により 誘電層 lbの中に嚙み込んで、薄い誘電層 lbの表面が傷付くだけでなぐ電極 laに もダメージを与えて静電吸着機能部 1が破損し易いと共に、電極 laが露出し、この露 出状態で電極 laへ通電すると、真空中のあるタイミングでプラズマ放電を弓 Iき起こす 恐れがあるため、ノ ッシェン曲線による放電し易い圧力領域では、静電チャック Aが 使用できない。 That is, when the dielectric layer lb becomes a very thin film having a thickness of less than 50 m, when the surface of the dielectric layer lb is brought into contact with the glass substrate B to be adsorbed and held, even if a minute foreign matter is present between the two, If it enters the surface, for example, by adhering to the surface, the electrostatic adsorption force generated around this foreign material squeezes into the dielectric layer lb, and the surface of the thin dielectric layer lb is damaged. If the electrode la is exposed and the electrode la is energized in this exposed state, it may cause a plasma discharge at a certain timing in the vacuum. For this reason, electrostatic chuck A cannot be used in a pressure region where discharge is easily caused by a Noschen curve.
[0027] これと逆に誘電層 lbの厚さ寸法 T力 ¾00 mよりも厚くなると、強度的には高くなる 力 静電吸着力が低下してくるため、ガラス基板 Bの自重以上の吸着力が得られても 、閉空間 E力 真空引き時の気流や吸着力のバラツキなどで落下の恐れがある。 このような理由から、誘電層 lbの厚さ寸法 Tは、約 50〜200 /ζ πιが適当である。  [0027] On the contrary, the thickness dimension T of the dielectric layer lb T force ¾00 m thicker, the strength increases. The electrostatic adsorption force decreases, so the adsorption force more than the weight of the glass substrate B. Even if is obtained, the closed space E force may drop due to variations in airflow and suction force during evacuation. For this reason, the thickness T of the dielectric layer lb is suitably about 50 to 200 / ζ πι.
[0028] 更に、櫛歯型電極 laの幅寸法 Lについては、 0.5〜1.5mmの範囲においてガラス 基板 Bの自重以上の吸着力が得られるものの、 0.5mmより狭くなると、電界集中が起 きて絶縁破壊が生じたり断線の可能性も高くなる。  [0028] Furthermore, with regard to the width dimension L of the comb-shaped electrode la, an adsorption force greater than the weight of the glass substrate B can be obtained in the range of 0.5 to 1.5 mm, but when it becomes narrower than 0.5 mm, electric field concentration occurs. There is a high possibility of dielectric breakdown and disconnection.
[0029] これと逆に櫛歯型電極 laの幅寸法 が 1.5mmより広 ヽと吸着力の根源となる 2極電 界の総量が減少するため、静電吸着力が低下してガラス基板 Bの自重以上の吸着 力が得られても、その周囲に発生する真空引き時の気流やガラス基板 Bに対する吸 着力のバラツキなどで落下の恐れがある。  [0029] On the contrary, the width of the comb-shaped electrode la is larger than 1.5 mm, and the total amount of the two-pole electric field that is the source of the attractive force decreases, so that the electrostatic attractive force decreases and the glass substrate B Even if an adsorption force greater than its own weight is obtained, there is a risk of falling due to the air current generated around it when vacuuming or variations in the adsorption force to the glass substrate B.
[0030] また、櫛歯型電極 la同士の間隔 Sについては、 0.5〜1.5mmの範囲においてガラス 基板 Bの自重以上の吸着力が得られ、更に狭くなるほど静電吸着力は高くなるもの の、 0.5mmより狭いと、双極タイプである以上、隣同士の電圧差が大きいために絶縁 破壊や断線などが起こる可能性が高 、。  [0030] As for the spacing S between the comb-shaped electrodes la, an adsorption force equal to or greater than the self-weight of the glass substrate B is obtained in the range of 0.5 to 1.5 mm. If it is narrower than 0.5mm, the voltage difference between adjacent ones is large because of the bipolar type, so there is a high possibility of dielectric breakdown or disconnection.
[0031] これと逆に櫛歯型電極 la同士の間隔 Sが 1.5mmより離れると、静電吸着力が低下 してガラス基板 Bの自重以上の吸着力が得られても、その周囲に発生する真空弓 Iき 時の気流やガラス基板 Bに対する吸着力のノ ラツキなどで落下の恐れがある。  [0031] On the other hand, when the distance S between the comb-shaped electrodes la is more than 1.5 mm, the electrostatic attractive force is reduced, and even if an attractive force that is greater than the weight of the glass substrate B is obtained, it is generated around it. There is a risk of falling due to the air current during the vacuum bow I or the fluctuation of the adsorption power to the glass substrate B.
[0032] このような理由から、櫛歯型電極 laの幅寸法 Lと櫛歯型電極 la同士の間隔 Sは、電 極パターン形成のプロセスから考えると同等程度の約 0.5〜1.5mmが適当である。  [0032] For this reason, the width dimension L of the comb-shaped electrode la and the interval S between the comb-shaped electrodes la are appropriately about 0.5 to 1.5 mm, which is equivalent to the electrode pattern formation process. is there.
[0033] し力も、上述した所定範囲内であれば、ガラス基板 Bとして液晶基板用に良く使わ れる CFガラスや TFTガラスだけでなぐテスト時などに用いられる素ガラスであっても 、略同等の吸着力で吸着できる。  [0033] As long as the force is within the above-mentioned predetermined range, even glass glass used as a glass substrate B, which is often used for liquid crystal substrates, such as CF glass or TFT glass, is almost equivalent. Can be adsorbed with adsorption power
このことは、ガラス基板 Bの機能面、即ち静電チャック Aと吸着接触している面の反 対面に、強い電解力 Sかからないことを意味しており、ガラス機能面への影響は極めて 少なぐ実際の真空貼り合わせ装置による生産においても、この不具合によるデバィ ス破壊などは起きることがな 、。 This is the reaction of the functional surface of the glass substrate B, that is, the surface that is in suction contact with the electrostatic chuck A. This means that a strong electrolysis force S is not applied to the opposite side, and there is little influence on the glass functional surface. Even in production using an actual vacuum bonding device, device failure due to this defect does not occur.
[0034] 尚、前示実施例では、真空貼り合わせ装置用静電チャック Aが、 2極の櫛歯型電極 laを備えた双極型の静電チャックである場合を示したした力 これに限定されず、電 極 laとして櫛歯型以外や 2極以上のものを使用しても良い。  [0034] It should be noted that in the previous embodiment, the force shown in the case where the electrostatic chuck A for the vacuum bonding apparatus is a bipolar electrostatic chuck having the two-pole comb-teeth electrode la is limited to this. Alternatively, the electrode la may be other than the comb-tooth type or two or more electrodes.
更に、電極 laと誘電層 lbとからなる静電吸着機能部 1の裏面側に基材層 2と台座 部材 3を順次貼り合わせた板状の積層構造体としたが、これも限定されず、少なくとも 静電吸着機能部 1が存在すれば、台座部材 3と真空貼り合わせ装置の保持板 C, D とを一体化するなど、他の構造であっても良い。  Furthermore, although the base layer 2 and the pedestal member 3 are sequentially bonded to the back side of the electrostatic adsorption function unit 1 composed of the electrode la and the dielectric layer lb, the plate-like laminated structure is not limited, If at least the electrostatic attraction function unit 1 exists, other structures such as integration of the base member 3 and the holding plates C and D of the vacuum bonding apparatus may be used.
[0035] また、図示例では、上下保持板 C, Dの対向面に複数枚の静電チャック Aを互いに 接近させて並列状に配置したが、これに限定されず、保持板 C, Dの対向面略全体 に亘つて一枚の静電チャック Aを夫々配置しても良い。 In the illustrated example, a plurality of electrostatic chucks A are arranged in parallel on the opposing surfaces of the upper and lower holding plates C and D, but are not limited to this. One electrostatic chuck A may be disposed over substantially the entire facing surface.
また更に、静電チャック Aの電極 laへ高電圧を印加する方法も、上述したものに限 定されず、それ以外の通電方法でも良い。  Furthermore, the method of applying a high voltage to the electrode la of the electrostatic chuck A is not limited to the above-described method, and other energization methods may be used.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1] (a)が本発明の一実施例を示す真空貼り合わせ装置用静電チャックの縦断正 面図であり、 (b)が要部を部分拡大して示す横断平面図である。  [0036] [Fig. 1] (a) is a longitudinal sectional view of an electrostatic chuck for a vacuum bonding apparatus showing an embodiment of the present invention, and (b) is a cross-sectional plan view showing an enlarged main part. It is.
符号の説明  Explanation of symbols
[0037] A 静電チャック B ガラス基板  [0037] A electrostatic chuck B glass substrate
C, D 保持板 E 閉空間  C, D Retaining plate E Closed space
F 環状接着剤 L 電極の幅寸法  F Ring adhesive L Electrode width dimension
S 電極同士の間隔 T 誘電層の厚さ寸法  S Spacing between electrodes T Dielectric layer thickness
1 静電吸着機能部 la 電極 (櫛歯型電極)  1 Electrostatic adsorption function part la electrode (comb-shaped electrode)
lb 誘電層 2 基材層  lb Dielectric layer 2 Base material layer
2a 接着層 3 台座部  2a Adhesive layer 3 Base
4 接着層  4 Adhesive layer

Claims

請求の範囲 The scope of the claims
[1] 2極以上の電極(la)と、それを覆う誘電層(lb)とを備え、真空中で誘電層(lb)をガ ラス基板 (B)に接触させて吸着保持する真空貼り合わせ装置用静電チャックにおい て、  [1] Vacuum bonding with two or more electrodes (la) and a dielectric layer (lb) covering them, and holding the dielectric layer (lb) in contact with the glass substrate (B) in vacuum In the electrostatic chuck for equipment,
前記誘電層(lb)の厚さ寸法 (T)を 50〜200 mにしたことを特徴とする真空貼り合 わせ装置用静電チャック。  An electrostatic chuck for a vacuum bonding apparatus, wherein a thickness dimension (T) of the dielectric layer (lb) is 50 to 200 m.
[2] 2極以上の電極(la)と、それを覆う誘電層(lb)とを備え、真空中で誘電層(lb)をガ ラス基板 (B)に接触させて吸着保持する真空貼り合わせ装置用静電チャックにおい て、 [2] Vacuum bonding that includes two or more electrodes (la) and a dielectric layer (lb) covering them, and holds the dielectric layer (lb) in contact with the glass substrate (B) in vacuum. In the electrostatic chuck for equipment,
前記電極(la)が 2極の櫛歯型構造であり、この櫛歯型電極(la)の幅寸法 (L)を 0. 5〜1.5mmにしたことを特徴とする真空貼り合わせ装置用静電チャック。  The electrode (la) has a two-pole comb-teeth structure, and the width dimension (L) of the comb-teeth electrode (la) is set to 0.5 to 1.5 mm. Electric chuck.
[3] 2極以上の電極(la)と、それを覆う誘電層(lb)とを備え、真空中で誘電層(lb)をガ ラス基板 (B)に接触させて吸着保持する真空貼り合わせ装置用静電チャックにおい て、 [3] Vacuum bonding with two or more electrodes (la) and a dielectric layer (lb) covering them, and holding the dielectric layer (lb) in contact with the glass substrate (B) in vacuum In the electrostatic chuck for equipment,
前記電極(la)が 2極の櫛歯型構造であり、この櫛歯型電極(la)同士の間隔 (S)を 0.5〜1.5mmにしたことを特徴とする真空貼り合わせ装置用静電チャック。  The electrostatic chuck for a vacuum bonding apparatus, wherein the electrode (la) has a two-pole comb-teeth structure, and the interval (S) between the comb-teeth electrodes (la) is 0.5 to 1.5 mm. .
PCT/JP2005/018678 2004-10-29 2005-10-11 Electrostatic chuck for vacuum bonding system WO2006054406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-316174 2004-10-29
JP2004316174A JP2008027927A (en) 2004-10-29 2004-10-29 Electrostatic chuck for vacuum lamination apparatus

Publications (1)

Publication Number Publication Date
WO2006054406A1 true WO2006054406A1 (en) 2006-05-26

Family

ID=36406952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018678 WO2006054406A1 (en) 2004-10-29 2005-10-11 Electrostatic chuck for vacuum bonding system

Country Status (3)

Country Link
JP (1) JP2008027927A (en)
TW (1) TW200631120A (en)
WO (1) WO2006054406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200393A (en) * 2008-02-25 2009-09-03 Nhk Spring Co Ltd Electrostatic chuck and method of manufacturing the same
CN102197005B (en) * 2008-10-23 2014-06-25 旭硝子株式会社 Glass substrate laminated device and method for producing laminate glass substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745693A (en) * 1993-07-20 1995-02-14 Applied Materials Inc Electrostatic chuck with groove on surface and its manufacture
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745693A (en) * 1993-07-20 1995-02-14 Applied Materials Inc Electrostatic chuck with groove on surface and its manufacture
JP2000332091A (en) * 1999-05-25 2000-11-30 Toto Ltd Electrostatic chuck and treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277545A (en) * 2007-04-27 2008-11-13 Shinko Electric Ind Co Ltd Electrostatic chuck
KR101435091B1 (en) * 2007-04-27 2014-09-22 신꼬오덴기 고교 가부시키가이샤 Electrostatic chuck

Also Published As

Publication number Publication date
TW200631120A (en) 2006-09-01
JP2008027927A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
CN101669199B (en) Substrate holding mechanism and substrate assembling apparatus provided with the same
JP3995706B2 (en) Electrostatic chuck device
TWI423378B (en) Electrostatic chuck
KR101429593B1 (en) Alternating current drive electrostatic chuck
TW201022170A (en) Glass substrate laminated device and method for producing laminate glass substrate
WO2013161188A1 (en) Method of manufacturing bonded wafer
JP4677397B2 (en) Electrostatic adsorption method
KR101292802B1 (en) apparatus for attaching substrates of flat plate display element
WO2006054406A1 (en) Electrostatic chuck for vacuum bonding system
JP2007073892A (en) Suction apparatus, bonding device, and sealing method
KR101435091B1 (en) Electrostatic chuck
JP2004241443A (en) Manufacturing method of semiconductor apparatus
JP2855865B2 (en) Glass substrate cutting method and apparatus
JP2004253718A (en) Electrostatic chuck and plate member laminating apparatus having same
JP2004022979A (en) Attracting stage and substrate-bonding apparatus using the same
JP4631748B2 (en) Electrostatic adsorption method
KR101401506B1 (en) apparatus for attaching substrates of flat plate display element
KR20200000695A (en) Back electrodes type electro static chuck of laminating apparatus, its manufacturing method and laminating apparatus
JP4166379B2 (en) Substrate transfer device
KR102154686B1 (en) Laminator for Flexible Display using Electrostatic Chuck
JP4117338B1 (en) Vacuum bonding apparatus and vacuum bonding method
JP2005317727A (en) Electrostatic chuck
JP2008205509A (en) Method for carrying insulating substrate, and alignment method
JP4037659B2 (en) Substrate pasting device and substrate pasting method
TW583457B (en) Assembling device and method for substrate of liquid crystal display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05793719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP