JP2006049852A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2006049852A
JP2006049852A JP2005188045A JP2005188045A JP2006049852A JP 2006049852 A JP2006049852 A JP 2006049852A JP 2005188045 A JP2005188045 A JP 2005188045A JP 2005188045 A JP2005188045 A JP 2005188045A JP 2006049852 A JP2006049852 A JP 2006049852A
Authority
JP
Japan
Prior art keywords
glass substrate
electrodes
electrostatic chuck
dielectric layer
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005188045A
Other languages
Japanese (ja)
Other versions
JP4341592B2 (en
Inventor
Junji Yonezawa
順治 米澤
Kazuko Ishikawa
佳津子 石川
Tetsuo Kitabayashi
徹夫 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005188045A priority Critical patent/JP4341592B2/en
Publication of JP2006049852A publication Critical patent/JP2006049852A/en
Application granted granted Critical
Publication of JP4341592B2 publication Critical patent/JP4341592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck which attracts an insulating substrate independently of its type. <P>SOLUTION: When a voltage is applied so as to make electrodes 9 and 10 opposite to each other in polarity, an irregular electric field is generated between the electrodes 9 and 10 to generate a gradient force (F) attracting a glass substrate W. At this point, when the width W of the electrodes and a distance g between the electrodes 9 and 10 are set smaller, the irregular electric field can be generated by a small applied voltage but becomes small in area, so that a problem, wherein the glass substrate where a conductive film is formed can be attracted but the glass substrate where no conductive film is formed can not be attracted, is generated. When a dielectric layer 8 is made too thick, a problem, wherein an irregular electric field is not formed on the front surface of the dielectric layer 8, and an attractive power can not be displayed, is generated, and when the dielectric layer 8 is made too thin, a problem wherein the dielectric layer 8 becomes low in durability. Then, the distance g between the electrodes 9 and 10 is set at 0.5 to 2.0 mm, and the width W of the electrodes is set at 1.0 to 4.0 mm. The thickness of the dielectric layer 8 is set at 0.2 to 2.0 mm, and furthermore the volume resistivity of the dielectric layer 8 is set at 10<SP>15</SP>Ω-cm or above so as to prevent an abnormal electric discharge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フラットディスプレイの液晶基板などとして用いるガラス基板を吸着する静電チャックと、この静電チャックを用いた吸着方法に関する。   The present invention relates to an electrostatic chuck for attracting a glass substrate used as a liquid crystal substrate of a flat display and the like, and an adsorption method using the electrostatic chuck.

液晶表示パネルを製作するには、2枚のガラス基板間に液晶を充填する必要がある。この液晶を充填する従来方法は、2枚のガラス基板間に隙間を形成した状態で縦方向にし、液晶中に2枚のガラス基板の下端を浸漬し、毛細管現象を利用して該隙間に液晶を充填するようにしている。   In order to manufacture a liquid crystal display panel, it is necessary to fill a liquid crystal between two glass substrates. In the conventional method of filling the liquid crystal, a gap is formed between the two glass substrates in the vertical direction, the lower ends of the two glass substrates are immersed in the liquid crystal, and a liquid crystal is introduced into the gap using a capillary phenomenon. To be filled.

上記の方法では、液晶の充填に時間がかかり、特に液晶表示パネルが大型化してくると、最後まで液晶を充填するのに極めて長時間を要してしまう。そこで、 水平状態としたガラス基板の表面に液晶を盛り付け、更にこの上に別のガラス基板を重ね、2枚のガラス基板間に液晶を充填する方法が提案されている。   In the above method, it takes a long time to fill the liquid crystal, and particularly when the liquid crystal display panel is enlarged, it takes a very long time to fill the liquid crystal to the end. Therefore, a method has been proposed in which liquid crystal is placed on the surface of a glass substrate in a horizontal state, and another glass substrate is further stacked thereon to fill the liquid crystal between the two glass substrates.

この方法の場合、2枚のガラス基板間に液晶以外に空気が入ってしまうと表示パネルとして使用できないため、上記の操作は真空中で行なう必要がある。真空中でガラス基板を保持するには真空チャックは使うことができず機械的なチャックで上方のガラス基板を支持することになるが、この方法ではガラス基板が撓んでしまい、部分的に液晶の厚みが異なってしまう。そこで、特許文献1に静電チャックによって上側のガラス基板を吸着する方法が提案されている。   In the case of this method, if air other than liquid crystal enters between the two glass substrates, it cannot be used as a display panel. Therefore, the above operation must be performed in a vacuum. A vacuum chuck cannot be used to hold the glass substrate in a vacuum, and the upper glass substrate is supported by a mechanical chuck. However, in this method, the glass substrate is bent, and the liquid crystal partially The thickness will be different. Therefore, Patent Document 1 proposes a method of adsorbing the upper glass substrate with an electrostatic chuck.

また、特許文献2には静電チャックとして誘電性のベース上に第1の電極グループと第2の電極グループを形成し、これら電極の幅と間隔を約100μm以下とし、第1の電極グループと第2の電極グループとが逆の極性となるようにして不均一な電界を電極間に形成し、この不均一な電界によって誘電性ワークピース(ガラス基板)を吸着することが開示されている。
特に、特許文献2には、従来の電極幅として約3mm、電極の間隔として約1mmを挙げ、この構造ではシリコンウェーハのような半導体基板を吸着するのに約5000ボルトを印加しなければならないが、電極の線幅を10μmにすると印加電圧は1000ボルトで足りることが記載されている。
Further, in Patent Document 2, a first electrode group and a second electrode group are formed on a dielectric base as an electrostatic chuck, and the width and interval of these electrodes are set to about 100 μm or less. It is disclosed that a non-uniform electric field is formed between electrodes so that the second electrode group has an opposite polarity, and a dielectric workpiece (glass substrate) is adsorbed by the non-uniform electric field.
In particular, Patent Document 2 lists a conventional electrode width of about 3 mm and an electrode interval of about 1 mm. In this structure, about 5000 volts must be applied to adsorb a semiconductor substrate such as a silicon wafer. In addition, it is described that when the line width of the electrode is 10 μm, an applied voltage of 1000 volts is sufficient.

更に、本発明者らが提案した特許文献3には、電極間に生じる不均一電界に起因するグラジエント(gradient)力によってガラス基板を吸着する場合の、電極間の距離と電極を形成する誘電体層の厚さとの好ましい条件が開示されている。
特開2000−284295号公報 段落(0035) 特表2000−502509号公報 11頁3〜7行、図5 特開2000−332091号公報
Furthermore, Patent Document 3 proposed by the present inventors describes a distance between electrodes when a glass substrate is attracted by a gradient force caused by a non-uniform electric field generated between the electrodes and a dielectric that forms the electrodes. Preferred conditions with layer thickness are disclosed.
JP 2000-284295 A paragraph (0035) JP 2000-502509A, page 11, lines 3-7, FIG. JP 2000-332091 A

特許文献1ではクーロン力によってガラス基板を吸着すると記載しているが、半導体基板の場合にはクーロン力で十分に吸着することができるが、ガラス基板のような絶縁基板をクーロン力によって吸着することはできない。   In Patent Document 1, it is described that the glass substrate is adsorbed by Coulomb force. In the case of a semiconductor substrate, it can be adsorbed sufficiently by Coulomb force, but an insulating substrate such as a glass substrate is adsorbed by Coulomb force. I can't.

特許文献2または3に開示される電極間の不均一電界に起因するグラジエント(gradient)力によればガラス基板を吸着することができる。しかしながら、別の問題が存在する。即ち、液晶表示パネルを構成するガラス基板には、表面または裏面にITOなどの導電性膜を形成したガラス基板と、ITOなどの導電性膜を形成していないガラス基板が存在する。   According to the gradient force caused by the non-uniform electric field between the electrodes disclosed in Patent Document 2 or 3, the glass substrate can be adsorbed. However, another problem exists. That is, the glass substrate which comprises a liquid crystal display panel has the glass substrate which formed conductive films, such as ITO, on the surface or back surface, and the glass substrate which has not formed conductive films, such as ITO.

そして、これら導電性膜を形成したガラス基板と形成していないガラス基板を同一の静電チャックによって吸着しようとすると、導電性膜を形成したガラス基板、特に導電性膜を吸着面側に形成しているガラス基板には強い電界が作用し、剥離の際にガラス基板が損傷したり、帯電によって液晶に悪影響を及ぼすことがある。このため、上述した静電チャックは吸着対象のガラス基板が常に同じであることがラインに組み込むための条件になってしまう。   Then, if the glass substrate on which these conductive films are formed and the glass substrate on which they are not formed are to be adsorbed by the same electrostatic chuck, the glass substrate on which the conductive film is formed, particularly the conductive film is formed on the adsorption surface side. A strong electric field acts on the glass substrate, and the glass substrate may be damaged during peeling, or the liquid crystal may be adversely affected by charging. For this reason, the electrostatic chuck described above is a condition for incorporating in the line that the glass substrates to be attracted are always the same.

即ち、表面にITOなどの導電性膜を形成したガラス基板と形成していないガラス基板が混在して流れてくるラインに適用するには、吸着するガラス基板が導電性膜を形成しているか否か、また形成している場合でも吸着面側なのか非吸着面側なのかを予め検知し、それに合わせて印加電圧を切り替える必要が生じる。しかしながら、予め静電チャックに入ってくるガラス基板の特性を判別することは困難で、仮にそれが可能であっても、誘電体層の厚さ、電極幅及び電極間隔が適切でないと、印加電圧を切り替えても、所定の吸着力を発揮することができない。
また、ガラス基板の種類に合わせて1つのラインに複数の静電チャックを用意しておくのは現実的でなく、装置全体も複雑化しコストアップとなってしまう。
That is, whether or not the adsorbing glass substrate forms a conductive film, in order to apply to a line in which a glass substrate having a conductive film such as ITO formed on the surface and a glass substrate not formed are mixed and flow. In addition, even when the film is formed, it is necessary to detect in advance whether it is the suction surface side or the non-suction surface side, and switch the applied voltage accordingly. However, it is difficult to discriminate the characteristics of the glass substrate that enters the electrostatic chuck in advance. Even if this is possible, the applied voltage is not appropriate if the thickness of the dielectric layer, the electrode width, and the electrode interval are not appropriate. Even if it is switched, a predetermined adsorption force cannot be exhibited.
In addition, it is not practical to prepare a plurality of electrostatic chucks on one line according to the type of glass substrate, which complicates the entire apparatus and increases costs.

また、液晶表示パネルを製作するには、大気雰囲気と真空雰囲気とを繰り返すことになるが、従来の装置にあっては、この繰り返しによって誘電体から真空チャンバーへの放電、電極間の放電が発生し、ガラス基板上に設けられたデバイスや誘電体層がダメージを受けることがある。   In order to manufacture a liquid crystal display panel, an air atmosphere and a vacuum atmosphere are repeated. In the conventional apparatus, the discharge from the dielectric to the vacuum chamber and the discharge between the electrodes occur due to this repetition. In addition, the device or dielectric layer provided on the glass substrate may be damaged.

上記課題を解決すべく本発明は、吸着面側に導電性膜を形成したガラス基板、非吸着面側に導電性膜を形成したガラス基板、吸着面側及び非吸着面側に導電性膜を形成していないガラス基板のいずれをも、通電時に形成される不均一電界に起因するグラジエント(gradient)力によって吸着する静電チャックであって、この静電チャックは絶縁性支持プレート上に形成される誘電体層の厚みを0.2mm以上2.0mm以下とし、使用される温度において誘電体層の体積抵抗率を1015Ω・cm以上とした。 In order to solve the above problems, the present invention provides a glass substrate having a conductive film formed on the adsorption surface side, a glass substrate having a conductive film formed on the non-adsorption surface side, and conductive films on the adsorption surface side and the non-adsorption surface side. An electrostatic chuck that adsorbs any unformed glass substrate by a gradient force caused by a non-uniform electric field that is formed when energized. The electrostatic chuck is formed on an insulating support plate. The thickness of the dielectric layer is 0.2 mm or more and 2.0 mm or less, and the volume resistivity of the dielectric layer is 10 15 Ω · cm or more at the temperature used.

前記電極は絶縁性支持プレートと誘電体層との境界面のうち、絶縁性支持プレート側の表面または誘電体層側の表面の何れに形成してもよい。またグラジエント(gradient)力によって絶縁性基板を吸着できる電極の寸法としては、例えば、電極間の距離は0.5mm以上2.0mm以下とし、前記電極の幅は1.0mm以上4.0mm以下とすることが好ましい。   The electrode may be formed on either the surface on the insulating support plate side or the surface on the dielectric layer side of the boundary surface between the insulating support plate and the dielectric layer. The dimensions of the electrodes that can adsorb the insulating substrate by a gradient force are, for example, a distance between the electrodes of 0.5 mm to 2.0 mm, and a width of the electrodes of 1.0 mm to 4.0 mm. It is preferable to do.

また、体積抵抗率を1015Ω・cm以上とすることで、異常放電などは発生しにくくなるが、印加電圧が低いと静電吸着力は僅かしか生じない。しかしながら印加電圧を高くすると、具体的には、一対の電極間に2kV以上10kV以下の電位差を印加すると、吸着対象のガラス基板に導電膜が形成されていても、また形成されていなくても保持することができる。 In addition, by setting the volume resistivity to 10 15 Ω · cm or more, abnormal discharge or the like hardly occurs, but when the applied voltage is low, only a slight electrostatic adsorption force is generated. However, when the applied voltage is increased, specifically, when a potential difference of 2 kV or more and 10 kV or less is applied between the pair of electrodes, even if a conductive film is formed or not formed on the glass substrate to be adsorbed, it is retained. can do.

本発明によれば、吸着対象のガラス基板が導電膜を形成しているか否か、或いは導電成膜を形成していてもそれが表面か裏面かに拘らず、印加電圧を切り替えることなくそのまま吸着することができ、液晶製造ラインに組み込むことに何らの支障もきたさない。
また、液晶の帯電が低減され、しかも大気と真空を繰り返しても異常放電が生じにくいので、ガラス基板上に設けられたデバイスや誘電体層のダメージを軽減できる。
According to the present invention, whether or not the glass substrate to be adsorbed forms a conductive film, or even if a conductive film is formed, it is adsorbed as it is without switching the applied voltage regardless of whether it is a front surface or a back surface. And can be incorporated into the liquid crystal production line without any trouble.
In addition, the charge of the liquid crystal is reduced, and abnormal discharge is unlikely to occur even when the atmosphere and vacuum are repeated, so that damage to devices and dielectric layers provided on the glass substrate can be reduced.

以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明に係る静電チャックを組み込んだ液晶表示パネル作製装置の断面図、図2は本発明に係る静電チャックの電極パターンを示す図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view of a liquid crystal display panel manufacturing apparatus incorporating an electrostatic chuck according to the present invention, and FIG. 2 is a diagram showing an electrode pattern of the electrostatic chuck according to the present invention.

液晶表示パネル作製装置は上ケース1と下ケース2を備え、下ケース2は上ケース1に対して相対的に昇降可能とされ、下ケース2が上昇して上端部のシール3が上ケース1の下端部に圧接することで、気密なチャンバーが形成される。
そして、この気密なチャンバー内のエアは上ケース1の側壁に開口する排気管4を介して外部に排出され、また気密なチャンバー内へはパージ管5を介してエアが導入される。
The liquid crystal display panel manufacturing apparatus includes an upper case 1 and a lower case 2, and the lower case 2 can be moved up and down relatively with respect to the upper case 1. An airtight chamber is formed by press-contacting to the lower end of the chamber.
The air in the airtight chamber is discharged to the outside through the exhaust pipe 4 that opens to the side wall of the upper case 1, and the air is introduced into the airtight chamber through the purge pipe 5.

また、上ケース1内には本発明に係る静電チャック6(ESC)が取り付けられている。この静電チャック6は絶縁性プレート7の一面側(図では下面)に誘電体層8を設け、この絶縁性プレート7と誘電体層8との境界面に対をなす電極9,10を設けている。   An electrostatic chuck 6 (ESC) according to the present invention is attached in the upper case 1. The electrostatic chuck 6 is provided with a dielectric layer 8 on one surface side (the lower surface in the figure) of the insulating plate 7, and electrodes 9 and 10 are formed on the boundary surface between the insulating plate 7 and the dielectric layer 8. ing.

前記誘電体層8はセラミック焼結体からなる。セラミック材料としては、アルミナ(Al)を主成分とし、焼結助剤として、SiO、MgO、CaOを含むセラミックやアルミナ単独、アルミナに酸化クロム(Cr)及び・又は酸化チタン(TiO)を添加した材料などが挙げられる。また、絶縁性プレート7については特に制限はないが、熱膨張率を考慮すると誘電体層8と同一の材料を用いることが望ましい。前記誘電体層8は吸着体であるガラス基板に対する耐摩耗性を考慮して、ビッカース硬度1000以上の焼結体であることが好ましい。 The dielectric layer 8 is made of a ceramic sintered body. As a ceramic material, alumina (Al 2 O 3 ) as a main component, as a sintering aid, ceramic containing SiO 2 , MgO, CaO or alumina alone, alumina with chromium oxide (Cr 2 O 3 ) and / or oxidation A material to which titanium (TiO 2 ) is added can be used. The insulating plate 7 is not particularly limited, but it is desirable to use the same material as the dielectric layer 8 in consideration of the coefficient of thermal expansion. The dielectric layer 8 is preferably a sintered body having a Vickers hardness of 1000 or more in consideration of wear resistance with respect to a glass substrate as an adsorbent.

また、電極9,10はそれぞれ+電源および−電源に接続され、互いに相手側に入り込んだ櫛歯状パターンを形成している。尚、電極のパターンはこれに限定されるものではない。   The electrodes 9 and 10 are connected to a + power source and a −power source, respectively, to form a comb-like pattern that enters the other side. The electrode pattern is not limited to this.

また、静電チャック6には真空チャックとして機能するための吸引孔11が下面に開口している。この吸引孔11は上ケース1の天井部に設けたジョイント12を介して真空ポンプに接続されている。   The electrostatic chuck 6 has a suction hole 11 on the lower surface for functioning as a vacuum chuck. The suction hole 11 is connected to a vacuum pump via a joint 12 provided in the ceiling portion of the upper case 1.

一方、下ケース2内にはテーブル13が配置されている。このテーブル13の軸14は図示しないシリンダユニットに連結され、また軸14はシール部材15を介して下ケース2に気密に摺接している。而して、テーブル13は下ケース2とは独立して昇降動を行なう。尚、テーブル13を静電チャックとすることで、上下に静電チャックが配置される構成とすることも可能である。   On the other hand, a table 13 is arranged in the lower case 2. The shaft 14 of the table 13 is connected to a cylinder unit (not shown), and the shaft 14 is in airtight contact with the lower case 2 via a seal member 15. Thus, the table 13 moves up and down independently of the lower case 2. In addition, it can also be set as the structure by which an electrostatic chuck is arrange | positioned up and down by making the table 13 into an electrostatic chuck.

図3は本発明に係る静電チャックの吸着のメカニズムを説明した図であり、互いに隣接する1対の電極9,10が逆の極性となるように電圧を印加すると、電極9,10間に不均一電界が発生し、この不均一電界によってガラス基板Wを吸着するグラジエント力(F)が生じる。このグラジエント力(F)は、「F∝α・gradE(Eは電界)」でその大きさが表される。 FIG. 3 is a diagram for explaining the mechanism of adsorption of the electrostatic chuck according to the present invention. When a voltage is applied so that a pair of adjacent electrodes 9 and 10 have opposite polarities, A non-uniform electric field is generated, and a gradient force (F) for attracting the glass substrate W is generated by the non-uniform electric field. The magnitude of the gradient force (F) is expressed by “F∝α · gradE 2 (E is an electric field)”.

図3からも分かるように、電極の幅Wと電極の距離gを小さくすると、不均一電界は小さな印加電圧で発生し得るがその領域は小さくなる。例えば、特許文献2に開示されるように電極の幅Wと電極の間隔gを100μm以下とすると、小さな印加電圧で不均一電界は発生するが、グラジエント力(F)が及ぶ範囲(厚み)は小さくなる。したがって、導電膜を形成したガラス基板は吸着できても導電膜を形成していないガラス基板は吸着できないといった問題が生じる。   As can be seen from FIG. 3, when the electrode width W and the electrode distance g are reduced, a non-uniform electric field can be generated with a small applied voltage, but the region becomes smaller. For example, as disclosed in Patent Document 2, when the electrode width W and the electrode gap g are 100 μm or less, a non-uniform electric field is generated with a small applied voltage, but the range (thickness) that the gradient force (F) reaches is as follows. Get smaller. Accordingly, there arises a problem that even if a glass substrate on which a conductive film is formed can be adsorbed, a glass substrate on which no conductive film is formed cannot be adsorbed.

また、誘電体層8の厚さもあまり厚くすると、誘電体層8の表面側に不均一電界が形成されず、吸着力を発揮できず、あまり薄くすると耐久性がなくなる。この観点から誘電体層8の厚みは0.2mm以上2.0mm以下とした。因みに、0.2mm以上の厚さの誘電体層をCVD等の蒸着法にて形成するのは困難で、本発明にあっては焼結によって誘電体層8を形成している。0.2mmより薄くすると長期間使用中に耐電圧破壊する確率が増加する。   Further, if the thickness of the dielectric layer 8 is too thick, a non-uniform electric field is not formed on the surface side of the dielectric layer 8 and the attractive force cannot be exhibited. If the thickness is too thin, the durability is lost. From this viewpoint, the thickness of the dielectric layer 8 is set to 0.2 mm or more and 2.0 mm or less. Incidentally, it is difficult to form a dielectric layer having a thickness of 0.2 mm or more by a vapor deposition method such as CVD. In the present invention, the dielectric layer 8 is formed by sintering. If the thickness is less than 0.2 mm, the probability of withstand voltage breakdown during long-term use increases.

また、本実施例では適度なグラジエント力を発揮させるため、前記電極間の距離gは0.5mm以上2.0mm以下とし、前記電極の幅Wは1.0mm以上4.0mm以下とした。   Further, in this example, in order to exert an appropriate gradient force, the distance g between the electrodes was 0.5 mm to 2.0 mm, and the width W of the electrodes was 1.0 mm to 4.0 mm.

更に、誘電体層8の材料は前記した中から、体積抵抗率が1015Ω・cm以上となるものを選定する。体積抵抗率が1015Ω・cm未満であると、液晶が帯電しやすく、また大気と真空とを繰り返す際に放電が生じやすい。 Furthermore, the material for the dielectric layer 8 is selected from the materials described above that have a volume resistivity of 10 15 Ω · cm or more. When the volume resistivity is less than 10 15 Ω · cm, the liquid crystal is easily charged, and discharge is likely to occur when the atmosphere and vacuum are repeated.

従来型の静電チャックとして、誘電体層の体積抵抗率が1013Ω・cmのものを作製し、これと本発明に係る静電チャックとを用い、印加電圧を変化させて、3種類のガラス基板について吸着を試みた。ガラス基板としては、吸着面側に導電性膜を形成したガラス基板、非吸着面側に導電性膜を形成したガラス基板、吸着面側及び非吸着面側に導電性膜を形成していないガラス基板を用意した。いずれのガラス基板も厚さは0.7mm、面積25cmとした。実験結果を、以下の(表1)及び図6に示す。尚、吸着力測定は、所定の真空度まで到達後に電圧を印加し、その30秒後にガラス基板を横方向に引っ張り、ガラス基板が動き出す瞬間の荷重をロードセルにて最大静止摩擦力(吸着力:gf/cm)として測定した。 As a conventional electrostatic chuck, a dielectric layer having a volume resistivity of 10 13 Ω · cm is manufactured, and using this and the electrostatic chuck according to the present invention, an applied voltage is changed, and three types are applied. Adsorption was attempted on a glass substrate. As a glass substrate, a glass substrate having a conductive film formed on the adsorption surface side, a glass substrate having a conductive film formed on the non-adsorption surface side, and a glass having no conductive film formed on the adsorption surface side and the non-adsorption surface side A substrate was prepared. All the glass substrates had a thickness of 0.7 mm and an area of 25 cm 2 . The experimental results are shown in the following (Table 1) and FIG. The adsorption force is measured by applying a voltage after reaching a predetermined degree of vacuum, pulling the glass substrate laterally 30 seconds later, and applying the moment when the glass substrate starts moving to the maximum static friction force (adsorption force: gf / cm 2 ).

表1及び図6から、従来型の静電チャックにあっては、吸着面側に導電性膜を形成したガラス基板のみを吸着することができた。そして、その印加電圧は±0.1〜±0.5kV(電極間電位差0.2〜1kV)であり、±0.1kV(電極間電位差0.2kV)未満では、吸着力が不足し、±0.5kV(電極間電位差1kV)を超えると電解の影響が液晶に現われる不具合が生じた。一方、本発明にかかる静電チャックにあっては、吸着面側に導電性膜を形成したガラス基板については、印加電圧±0.5kV(電極間電位差1kV)において、1.00gf/cmの吸着力が生じたが、印加電圧がそれ以下ではガラス基板を吸着することができず、また、非吸着面側に導電性膜を形成したガラス基板及び吸着面側及び非吸着面側に導電性膜を形成していないガラス基板については、印加電圧を±1.0kV以上(電極間電位差2.0kV以上)とすることで、吸着することができた。 From Table 1 and FIG. 6, in the conventional electrostatic chuck, only the glass substrate having a conductive film formed on the suction surface side could be sucked. The applied voltage is ± 0.1 to ± 0.5 kV (interelectrode potential difference 0.2 to 1 kV), and if it is less than ± 0.1 kV (interelectrode potential difference 0.2 kV), the adsorptive power is insufficient. When it exceeded 0.5 kV (potential difference between electrodes 1 kV), there was a problem that the effect of electrolysis appeared in the liquid crystal. On the other hand, in the electrostatic chuck according to the present invention, for a glass substrate having a conductive film formed on the attracting surface side, an applied voltage of ± 0.5 kV (interelectrode potential difference of 1 kV) is 1.00 gf / cm 2 . Although the adsorption force is generated, the glass substrate cannot be adsorbed when the applied voltage is lower than that, and the glass substrate with the conductive film formed on the non-adsorption surface side and the conductivity on the adsorption surface side and the non-adsorption surface side. The glass substrate on which no film was formed could be adsorbed by setting the applied voltage to ± 1.0 kV or more (potential difference between electrodes: 2.0 kV or more).

また、図6からも分かるように、従来の静電チャックにあっては、ガラス基板による吸着力の差が非常に大きく、その結果ガラス基板の種類によってはあまりにも吸着力が大きくなりすぎガラスを離脱させるときには残留吸着力までも大きくなり搬送に支障を来たしていた。これに対して本発明に係る3種兼用の静電チャックでは、ガラス基板の種類による吸着力の差が比較的小さく、上記のような搬送時の問題は軽減される。即ち、例えば印加電圧を±1〜±5kV(電極間の電位差2〜10kV)、好ましくは±2〜±4kV(電極間の電位差4〜8kV)とすることで、ガラス基板の種類に関係なく、すべてのガラス基板の吸着、離脱に有効である。   In addition, as can be seen from FIG. 6, in the conventional electrostatic chuck, the difference in the attractive force between the glass substrates is very large. As a result, depending on the type of the glass substrate, the attractive force becomes too large. At the time of separation, the residual attracting force is increased, which hinders the conveyance. On the other hand, in the three-type electrostatic chuck according to the present invention, the difference in the attractive force depending on the type of the glass substrate is relatively small, and the above problems at the time of conveyance are reduced. That is, for example, by setting the applied voltage to ± 1 to ± 5 kV (potential difference between electrodes 2 to 10 kV), preferably ± 2 to ± 4 kV (potential difference between electrodes 4 to 8 kV), regardless of the type of glass substrate, Effective for adsorbing and detaching all glass substrates.

また、図7は大気状態から真空状態に移った際の放電電流波形を示す図であり、そのうち(a)は誘電体層の体積抵抗率を1015Ω・cmとした本発明に係る静電チャックを、(b)は誘電体層の体積抵抗率が1013Ω・cmの従来の静電チャックの放電電流波形を示す。ただし、測定条件は、印加電圧を±5kV(電極間電位差10kV)、表示電圧を50mV/div0.1mA/100mV(換算値)とした。 FIG. 7 is a diagram showing a discharge current waveform when the state is changed from the atmospheric state to the vacuum state, in which (a) shows the electrostatic capacitance according to the present invention in which the volume resistivity of the dielectric layer is 10 15 Ω · cm. (B) shows the discharge current waveform of a conventional electrostatic chuck with a dielectric layer having a volume resistivity of 10 13 Ω · cm. However, the measurement conditions were an applied voltage of ± 5 kV (interelectrode potential difference 10 kV) and a display voltage of 50 mV / div 0.1 mA / 100 mV (converted value).

図7から、本発明に係る静電チャックは、大気と真空状態とを繰り返す液晶表示パネル製造装置に組み込んだ場合でも、異常放電などを生じにくいことが分かる。   From FIG. 7, it can be seen that the electrostatic chuck according to the present invention is unlikely to cause abnormal discharge or the like even when incorporated in a liquid crystal display panel manufacturing apparatus that repeats the atmosphere and a vacuum state.

以上の構成からなる液晶表示パネル作製装置を用いて液晶表示パネルを作製する手順を説明する。
先ず、上ケース1と下ケース2とを上下方向に離間した状態で、図1に示すようにロボット21を用いて、下側ガラス基板22をテーブル13の上方に差し入れ、ロボット31を用いて、上側ガラス基板32を静電チャック6の下方に差し入れる。尚、下側ガラス基板22の上面には液晶23が塗布されている。
A procedure for manufacturing a liquid crystal display panel using the liquid crystal display panel manufacturing apparatus having the above configuration will be described.
First, with the upper case 1 and the lower case 2 spaced apart in the vertical direction, the lower glass substrate 22 is inserted above the table 13 using the robot 21 as shown in FIG. The upper glass substrate 32 is inserted below the electrostatic chuck 6. A liquid crystal 23 is applied to the upper surface of the lower glass substrate 22.

この状態から、ロボット21に保持されている下側ガラス基板22をテーブル13上に移載し、更にロボット31を上昇させ上側ガラス基板32を静電チャック6の下面に当接せしめる。そして、静電チャック6の下面に開口している吸引孔11を介して上側ガラス基板32を保持する。即ち、この時点では静電チャック6は真空チャックとして機能している。   From this state, the lower glass substrate 22 held by the robot 21 is transferred onto the table 13, and the robot 31 is further raised to bring the upper glass substrate 32 into contact with the lower surface of the electrostatic chuck 6. Then, the upper glass substrate 32 is held through the suction hole 11 opened on the lower surface of the electrostatic chuck 6. That is, at this point, the electrostatic chuck 6 functions as a vacuum chuck.

以上の如くして下側ガラス基板22をテーブル13上に、上側ガラス基板32を静電チャック6の下面に保持せしめたら、ロボット21,31を後退させ、次いで、図4に示すように下ケース2を上昇させて上ケース1との間で密閉チャンバーを形成する。   When the lower glass substrate 22 is held on the table 13 and the upper glass substrate 32 is held on the lower surface of the electrostatic chuck 6 as described above, the robots 21 and 31 are moved backward, and then the lower case is placed as shown in FIG. 2 is raised to form a sealed chamber with the upper case 1.

そして、上ケース1と下ケース2からなる密閉チャンバー内を減圧する。この減圧の過程で真空チャックとしての機能は発揮できなくなるので、電極9,10間に直流電圧を印加し、グラジエント力にて上側ガラス基板32を静電チャック6の下面で保持する。印加電圧としては、誘電体層8の体積抵抗率を1015Ω・cm以上として放電を防止しているため、ガラスの種類(導電膜の有無)に拘らず保持するには、高めの印加電圧が必要になる。本実施例では電極9,10間に電位差3kV以上10kV以下の電圧を印加する。 Then, the inside of the sealed chamber composed of the upper case 1 and the lower case 2 is depressurized. Since the function as a vacuum chuck cannot be exhibited in the process of reducing pressure, a DC voltage is applied between the electrodes 9 and 10, and the upper glass substrate 32 is held on the lower surface of the electrostatic chuck 6 by a gradient force. As the applied voltage, since the volume resistivity of the dielectric layer 8 is set to 10 15 Ω · cm or more to prevent discharge, a higher applied voltage is required to maintain regardless of the type of glass (with or without conductive film). Is required. In this embodiment, a voltage having a potential difference of 3 kV or more and 10 kV or less is applied between the electrodes 9 and 10.

そして、所定の真空度に達したら、図5に示すように、テーブル13を上昇せしめ、下側ガラス基板22と上側ガラス基板32との間に液晶23を押しつぶすように充填する。この後はチャンバー内にエアをパージし、大気圧に達したならば、静電チャック6による保持を解除するとともに下ケース2を下降せしめ、テーブル13上の液晶表示パネルを払い出す。   When the predetermined degree of vacuum is reached, the table 13 is raised as shown in FIG. 5, and the liquid crystal 23 is filled between the lower glass substrate 22 and the upper glass substrate 32 so as to be crushed. Thereafter, air is purged into the chamber, and when the atmospheric pressure is reached, the holding by the electrostatic chuck 6 is released and the lower case 2 is lowered, and the liquid crystal display panel on the table 13 is discharged.

本発明に係る静電チャックを組み込んだ液晶表示パネル作製装置の断面図Sectional drawing of the liquid crystal display panel manufacturing apparatus incorporating the electrostatic chuck which concerns on this invention 本発明に係る静電チャックの電極パターンを示す図The figure which shows the electrode pattern of the electrostatic chuck which concerns on this invention 本発明に係る静電チャックの吸着のメカニズムを説明した図The figure explaining the mechanism of adsorption of the electrostatic chuck concerning the present invention 液晶表示パネル作製装置の作用を説明した断面図Sectional drawing explaining the operation of the liquid crystal display panel manufacturing apparatus 液晶表示パネル作製装置の作用を説明した断面図Sectional drawing explaining the operation of the liquid crystal display panel manufacturing apparatus 印加電圧と最大静止摩擦力(吸着力)との関係をガラス基板の種類ごとに示したグラフGraph showing the relationship between applied voltage and maximum static friction force (adsorption force) for each type of glass substrate 大気状態から真空状態に移った際の放電電流波形を示す図であり、(a)は本発明に係る静電チャック、(b)は従来の静電チャックを示す。It is a figure which shows the discharge current waveform at the time of transfering from an atmospheric state to a vacuum state, (a) shows the electrostatic chuck which concerns on this invention, (b) shows the conventional electrostatic chuck.

符号の説明Explanation of symbols

1…上ケース、2…下ケース、3…シール、4…排気管、5…パージ管、6…静電チャック、7…絶縁性プレート、8…誘電体層、9,10…電極、11…吸引孔、12…ジョイント、13…テーブル、14…軸、15…シール、21,31…ロボット、22…下側ガラス基板、23…液晶、32…上側ガラス基板。
DESCRIPTION OF SYMBOLS 1 ... Upper case, 2 ... Lower case, 3 ... Seal, 4 ... Exhaust pipe, 5 ... Purge pipe, 6 ... Electrostatic chuck, 7 ... Insulating plate, 8 ... Dielectric layer, 9, 10 ... Electrode, 11 ... Suction hole, 12 ... joint, 13 ... table, 14 ... shaft, 15 ... seal, 21, 31 ... robot, 22 ... lower glass substrate, 23 ... liquid crystal, 32 ... upper glass substrate.

Claims (3)

吸着面側に導電性膜を形成したガラス基板、非吸着面側に導電性膜を形成したガラス基板、吸着面側及び非吸着面側に導電性膜を形成していないガラス基板のいずれをも、通電時に形成される不均一電界に起因するグラジエント(gradient)力によって吸着する静電チャックであって、この静電チャックは絶縁性支持プレート上に形成される誘電体層の厚みを0.2mm以上2.0mm以下とし、使用される温度において誘電体層の体積抵抗率を1015Ω・cm以上としたことを特徴とする静電チャック。 Either a glass substrate having a conductive film formed on the adsorption surface side, a glass substrate having a conductive film formed on the non-adsorption surface side, or a glass substrate having no conductive film formed on the adsorption surface side or the non-adsorption surface side An electrostatic chuck that is attracted by a gradient force caused by a non-uniform electric field formed during energization, wherein the electrostatic chuck has a thickness of a dielectric layer of 0.2 mm formed on an insulating support plate. An electrostatic chuck characterized in that the volume resistivity of the dielectric layer is 10 15 Ω · cm or more at a used temperature of 2.0 15 or less. 請求項1に記載の静電チャックにおいて、前記電極間の距離は0.5mm以上2.0mm以下とし、前記電極の幅は1.0mm以上4.0mm以下としたことを特徴とする静電チャック。 2. The electrostatic chuck according to claim 1, wherein the distance between the electrodes is 0.5 mm or more and 2.0 mm or less, and the width of the electrodes is 1.0 mm or more and 4.0 mm or less. . 請求項1または請求項2に記載の静電チャックを用いたガラス基板を吸着方法において、直流電源から一対の電極間に2kV以上10kV以下の電位差を印加することを特徴とする絶縁性基板吸着方法。

A method for adsorbing a glass substrate using the electrostatic chuck according to claim 1 or 2, wherein a potential difference of 2 kV to 10 kV is applied between a pair of electrodes from a DC power source. .

JP2005188045A 2004-06-29 2005-06-28 Electrostatic chuck for glass substrate adsorption and glass substrate adsorption method Expired - Fee Related JP4341592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188045A JP4341592B2 (en) 2004-06-29 2005-06-28 Electrostatic chuck for glass substrate adsorption and glass substrate adsorption method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004191815 2004-06-29
JP2005188045A JP4341592B2 (en) 2004-06-29 2005-06-28 Electrostatic chuck for glass substrate adsorption and glass substrate adsorption method

Publications (2)

Publication Number Publication Date
JP2006049852A true JP2006049852A (en) 2006-02-16
JP4341592B2 JP4341592B2 (en) 2009-10-07

Family

ID=36027994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188045A Expired - Fee Related JP4341592B2 (en) 2004-06-29 2005-06-28 Electrostatic chuck for glass substrate adsorption and glass substrate adsorption method

Country Status (1)

Country Link
JP (1) JP4341592B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244148A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck and manufacturing method thereof
JP2008244149A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck and manufacturing method thereof
JP2008244147A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck, manufacturing method thereof, and attraction method of glass substrate
JP2015162596A (en) * 2014-02-27 2015-09-07 東京エレクトロン株式会社 Substrate holding method, substrate holding device, and bonding device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244148A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck and manufacturing method thereof
JP2008244149A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck and manufacturing method thereof
JP2008244147A (en) * 2007-03-27 2008-10-09 Taiheiyo Cement Corp Electrostatic chuck, manufacturing method thereof, and attraction method of glass substrate
JP4658086B2 (en) * 2007-03-27 2011-03-23 太平洋セメント株式会社 Electrostatic chuck and manufacturing method thereof
JP2015162596A (en) * 2014-02-27 2015-09-07 東京エレクトロン株式会社 Substrate holding method, substrate holding device, and bonding device

Also Published As

Publication number Publication date
JP4341592B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US7983017B2 (en) Electrostatic chuck and method of forming
WO2000072376A1 (en) Electrostatic chuck and treating device
JP2001035907A (en) Chuck device
JPH05235152A (en) Electrostatic chuck
WO2004084298A1 (en) Substrate holding mechanism using electrostaic chuck and method of manufacturing the same
JP2001189378A (en) Wafer-chucking heating apparatus
JP2005223185A (en) Electrostatic chuck and its manufacturing method
JP4341592B2 (en) Electrostatic chuck for glass substrate adsorption and glass substrate adsorption method
JP2007214339A (en) Bipolar electrostatic chuck
KR101109743B1 (en) Large size combination type electrostatic chuck and fabrication method thereof
JP2004047979A (en) Electrostatic gripping device and its manufacturing method
KR20100090559A (en) Electrostatic chuck having aerosol coating layer and fabrication method thereof
JP4976911B2 (en) Electrostatic chuck
JP2002280438A (en) Vacuum treatment method
JP4166379B2 (en) Substrate transfer device
JP2000183143A (en) Electrostatic chuck
JP4024613B2 (en) Adsorption device, vacuum processing device and adsorption method
JP2006253703A (en) Electrostatic chuck and insulating substrate electrostatic attraction treatment method
JP2018133502A (en) Electrostatic chuck and substrate holding method
JP2000012666A (en) Electrostatic chuck
JP2008205509A (en) Method for carrying insulating substrate, and alignment method
JP5225043B2 (en) Electrostatic chuck
JP4631748B2 (en) Electrostatic adsorption method
JP5225023B2 (en) Sample holder and transfer device
JP2008205508A (en) Substrate carrier, and vacuum processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees