JP4631748B2 - Electrostatic adsorption method - Google Patents
Electrostatic adsorption method Download PDFInfo
- Publication number
- JP4631748B2 JP4631748B2 JP2006056441A JP2006056441A JP4631748B2 JP 4631748 B2 JP4631748 B2 JP 4631748B2 JP 2006056441 A JP2006056441 A JP 2006056441A JP 2006056441 A JP2006056441 A JP 2006056441A JP 4631748 B2 JP4631748 B2 JP 4631748B2
- Authority
- JP
- Japan
- Prior art keywords
- electrostatic chuck
- substrate
- vacuum
- force
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
本発明は静電チャックを用いて、大気雰囲気から真空雰囲気まで連続してガラス基板などの基板を吸着する方法に関する。 The present invention relates to a method for continuously adsorbing a substrate such as a glass substrate from an air atmosphere to a vacuum atmosphere using an electrostatic chuck.
例えば、ガラス基板を利用する一形態として、液晶表示パネルは2枚のガラス基板の間に液晶が介在する構造になっている。
斯かる液晶パネルは真空下で一方のガラス基板の上に液晶を盛り付け、この液晶の上に別のガラス基板を重ねることで製造することができる。
For example, as an embodiment using a glass substrate, a liquid crystal display panel has a structure in which liquid crystal is interposed between two glass substrates.
Such a liquid crystal panel can be manufactured by placing liquid crystal on one glass substrate under vacuum and stacking another glass substrate on the liquid crystal.
一方、真空下で半導体ウェーハを吸着する静電チャックとして特許文献1に開示されるものが知られている。この静電チャックは半導体ウェーハの表面に吸着面の電荷と反対の電荷を溜め、クーロン力(ジョンセン・ラーベック力)によって半導体ウェーハを吸着するようにしている。
On the other hand, what is disclosed in
上述したクーロン力(ジョンセン・ラーベック力)を利用した静電チャックでは、ガラス基板を吸着することができないので、液晶表示パネルの製造には用いることができない。そこで、グラジエント力を利用した全く異なる吸着機構によってガラス基板を吸着する静電チャックが特許文献2に提案されている。
The electrostatic chuck using the above-described Coulomb force (Johnsen-Rahbek force) cannot adsorb a glass substrate and cannot be used for manufacturing a liquid crystal display panel. Thus,
また、クーロン力(ジョンセン・ラーベック力)によってガラス基板を吸着する方法として特許文献3に開示される方法が提案されている。この方法は、ガラス基板の温度を上昇せしめてガラス基板の体積抵抗率を1014Ω・cm以下に変化させて吸着する方法である。
Further, a method disclosed in
また、真空度や湿度などの雰囲気条件の変化によって、吸着力が変化することは周知であり、この吸着力の変化を小さくして安定化させる手段として特許文献4〜7が知られている。
Further, it is well known that the adsorption force changes depending on changes in atmospheric conditions such as the degree of vacuum and humidity, and
特許文献4に開示される内容は吸着面に乾燥空気を送り込んで雰囲気条件を一定にする方法であり、特許文献5に開示される内容は吸着状態で真空減圧環境下に置く方法であり、特許文献6に開示される内容は吸着力を計測して印加電圧をコントロールする方法であり、特許文献7に開示される内容は湿度を計測して印加電圧をコントロールする方法である。
The content disclosed in
特許文献1に開示される静電チャックによっては、ガラス基板などの絶縁体を吸着することができない。特許文献2及び特許文献3に開示される静電チャックによれば、ガラス基板などの絶縁体を吸着することができる。
Some electrostatic chucks disclosed in
しかしながら、特許文献2のグラジエント力による吸着力は20〜50g/cm2でクーロン力による吸着力(2000g/cm2以上)に比較して弱い。また、特許文献3に提案された方法ではガラス基板を加熱しなければならない。
However, the suction force with a gradient force in
また特許文献4〜7に開示されるように、乾燥空気を吸着面に送り込んだり、湿度に合わせて印加電圧を変化させて吸着力(グラジエント力)を一定にしても、吸着力が高まるわけではないので、例えば、真空吸着していた状態から真空チャンバー内にガラス基板を搬入し、減圧下では真空吸着が利かないため静電吸着に切り替えた際に、静電吸着力が不足しガラス基板がチャックから落下するおそれがある。
Also, as disclosed in
本発明者らは、静電チャックの吸着力が雰囲気湿度によって変化すること、及び当該変化は静電チャックの吸着面の表面粗さによって更に変動する知見を得た。
斯かる知見に基づき、請求項1に係る発明は、吸着面の平均粗さ(Ra)を0.7μm未満とした静電チャックを用い、大気雰囲気から真空雰囲気まで連続して静電チャックにて前記静電チャックへの吸着面側が電気絶縁性を示すガラスまたは高分子フィルムからなる基板を吸着するにあたり、大気雰囲気の相対湿度を35%以上、73%以下とした大気雰囲気中で、前記基板を前記静電チャックに搭載し、ついで、この大気雰囲気中で前記基板の前記静電チャックへの吸着面側と前記静電チャックの吸着面との間を前記基板表面の吸着水が残存する程度に減圧し、前記基板を真空吸着し、大気雰囲気中で前記静電チャックに電圧を印加し、前記基板表面の吸着水を電界によってイオン化し、前記基板の前記静電チャックへの吸着面側の表面抵抗を下げ、グラジエント力及びジョンセン・ラーベック力による吸着力で吸着させた後に、真空雰囲気にするようにした。
The present inventors have obtained knowledge that the adsorption force of the electrostatic chuck varies depending on the atmospheric humidity, and that the variation further varies depending on the surface roughness of the adsorption surface of the electrostatic chuck.
Based on such knowledge, the invention according to
前記基板としては、透明ガラス基板(素ガラス)、その基板の片面に透明電極:ITO(Indium Tin Oxide:インジウム錫酸化物)膜を形成したもの、透明ガラス基板上に赤、緑、青の三原色パターンが規則正しく配列されたカラーフィルター(CF)や、高分子フィルムなどが適用できる。 The substrate is a transparent glass substrate (elementary glass), a transparent electrode: ITO (Indium Tin Oxide) film formed on one side of the substrate, and the three primary colors of red, green, and blue on the transparent glass substrate. Color filters (CF) in which patterns are regularly arranged, polymer films, etc. can be applied.
静電チャックの構造として、吸着面となる誘電体の誘電率を1010Ω・cm以上、誘電体層の厚みを0.3mm〜1.0mm、誘電体層内に設けられる交互に入り込んだ電極の幅を0.5mm〜1mm、電極間の間隔を0.5mm〜1mmとすることで、ガラス基板を吸着するのに十分なグラジエント力を発生させることができる。 As the structure of the electrostatic chuck, the dielectric constant of the dielectric serving as the attracting surface is 10 10 Ω · cm or more, the thickness of the dielectric layer is 0.3 mm to 1.0 mm, and the electrodes are alternately provided in the dielectric layer. By making the width of 0.5 mm to 1 mm and the distance between the electrodes 0.5 mm to 1 mm, a gradient force sufficient to adsorb the glass substrate can be generated.
更に、前記基板の前記静電チャックへの吸着面側と前記静電チャックの吸着面との間を5Pa以上の真空度としたり、前記真空雰囲気が5Pa以上、50Pa以下の真空度とすることも考えられる。 Further, the degree of vacuum between the suction surface of the substrate to the electrostatic chuck and the suction surface of the electrostatic chuck may be 5 Pa or more, or the vacuum atmosphere may be 5 Pa or more and 50 Pa or less. Conceivable.
本発明方法によれば、ガラス基板などの絶縁基板を大気雰囲気から真空雰囲気まで、1つの静電チャックで保持したままで処理することができる。したがって、液晶表示パネルの製造などにおいて極めて有利である。 According to the method of the present invention, an insulating substrate such as a glass substrate can be processed from an air atmosphere to a vacuum atmosphere while being held by one electrostatic chuck. Therefore, it is extremely advantageous in manufacturing a liquid crystal display panel.
以下に本発明を実施するための実施の形態を添付図面に基づいて説明する。図1は本発明方法の実施に用いる静電チャックの最大静止摩擦力の測定に用いる装置の概略図であり、以下の条件で基礎吸着力と残留吸着力の測定を行った。 DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view of an apparatus used for measuring the maximum static frictional force of an electrostatic chuck used for carrying out the method of the present invention. The basic adsorption force and the residual adsorption force were measured under the following conditions.
(基礎吸着力の測定)
・ チャンバー外を任意の湿度に設定し、静電チャックとITO膜を片面に形成したガラス基板をイオナイザで除電する
・ ガラス基板を真空吸着する(測定開始)
・ 電極に規定電圧を印加する(経過時間60秒)
・ チャンバー内を真空排気する(経過時間65秒)
・ 基板の真空吸着を停止し、チャンバー内と同圧にする(チャンバー内真空度200Pa到達後)
・ ロードセルにて吸着力を測定する(経過時間360秒、真空度10Pa)
(Measurement of basic adsorption force)
・ Set the outside of the chamber to an arbitrary humidity, and remove the static electricity from the glass substrate with the electrostatic chuck and ITO film formed on one side with an ionizer. ・ Vacuum adsorption of the glass substrate (start measurement)
・ Apply the specified voltage to the electrode (elapsed
・ The chamber is evacuated (elapsed time: 65 seconds)
・ Stop the vacuum suction of the substrate and make it the same pressure as in the chamber (after reaching the vacuum degree in the chamber of 200 Pa)
・ Measure the adsorption force with a load cell (elapsed time 360 seconds,
(残留吸着力の測定)
・ チャンバー外を任意の湿度に設定し、静電チャックとITO膜を片面に形成したガラス基板をイオナイザで除電する
2)ガラス基板を真空吸着する(測定開始)
3)電極に規定電圧を印加する(経過時間60秒)
4)チャンバー内を真空排気する(経過時間65秒)
5)基板の真空吸着を停止し、チャンバー内と同圧にする(チャンバー内真空度200Pa到達後
・ 電圧をオフする(経過時間360秒、真空度10Pa)
・ 10秒後にロードセルにて吸着力を測定する
(Measurement of residual adsorption power)
・ The outside of the chamber is set to an arbitrary humidity, and the glass substrate with the electrostatic chuck and ITO film formed on one side is removed with an ionizer. 2) Vacuum adsorption of the glass substrate (start of measurement)
3) Apply a specified voltage to the electrodes (elapsed
4) The inside of the chamber is evacuated (elapsed time: 65 seconds)
5) Stop the vacuum suction of the substrate and make it the same pressure as in the chamber (after reaching the vacuum degree of 200 Pa in the chamber) ・ Turn off the voltage (elapsed time 360 seconds,
・ After 10 seconds, measure the adsorption force with the load cell.
(試験条件)
基礎吸着力及び残留吸着力の測定とも試験条件は以下の通りである。
電極:幅2mm、間隔1mm
誘電体層:厚さ375μm
ガラス基板:100mm×100mm、厚さ0.7mm
印加極性:固定(内部電極に印加する電圧の極性を固定する)
反転(電圧の極性を1測定ごとに反転する)
印加電圧:±3kV
チャンバー外雰囲気:湿度30%〜90%の範囲で調整
(Test conditions)
The test conditions for the measurement of basic adsorption force and residual adsorption force are as follows.
Electrode: Width 2mm, spacing 1mm
Dielectric layer: 375 μm thick
Glass substrate: 100 mm x 100 mm, thickness 0.7 mm
Applied polarity: Fixed (fixes the polarity of the voltage applied to the internal electrode)
Invert (the polarity of the voltage is inverted every measurement)
Applied voltage: ± 3kV
Atmosphere outside chamber: Adjustable in the range of 30% to 90% humidity
図2はチャンバー外の湿度と基礎吸着力との関係を示すグラフ、図3はチャンバー外の湿度と残留吸着力との関係を示すグラフである。いずれの場合も、大気雰囲気中の最大静止摩擦力が0.2gf/cm2程度であることに比べ、最大静止摩擦力(gf/cm2)が増加する傾向にある。 FIG. 2 is a graph showing the relationship between the humidity outside the chamber and the basic adsorption force, and FIG. 3 is a graph showing the relationship between the humidity outside the chamber and the residual adsorption force. In any case, compared to the maximum static friction force of the atmosphere is about 0.2 gf / cm 2, the maximum static friction force (gf / cm 2) tends to increase.
最大静止摩擦力が増加する理由は、大気中ではガラス基板は表面吸着水によって覆われており、大気中で電圧を印加して基板を吸着すると、発生した電界によって表面吸着水はイオン化され、真空雰囲気になってもそのまま残り導電性物質と同じような働きをするので吸着力が増大すると考えられる。湿度の変化によって表面吸着水の量も変化するのでイオン化される量も変化し、吸着力が変動すると考えられる。 The reason why the maximum static frictional force is increased is that the glass substrate is covered with surface adsorbed water in the atmosphere. When a voltage is applied in the air to adsorb the substrate, the surface adsorbed water is ionized by the generated electric field and vacuum Even if it becomes atmosphere, it remains as it is, and it acts like a conductive material, so it is thought that the adsorption power increases. Since the amount of water adsorbed on the surface also changes due to changes in humidity, the amount of ionization also changes, and the adsorption force is considered to fluctuate.
上記した表面吸着水の量は吸着面の粗さにも影響される筈と考え、吸着面の粗さRa(μm)、相対湿度及び最大静止摩擦力の関係について実験した結果を表1に示す。評価は、上記した装置において、ガラス基板を下に向けて吸着させるようにした以外は同様とし、大気雰囲気の相対湿度55%とした際の基板の落下の有無を評価した。表面粗さRaが0.7μmより小さい場合には、基板の落下が見られなかった。 Table 1 shows the results of experiments on the relationship between the surface roughness Ra (μm), the relative humidity, and the maximum static frictional force. . The evaluation was the same as in the above apparatus except that the glass substrate was adsorbed downward, and the presence or absence of the substrate was evaluated when the relative humidity in the air atmosphere was 55%. When the surface roughness Ra was smaller than 0.7 μm, no substrate was dropped.
次に、表面粗さRaが、0.3μmのものと0.7μmのものにおける、相対湿度及び最大静止摩擦力の関係について実験した結果を図4に示す。大気中から真空下まで連続して基板を保持する場合に、基板が落下しないためには、基本的には、基板の比重を保持できる範囲でよいことから、0.2gf/cm2以上あればよい。なお、望ましくは、大気雰囲気から真空雰囲気に移行した際に静電チャックの真空吸着用の排気流路内の残存する圧力(背圧)の影響を考慮した場合(図1の装置も背圧の影響があると考えられる)でも、基板保持を維持できる値として、概ね1gf/cm2以上の最大静止摩擦力があれば良いと考えられる。 Next, FIG. 4 shows the results of experiments on the relationship between the relative humidity and the maximum static frictional force when the surface roughness Ra is 0.3 μm and 0.7 μm. In order to prevent the substrate from falling when the substrate is continuously held from the atmosphere to the vacuum, the substrate may basically be within a range in which the specific gravity of the substrate can be maintained, so that it is 0.2 gf / cm 2 or more. Good. Desirably, when the influence of the remaining pressure (back pressure) in the exhaust flow path for vacuum chucking of the electrostatic chuck is taken into consideration when the atmosphere is changed to the vacuum atmosphere (the apparatus in FIG. However, it is considered that a maximum static friction force of approximately 1 gf / cm 2 or more is sufficient as a value capable of maintaining the substrate holding.
そこで、図4から、Raが0.3μmでは、1gf/cm2以上の最大静止摩擦力を発揮できる条件は、真空吸着する際の大気雰囲気の相対湿度を35〜73%であり、表1の結果から、基板の落下の恐れのあるRaが0.7μmのものでは、35〜46%ということになる。また、Raが0.3μmでは、湿度の変化に対し吸着力の変動が小さく装置での制御もし易いが、一方、Raが0.7μmでは、湿度の少しの変動で大きく吸着力が変動するので、制御がし難いという面がある。したがって、大気雰囲気の湿度によって増加した吸着力を効果的に且つ湿度の変動に大きく差がでないようにするには、吸着面の粗さ(Ra)は0.7μm未満とすべきことが分かる。 Therefore, from FIG. 4, when Ra is 0.3 μm, the condition that the maximum static frictional force of 1 gf / cm 2 or more can be exhibited is that the relative humidity of the atmospheric atmosphere at the time of vacuum adsorption is 35 to 73%. From the results, when Ra is 0.7 μm which may cause the substrate to fall, it is 35 to 46%. In addition, when Ra is 0.3 μm, the change in the adsorption force is small with respect to the change in humidity, and it is easy to control with the apparatus. On the other hand, when Ra is 0.7 μm, the adsorption force varies greatly with a slight change in humidity. It is difficult to control. Therefore, it is understood that the roughness (Ra) of the adsorption surface should be less than 0.7 μm in order to effectively increase the adsorption force increased by the humidity of the atmospheric atmosphere and not to make a large difference in the fluctuation of humidity.
従って、Raが0.7μm未満であれば、温度条件の変動によって変わる相対湿度の変化にも、吸着力は基板を保持するのに十分な値を維持できるので、湿度の管理、印加電圧の管理も厳格に行う必要がなくなる。更に、図4の吸着力と相対湿度との関係を把握しておけば、印加電圧もチャンバーの真空雰囲気に投入した後、低電圧に調整することで、静電チャックの負荷を低減できる。 Therefore, if Ra is less than 0.7 μm, the adsorption force can be maintained at a value sufficient to hold the substrate even when the relative humidity changes due to changes in temperature conditions. There is no need to do it strictly. Furthermore, if the relationship between the attractive force and the relative humidity shown in FIG. 4 is grasped, the load on the electrostatic chuck can be reduced by adjusting the applied voltage to a low voltage after being applied to the vacuum atmosphere of the chamber.
図5は本発明方法の実施に用いる静電チャックの垂直吸着力の測定に用いる装置の概略図であり、以下の条件で基礎吸着力と残留吸着力の測定を行った。 FIG. 5 is a schematic diagram of an apparatus used for measuring the vertical chucking force of the electrostatic chuck used for carrying out the method of the present invention. The basic chucking force and the residual chucking force were measured under the following conditions.
(基礎吸着力の測定)
・ チャンバー外を任意の湿度に設定し、静電チャックとITO膜を片面に形成したガラス基板をイオナイザで除電する
・ 電極に規定電圧を印加する(測定開始)
・ チャンバー内を真空排気する(経過時間5秒)
・ ロードセルにて吸着力を測定する(経過時間300秒、真空度10Pa)
(Measurement of basic adsorption force)
・ Set the outside of the chamber to an arbitrary humidity, and neutralize the glass substrate with the electrostatic chuck and ITO film on one side with an ionizer. ・ Apply a specified voltage to the electrode (start measurement).
・ The chamber is evacuated (elapsed time: 5 seconds)
・ Adsorbing force is measured with a load cell (elapsed time 300 seconds,
(残留吸着力の測定)
・ チャンバー外を任意の湿度に設定し、静電チャックとガラス基板をイオナイザで除電する
2)電極に規定電圧を印加する(測定開始)
3)チャンバー内を真空排気する(経過時間5秒)
4)電圧をオフする(経過時間300秒、真空度10Pa)
5)10秒後にロードセルにて吸着力を測定する
(Measurement of residual adsorption power)
・ Set the outside of the chamber to an arbitrary humidity, and neutralize the electrostatic chuck and glass substrate with an ionizer. 2) Apply the specified voltage to the electrode (start measurement)
3) The chamber is evacuated (elapsed time: 5 seconds)
4) Turn off the voltage (elapsed time 300 seconds,
5) Measure the adsorptive power with a load cell after 10 seconds
試験条件については、印加電圧を±1kVとした以外は前記と同じである。図6はチャンバー外の湿度と基礎吸着力との関係を示すグラフ、図7はチャンバー外の湿度と残留吸着力との関係を示すグラフである。いずれの場合も、最大静止摩擦力(gf/cm2)が増加する傾向にある。 The test conditions are the same as described above except that the applied voltage is ± 1 kV. FIG. 6 is a graph showing the relationship between the humidity outside the chamber and the basic adsorption force, and FIG. 7 is a graph showing the relationship between the humidity outside the chamber and the residual adsorption force. In either case, the maximum static frictional force (gf / cm 2 ) tends to increase.
また、垂直吸着力についても吸着面の粗さ及び相対湿度との関係について実験したが、結果は図4と同様であった。 Further, the vertical suction force was also tested for the relationship between the suction surface roughness and the relative humidity, and the result was the same as in FIG.
図8は、基板の種類を変えた時の静電チャック表面粗さRaと相対湿度との関係をしめすものであり、評価方法は、上記基礎吸着力の測定に準じた。
基板としては、カラーフィルター(CF)とガラス基板(素ガラス)を用いた。
FIG. 8 shows the relationship between the electrostatic chuck surface roughness Ra and the relative humidity when the type of the substrate is changed, and the evaluation method was based on the measurement of the basic adsorption force.
As the substrate, a color filter (CF) and a glass substrate (elementary glass) were used.
カラーフィルター、素ガラスとも静電チャック表面粗さRaが0.3μmでは、相対湿度35%以上75%前後まで、安定した吸着力を呈しており、特に、素ガラスは、静電チャック表面粗さの影響を大きく受けている。素ガラスの場合には静電チャック表面粗さRaを小さくすることによって、印加電圧を低減しても吸着水の吸着力によって必要な吸着力を相対湿度の広い範囲内で、確保できる。 When the electrostatic chuck surface roughness Ra is 0.3 μm for both the color filter and the raw glass, it exhibits a stable adsorption force up to a relative humidity of 35% to about 75%. Is greatly influenced by. In the case of bare glass, by reducing the electrostatic chuck surface roughness Ra, it is possible to secure the necessary adsorption force within a wide range of relative humidity by the adsorption force of the adsorbed water even if the applied voltage is reduced.
表2は、チャンバー内の真空度を大気雰囲気から真空にした後に電圧を印加した際の吸着力の変化を、被吸着基板として、高分子フィルムを用いた例を示すものである。測定方法としては、図1に示す装置のチャンバー内に予め、静電チャック及び高分子フィルムを静置した状態(図1のチャンバー内の状態)でチャンバー内を真空引きし、真空度が50Paと5Paとなった後に、静電チャックに指定電圧を印加し、その印加時間後にロードセルにて高分子フィルムを引き、高分子フィルムが動き出す最大静止摩擦力(gf/cm2)を吸着力として測定する。 Table 2 shows an example in which a polymer film is used as a substrate to be adsorbed, showing a change in adsorption force when a voltage is applied after the degree of vacuum in the chamber is changed from atmospheric to vacuum. As a measuring method, the chamber is evacuated in a state where the electrostatic chuck and the polymer film are previously left in the chamber of the apparatus shown in FIG. 1 (the state in the chamber of FIG. 1), and the degree of vacuum is 50 Pa. After reaching 5 Pa, a specified voltage is applied to the electrostatic chuck, and after the application time, the polymer film is pulled with a load cell, and the maximum static frictional force (gf / cm 2 ) at which the polymer film starts to move is measured as an adsorption force. .
真空度が同じであれば、印加時間に関係なく、略一定の吸着力を示し、真空度が低い程、低い印加電圧で高い吸着力を呈している。この傾向は、真空度が高くなるとチャンバー内の水分量も減ってくることから、電圧印加前の高分子フィルムと静電チャック表面との間に介在している表面吸着水も奪われることになる。このため、表面吸着水の残存量が多い真空度の低い方が、上述したガラス基板等の基板の評価
同様吸着力が高くなっていると考えられる。
If the degree of vacuum is the same, the adsorption force is substantially constant regardless of the application time, and the lower the degree of vacuum, the higher the adsorption force at a lower applied voltage. This tendency is because the amount of water in the chamber decreases as the degree of vacuum increases, and the surface adsorbed water intervening between the polymer film before voltage application and the electrostatic chuck surface is also taken away. . For this reason, it is considered that the lower the degree of vacuum with the larger amount of surface adsorbed water, the higher the adsorptive power as in the above-described evaluation of the substrate such as the glass substrate.
次に、図9乃至図16は、本発明方法を液晶パネルの貼り合せに利用した例を示すものであり、貼り合せ装置はチャンバー1内の底面に載置テーブル2を配置し、天井部に静電チャック3を配置し、チャンバー1の側面にはガラス基板Wの搬入・搬出用の開口4が形成され、この開口4は扉5によって開閉され、更にチャンバー1の底部には真空引き装置につながる配管6が、天井部には空気や窒素ガスなどの供給する配管7がそれぞれ設けられている。
Next, FIG. 9 to FIG. 16 show an example in which the method of the present invention is used for laminating liquid crystal panels. The laminating apparatus arranges a mounting table 2 on the bottom surface in the
前記載置テーブル2には貫通穴21が形成され、この貫通穴21内にシリンダユニット22によって昇降動せしめられるピン23が収納されている。
A through
前記静電チャック3はシリンダユニット31によって昇降動せしめられ、その下面を吸着面32とし、この吸着面には真空吸着用の穴33が開口し、更に吸着面32の表面粗さ(Ra)は0.7μm未満とされている。
The
以上において、先ず図9に示すように、配管6からチャンバー1内に空気を導入してチャンバー1内を大気圧にする。このとき、導入空気の湿度は除湿器または加湿器によって相対湿度を35%以上にコントロールしている。相対湿度35%以上であれば静電気の影響の除去にも寄与でき、好ましくは、帯電電圧が低くなる相対湿度50以上が望ましい。
In the above, first, as shown in FIG. 9, air is introduced into the
次いで、図10に示すように、扉5を開け、開口4からアーム8によってガラス基板Wをチャンバー1内に挿入し、更に図11に示すように、シリンダユニット22によってピン23を上昇せしめ、アーム8からガラス基板Wを受け取る。
Next, as shown in FIG. 10, the
この後、図12に示すようにアーム8は後退し、ピン23が下降することで、ガラス基板Wを載置テーブル2の上面に載置する。
Thereafter, as shown in FIG. 12, the
そして、図13に示すように、ノズル9をチャンバー1内に差し込んで、ガラス基板Wの表面に液晶を供給する。尚、液晶の供給はチャンバー1外で予め完了しておいてもよい。
Then, as shown in FIG. 13, the
次いで、図14に示すように別のガラス基板Wをアーム8によってチャンバー1内に搬入し、更に図15に示すように、シリンダユニット31によって静電チャック3を下降せしめ、静電チャック3の吸着面32をガラス基板Wの上面に押し当てる。因みに、この時点でガラス基板Wの表面には吸着水が付着している。
Next, another glass substrate W is carried into the
そして、図16に示すように、アーム8をチャンバー1から後退せしめ、扉5で開口4を気密に閉塞した後、配管7を介してチャンバー1内を5〜50Pa程度まで減圧する。この減圧によって液晶内に溶解していたガスは除去される。この後、静電チャック3を下降せしめ、2枚のガラスを間に液晶を挟んで貼り合せる。
Then, as shown in FIG. 16, the
以上、本発明を液晶パネルの貼り合せに利用した例を示したが、上述したように本発明の方法は、種々の基板に適用可能であり、それらの基板を用いた製造装置に効果的な方法である。 As mentioned above, although the example which utilized this invention for bonding of a liquid crystal panel was shown, as mentioned above, the method of this invention is applicable to various board | substrates, and is effective for the manufacturing apparatus using those board | substrates. Is the method.
1…チャンバー、2…載置テーブル、21…貫通穴、22…シリンダユニット、23…ピン、3…静電チャック、31…シリンダユニット、32…吸着面、33…真空吸着用の穴、4…開口、5…扉、6,7…配管、8…アーム、W…ガラス基板。
DESCRIPTION OF
Claims (3)
大気雰囲気の相対湿度を35%以上、73%以下とした大気雰囲気中で、前記基板を前記静電チャックに搭載し、ついで、この大気雰囲気中で前記基板の前記静電チャックへの吸着面側と前記静電チャックの吸着面との間を前記基板表面の吸着水が残存する程度に減圧し、前記基板を真空吸着し、次いで大気雰囲気中で前記静電チャックに電圧を印加し、前記基板表面の吸着水を電界によってイオン化し、前記基板の前記静電チャックへの吸着面側の表面抵抗を下げ、グラジエント力及びジョンセン・ラーベック力による吸着力で吸着させた後に、真空雰囲気とすることを特徴とする静電吸着方法。 Using an electrostatic chuck average roughness of the suction surface (Ra) of was less than 0.7μm with holes for vacuum suction by the suction surface to open, the static continuously until a vacuum atmosphere at the electrostatic chuck from the atmosphere When adsorbing a substrate made of glass or polymer film that shows electrical insulation on the suction surface side to the electric chuck ,
The substrate is mounted on the electrostatic chuck in an air atmosphere in which the relative humidity of the air atmosphere is 35% or more and 73% or less, and then the suction surface side of the substrate to the electrostatic chuck in the air atmosphere Between the suction surface of the electrostatic chuck and the suction surface of the electrostatic chuck so that the water adsorbed on the substrate surface remains, vacuum-suck the substrate, and then apply a voltage to the electrostatic chuck in an air atmosphere, Water adsorbed on the surface is ionized by an electric field, the surface resistance of the substrate to the electrostatic chuck is lowered, and the surface is adsorbed by an adsorption force based on a gradient force and a Johnsen-Rahbek force. A characteristic electrostatic adsorption method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006056441A JP4631748B2 (en) | 2006-03-02 | 2006-03-02 | Electrostatic adsorption method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006056441A JP4631748B2 (en) | 2006-03-02 | 2006-03-02 | Electrostatic adsorption method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007234965A JP2007234965A (en) | 2007-09-13 |
JP4631748B2 true JP4631748B2 (en) | 2011-02-16 |
Family
ID=38555226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006056441A Expired - Fee Related JP4631748B2 (en) | 2006-03-02 | 2006-03-02 | Electrostatic adsorption method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4631748B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463729B2 (en) * | 2009-05-13 | 2014-04-09 | 株式会社ニコン | Semiconductor processing equipment |
WO2015083257A1 (en) * | 2013-12-04 | 2015-06-11 | 信越エンジニアリング株式会社 | Method for manufacturing bonded device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07210104A (en) * | 1995-02-09 | 1995-08-11 | Itoki Crebio Corp | Electrostatic attraction type bulletin board |
JP2002136162A (en) * | 2000-10-26 | 2002-05-10 | Mitsubishi Paper Mills Ltd | Electrostatic suction unit |
JP2003282690A (en) * | 2002-03-25 | 2003-10-03 | Toto Ltd | Electrostatic chuck |
JP2005032858A (en) * | 2003-07-09 | 2005-02-03 | Toto Ltd | Electrostatic chucking method of glass substrate and electrostatic chuck |
JP2005524247A (en) * | 2002-05-01 | 2005-08-11 | トレック・インコーポレーテッド | Advanced platen for electrostatic wafer clamping equipment |
-
2006
- 2006-03-02 JP JP2006056441A patent/JP4631748B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07210104A (en) * | 1995-02-09 | 1995-08-11 | Itoki Crebio Corp | Electrostatic attraction type bulletin board |
JP2002136162A (en) * | 2000-10-26 | 2002-05-10 | Mitsubishi Paper Mills Ltd | Electrostatic suction unit |
JP2003282690A (en) * | 2002-03-25 | 2003-10-03 | Toto Ltd | Electrostatic chuck |
JP2005524247A (en) * | 2002-05-01 | 2005-08-11 | トレック・インコーポレーテッド | Advanced platen for electrostatic wafer clamping equipment |
JP2005032858A (en) * | 2003-07-09 | 2005-02-03 | Toto Ltd | Electrostatic chucking method of glass substrate and electrostatic chuck |
Also Published As
Publication number | Publication date |
---|---|
JP2007234965A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW212253B (en) | ||
CN101669199B (en) | Substrate holding mechanism and substrate assembling apparatus provided with the same | |
JP4247739B2 (en) | Method of attracting glass substrate by electrostatic chuck and electrostatic chuck | |
WO2007108192A1 (en) | Electrostatic attraction apparatus for glass substrate and method for attracting and releasing such glass substrate | |
JP5203663B2 (en) | Substrate structure and method for manufacturing substrate structure | |
JP5232868B2 (en) | Board management method | |
JP4631748B2 (en) | Electrostatic adsorption method | |
JPS63194345A (en) | Electrostatic chuck | |
TW200817758A (en) | Sticking and holding apparatus and sticking and holding method thereof | |
JP2007109827A (en) | Electrostatic chuck | |
JP2006049852A (en) | Electrostatic chuck | |
JPWO2013137414A1 (en) | Electrostatic chuck device and control method thereof | |
JP4976911B2 (en) | Electrostatic chuck | |
JP2002280438A (en) | Vacuum treatment method | |
JP2004319700A (en) | Electrostatic chuck | |
WO2006054406A1 (en) | Electrostatic chuck for vacuum bonding system | |
JP4590314B2 (en) | Wafer carrier | |
JPH09293775A (en) | Electrostatic chuck | |
JP4166379B2 (en) | Substrate transfer device | |
JP4404280B2 (en) | How to remove the insulating substrate | |
JP2004063827A (en) | Attraction unit, vacuum processing device, and attraction method | |
JP2002368071A (en) | Treatment board | |
JP7049108B2 (en) | Electrostatic chuck | |
JP4498895B2 (en) | Electrostatic adsorption system and alignment method using the same | |
JP2005209755A (en) | Electrostatic chuck |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100921 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |