JPH04367247A - Ceramic electrostatic chuck - Google Patents

Ceramic electrostatic chuck

Info

Publication number
JPH04367247A
JPH04367247A JP3143317A JP14331791A JPH04367247A JP H04367247 A JPH04367247 A JP H04367247A JP 3143317 A JP3143317 A JP 3143317A JP 14331791 A JP14331791 A JP 14331791A JP H04367247 A JPH04367247 A JP H04367247A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
coating layer
ceramic
adsorption
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3143317A
Other languages
Japanese (ja)
Inventor
Koichi Nagasaki
浩一 長崎
Masaki Ushio
雅樹 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3143317A priority Critical patent/JPH04367247A/en
Publication of JPH04367247A publication Critical patent/JPH04367247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength and hardness of an electrostatic chuck itself by preventing the scattering of Ca, Ba, etc., contained in the ferroelectric ceramic substance used for forming the chuck so that contamination of silicon wafers can be prevented. CONSTITUTION:This electrostatic chuck is constituted by forming a coating layer 6 composed of the oxide or nitride of Al or Si or a compound of these elements on the surface of a ceramic plate-like body 1 which is provided with an internal electrode 2 and composed of a ferroelectric ceramic substance having a specific inductive capacity of >=50.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体の製造装置等に
おいて、シリコンウェハの固定、矯正、または搬送を行
うために用いられるセラミック製静電チャックに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic electrostatic chuck used for fixing, straightening, or transporting silicon wafers in semiconductor manufacturing equipment and the like.

【0002】0002

【従来の技術】従来より用いられている静電チャックは
、内部電極を絶縁性樹脂で被覆したものが主流であった
が、最近では耐食性、精度の優れたセラミック製静電チ
ャックが使用されてきた(例えば特開昭62−2646
38号公報等参照)。さらに、このセラミックスとして
CaTiO3 、BaTiO3 などの強誘電体セラミ
ックスを用いたものを、本出願人は既に提案している(
特願平2−339325号参照)。
[Prior Art] The electrostatic chucks conventionally used have mainly had internal electrodes coated with insulating resin, but recently ceramic electrostatic chucks with excellent corrosion resistance and precision have been used. (For example, Japanese Patent Application Laid-Open No. 62-2646
(See Publication No. 38, etc.) Furthermore, the applicant has already proposed a ceramic using ferroelectric ceramics such as CaTiO3 and BaTiO3 (
(See Japanese Patent Application No. 2-339325).

【0003】また、このような静電チャックは、半導体
装置の製造工程において、シリコンウェハを固定するた
めに用いられるが、特にシリコンウェハに対してドライ
エッチング処理を行うエッチャー用静電チャックの場合
は、シリコンウェハの加工を行うためのプラズマにより
、静電チャックの表面が損傷しやすかった。そのため、
上記強誘電体セラミックスを用いた静電チャックでは、
その成分であるCa、Ba等がウェハを汚染してしまう
ため、エッチャー用静電チャックにはポリイミドなどの
樹脂が用いられるのが一般的であった。
[0003]Also, such electrostatic chucks are used to fix silicon wafers in the manufacturing process of semiconductor devices, but in particular, electrostatic chucks for etchers that perform dry etching processing on silicon wafers are used. The surface of the electrostatic chuck was easily damaged by the plasma used to process silicon wafers. Therefore,
In the electrostatic chuck using the above ferroelectric ceramics,
Since its components such as Ca and Ba contaminate the wafer, resins such as polyimide have generally been used in electrostatic chucks for etchers.

【0004】0004

【発明が解決しようとする課題】しかし、近年シリコン
ウェハの加工速度が高速化して、より強力なエッチング
を行うようになってきた為、ポリイミドなどの樹脂から
なる静電チャックでは損傷が激しいという問題点があっ
た。また、上記したように、強誘電体セラミックスを用
いた静電チャックはシリコンウェハを汚染する可能性が
あるため、エッチャー用として好適に用いることはでき
なかった。
[Problem to be solved by the invention] However, in recent years, the processing speed of silicon wafers has increased and more powerful etching has become necessary, so there is a problem that electrostatic chucks made of resin such as polyimide are severely damaged. There was a point. Furthermore, as described above, electrostatic chucks using ferroelectric ceramics may contaminate silicon wafers, so they could not be suitably used for etchers.

【0005】更に、シリコンウェハの処理工程では静電
チャックとウェハが機械的に摺動するが、CaTiO3
 、BaTiO3 などの強誘電体セラミックス材料は
一般的に機械的強度が弱く、吸着離脱を繰り返すことに
よって特にエッジ部分から欠けが生じ、そのダストがウ
ェハにダメージを与える原因になるという問題点もあっ
た。
Furthermore, in the silicon wafer processing process, the electrostatic chuck and the wafer mechanically slide, but CaTiO3
, BaTiO3, and other ferroelectric ceramic materials generally have low mechanical strength, and repeated adsorption and separation can cause chipping, especially at the edges, and the resulting dust can damage the wafer. .

【0006】[0006]

【課題を解決するための手段】そこで本発明は、比誘電
率50以上の強誘電体セラミックスからなる板状体に内
部電極を備えるとともに、上記セラミック板状体の表面
にAl、Siの酸化物、窒化物、またはこれらの複合化
合物からなる被覆層を形成して静電チャックを構成した
ものである。
[Means for Solving the Problems] Accordingly, the present invention provides a plate-shaped body made of ferroelectric ceramic having a dielectric constant of 50 or more, which is provided with internal electrodes, and a surface of the ceramic plate-shaped body is coated with oxides of Al and Si. The electrostatic chuck is constructed by forming a coating layer made of , nitride, or a composite compound thereof.

【0007】[0007]

【作用】本発明によれば、セラミック板状体の表面に被
覆層を形成してあるため、Ca、Ba等の飛散を防止し
、シリコンウェハの汚染をなくすことができるとともに
、静電チャック自体の強度、硬度を向上させることがで
きる。
[Operation] According to the present invention, since a coating layer is formed on the surface of the ceramic plate, scattering of Ca, Ba, etc. can be prevented, and contamination of the silicon wafer can be eliminated, and the electrostatic chuck itself can be can improve the strength and hardness of

【0008】[0008]

【実施例】以下本発明実施例を説明する。[Examples] Examples of the present invention will be described below.

【0009】図1、図2に示すように、本発明の静電チ
ャックは、セラミック板状体1に内部電極2を備え、接
合剤3によってベース板4に固定したものである。また
、図3に拡大断面図を示すように上記セラミック板状体
1の表面にはAlまたはSiの化合物からなる被覆層5
を形成してある。
As shown in FIGS. 1 and 2, the electrostatic chuck of the present invention includes a ceramic plate-like body 1 and an internal electrode 2, which is fixed to a base plate 4 with a bonding agent 3. Further, as shown in an enlarged cross-sectional view in FIG.
has been formed.

【0010】そして、上記内部電極2に通電するための
電極取出部4aをベース板4に形成してあり、この電極
取出部4aを通じて内部電極2とシリコンウェハ6間に
電源7より電圧を印加することによって、シリコンウェ
ハ6を吸着面1a上に吸着することができる。なお、こ
の実施例では単極型の静電チャックを示したが、内部電
極2を複数形成し、これらの内部電極2間に電圧を印加
して双極型の静電チャックとすることもできる。
An electrode lead-out portion 4a for supplying current to the internal electrode 2 is formed on the base plate 4, and a voltage is applied from a power source 7 between the internal electrode 2 and the silicon wafer 6 through this electrode lead-out portion 4a. By doing so, the silicon wafer 6 can be attracted onto the attraction surface 1a. Although a monopolar electrostatic chuck is shown in this embodiment, a bipolar electrostatic chuck can also be obtained by forming a plurality of internal electrodes 2 and applying a voltage between these internal electrodes 2.

【0011】また、上記セラミック板状体1は、チタン
酸カルシウム(CaTiO3 )、チタン酸バリウム(
BaTiO3 )を主成分とする比誘電率50以上の強
誘電体セラミックスを用いる。そして、このセラミック
スをシート状に成形し、Ag、Pdなどからなる内部電
極2を形成した後、シート状成形体を積層して一体焼成
することによって、内部電極2を埋設したセラミック板
状体1を得ることができる。ただし、この内部電極2は
、必ずしもセラミック板状体1中に埋設する必要はなく
、図示していないがセラミック板状体1の吸着面1aと
反対側の面に内部電極2を形成し、この上に接合剤3を
介してベース板4を固定することも可能である。
[0011] Furthermore, the ceramic plate-like body 1 is made of calcium titanate (CaTiO3), barium titanate (
A ferroelectric ceramic whose main component is BaTiO3 and has a dielectric constant of 50 or more is used. Then, this ceramic is molded into a sheet shape to form internal electrodes 2 made of Ag, Pd, etc., and then the sheet-like molded bodies are stacked and integrally fired to create a ceramic plate-like body 1 in which the internal electrodes 2 are embedded. can be obtained. However, this internal electrode 2 does not necessarily need to be embedded in the ceramic plate-like body 1. Although not shown, the internal electrode 2 is formed on the surface of the ceramic plate-like body 1 opposite to the adsorption surface 1a, and It is also possible to fix the base plate 4 thereon via the bonding agent 3.

【0012】さらに、上記接合剤3としては、接着剤、
ガラス、シリコーン樹脂等を用いる。また、ベース板4
はアルミニウム等の金属材、またはアルミナ、フォルス
テライトなどのセラミック材を用いる。
Furthermore, as the bonding agent 3, an adhesive,
Glass, silicone resin, etc. are used. In addition, the base plate 4
A metal material such as aluminum or a ceramic material such as alumina or forsterite is used.

【0013】さらに被覆層5は、シリコンウェハに悪影
響を及ぼさない物質からなり、具体的には、Al、Si
の酸化物、窒化物、即ちAl2 O3 、SiO2 、
AlN、Si3 N4 あるいはこれらの複合化合物で
あるムライト(3Al2 O3 ・2SiO2 )など
を用いる。このように、被覆層5を形成してあることに
より、エッチャー用静電チャックとして用いた場合でも
、Ca、Baなどの物質がシリコンウェハ6を汚染する
ことを防止できる。なお、この被覆層5の膜厚tは20
〜200μmが良く、膜厚tが20μmより小さいと、
ウェハ吸着時に被覆層5が剥がれてウェハを汚染しやす
く、一方膜厚tが200μmより大きいと、内部電極2
と吸着面1aとの距離dが大きくなりすぎて吸着力が弱
くなってしまう。
Furthermore, the covering layer 5 is made of a material that does not have a bad effect on the silicon wafer, specifically, Al, Si, etc.
oxides and nitrides of Al2O3, SiO2,
AlN, Si3 N4, or a composite compound thereof, mullite (3Al2 O3 .2SiO2), is used. By forming the covering layer 5 in this way, it is possible to prevent substances such as Ca and Ba from contaminating the silicon wafer 6 even when used as an electrostatic chuck for an etcher. Note that the thickness t of this coating layer 5 is 20
~200 μm is good, and if the film thickness t is smaller than 20 μm,
The coating layer 5 peels off during wafer adsorption and easily contaminates the wafer. On the other hand, if the film thickness t is greater than 200 μm, the internal electrode 2
The distance d between this and the suction surface 1a becomes too large, and the suction force becomes weak.

【0014】さらに、この被覆層5は、CVD法、イオ
ンスパッタリング法などの公知の薄膜形成手段によって
形成することができる。また、この被覆層5を形成する
ことによって、静電チャック自体の強度、硬度を向上す
ることができる。
Furthermore, this coating layer 5 can be formed by a known thin film forming method such as a CVD method or an ion sputtering method. Furthermore, by forming this coating layer 5, the strength and hardness of the electrostatic chuck itself can be improved.

【0015】実験例1 本発明の静電チャックとして、セラミック板状体1をチ
タン酸カルシウムを主成分とするセラミックス(誘電率
ε=100)で構成し、その直径を96mmで、オリエ
ンテーションフラットの付いた形状とした。また、Pd
からなる内部電極2をセラミック板状体1中に埋設し、
さらにセラミック板状体1の表面にCVD法によって、
SiO2 からなり膜厚tが50μmの被覆層5を形成
し、内部電極2と吸着面1aとの距離dは400μm、
吸着面1aの表面粗さ(Rmax)は2Sとした。
Experimental Example 1 As an electrostatic chuck of the present invention, the ceramic plate 1 was composed of ceramics containing calcium titanate as a main component (dielectric constant ε=100), had a diameter of 96 mm, and had an orientation flat. It has a shape. Also, Pd
An internal electrode 2 consisting of is embedded in a ceramic plate-like body 1,
Furthermore, on the surface of the ceramic plate 1 by CVD method,
A coating layer 5 made of SiO2 and having a thickness t of 50 μm was formed, and the distance d between the internal electrode 2 and the adsorption surface 1a was 400 μm.
The surface roughness (Rmax) of the suction surface 1a was set to 2S.

【0016】また、上記と同一形状、大きさで被覆層5
を形成しない静電チャックを比較例として用意し、これ
らの静電チャックを用いて吸着離脱テストを行った。吸
着離脱テストは、真空度10−3Torr、静電チャッ
ク表面温度24℃、印加電圧100〜1000Vにて行
った。結果は、印加電圧と吸着力の関係を図4に、吸着
離脱応答曲線を図5にそれぞれ示す通りである。
[0016] Furthermore, a coating layer 5 having the same shape and size as above is also provided.
We prepared electrostatic chucks that did not form any porosity as comparative examples, and conducted adsorption/detachment tests using these electrostatic chucks. The adsorption/detachment test was conducted at a vacuum degree of 10 −3 Torr, an electrostatic chuck surface temperature of 24° C., and an applied voltage of 100 to 1000 V. The results are as shown in FIG. 4, which shows the relationship between applied voltage and adsorption force, and FIG. 5, which shows the adsorption/detachment response curve.

【0017】これらの結果より明らかに、本発明実施例
の静電チャックは実用的に充分な、600Vの印加電圧
で80g/cm2 以上の吸着力を得ることができた。 また、吸着離脱応答も2〜3秒にて吸着及び離脱操作を
行うことができ、比較例に比べ1秒程度反応が遅くなっ
ているが、実用上充分な反応速度であった。
From these results, it is clear that the electrostatic chuck of the example of the present invention was able to obtain a suction force of 80 g/cm 2 or more at an applied voltage of 600 V, which is sufficient for practical use. In addition, the adsorption and desorption response was able to perform the adsorption and desorption operations in 2 to 3 seconds, and although the reaction was about 1 second slower than in the comparative example, the reaction rate was sufficient for practical use.

【0018】実験例2 次に、上記本発明の静電チャックを用いて、被覆層5の
膜厚tを変化させたときの、吸着力とシリコンウェハ6
に対する汚染の有無を調べた。吸着力については、60
0Vの電圧を印加した時の吸着力が80g/cm2 以
上ものを○、80g/cm2 より小さいものを×とし
た。 また、シリコンウェハ6に対する汚染については、それ
ぞれの静電チャックを用いてシリコンウェハ6を吸着し
、ドライエッチング処理を行った後、このシリコンウェ
ハ6に対してEPMA分析を行い、Caが検出されなか
ったものを○、検出されたものを×とした。
Experimental Example 2 Next, using the electrostatic chuck of the present invention, the adsorption force and the silicon wafer 6 were measured when the thickness t of the coating layer 5 was varied.
The presence or absence of contamination was investigated. Regarding adsorption power, 60
Those with an adsorption force of 80 g/cm 2 or more when a voltage of 0 V was applied were rated as ○, and those with an adsorption force of less than 80 g/cm 2 were rated as ×. Regarding contamination of the silicon wafer 6, after adsorbing the silicon wafer 6 using each electrostatic chuck and performing a dry etching process, an EPMA analysis was performed on the silicon wafer 6, and Ca was not detected. Those detected were marked ○, and those detected were marked ×.

【0019】結果は表1に示す通り、被覆層5の膜厚t
が20μmより小さいとシリコンウェハ6への汚染があ
り、一方膜厚tが200μmより大きいと実用的に充分
な吸着力を得ることができなかった。したがって、被覆
層5の膜厚tは20〜200μmの範囲のものが良かっ
た。
The results are shown in Table 1, where the thickness t of the coating layer 5
If the film thickness t is smaller than 20 μm, the silicon wafer 6 may be contaminated, while if the film thickness t is larger than 200 μm, a practically sufficient suction force cannot be obtained. Therefore, the thickness t of the coating layer 5 was preferably in the range of 20 to 200 μm.

【0020】[0020]

【表1】[Table 1]

【0021】実験例3 次に、本発明実施例として、Al2 O3 、SiO2
 、Si3 N4 、およびムライト(3Al2 O3
 ・2SiO2 )からなる被覆層5を形成したものを
用意し、比較例としてこれらの被覆層5を形成しないも
のを用意し、それぞれセラミック板状体1の抗折強度(
JIS3点曲げ)、ビッカース硬度(荷重500g)を
測定した。結果は表2に示す通り、被覆層5を形成した
本発明実施例は、比較例に比べ、強度、硬度ともに向上
していることがわかる。
Experimental Example 3 Next, as an example of the present invention, Al2O3, SiO2
, Si3 N4, and mullite (3Al2 O3
・2SiO2) was prepared with a coating layer 5 formed thereon, and as a comparative example, a ceramic plate 1 with no coating layer 5 formed thereon was prepared, and the bending strength (
JIS 3-point bending) and Vickers hardness (load: 500 g). As shown in Table 2, the results show that the examples of the present invention in which the coating layer 5 was formed have improved both strength and hardness compared to the comparative examples.

【0022】[0022]

【表2】[Table 2]

【0023】[0023]

【発明の効果】叙上のように本発明によれば、内部電極
を有する比誘電率50以上の強誘電体セラミックスから
なる板状体の表面に、Al、Siの酸化物、窒化物、ま
たはこれらの複合化合物からなる被覆層を形成したこと
によって、強誘電体セラミックスに含まれるCa、Ba
などの飛散を防止することができるため、シリコンウェ
ハに対する汚染をなくすことができ、特にエッチャー用
に好適な静電チャックを提供できる。また、被覆層を形
成しても、所定範囲の膜厚にすれば、実用上問題ない吸
着力が得られ、さらに被覆層を形成することによって機
械的強度を向上させられるなどの効果を奏することがで
きる。
Effects of the Invention As described above, according to the present invention, an oxide, nitride, or oxide of Al, Si, or By forming a coating layer made of these composite compounds, Ca and Ba contained in ferroelectric ceramics can be reduced.
Since it is possible to prevent the scattering of such substances, it is possible to eliminate contamination of silicon wafers, and it is possible to provide an electrostatic chuck particularly suitable for use in etchers. In addition, even if a covering layer is formed, if the film thickness is within a predetermined range, adsorption force that does not cause any practical problems can be obtained, and furthermore, by forming a covering layer, mechanical strength can be improved, etc. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のセラミック製静電チャックを示す斜視
図である。
FIG. 1 is a perspective view showing a ceramic electrostatic chuck of the present invention.

【図2】図1中のX−X線断面図である。FIG. 2 is a sectional view taken along the line XX in FIG. 1;

【図3】図2中のA部拡大断面図である。FIG. 3 is an enlarged sectional view of section A in FIG. 2;

【図4】本発明および比較例の静電チャックによる印加
電圧と吸着力の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between applied voltage and adsorption force by electrostatic chucks of the present invention and comparative examples.

【図5】本発明および比較例の静電チャックによる吸着
離脱応答曲線を示すグラフである。
FIG. 5 is a graph showing adsorption/detachment response curves by electrostatic chucks of the present invention and comparative examples.

【符号の説明】[Explanation of symbols]

1・・・セラミック板状体 2・・・内部電極 3・・・接合材 4・・・ベース板 5・・・被覆層 6・・・シリコンウェハ 7・・・電源 1... Ceramic plate-shaped body 2...Internal electrode 3...Joining material 4...Base board 5...Covering layer 6...Silicon wafer 7...Power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部電極を有する比誘電率50以上の強誘
電体セラミックスからなる板状体の表面に、Al、Si
の酸化物、窒化物、またはこれらの複合化合物からなる
被覆層を形成して成るセラミック製静電チャック。
[Claim 1] A plate-like body made of ferroelectric ceramic having a dielectric constant of 50 or more and having internal electrodes is coated with Al, Si, etc. on the surface thereof.
Ceramic electrostatic chuck with a coating layer made of oxide, nitride, or a composite compound thereof.
JP3143317A 1991-06-14 1991-06-14 Ceramic electrostatic chuck Pending JPH04367247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143317A JPH04367247A (en) 1991-06-14 1991-06-14 Ceramic electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143317A JPH04367247A (en) 1991-06-14 1991-06-14 Ceramic electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH04367247A true JPH04367247A (en) 1992-12-18

Family

ID=15335970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143317A Pending JPH04367247A (en) 1991-06-14 1991-06-14 Ceramic electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH04367247A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635869A1 (en) * 1993-04-22 1995-01-25 Applied Materials, Inc. Semiconductor processing apparatus, method of making and use of same
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5792562A (en) * 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US5841624A (en) * 1997-06-09 1998-11-24 Applied Materials, Inc. Cover layer for a substrate support chuck and method of fabricating same
US6263829B1 (en) 1999-01-22 2001-07-24 Applied Materials, Inc. Process chamber having improved gas distributor and method of manufacture
US6278600B1 (en) 1994-01-31 2001-08-21 Applied Materials, Inc. Electrostatic chuck with improved temperature control and puncture resistance
US6414834B1 (en) 1996-04-26 2002-07-02 Applied Materials, Inc. Dielectric covered electrostatic chuck
US6581275B2 (en) 2001-01-22 2003-06-24 Applied Materials Inc. Fabricating an electrostatic chuck having plasma resistant gas conduits
US6598559B1 (en) 2000-03-24 2003-07-29 Applied Materials, Inc. Temperature controlled chamber
US6682627B2 (en) 2001-09-24 2004-01-27 Applied Materials, Inc. Process chamber having a corrosion-resistant wall and method
DE10235814B3 (en) * 2002-08-05 2004-03-11 Infineon Technologies Ag Process for detachably mounting a semiconductor substrate to be processed on a supporting wafer used in the production of semiconductor components comprises thinly grinding the substrate and removing the substrate from the wafer
JP2015162618A (en) * 2014-02-28 2015-09-07 株式会社日立ハイテクノロジーズ plasma processing apparatus
US9127362B2 (en) 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560780A (en) * 1993-04-22 1996-10-01 Applied Materials, Inc. Protective coating for dielectric material on wafer support used in integrated circuit processing apparatus and method of forming same
EP0635869A1 (en) * 1993-04-22 1995-01-25 Applied Materials, Inc. Semiconductor processing apparatus, method of making and use of same
US5986875A (en) * 1994-01-31 1999-11-16 Applied Materials, Inc. Puncture resistant electrostatic chuck
US5729423A (en) * 1994-01-31 1998-03-17 Applied Materials, Inc. Puncture resistant electrostatic chuck
US6278600B1 (en) 1994-01-31 2001-08-21 Applied Materials, Inc. Electrostatic chuck with improved temperature control and puncture resistance
US5800871A (en) * 1995-01-12 1998-09-01 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US5792562A (en) * 1995-01-12 1998-08-11 Applied Materials, Inc. Electrostatic chuck with polymeric impregnation and method of making
US6721162B2 (en) 1996-04-26 2004-04-13 Applied Materials Inc. Electrostatic chuck having composite dielectric layer and method of manufacture
US6414834B1 (en) 1996-04-26 2002-07-02 Applied Materials, Inc. Dielectric covered electrostatic chuck
US5841624A (en) * 1997-06-09 1998-11-24 Applied Materials, Inc. Cover layer for a substrate support chuck and method of fabricating same
US6263829B1 (en) 1999-01-22 2001-07-24 Applied Materials, Inc. Process chamber having improved gas distributor and method of manufacture
US6598559B1 (en) 2000-03-24 2003-07-29 Applied Materials, Inc. Temperature controlled chamber
US6581275B2 (en) 2001-01-22 2003-06-24 Applied Materials Inc. Fabricating an electrostatic chuck having plasma resistant gas conduits
US6682627B2 (en) 2001-09-24 2004-01-27 Applied Materials, Inc. Process chamber having a corrosion-resistant wall and method
DE10235814B3 (en) * 2002-08-05 2004-03-11 Infineon Technologies Ag Process for detachably mounting a semiconductor substrate to be processed on a supporting wafer used in the production of semiconductor components comprises thinly grinding the substrate and removing the substrate from the wafer
US9127362B2 (en) 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
US10347475B2 (en) 2005-10-31 2019-07-09 Applied Materials, Inc. Holding assembly for substrate processing chamber
US11658016B2 (en) 2005-10-31 2023-05-23 Applied Materials, Inc. Shield for a substrate processing chamber
JP2015162618A (en) * 2014-02-28 2015-09-07 株式会社日立ハイテクノロジーズ plasma processing apparatus

Similar Documents

Publication Publication Date Title
JP2865472B2 (en) Electrostatic chuck
JPH04367247A (en) Ceramic electrostatic chuck
JP2001203258A (en) Electrostatic chuck member and its manufacturing method
JP2008016709A (en) Electrostatic chuck and manufacturing method therefor
JPH0652758B2 (en) Electrostatic check
JPH056933A (en) Electrostatic chuck made of ceramic
JP2513995B2 (en) Electrostatic check
JPS63283037A (en) Statically attracting apparatus
KR20020008791A (en) Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
JPH10154745A (en) Electrostatic attracting device
JPH0536819A (en) Electrostatic chuck
JPH06177231A (en) Electrostatic chuck
JPH0513555A (en) Electrostatic chuck and voltage application method to electrostatic chuck
JP2552420Y2 (en) Ceramic electrostatic chuck
JP3370532B2 (en) Electrostatic chuck
JP2000021963A (en) Electrostatic chuck device
JP3180998B2 (en) Electrostatic chuck
JPH10107132A (en) Electrostatic chuck
JPH09293774A (en) Electrostatic chuck
JP2000012666A (en) Electrostatic chuck
JP4934907B2 (en) Electrostatic chuck
JP2960566B2 (en) Electrostatic chuck substrate and electrostatic chuck
JP2004031599A (en) Electrostatic chuck
JP7078826B2 (en) Detachable device
JPH05206254A (en) Electrostatic chuck