JP2005317727A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2005317727A
JP2005317727A JP2004133278A JP2004133278A JP2005317727A JP 2005317727 A JP2005317727 A JP 2005317727A JP 2004133278 A JP2004133278 A JP 2004133278A JP 2004133278 A JP2004133278 A JP 2004133278A JP 2005317727 A JP2005317727 A JP 2005317727A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
electrode
adsorbed
vacuum
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133278A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kawabata
清 川畑
Yoshiaki Kurihara
祥晃 栗原
Masahiro Sakakura
正洋 坂倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004133278A priority Critical patent/JP2005317727A/en
Publication of JP2005317727A publication Critical patent/JP2005317727A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck having multiple projections at an absorption face, including the dielectric substance, electrode and base substance for which the time taken for object desorption becomes longer than the desorption time in vaccum, when a evacuation process for treating the object to be absorbed is finished and the ambience of the electrostatic zipper returns to atmospheric pressure or a low-vaccum state, even if the projection height is small. <P>SOLUTION: This electrostatic chuck has a dielectric substance, electrode and base substance and has a number of projections 6 on the absorption face of the dielectric substance, and at least one groove 9 at the bottom of the absorption face that reaches the outer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体デバイス製造装置、液晶デバイス製造装置等の半導体、液晶分野に用いられる静電チャックに関する。 The present invention relates to an electrostatic chuck used in semiconductor and liquid crystal fields such as a semiconductor device manufacturing apparatus and a liquid crystal device manufacturing apparatus.

半導体デバイス、液晶デバイスを製造する際、特に真空雰囲気においてはシリコンウェーハ、ガラス基板等を保持するために、従来のメカクランプ方式から面吸着が可能な静電チャックが検討されている。   When manufacturing semiconductor devices and liquid crystal devices, electrostatic chucks capable of surface adsorption from the conventional mechanical clamp method are being studied to hold silicon wafers, glass substrates and the like, particularly in a vacuum atmosphere.

静電チャックの構造は、例えば特許文献1に記載されているように電極を埋設した絶縁体層上にプラスチック誘電体材料を接合したものが知られている。
また、特許文献2、3及び4に記載されているように2枚の絶縁性セラミック板間に電極を設けたものが知られている。
さらに、特許文献5に記載されているように絶縁性セラミックス板上の電極を溶射法により絶縁性セラミックスで被覆したものが知られている。
As the structure of the electrostatic chuck, for example, as described in Patent Document 1, a structure in which a plastic dielectric material is bonded on an insulator layer in which an electrode is embedded is known.
In addition, as described in Patent Documents 2, 3, and 4, there is known one in which an electrode is provided between two insulating ceramic plates.
Further, as described in Patent Document 5, an electrode in which an electrode on an insulating ceramic plate is coated with an insulating ceramic by a thermal spraying method is known.

特開昭53−77489号公報(第1−3頁、第1図)JP-A-53-77489 (page 1-3, FIG. 1) 特開昭63−95644号公報(第3−4頁、第1図)JP-A-63-95644 (page 3-4, FIG. 1) 特開平4−206545号公報(第1−5頁、第1図及び第2図)JP-A-4-206545 (page 1-5, FIGS. 1 and 2) 特開平5−36819号公報(第1−5頁、第1図)Japanese Patent Laid-Open No. 5-36819 (page 1-5, FIG. 1) 特開昭59−152636号公報(第1−4頁、第3図)JP 59-152636 A (page 1-4, FIG. 3)

静電チャックは、一般的には誘電体、電極及び基体から構成され、電極と被吸着物との間に電位差が与えられたときに発生するクーロン力、ジョンソンラベック力、グラジーエント力等の静電吸着力により被吸着物を保持、固定する。   An electrostatic chuck is generally composed of a dielectric, an electrode, and a substrate. Electrostatic chucks such as Coulomb force, Johnson labeling force, and gradient force generated when a potential difference is applied between the electrode and an object to be adsorbed. The object to be adsorbed is held and fixed by the adsorption force.

また、パーティクルと呼ばれる微小な異物の挟み込みや被吸着物への付着を避けるために、静電チャックの吸着面に突起加工を施し被吸着物との接触面積を減じることが行われることがある。 In addition, in order to avoid pinching of minute foreign substances called particles and adhesion to the object to be attracted, protrusion processing may be performed on the attracting surface of the electrostatic chuck to reduce the contact area with the object to be attracted.

しかしながら、突起高さ寸法を大きくすると、吸着力が減少するため、特許文献6には突起高さ寸法を数十ミクロン以下に小さくする技術が記載されている。
特公平7−55423号公報(第2頁)
However, since the adsorption force decreases when the projection height dimension is increased, Patent Document 6 describes a technique for reducing the projection height dimension to several tens of microns or less.
Japanese Patent Publication No. 7-55423 (2nd page)

そこで、本発明者らは、上記に示す技術についてさらに検討を進めたところ、以下に示す問題が生じることがわかった。即ち、真空中で被吸着物を処理する真空プロセスが終了し、静電チャックの周囲を大気圧又は低真空状態に戻したとき、突起高さ寸法が小さいと被吸着物が静電チャック吸着面に押し付けられ、被吸着物と吸着面の隙間の圧力が上昇するまで時間がかかり、被吸着物が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くなる。そのため、真空プロセス終了後に真空中で被吸着物を脱離した後に大気圧又は低真空状態に戻す等、複雑な機構を装置に付加する必要があった。   Then, when the present inventors further investigated about the technique shown above, it turned out that the problem shown below arises. That is, when the vacuum process for processing the object to be adsorbed in vacuum is completed and the periphery of the electrostatic chuck is returned to the atmospheric pressure or the low vacuum state, the object to be adsorbed is brought into contact with the electrostatic chuck attracting surface if the height of the protrusion is small. It takes time until the pressure in the gap between the object to be adsorbed and the adsorption surface increases, and the desorption time until the object to be desorbed becomes longer than the desorption time in vacuum. For this reason, it is necessary to add a complicated mechanism to the apparatus, such as desorbing an adsorbed substance in a vacuum after the vacuum process and returning it to an atmospheric pressure or low vacuum state.

本発明は、上記問題を解決するため、突起高さ寸法が小さくても、真空中で被吸着物を処理する真空プロセスが終了し、静電チャックの周囲を大気圧又は低真空状態に戻したとき、被吸着物が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くなることがない、誘電体、電極及び基体を含み、吸着面に複数個の突起を備えた静電チャックを提供するものである。   In order to solve the above problem, the present invention has completed the vacuum process of processing the object to be adsorbed in vacuum even if the height of the protrusion is small, and returned the surroundings of the electrostatic chuck to atmospheric pressure or low vacuum. The desorption time until the object to be adsorbed can be desorbed does not become longer than the desorption time in vacuum. An electrostatic chuck is provided.

本発明は、誘電体、電極及び基体を含む静電チャックにおいて、該誘電体の吸着面に複数個の突起を備え、かつ吸着面下方の底面に外周まで到達する1本以上の溝を形成してなる静電チャックに関する。   The present invention provides an electrostatic chuck including a dielectric, an electrode, and a substrate, wherein the dielectric attracting surface has a plurality of protrusions, and one or more grooves reaching the outer periphery are formed on the bottom surface below the attracting surface. It relates to an electrostatic chuck.

本発明になる静電チャックは、突起高さ寸法が小さくても、真空中で被吸着物を処理する真空プロセス終了後、静電チャックの周囲を大気圧又は低真空状態に戻したとき、被吸着物が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くなることを避けることができ、工業的に極めて好適である。   The electrostatic chuck according to the present invention has a small protrusion height dimension, and when the periphery of the electrostatic chuck is returned to the atmospheric pressure or low vacuum state after the vacuum process for processing the object to be attracted in vacuum is completed, The desorption time until the adsorbate can be desorbed can be prevented from becoming longer than the desorption time in vacuum, which is extremely suitable industrially.

本発明の静電チャックに用いられる誘電体の材料としては、Al、Si、AlN、SiC、BaTiO等のセラミックス材料が一般的に用いられるが、突起と溝を形成することができればエポキシ樹脂、ポリイミド樹脂等も用いることができる。 As the dielectric material used in the electrostatic chuck of the present invention, ceramic materials such as Al 2 O 3 , Si 3 N 4 , AlN, SiC, and BaTiO 3 are generally used, but they form protrusions and grooves. If possible, an epoxy resin, a polyimide resin, or the like can also be used.

また、誘電体に形成する電極としては、誘電体がセラミックス材料の場合は、例えばAg−Pd、W、Ag、Au等とガラスからなるペーストを焼き付けたり、セラミックスと同時に焼成することにより形成することができる。一方、誘電体に樹脂などを用いる場合は、Al、Cu等の金属板や箔を密着させたりして形成することができる。   In addition, when the dielectric is a ceramic material, the electrode formed on the dielectric is formed, for example, by baking a paste made of glass with Ag-Pd, W, Ag, Au, or the like, or by firing simultaneously with the ceramic. Can do. On the other hand, when using resin etc. for a dielectric material, it can form by sticking metal plates, such as Al and Cu, and foil.

本発明において、静電吸着力を発生させるための電極は、静電チャックの側面にはみ出さないようにすることが好ましい。静電チャックの側面にはみ出さないようにすれば、誘電体、基体及び電極は一体でも差し支えなく、静電吸着力を発生させるための電極を形成した誘電体を別の基体に貼り付けても構わない。   In the present invention, it is preferable that the electrode for generating the electrostatic attraction force does not protrude from the side surface of the electrostatic chuck. As long as it does not protrude from the side surface of the electrostatic chuck, the dielectric, the base and the electrode can be integrated, or the dielectric on which the electrode for generating the electrostatic adsorption force is formed can be attached to another base. I do not care.

通常、複数個の突起は吸着面のほぼ全面に形成されるが、前述した異物の挟み込みや付着を避ける目的から接触面積を減じることが好ましい。吸着面下方の底面に形成される外周まで到達する溝は、底面の一部に形成してもよく、また底面全体を溝としてもよく特に制限はない。溝の本数は、1本あれば本発明の効果を発揮することができるが、複数本あることがさらに好ましい。また溝の深さについては、吸着面下方の底面に溝が形成できれば本発明の効果を発揮するが、深い方が好ましく、その寸法は突起高さ寸法よりも大きいことがさらに好ましい。 Usually, the plurality of protrusions are formed on almost the entire surface of the suction surface, but it is preferable to reduce the contact area for the purpose of avoiding the above-described foreign object pinching and adhesion. The groove reaching the outer periphery formed on the bottom surface below the adsorption surface may be formed in a part of the bottom surface, and the entire bottom surface may be a groove without any particular limitation. If the number of grooves is one, the effect of the present invention can be exhibited, but a plurality of grooves is more preferable. As for the depth of the groove, the effect of the present invention is exhibited as long as the groove can be formed on the bottom surface below the suction surface. However, the depth is preferable, and the dimension is more preferably larger than the height of the protrusion.

以下、本発明の実施の形態について図面を引用して説明する。
図1は本発明の実施例になる吸着面に複数個の突起を備え、かつ吸着面下方の底面に外周まで到達する10本の溝を形成した静電チャックの吸着面付近の断面拡大図、図2はその平面図、図3は比較例(従来)の吸着面に複数個の突起のみを備えた静電チャックの吸着面付近の断面拡大図、図4はその平面図並びに図5は静電チャックの断面及び被吸着物を吸着、脱離するときの回路を示す概略図であり、1は誘電体、2は被吸着物、3は電極、4は基体、5はスイッチ、6は突起、7は吸着面下方の底面、8は隙間空間、9は外周まで到達する溝及び10は静電チャックである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an enlarged cross-sectional view of the vicinity of a suction surface of an electrostatic chuck having a plurality of protrusions on the suction surface according to an embodiment of the present invention and having 10 grooves reaching the outer periphery on the bottom surface below the suction surface; 2 is a plan view thereof, FIG. 3 is an enlarged cross-sectional view of the vicinity of the suction surface of the electrostatic chuck having only a plurality of protrusions on the suction surface of the comparative example (conventional), FIG. 4 is a plan view thereof, and FIG. FIG. 2 is a schematic diagram showing a cross section of an electric chuck and a circuit when adsorbing and desorbing an object to be adsorbed, where 1 is a dielectric, 2 is an object to be adsorbed, 3 is an electrode, 4 is a base, 5 is a switch, and 6 is a protrusion. , 7 is a bottom surface below the suction surface, 8 is a gap space, 9 is a groove reaching the outer periphery, and 10 is an electrostatic chuck.

先ず、従来技術の問題点について図3及び図4を引用して説明する。真空中に静電チャックを設置してシリコンウェーハのような薄板状の平坦な被吸着物2を吸着するとき、吸着面下方の底面7、被吸着物2及び突起6で囲まれた隙間空間8は静電チャックの周囲と同等の真空状態になっている。真空プロセス終了後に静電チャックの周囲を大気圧又は低真空状態に戻した際に、突起高さ寸法が小さいと隙間空間8に静電チャックの周囲の気体流入が困難となり、隙間空間8が静電チャックの周囲より低圧力の状態になる。その圧力差により被吸着物2には静電チャックに押し付けられる力が働く。また、その押しつけられる力によって被吸着物2は、隙間空間8の容積が減少する方向に変形が生じ、隙間空間8にはさらに静電チャック周囲の気体が流入し難い状態が続く。そのため、被吸着物が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くなる。   First, problems of the prior art will be described with reference to FIGS. When an electrostatic chuck is installed in a vacuum and a thin flat object to be adsorbed 2 such as a silicon wafer is adsorbed, a gap space 8 surrounded by the bottom surface 7 below the adsorbing surface, the object to be adsorbed 2 and the protrusion 6 is provided. Is in a vacuum state equivalent to that around the electrostatic chuck. When the periphery of the electrostatic chuck is returned to the atmospheric pressure or low vacuum state after the vacuum process is completed, if the height of the protrusion is small, it becomes difficult for the gas around the electrostatic chuck to flow into the gap space 8, and the gap space 8 is static. The pressure is lower than that around the electric chuck. Due to the pressure difference, the force to be pressed against the electrostatic chuck acts on the object to be attracted 2. Further, the adsorbed object 2 is deformed in the direction in which the volume of the gap space 8 decreases due to the pressing force, and the gas around the electrostatic chuck is more difficult to flow into the gap space 8. Therefore, the desorption time until the object to be adsorbed can be desorbed is longer than the desorption time in vacuum.

そこで、図1及び図2に示す本発明の実施例になる静電チャックを用いれば、真空プロセス終了後に静電チャックの周囲が大気圧又は低真空状態に戻した際に、吸着面下方の底面7に形成された外周まで到達する溝9を通して静電チャックの周囲の気体が流入し吸着面下方の底面7は速やかに静電チャックの周囲と同じ圧力になる。そのため、図3及び図4に示す比較例(従来)の吸着面に複数個の突起のみを備えた構造の静電チャックのように、被吸着物2には静電チャックに押し付けられる力が働くことがなく、被吸着物2が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くなることがない。 Therefore, when the electrostatic chuck according to the embodiment of the present invention shown in FIG. 1 and FIG. 2 is used, when the periphery of the electrostatic chuck is returned to the atmospheric pressure or low vacuum state after the completion of the vacuum process, the bottom surface below the adsorption surface. The gas around the electrostatic chuck flows through the groove 9 reaching the outer periphery formed in 7 and the bottom surface 7 below the adsorption surface quickly becomes the same pressure as the periphery of the electrostatic chuck. Therefore, like the electrostatic chuck of the comparative example (conventional) shown in FIGS. 3 and 4 having only a plurality of protrusions on the attracting surface, the force to be pressed against the electrostatic chuck 2 acts on the attracted object 2. The desorption time until the adsorbed object 2 can be desorbed does not become longer than the desorption time in vacuum.

以下、本発明の実施例を示すが、本発明はこれに制限されるものではない。
実施例1
図1及び図2に示すに示すように、誘電体1として体積固有抵抗が1×10Ωmで直径が200mm及び厚さが2mmのSiC(日立化成工業(株)製、商標名ヘキサロイ)を準備した。
次いで、この誘電体1の片面(吸着面の反対側の面)に、直径が198mmで誘電体1と同心円状に速乾性導電ペースト((株)徳力化学研究所製、商標名シルベスト)を塗布し、自然乾燥させ、厚さが10μmの電極3を形成した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
Example 1
As shown in FIGS. 1 and 2, SiC (trade name: Hexalloy, manufactured by Hitachi Chemical Co., Ltd.) having a volume resistivity of 1 × 10 9 Ωm, a diameter of 200 mm, and a thickness of 2 mm is used as the dielectric 1. Got ready.
Next, a quick-drying conductive paste (trade name: Sylbest, manufactured by Tokoku Chemical Laboratory Co., Ltd.) having a diameter of 198 mm and concentric with the dielectric 1 is applied to one surface of the dielectric 1 (the surface opposite to the adsorption surface). Then, it was naturally dried to form an electrode 3 having a thickness of 10 μm.

その後、誘電体1の電極3を形成した面には基体4として体積固有抵抗が1×1013Ωmで誘電体1と同寸法で、中心部に穴を開けたAl(日立化成工業(株)製、商標名ハロックス)製の基体4を絶縁性接着剤で貼り付けた。電極3には前記中心部の穴を通して電圧を供給する。 Thereafter, Al 2 O 3 (Hitachi Chemical Industry Co., Ltd.) having a volume resistivity of 1 × 10 13 Ωm as the substrate 4 and the same dimensions as the dielectric 1 on the surface of the dielectric 1 on which the electrode 3 is formed, and having a hole in the center. Substrate 4 made by Co., Ltd. and trade name Halox) was attached with an insulating adhesive. A voltage is supplied to the electrode 3 through the hole in the center.

次に、吸着面及び吸着面の反対側の面を平坦に加工した後、吸着面を図1に示すように、aが4mm、bが1mm及びc(高さ)が10μmの突起(寸法1mm×1mm×10μm)6を全面に形成した。さらにdが200μm及びeが1mmの寸法で、図2に示すように、吸着面下方の底面に外周まで到達する溝9をまず平行に5本、さらにこれらと直角に交わるように5本、合計10本形成して静電チャックを得た。   Next, after flattening the suction surface and the surface opposite to the suction surface, as shown in FIG. 1, a protrusion having a of 4 mm, b of 1 mm and c (height) of 10 μm (dimension 1 mm) (× 1 mm × 10 μm) 6 was formed on the entire surface. Further, as shown in FIG. 2, d is 200 μm and e is 1 mm in size, and as shown in FIG. Ten electrostatic chucks were formed.

比較例1
図3及び図4に示すように、吸着面下方の底面7に溝を形成しない以外は、実施例1と同じ材料及び実施例1と同様の工程を経て静電チャックを得た。
Comparative Example 1
As shown in FIGS. 3 and 4, an electrostatic chuck was obtained through the same material as in Example 1 and the same process as in Example 1 except that no groove was formed in the bottom surface 7 below the attracting surface.

次に、実施例1で得た静電チャック及び比較例1で得た静電チャックを用いて、以下に示す比較試験を行った。なお、比較試験には被吸着物として直径が100mmのシリコンウェーハを用いた。試験は、真空状態の容器内で静電チャックの吸着面にシリコンウェーハを置き、図5に示す回路により電極3に電圧を印加して被吸着物2を静電チャック9に吸着させた。その後、スイッチ5を切り替える脱離操作を行ってから容器内を真空に保った場合及び脱離操作後10秒かけて容器内圧力が大気圧になるように容器内に乾燥空気を導入して容器内を大気圧に保った場合について、それぞれシリコンウェーハを静電チャックから引き剥がす作業を行って脱離の可否を判定した。その結果を表1に示す。   Next, the following comparative tests were performed using the electrostatic chuck obtained in Example 1 and the electrostatic chuck obtained in Comparative Example 1. In the comparative test, a silicon wafer having a diameter of 100 mm was used as an object to be adsorbed. In the test, a silicon wafer was placed on the suction surface of the electrostatic chuck in a vacuum container, and a voltage was applied to the electrode 3 by the circuit shown in FIG. Thereafter, when the inside of the container is kept in a vacuum after performing the desorption operation for switching the switch 5, and after 10 seconds after the desorption operation, dry air is introduced into the container so that the pressure inside the container becomes atmospheric pressure. When the inside was kept at atmospheric pressure, the operation of peeling the silicon wafer from the electrostatic chuck was performed to determine whether or not detachment was possible. The results are shown in Table 1.

Figure 2005317727
Figure 2005317727











脱離操作後も容器内を真空状態に保った場合は、実施例1及び比較例1共に脱離操作後10秒で、シリコンウェーハを静電チャックから引き剥がし脱離させることができた。脱離操作後に容器内圧力を大気圧にした場合は、実施例1では脱離操作後10秒でシリコンウェーハを静電チャックから引き剥がし脱離させることができたのに対し、比較例1では引き剥がし脱離させることができるようになるまで、脱離操作後100秒を要した。また比較例1では、脱離操作後の経過時間が50秒以下の場合、シリコンウェーハを静電チャックから引き剥がすときにシリコンウェーハが破損してしまった。   When the inside of the container was kept in a vacuum state even after the detachment operation, the silicon wafer was peeled off from the electrostatic chuck and detached in 10 seconds after the detachment operation in both Example 1 and Comparative Example 1. When the internal pressure of the container was changed to atmospheric pressure after the detachment operation, the silicon wafer was peeled off from the electrostatic chuck in 10 seconds after the detachment operation in Example 1, whereas it was detached in Comparative Example 1. It took 100 seconds after the desorption operation until the film could be peeled off and desorbed. In Comparative Example 1, when the elapsed time after the detachment operation was 50 seconds or less, the silicon wafer was damaged when the silicon wafer was peeled off from the electrostatic chuck.

上記の結果から、本発明の実施例になる静電チャックは、真空中で被吸着物を吸着後、静電チャックの周囲を大気圧又は低真空状態に戻したとき、被吸着物が脱離できるようになるまでの脱離時間が真空中での脱離時間よりも長くならない。これに対し、比較例(従来)の静電チャックは、真空中で被吸着物を吸着後、静電チャックの周囲を大気圧又は低真空状態に戻したとき、被吸着物が脱離できるようになるまでの脱離時間が、真空中での脱離時間よりも長くなることが明らかである。   From the above results, the electrostatic chuck according to the embodiment of the present invention is detached when the object is adsorbed in vacuum and then returned to the atmospheric pressure or low vacuum state around the electrostatic chuck. The desorption time until it becomes possible does not become longer than the desorption time in vacuum. On the other hand, the electrostatic chuck of the comparative example (conventional) is capable of detaching the object to be adsorbed when the object is adsorbed in a vacuum and then returned to the atmospheric pressure or low vacuum state around the electrostatic chuck. It is clear that the desorption time until becomes longer than the desorption time in vacuum.

本発明の効果の確認は、電極と被吸着物の間に電位差を与える単極型の静電チャックで行ったが、複数の電極の間に電位差を与えることにより被吸着物を吸着する双極型の静電チャックでも同様の効果が得られるものである。   The effect of the present invention was confirmed by a monopolar electrostatic chuck that gives a potential difference between the electrode and the object to be adsorbed, but a bipolar type that adsorbs the object to be adsorbed by giving a potential difference between a plurality of electrodes. The same effect can be obtained with this electrostatic chuck.

本発明の実施例になる吸着面に複数個の突起を備え、かつ吸着面下方の底面に外周まで到達する10本の溝を形成した静電チャックの吸着面付近の断面拡大図である。It is a cross-sectional enlarged view of the vicinity of the suction surface of the electrostatic chuck having a plurality of protrusions on the suction surface according to the embodiment of the present invention and having 10 grooves reaching the outer periphery on the bottom surface below the suction surface. 図1の平面図である。It is a top view of FIG. 比較例(従来)の吸着面に複数個の突起のみを備えた静電チャックの吸着面付近の断面拡大図である。It is a cross-sectional enlarged view of the vicinity of the suction surface of an electrostatic chuck having only a plurality of protrusions on the suction surface of a comparative example (conventional). 図3の平面図であるFIG. 4 is a plan view of FIG. 3. 静電チャックの断面及び被吸着物を吸着、脱離するときの回路を示す概略図である。It is the schematic which shows the circuit when adsorbing | sucking and desorb | sucking the to-be-adsorbed object and the cross section of an electrostatic chuck.

符号の説明Explanation of symbols

1 誘電体
2 被吸着物
3 電極
4 基体
5 スイッチ
6 突起
7 吸着面下方の底面
8 隙間空間
9 外周まで到達する溝
10 静電チャック
DESCRIPTION OF SYMBOLS 1 Dielectric 2 Adsorbed object 3 Electrode 4 Base | substrate 5 Switch 6 Protrusion 7 Bottom face under adsorption surface 8 Gap space 9 Groove reaching the outer periphery 10 Electrostatic chuck

Claims (1)

誘電体、電極及び基体を含む静電チャックにおいて、該誘電体の吸着面に複数個の突起を備え、かつ吸着面下方の底面に外周まで到達する1本以上の溝を形成してなる静電チャック。
In an electrostatic chuck including a dielectric, an electrode, and a substrate, an electrostatic chuck having a plurality of protrusions on the suction surface of the dielectric and one or more grooves reaching the outer periphery on the bottom surface below the suction surface. Chuck.
JP2004133278A 2004-04-28 2004-04-28 Electrostatic chuck Pending JP2005317727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133278A JP2005317727A (en) 2004-04-28 2004-04-28 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133278A JP2005317727A (en) 2004-04-28 2004-04-28 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2005317727A true JP2005317727A (en) 2005-11-10

Family

ID=35444838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133278A Pending JP2005317727A (en) 2004-04-28 2004-04-28 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2005317727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082977A2 (en) * 2006-12-26 2008-07-10 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
US7983017B2 (en) 2006-12-26 2011-07-19 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
WO2019001311A1 (en) * 2017-06-30 2019-01-03 上海微电子装备(集团)股份有限公司 Vacuumizing device and vacuumizing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082977A2 (en) * 2006-12-26 2008-07-10 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
WO2008082977A3 (en) * 2006-12-26 2008-09-12 Saint Gobain Ceramics Electrostatic chuck and method of forming
US7983017B2 (en) 2006-12-26 2011-07-19 Saint-Gobain Ceramics & Plastics, Inc. Electrostatic chuck and method of forming
WO2019001311A1 (en) * 2017-06-30 2019-01-03 上海微电子装备(集团)股份有限公司 Vacuumizing device and vacuumizing method
US11664228B2 (en) 2017-06-30 2023-05-30 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Vacuumizing device and vacuumizing method for bonding substrate

Similar Documents

Publication Publication Date Title
WO2010044398A1 (en) Electrostatic chuck, and method for manufacturing the chuck
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
WO2004084298A1 (en) Substrate holding mechanism using electrostaic chuck and method of manufacturing the same
JP4677397B2 (en) Electrostatic adsorption method
JPH04367247A (en) Ceramic electrostatic chuck
JP2007073892A (en) Suction apparatus, bonding device, and sealing method
JP2005317727A (en) Electrostatic chuck
WO2012026421A1 (en) Electrostatic chuck apparatus and method for manufacturing same
JP4763380B2 (en) Manufacturing method of adsorption device
JP2006066857A (en) Bipolar electrostatic chuck
JP5352777B2 (en) Quartz device manufacturing method
JPH11260899A (en) Electrostatic chuck
JP2006049852A (en) Electrostatic chuck
JPH07263527A (en) Electrostatic attraction device
JP4934907B2 (en) Electrostatic chuck
JP6011965B2 (en) Plasma dicing method and plasma dicing apparatus
JP2000183143A (en) Electrostatic chuck
JP5185847B2 (en) Substrate dry etching method
JP3933289B2 (en) Electrostatic chuck
JP4056599B2 (en) Method for attracting glass substrate for liquid crystal display device using electrostatic chuck
WO2006054406A1 (en) Electrostatic chuck for vacuum bonding system
JPH05343507A (en) Electrostatic attraction method
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JP3956620B2 (en) Electrostatic chuck
JP5312549B2 (en) Adsorption device