JP2005209755A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2005209755A
JP2005209755A JP2004012607A JP2004012607A JP2005209755A JP 2005209755 A JP2005209755 A JP 2005209755A JP 2004012607 A JP2004012607 A JP 2004012607A JP 2004012607 A JP2004012607 A JP 2004012607A JP 2005209755 A JP2005209755 A JP 2005209755A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric
electrode
adsorbed
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004012607A
Other languages
Japanese (ja)
Other versions
JP4419579B2 (en
Inventor
Yoshiaki Kurihara
祥晃 栗原
Kiyoshi Kawabata
清 川畑
Masahiro Sakakura
正洋 坂倉
Akihito Iwai
明仁 岩井
Tadatomo Sato
忠朝 佐藤
Masakazu Hoshino
正和 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004012607A priority Critical patent/JP4419579B2/en
Publication of JP2005209755A publication Critical patent/JP2005209755A/en
Application granted granted Critical
Publication of JP4419579B2 publication Critical patent/JP4419579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck which does not cause breakdown when sucking an article of a simple insulating material, or of an insulating material that has a condcutor inside or on a surface opposite to a surface to be sucked, or of an article having a condcutive surface to be sucked. <P>SOLUTION: The electrostatic chuck comprises a dielectric 2 on whose one surface a plurality of irregularities are formed, electrodes 3a, 3b which are formed on bottoms of recessions of the dielectric 2, and an insulating material 4 which coats the recessions of the dielectric 2 to cover the electrodes 3a, 3b. It is desirable that the electrostatic chuck has a sucking surface which is the surface of the dielectric 2 that is opposite to the surface having irregularities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体デバイス製造装置、液晶デバイス製造装置等の半導体、液晶分野に用いられる静電チャックに関する。   The present invention relates to an electrostatic chuck used in semiconductor and liquid crystal fields such as a semiconductor device manufacturing apparatus and a liquid crystal device manufacturing apparatus.

半導体デバイス、液晶デバイス等を製造する際、特に真空雰囲気においては、シリコンウェーハ、ガラス基板等を保持するために、従来のメカクランプ方式から面吸着が可能な静電チャックが検討されている。   When manufacturing semiconductor devices, liquid crystal devices, and the like, electrostatic chucks capable of surface adsorption from the conventional mechanical clamp method are being studied to hold silicon wafers, glass substrates, and the like, particularly in a vacuum atmosphere.

静電チャックの構造は、例えば特許文献1に記載されているように電極を埋設した絶縁体層上にプラスチック誘電体材料を接合したものが知られている。
また、特許文献2、3及び4に記載されているように2枚の絶縁性セラミック板間に電極を設けたものが知られている。
さらに、特許文献5に記載されているように絶縁性セラミックス板上の電極を溶射法により絶縁性セラミックスで被覆したものが知られている。
As the structure of the electrostatic chuck, for example, as described in Patent Document 1, a structure in which a plastic dielectric material is bonded on an insulator layer in which an electrode is embedded is known.
In addition, as described in Patent Documents 2, 3, and 4, there is known one in which an electrode is provided between two insulating ceramic plates.
Further, as described in Patent Document 5, an electrode in which an electrode on an insulating ceramic plate is coated with an insulating ceramic by a thermal spraying method is known.

特開昭53−077489号公報(第1−3頁、第1図)Japanese Patent Laid-Open No. 53-077489 (page 1-3, FIG. 1) 特開昭63−095644号公報(第3−4頁、第1図)JP 63-095644 (page 3-4, Fig. 1) 特開平4−206545号公報(第1−5頁、第1図及び第2図)JP-A-4-206545 (page 1-5, FIGS. 1 and 2) 特開平5−036819号公報(第1−5頁、第1図)Japanese Patent Laid-Open No. 5-036819 (page 1-5, FIG. 1) 特開昭59−152636号公報(第1−4頁、第3図)JP 59-152636 A (page 1-4, FIG. 3)

静電チャックは、誘電体、電極、必要に応じて誘電体及び電極を支える支持基体で構成されるが、従来の双極型静電チャックの構造では、隣り合う電極−電極間に、電極と電極とをほぼ最短距離で結ぶ界面が存在する。例えば、特許文献6及び7に記載されているようにグリーンシート法による一体焼成を利用した静電チャックでは、グリーンシートを重ね合わせた際の界面が存在する。一般に、界面部分の絶縁耐圧は単一個体の絶縁耐圧より小さい。
また、一方では、静電チャックでガラスなどの絶縁物を吸着するためには、特許文献8に記載されているように±3kV〜±10kVの電圧を印加する必要が生じている。
The electrostatic chuck is composed of a dielectric, an electrode, and, if necessary, a dielectric and a supporting base that supports the electrode. In the structure of a conventional bipolar electrostatic chuck, an electrode and an electrode are disposed between adjacent electrodes. There is an interface that connects the two at a shortest distance. For example, as described in Patent Documents 6 and 7, an electrostatic chuck using integral firing by a green sheet method has an interface when the green sheets are overlapped. In general, the withstand voltage at the interface is smaller than that of a single individual.
On the other hand, in order to attract an insulator such as glass with an electrostatic chuck, it is necessary to apply a voltage of ± 3 kV to ± 10 kV as described in Patent Document 8.

特開平5−013555号公報(第1−3頁)JP-A-5-013555 (page 1-3) 特開平5−304201号公報(第1−4頁)Japanese Patent Laid-Open No. 5-304201 (page 1-4) 特開2000−332091号公報(第4−6頁)JP 2000-332091 A (page 4-6)

しかしながら、上記に示す電圧を印加すると、上記に示す従来の静電チャックでは電極−電極間に存在する上記界面において絶縁破壊を起こし易いという問題点がある。このため、より絶縁耐圧の高い構造の静電チャックが望まれているのが現状である。   However, when the voltage shown above is applied, the conventional electrostatic chuck shown above has a problem that dielectric breakdown tends to occur at the interface existing between the electrodes. For this reason, the present situation is that an electrostatic chuck having a structure with higher withstand voltage is desired.

本発明は、吸着される被吸着物が、単なる絶縁体、内部若しくは吸着される面の反対側の面に導体を形成した絶縁体又は吸着される面が導電性を有する被吸着物を吸着しても絶縁破壊を起こさない静電チャックを提供するものである。   In the present invention, an object to be adsorbed adsorbs an object to be adsorbed simply by an insulator, an insulator in which a conductor is formed inside or on the surface opposite to the surface to be adsorbed, or an adsorbed surface. However, an electrostatic chuck that does not cause dielectric breakdown is provided.

本発明は、片側の面に複数の凹凸形状を形成した誘電体、誘電体の凹部底面に形成した電極及び該電極を覆うように誘電体の凹部を被覆した絶縁体からなる静電チャックに関する。
また、本発明は、誘電体の凹凸形状の反対側面を吸着面とした静電チャックに関する。
また、本発明は、誘電体が、セラミックス焼結体である静電チャックに関する。
The present invention relates to a dielectric having a plurality of concave and convex shapes formed on one surface, an electrode formed on a bottom surface of a concave portion of the dielectric, and an electrostatic chuck made of an insulator covering the concave portion of the dielectric so as to cover the electrode.
The present invention also relates to an electrostatic chuck having a suction surface on the opposite side surface of the irregular shape of the dielectric.
The present invention also relates to an electrostatic chuck whose dielectric is a ceramic sintered body.

また、本発明は、セラミックス焼結体が、アルミナセラミックスである静電チャックに関する。
また、本発明は、電極が、導電性金属及び絶縁体が、エポキシ樹脂である静電チャックに関する。
また、本発明は、電極を二つの組に分け、それぞれの組の間に電位差を与えて被吸着物を静電吸着するようにした静電チャックに関する。
The present invention also relates to an electrostatic chuck in which the ceramic sintered body is alumina ceramic.
The present invention also relates to an electrostatic chuck in which the electrode is a conductive metal and the insulator is an epoxy resin.
The present invention also relates to an electrostatic chuck in which electrodes are divided into two groups, and a potential difference is applied between each group to electrostatically attract an object to be attracted.

本発明における静電チャックは、吸着される被吸着物が、単なる絶縁体、内部若しくは吸着される面の反対側の面に導体を形成した絶縁体又は吸着される面が導電性を有する被吸着物を吸着しても絶縁破壊を起こさず、その信頼性も従来の静電チャックと比較して著しく向上させることができるため、半導体デバイス製造装置、液晶デバイス製造装置等の半導体、液晶分野に用いられる静電チャックとして好適である。   In the electrostatic chuck according to the present invention, an object to be adsorbed is a simple insulator, an insulator in which a conductor is formed inside or opposite to the surface to be adsorbed, or an adsorbed surface having conductivity. Even if an object is adsorbed, dielectric breakdown does not occur, and its reliability can be significantly improved compared to conventional electrostatic chucks, so it is used in the semiconductor and liquid crystal fields such as semiconductor device manufacturing equipment and liquid crystal device manufacturing equipment. It is suitable as an electrostatic chuck.

以下、本発明になる静電チャックの原理について、具体的に説明する。
一般的に、絶縁体は、その内部に電場によって移動できる自由電子を持たないため電気的に絶縁性を示すが、電場によって電気的双極子が誘起されるので誘電体とも呼ばれている。
誘電体は、無数の微小な誘電体粒子で構成されている場合が多い。このうちの一つの誘電体粒子について考えた場合、誘電体粒子内には、正負の電荷がそれぞれ同数含まれており、電気的には中性が保たれている。
Hereinafter, the principle of the electrostatic chuck according to the present invention will be specifically described.
In general, an insulator does not have free electrons that can be moved by an electric field therein, and thus is electrically insulative. However, since an electric dipole is induced by the electric field, the insulator is also called a dielectric.
In many cases, the dielectric is composed of countless minute dielectric particles. When one of the dielectric particles is considered, the same number of positive and negative charges are contained in the dielectric particles, and the electrical neutrality is maintained.

この誘電体粒子が電界中に置かれると、電界の強さに応じた誘電分極を起こし、このときの分極電荷量は正負共に等しい。誘電体粒子の置かれている電場が平等電界の場合、正負の分極電荷に働く力は打ち消し合い、誘電体粒子には力が働かないことになる。
これに対し、誘電体粒子の置かれている電場が不平等電界の場合、正負の分極電荷に働く力は打ち消し合わず、誘電体粒子には電界の強い方へ向かう力が働く。この力の方向は常に電界の強い方向へ向かう力であり、一般に電界勾配力と呼ばれている。
誘電体粒子の集合体である誘電体や、誘電体結晶においても不平等電界中に置かれると、上記の電界勾配力により電界の強い方向へ向かう力が働く。
When this dielectric particle is placed in an electric field, dielectric polarization occurs according to the strength of the electric field, and the amount of polarization charge at this time is equal in both positive and negative directions. When the electric field on which the dielectric particles are placed is an equal electric field, the forces acting on the positive and negative polarization charges cancel each other, and no force acts on the dielectric particles.
On the other hand, when the electric field on which the dielectric particles are placed is an unequal electric field, the forces acting on the positive and negative polarization charges do not cancel each other, and a force directed toward the stronger electric field acts on the dielectric particles. The direction of this force is a force that always goes in the direction of a strong electric field, and is generally called an electric field gradient force.
When the dielectric or dielectric crystal, which is an aggregate of dielectric particles, is placed in an unequal electric field, the above-described electric field gradient force exerts a force toward the direction in which the electric field is strong.

静電チャックによって絶縁体を吸着する際には、上記に説明した電界勾配力を利用する
。大きな吸着力を得るためには、電界勾配力を大きくする、即ち被吸着物内に形成される電界勾配を大きくすることが必要となる。その手段として、隣り合わせの電極−電極間距離を小さくする、電極−電極間に与える電位差を大きくする、電極−吸着面間距離(電極−被吸着物間距離)を小さくすることなどが挙げられる。
When the insulator is attracted by the electrostatic chuck, the electric field gradient force described above is used. In order to obtain a large adsorption force, it is necessary to increase the electric field gradient force, that is, to increase the electric field gradient formed in the object to be adsorbed. Examples of such means include reducing the distance between adjacent electrodes and electrodes, increasing the potential difference applied between the electrodes and electrodes, and decreasing the distance between the electrodes and the adsorption surface (distance between the electrodes and the object to be adsorbed).

しかし、電極−電極間距離を小さくすることと電位差を大きくすることに対しては、電極−電極間の絶縁破壊を起こすおそれがある。本発明になる静電チャックは、隣り合う電極−電極間を最短距離で結ぶ付近は複数の凹凸形状を形成した単一個体の誘電体から構成されているため、電極−電極間において絶縁破壊が起こることを防止している。また、複数の凹凸形状を形成した誘電体と、凹部を被覆する絶縁体との間に界面は存在するが、電極−電極間を最短距離で結ぶ付近に界面が存在することはない。従って、本発明によって得られる静電チャックは絶縁耐圧が大きく、電極−電極間において絶縁破壊が起こることを防止している。   However, when the electrode-electrode distance is reduced and the potential difference is increased, there is a risk of causing dielectric breakdown between the electrodes. The electrostatic chuck according to the present invention is composed of a single solid dielectric having a plurality of concave and convex shapes in the vicinity where adjacent electrodes are connected at the shortest distance. To prevent it from happening. In addition, an interface exists between a dielectric having a plurality of concavo-convex shapes and an insulator covering the recess, but there is no interface in the vicinity connecting the electrodes to each other with the shortest distance. Therefore, the electrostatic chuck obtained by the present invention has a high withstand voltage and prevents dielectric breakdown from occurring between the electrodes.

このため、本発明になる静電チャックは、吸着時に電極−電極間に与える電位差が同等であれば、絶縁破壊に対する信頼性は飛躍的に向上する。また、隣り合わせの電極−電極間に従来構造の静電チャックより大きな電位差を与えることができるため、従来構造の静電チャックより大きな吸着力を得ることができる。   For this reason, the electrostatic chuck according to the present invention drastically improves the reliability against dielectric breakdown as long as the potential difference applied between the electrodes during adsorption is the same. In addition, since a larger potential difference can be given between the adjacent electrodes-electrodes than the electrostatic chuck having the conventional structure, a larger attracting force than the electrostatic chuck having the conventional structure can be obtained.

本発明になる静電チャックにより、吸着される面に導電性を有している被吸着物を吸着する際には、クーロン力を利用する。クーロン力は、電荷間に働く力として一般に知られており、二つの電荷の符号が異符号の場合は引き付け合う力(吸引力)、同符号の場合は退け合う力(反発力、斥力)となる。また、クーロン力の大きさは、両電荷量の積に比例し、両電荷間の距離の二乗に反比例する。   When the electrostatic chuck according to the present invention attracts an object to be attracted having conductivity to the surface to be attracted, the Coulomb force is used. Coulomb force is generally known as a force acting between charges. When the signs of two charges are different signs, they attract each other (suction force), and when they have the same sign, retreat forces (repulsive force, repulsive force) Become. Also, the magnitude of the Coulomb force is proportional to the product of both charge amounts and inversely proportional to the square of the distance between the two charges.

また、本発明になる静電チャックにより、吸着される面が導電性を有する被吸着物を吸着する際には、被吸着物の吸着面における導電体のうち電気的に導通のある部分に対し、異極の電位を与えられた電極によって吸着することができれば、隣り合う電極に異極の電位を与えなければならないという制約はない。   Further, when the surface to be adsorbed by the electrostatic chuck according to the present invention adsorbs an object to be adsorbed with conductivity, the electrically conductive portion of the conductor on the adsorption surface of the object to be adsorbed is used. As long as it can be adsorbed by an electrode having a different polarity, there is no restriction that a potential of a different polarity must be applied to an adjacent electrode.

このとき、吸着される面が導電性を有する被吸着物を吸着する電極は、それぞれの極性の電極面積の比が、ほぼ等しくなることが望ましい。なぜなら、前記電極のうち極性1の電極の面積をa、極性2の電極の面積をbとしたとき、b=1−aとし、吸着力はaとbの積に比例するからである。即ち、他の条件が一定であれば、極性1と極性2の電極の面積が等しいときに、吸着力は最大となるからである。   At this time, it is desirable that the ratio of the electrode areas of the polarities of the electrodes that adsorb the object to be adsorbed whose surface to be adsorbed is substantially equal. This is because, when the area of the electrode of polarity 1 among the electrodes is a and the area of the electrode of polarity 2 is b, b = 1−a, and the attractive force is proportional to the product of a and b. That is, if the other conditions are constant, the adsorption force is maximized when the areas of the polar 1 and polar 2 electrodes are equal.

吸着される面が導電性を有する被吸着物の導電部が、静電チャックとは別の電荷供給源(アース等)と電気的に導通がある場合にはこの限りではない。つまり、極性1と極性2の電極面積の比によらない。さらに電極に与えられる電荷がすべて同極であっても、吸着することができる。   This is not the case when the conductive portion of the object to be attracted, whose surface to be attracted has conductivity, is electrically connected to a charge supply source (such as ground) other than the electrostatic chuck. That is, it does not depend on the ratio of the polar 1 and polar 2 electrode areas. Further, even if the charges applied to the electrodes are all the same polarity, they can be adsorbed.

一般に、静電チャックへの印加電圧が同じ場合、吸着される面が導電性を有する被吸着物に対する吸着力は絶縁体及び内部若しくは吸着される面の反対の面に導体が形成されている絶縁体に対する吸着力より大きい。従って、同程度の吸着力を得るために必要な電位差は、被吸着物が絶縁体及び内部若しくは吸着される面の反対の面に導体が形成されている絶縁体である場合より、被吸着物が吸着される面が導電性を有する被吸着物である場合の方が小さくできる。このため、吸着される面が導電性を有する被吸着物を吸着する際に静電チャックが絶縁破壊を起こす可能性は小さいので、本発明になる静電チャックによって吸着される面が導電性を有する被吸着物を吸着することについては何ら問題ない。   In general, when the applied voltage to the electrostatic chuck is the same, the attracting force to the attracted object is that the attracted surface has conductivity, and the insulation is formed on the insulator and the conductor on the surface opposite to the attracted surface. Greater than the body's adsorption power. Therefore, the potential difference necessary to obtain the same level of adsorption force is greater than that in the case where the object to be adsorbed is an insulator and an insulator in which a conductor is formed inside or opposite to the surface to be adsorbed. It is possible to reduce the size when the surface to which the material is adsorbed is a conductive adsorbent. For this reason, since the electrostatic chuck is less likely to cause dielectric breakdown when the attracted surface attracts an object to be adsorbed with conductivity, the surface attracted by the electrostatic chuck according to the present invention is not electrically conductive. There is no problem with adsorbing the adsorbate to be adsorbed.

本発明になる静電チャックにより、内部若しくは吸着される面の反対の面に導体が形成されている絶縁体を吸着する際には、上記の電界勾配力とクーロン力の両方により吸着力を得ることができる。即ち、絶縁体部分に対しては電界勾配力、導体部分に対してはクーロン力で吸着する。ただし、電界勾配力とクーロン力の働く割合、つまりどちらが支配的であるかは被吸着物の物性や構造、静電チャックの電極−電極間距離、電極−吸着面間距離により変化する。   When the electrostatic chuck according to the present invention attracts an insulator having a conductor formed inside or on the surface opposite to the surface to be attracted, the attracting force is obtained by both the electric field gradient force and the Coulomb force. be able to. That is, it is attracted by the electric field gradient force to the insulator portion and by the Coulomb force to the conductor portion. However, the working ratio of the electric field gradient force and the Coulomb force, that is, which is dominant, depends on the physical properties and structure of the object to be adsorbed, the electrode-electrode distance of the electrostatic chuck, and the electrode-adsorption surface distance.

以下、本発明になる静電チャックに用いられる材料及び構成について説明する。
片側の面に複数の凹凸形状を形成する誘電体の材料としては、例えばアルミナ、窒化ケイ素、窒化アルミニウム、ジルコニア、コーディエライト、ガラス等のセラミックス材料が用いられるが、これらのうち価格、加工性等の点からアルミナセラミックスを用いることが好ましい。
Hereinafter, materials and configurations used for the electrostatic chuck according to the present invention will be described.
As a dielectric material that forms a plurality of concave and convex shapes on one surface, ceramic materials such as alumina, silicon nitride, aluminum nitride, zirconia, cordierite, and glass are used. In view of the above, it is preferable to use alumina ceramics.

誘電体に形成する凹凸形状は、平板に対して研削機による溝加工、GMC加工、ブラスト加工等の機械加工で形成することができる。また鋳型成形、射出成形、加圧成形等により形成することもできる。さらに誘電体にセラミックスを用いる場合には、成形体の段階で凹凸形状を形成し、その成形体を焼成することにより複数の凹凸形状を形したセラミックス誘電体を得ることもできる。焼成前のセラミックス成形板に対しては、研削機による溝加工、GMC加工、ブラスト加工等の機械加工で凹凸形状を形成して、前記セラミックス成形体を得ても差し支えない。   The concavo-convex shape formed on the dielectric can be formed on the flat plate by mechanical processing such as grooving by a grinder, GMC processing, or blast processing. It can also be formed by mold molding, injection molding, pressure molding or the like. Furthermore, when ceramics are used for the dielectric, a ceramic dielectric having a plurality of concave and convex shapes can be obtained by forming a concave and convex shape at the stage of the molded body and firing the molded body. For the ceramic molded plate before firing, the ceramic molded body may be obtained by forming a concavo-convex shape by mechanical processing such as groove processing, GMC processing, and blast processing by a grinding machine.

誘電体の凹部底面に形成する電極は、例えばアルミニウム、銅、ステンレス鋼等の金属板又は箔を密着させて形成する。また銀、金等の金属とガラスからなるペーストを焼き付けて形成してもよい。   The electrode formed on the bottom surface of the concave portion of the dielectric is formed, for example, by closely attaching a metal plate or foil such as aluminum, copper, or stainless steel. Alternatively, a paste made of a metal such as silver or gold and glass may be baked.

誘電体の凹部底面に形成した電極の表面を覆い、かつ誘電体の凹部を被覆する絶縁体としては、絶縁性能に優れ、かつ複数の凹凸形状を形成した誘電体との密着性に優れていることが望ましい。例えばエポキシ樹脂を充填することが好ましい。また別の絶縁体、例えば絶縁性セラミックス焼結体を嵌合するか又は絶縁性接着剤などで固定することにより被覆することもできる。   As an insulator that covers the surface of the electrode formed on the bottom surface of the concave portion of the dielectric and covers the concave portion of the dielectric, it has excellent insulation performance and excellent adhesion to the dielectric formed with a plurality of concave and convex shapes. It is desirable. For example, it is preferable to fill with an epoxy resin. Moreover, it can also coat | cover by fitting another insulator, for example, an insulating ceramic sintered compact, or fixing with an insulating adhesive agent.

誘電体の凹部底面に形成した電極は、導体板、導体線、切断スイッチ、制御回路等を介して電圧発生器に接続される。それぞれの電極に与えられる電位は、配線方法や印加電圧の制御により変更しても差し支えない。   The electrode formed on the bottom surface of the concave portion of the dielectric is connected to the voltage generator through a conductor plate, a conductor wire, a disconnect switch, a control circuit, and the like. The potential applied to each electrode may be changed by controlling the wiring method and applied voltage.

吸着面は、誘電体の凹凸形状の反対側面を吸着面とすることが好ましく、吸着面は平面研削等で平面に加工して用いることが好ましい。なお、被吸着物を大気圧(高圧力)状態で吸着し、被吸着物を吸着したまま雰囲気が真空(低圧力)状態まで連続的に変化する際又は被吸着物を真空(低圧力)状態で吸着し、被吸着物を吸着したまま雰囲気が大気圧(高圧力)状態に連続的に変化する際には、吸着面と被吸着物の間に存在する気体が容易に移動できる目的で、吸着面に溝加工を施すことが好ましい。   The attracting surface is preferably a surface opposite to the concave-convex shape of the dielectric, and the attracting surface is preferably processed into a flat surface by surface grinding or the like. Adsorbed objects are adsorbed at atmospheric pressure (high pressure), and when the atmosphere continuously changes to a vacuum (low pressure) state while adsorbed objects are adsorbed, or the adsorbed objects are in a vacuum (low pressure) state. When the atmosphere is continuously changed to the atmospheric pressure (high pressure) state while adsorbing the adsorbed object, the gas existing between the adsorbing surface and the adsorbed object can easily move, It is preferable to groove the suction surface.

以下、図面を引用して本発明の静電チャック構造の一例を説明する。
図1は、本発明の実施例になる静電チャックの断面と該静電チャックに電荷を供給するための給電回路部分を示す概略図である。
図1に示す静電チャック1は、片側の面に複数の凹凸形状を形成した誘電体2、誘電体2の凹部底面に形成した電極3a及び3b並びに該電極3a及び3bを覆うように誘電体2の凹部を絶縁体4で被覆したものから構成されており、誘電体2の凹凸形状の反対側面を吸着面5としたものである。なお、図1において9は、静電チャック1に強度を持たせるために絶縁性接着剤10を用いて固着した絶縁性の基材である。
さらに、上記の静電チャック1に形成した電極3a及び3bには電圧発生器7から切断スイッチ8a及び配線部8b並びに給電配線6a及び6bを介して、隣り合わせの電極3a及び3bが異極となるように電荷を供給する給電部11を接続している。
Hereinafter, an example of the electrostatic chuck structure of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a cross section of an electrostatic chuck according to an embodiment of the present invention and a power feeding circuit portion for supplying electric charges to the electrostatic chuck.
An electrostatic chuck 1 shown in FIG. 1 includes a dielectric 2 having a plurality of concave and convex shapes formed on one surface, electrodes 3a and 3b formed on the bottom surface of the concave portion of the dielectric 2, and a dielectric so as to cover the electrodes 3a and 3b. The concave portion 2 is covered with an insulator 4, and the opposite side surface of the dielectric 2 to the concave-convex shape is an adsorption surface 5. In FIG. 1, reference numeral 9 denotes an insulating base material fixed with an insulating adhesive 10 in order to give the electrostatic chuck 1 strength.
Further, the electrodes 3a and 3b formed on the electrostatic chuck 1 have the opposite electrodes 3a and 3b having different polarities from the voltage generator 7 through the disconnect switch 8a, the wiring portion 8b, and the power supply wirings 6a and 6b. In this way, a power feeding unit 11 that supplies electric charges is connected.

以下、実施例により本発明を説明するが、本発明はこれに制限されるものではない。
実施例1
図1に示すように、誘電体2として体積固有抵抗が1014Ωmで、寸法が80mm×80mm×厚さ4mmのアルミナセラミックス(日立化成工業(株)製、商標名ハロックス)を準備し、このアルミナセラミックスの片側の面に平面研削機での溝加工により幅が1mm及び深さが2mmの凹部を1mm間隔で形成し、次いで凹部底面にアルミニウム板を貼り付けて電極3a及び3bを形成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to this.
Example 1
As shown in FIG. 1, alumina ceramics (trade name: Halox, manufactured by Hitachi Chemical Co., Ltd.) having a volume resistivity of 10 14 Ωm and dimensions of 80 mm × 80 mm × thickness 4 mm are prepared as dielectric 2 On one surface of the alumina ceramic, recesses having a width of 1 mm and a depth of 2 mm were formed at intervals of 1 mm by grooving with a surface grinder, and then an aluminum plate was attached to the bottom surface of the recess to form electrodes 3a and 3b.

次に、電極3a及び3bに極性が交互になるように給電配線6a及び6bを接続し、その後、前記凹部に絶縁体4として絶縁性エポキシ樹脂(日立化成工業(株)製、商品名WZ−9043)を注入し電極3a及び3bを覆うと共に凹部全面を被覆した後、該絶縁性エポキシ樹脂を硬化させ、次いで強度を持たせるために硬化後の絶縁性エポキシ樹脂の表面に上記で用いた絶縁性エポキシ樹脂10を用いて基材9としてアルミナセラミックスを固着し、吸着面5を平面研削により研削仕上げを行って静電チャックを得た。   Next, power supply wirings 6a and 6b are connected to the electrodes 3a and 3b so that the polarities are alternated, and then an insulating epoxy resin (trade name WZ-made by Hitachi Chemical Co., Ltd.) is used as the insulator 4 in the recess. 9043) is injected to cover the electrodes 3a and 3b and the entire surface of the recess is coated, and then the insulating epoxy resin is cured, and then the insulation used above on the surface of the cured insulating epoxy resin to give strength. Alumina ceramics were fixed as the base material 9 using the conductive epoxy resin 10, and the suction surface 5 was ground by surface grinding to obtain an electrostatic chuck.

比較例1
図2に示すように、誘電体2に凹凸形状を形成せずに、電極3a及び3bの露出面と誘電体2の下部露出面に実施例1と同様の絶縁性エポキシ樹脂を塗布し、硬化後この表面に実施例1と同様の絶縁性接着剤を用いて基材9を固着した以外は、実施例1と同様の工程を経て静電チャックを得た。
Comparative Example 1
As shown in FIG. 2, an insulating epoxy resin similar to that of Example 1 is applied to the exposed surfaces of the electrodes 3a and 3b and the lower exposed surface of the dielectric 2 without forming an uneven shape on the dielectric 2, and cured. Thereafter, an electrostatic chuck was obtained through the same steps as in Example 1 except that the base material 9 was fixed to the surface using the same insulating adhesive as in Example 1.

次に、実施例1及び比較例1で得た静電チャックに、給電配線6a及び6b、切断スイッチ8a並びに配線部8bを介して電極3a及び3bに電圧発生器7から電位差を与えて電極3a及び3bの間での絶縁破壊電位差を測定した。その結果を表1に示す。なお、本測定は、大気中及び真空中(1Pa)で行い、与える電位差は最大20kVとした。   Next, the electrostatic chuck obtained in Example 1 and Comparative Example 1 is given a potential difference from the voltage generator 7 to the electrodes 3a and 3b via the power supply wirings 6a and 6b, the disconnection switch 8a, and the wiring part 8b, and the electrode 3a. And the dielectric breakdown potential difference between 3b was measured. The results are shown in Table 1. In addition, this measurement was performed in air | atmosphere and a vacuum (1 Pa), and the potential difference given was 20 kV at maximum.

Figure 2005209755
Figure 2005209755

表1に示されるように、本発明になる静電チャックは、20kVの電位差を与えても絶縁破壊を起こさなかったのに対して、比較例の静電チャックは誘電体2と絶縁体4との界面において大気中では12kV、真空中(1Pa)では11kVで絶縁破壊を起こした。このことから、本発明になる静電チャックは、比較例の静電チャックより絶縁破壊を引き起こす絶縁破壊電位差が高い、即ち絶縁耐圧が高いことが明らかである。   As shown in Table 1, the electrostatic chuck according to the present invention did not cause dielectric breakdown even when a potential difference of 20 kV was applied, whereas the electrostatic chuck of the comparative example had dielectric 2, insulator 4 and At the interface, dielectric breakdown occurred at 12 kV in the atmosphere and 11 kV in vacuum (1 Pa). From this, it is clear that the electrostatic chuck according to the present invention has a higher dielectric breakdown potential difference that causes dielectric breakdown than the electrostatic chuck of the comparative example, that is, a higher withstand voltage.

本発明の実施例になる静電チャックの断面と該静電チャックに電荷を供給するための給電回路部分を示す概略図である。It is the schematic which shows the cross section of the electrostatic chuck which becomes an Example of this invention, and the electric power feeding circuit part for supplying an electric charge to this electrostatic chuck. 比較例の静電チャックの断面と該静電チャックに電荷を供給するための給電回路部分を示す概略図である。It is the schematic which shows the cross section of the electrostatic chuck of a comparative example, and the electric power feeding circuit part for supplying an electric charge to this electrostatic chuck.

符号の説明Explanation of symbols

1 静電チャック
2 誘電体
3a、3b 電極
4 絶縁体
5 吸着面
6a、6b 給電配線
7 電圧発生器
8a 切断スイッチ
8b 配線部
9 基材
10 絶縁性接着剤
11 給電部
DESCRIPTION OF SYMBOLS 1 Electrostatic chuck 2 Dielectric material 3a, 3b Electrode 4 Insulator 5 Adsorption surface 6a, 6b Power supply wiring 7 Voltage generator 8a Disconnect switch 8b Wiring part 9 Base material 10 Insulating adhesive 11 Power supply part

Claims (6)

片側の面に複数の凹凸形状を形成した誘電体、誘電体の凹部底面に形成した電極及び該電極を覆うように誘電体の凹部を被覆した絶縁体からなる静電チャック。   An electrostatic chuck comprising a dielectric having a plurality of concave and convex shapes on one surface, an electrode formed on a bottom surface of a concave portion of the dielectric, and an insulator covering the concave portion of the dielectric so as to cover the electrode. 誘電体の凹凸形状の反対側面を吸着面とした請求項1記載の静電チャック。   The electrostatic chuck according to claim 1, wherein a side surface opposite to the uneven shape of the dielectric is an adsorption surface. 誘電体が、セラミックス焼結体である請求項1又は2記載の静電チャック。   The electrostatic chuck according to claim 1, wherein the dielectric is a ceramic sintered body. セラミックス焼結体が、アルミナセラミックスである請求項3記載の静電チャック。   The electrostatic chuck according to claim 3, wherein the ceramic sintered body is alumina ceramic. 電極が、導電性金属及び絶縁体が、エポキシ樹脂である請求項1〜4のいずれかに記載の静電チャック。   The electrostatic chuck according to claim 1, wherein the electrode is a conductive metal and the insulator is an epoxy resin. 電極を二つの組に分け、それぞれの組の間に電位差を与えて被吸着物を静電吸着するようにした請求項1〜5のいずれかに記載の静電チャック。
The electrostatic chuck according to claim 1, wherein the electrode is divided into two groups, and an object to be adsorbed is electrostatically adsorbed by applying a potential difference between each group.
JP2004012607A 2004-01-21 2004-01-21 Electrostatic chuck Expired - Fee Related JP4419579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012607A JP4419579B2 (en) 2004-01-21 2004-01-21 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012607A JP4419579B2 (en) 2004-01-21 2004-01-21 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2005209755A true JP2005209755A (en) 2005-08-04
JP4419579B2 JP4419579B2 (en) 2010-02-24

Family

ID=34898925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012607A Expired - Fee Related JP4419579B2 (en) 2004-01-21 2004-01-21 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4419579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900576A (en) * 2015-05-27 2015-09-09 上海华力微电子有限公司 Method for adjusting static suction distribution of static sucker
US9650302B2 (en) 2011-03-30 2017-05-16 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
JP2018113422A (en) * 2017-01-13 2018-07-19 日本特殊陶業株式会社 Ceramic member
CN113845006A (en) * 2021-09-28 2021-12-28 无锡京华重工装备制造有限公司 Sucking disc apron with stainless steel insulating strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650302B2 (en) 2011-03-30 2017-05-16 Ngk Insulators, Ltd. Method for producing electrostatic chuck and electrostatic chuck
KR101813289B1 (en) * 2011-03-30 2017-12-28 엔지케이 인슐레이터 엘티디 Method for producing electrostatic chuck and electrostatic chuck
CN104900576A (en) * 2015-05-27 2015-09-09 上海华力微电子有限公司 Method for adjusting static suction distribution of static sucker
JP2018113422A (en) * 2017-01-13 2018-07-19 日本特殊陶業株式会社 Ceramic member
CN113845006A (en) * 2021-09-28 2021-12-28 无锡京华重工装备制造有限公司 Sucking disc apron with stainless steel insulating strip

Also Published As

Publication number Publication date
JP4419579B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2548299B1 (en) Electroadhesive device, method of adhering a device and electrolaminate system
JPH04186653A (en) Electrostatic chuck
US20080037196A1 (en) Electrostatic chuck
WO2010004915A1 (en) Bipolar electrostatic chuck
WO2005109489A1 (en) Work neutralizing method and apparatus thereof
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
JP3847198B2 (en) Electrostatic chuck
JP2002222851A (en) Electrostatic chuck and board processor
JP2021141141A (en) Electrostatic chuck
JP4159926B2 (en) Electrostatic gripping device and method for manufacturing the same
JP4419579B2 (en) Electrostatic chuck
KR20020008791A (en) Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
JPH056933A (en) Electrostatic chuck made of ceramic
TW201225204A (en) Electrostatic chuck apparatus and method for manufacturing same
JP4879771B2 (en) Electrostatic chuck
JP2004356350A (en) Electrostatic chuck
JP2000340640A (en) Non-contacting electrostatically attracting apparatus
JPH04133443U (en) Ceramic electrostatic chuck
JP4337037B2 (en) Electrostatic chuck
JP2004253402A (en) Electrostatic chuck
JP4934907B2 (en) Electrostatic chuck
JPH11163110A (en) Electrostatic chuck
KR20110064665A (en) Dipole type electrostatic chuck by using electric field gradient
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JP2000021963A (en) Electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees