WO2006049272A1 - Process and apparatus for nitrogen production - Google Patents

Process and apparatus for nitrogen production Download PDF

Info

Publication number
WO2006049272A1
WO2006049272A1 PCT/JP2005/020340 JP2005020340W WO2006049272A1 WO 2006049272 A1 WO2006049272 A1 WO 2006049272A1 JP 2005020340 W JP2005020340 W JP 2005020340W WO 2006049272 A1 WO2006049272 A1 WO 2006049272A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
nitrogen
fluid
enriched
nitrogen gas
Prior art date
Application number
PCT/JP2005/020340
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Irisawa
Toshiyuki Nojima
Takashi Tatsumi
Original Assignee
Taiyo Nippon Sanso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corporation filed Critical Taiyo Nippon Sanso Corporation
Priority to US11/667,164 priority Critical patent/US20080264101A1/en
Publication of WO2006049272A1 publication Critical patent/WO2006049272A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04424Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system without thermally coupled high and low pressure columns, i.e. a so-called split columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

Definitions

  • the present invention relates to a method and apparatus for producing nitrogen, and more particularly, a method and apparatus for separating and refining raw material air by a cryogenic liquefaction separation method to collect nitrogen, particularly in a pressure range of 0.6 to 1. It relates to the most suitable nitrogen production method and equipment for collecting product nitrogen of about IMPa (absolute pressure, the same shall apply hereinafter).
  • Air liquefaction separation by a cryogenic liquefaction separation method is often used for industrial production of nitrogen, and various methods and equipment are used to improve the power unit of product nitrogen gas and expand the range of weight loss.
  • various methods and equipment are used to improve the power unit of product nitrogen gas and expand the range of weight loss.
  • An apparatus has been proposed (see, for example, Patent Document 1) o Patent Document 1: Japanese Patent Application Laid-Open No. 2003-156284.
  • the present invention is capable of efficiently and economically supplying product nitrogen having a pressure range of about 0.6 to 1.
  • IMPa using a two-column type nitrogen production apparatus, and facilitates optimal configuration of equipment.
  • the purpose is to provide a nitrogen production method and a nitrogen production apparatus that can be selected.
  • the first aspect of the nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of the raw material air of the present invention is to compress the raw material air that has been compressed, purified, and cooled to a pressure of 0.8 MPa or more and 1. IMPa or less.
  • Nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain the second liquid nitrogen, and at the same time, the second acid
  • a second indirect heat exchange step of evaporating the enriched liquefied fluid to obtain a second oxygen-enriched gas fluid and
  • a second aspect of the nitrogen production method of the present invention is that the compressed, purified, and cooled raw material air is subjected to low temperature distillation at a pressure of 0.6 MPa or more and 1. IMPa or less to produce first nitrogen gas and first oxygen.
  • the second nitrogen gas is condensed by indirect heat exchange with the fluid to obtain the second liquid nitrogen, and at the same time, the second oxygen-enriched liquid fluid is evaporated to produce the second oxygen-enriched gas stream.
  • the first and second aspects of the nitrogen production method may include a step of compressing the second product nitrogen gas.
  • a first aspect of the nitrogen production apparatus for collecting product nitrogen by cryogenic liquefaction separation of raw material air of the present invention is a nitrogen production apparatus for collecting product nitrogen by cryogenic liquefaction separation of raw material air.
  • the nitrogen production equipment is: low-temperature distillation of compressed, refined, and cooled raw material air at a pressure of 0.8 MPa or higher, 1. IMPa or lower, and the first nitrogen gas at the top of the tower and the first oxygen-enriched liquid at the bottom of the tower.
  • a first rectifying column that is separated into a fluid; a heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid to condense the first nitrogen gas to form a first liquid nitrogen
  • a first condenser for evaporating the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid
  • the first oxygen-enriched gas fluid at 0.4 MPa or more and the first oxygen-enriched gas fluid
  • a second rectifying column that is subjected to low-temperature distillation at a pressure lower than that of the rectifying column and rectifying and separating the second nitrogen gas at the top of the column and the second oxygen-enriched liquefied fluid at the bottom of the column; Gas and the second oxygen-enriched liquefied fluid are indirectly heat-exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time, the second oxygen-enriched liquefied fluid is evaporated to produce the second oxygen-enriched gas.
  • a second condenser that obtains fluid; an expansion turbine that adiabatically expands the second oxygen-enriched gas fluid to generate the cold necessary to operate the apparatus; and first product after cold recovery of part of the first nitrogen gas A first product recovery path that leads out as nitrogen gas; and a second product recovery path that leads out part of the second nitrogen gas as second product nitrogen gas after cold recovery.
  • a second aspect of the nitrogen production apparatus of the present invention is the first nitrogen gas at the top of the tower by low-temperature distillation of the compressed, purified and cooled raw material air at a pressure of 0.6 MPa or more and 1. IMPa or less.
  • a first rectifying column that is separated into a first oxygen-enriched liquefied fluid at the bottom of the column; the first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat-exchanged to produce a first nitrogen gas
  • a first condenser for condensing to obtain a first liquid-nitrogen and simultaneously evaporating a first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid
  • a second rectifying column that is 3 MPa or more and is subjected to low-temperature distillation at a pressure lower than that of the first rectifying column to separate a rectified fraction into a second nitrogen gas at the top of the column and a second oxygen-enriched liquefied fluid at the bottom of the column.
  • the second nitrogen gas and the second oxygen-enriched liquefied fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain a second liquid nitrogen, and at the same time a second oxygen-enriched liquid fluid
  • the A second condenser that evaporates to obtain a second oxygen-enriched gas fluid
  • an expansion turbine that adiabatically expands part of the raw material air to generate cold necessary for operation of the apparatus; and a raw material that passes through the expansion turbine
  • An air introduction path for introducing air into the intermediate stage of the second rectification column; a first product recovery path for extracting a portion of the first nitrogen gas as a first product nitrogen gas after cold recovery; and A second product recovery route for extracting a part of the nitrogen gas as a second product nitrogen gas after cold recovery.
  • the first and second aspects of the nitrogen production apparatus may include a nitrogen compressor that performs a compression step of the second product nitrogen gas, and the second rectification column is provided from outside the apparatus.
  • a liquid nitrogen introducing path for introducing liquefied nitrogen can be provided.
  • the second vapor that has evaporated in the second condenser that performs the second indirect heat exchange step As a fluid to be introduced into the expansion turbine that performs the cold generation process, the second vapor that has evaporated in the second condenser that performs the second indirect heat exchange step. 2Oxygen-enriched gas fluid is used. Therefore, almost the entire amount of the first oxygen-enriched gas fluid that does not need to be branched and introduced into the expansion turbine is introduced into the second rectification column. The amount of product nitrogen collected from the second rectification column can be increased because the throughput of the second rectification column is higher than before.
  • a part of the compressed, refined, and cooled raw material air is branched into an expansion turbine that performs a cold generation step, and adiabatic expansion is performed. After generating the cold necessary for the operation of the equipment, it is introduced into the intermediate stage of the second rectification column. Therefore, the required amount of cold can be efficiently obtained, the throughput of the second rectification column can be increased, and the amount of product nitrogen collected from the second rectification column can be increased.
  • the pressure of the second product nitrogen gas can be made the same as that of the first product nitrogen gas and supplied to the user.
  • liquid-nitrogen as an external force of the apparatus, it is not necessary to introduce a part of the first oxygen-enriched liquid-fluid to the second rectifying column for cold replenishment, and further, the treatment of the expansion turbine. It can also reduce or reduce the reasoning.
  • FIG. 1 is a system diagram of a nitrogen production apparatus showing a first embodiment (low pressure turbine process) of the present invention.
  • FIG. 2 is a system diagram of a nitrogen production apparatus showing a second embodiment (air turbine process) of the present invention.
  • FIG. 3 is a system diagram of a nitrogen production apparatus related to a conventional medium pressure turbine process used for comparison with the present invention.
  • FIG. 4 is a system diagram showing an example of a nitrogen production apparatus related to a conventional low-pressure process using one rectification column.
  • FIG. 5 A diagram showing a power unit for each product pressure in the low pressure type process, the low pressure turbine process, and the air turbine process.
  • FIG. 6 A diagram showing a range of product pressure and product flow rate advantageous for the low-pressure turbine process and the air turbine process.
  • FIG. 1 shows a first embodiment of the present invention and is a system diagram of a nitrogen production apparatus to which a first aspect of the nitrogen production method and the nitrogen production apparatus is applied.
  • the nitrogen production apparatus shown in the present embodiment is a low-temperature distillation of compressed, purified, and cooled raw material air at a pressure of 0.8 MPa or more and 1. IMPa or less, and the first nitrogen gas at the top of the tower and the bottom of the tower A first rectifying column 11 that separates into a first oxygen-enriched liquefied fluid, and the first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas.
  • the compressed and refined raw material air flows into the main heat exchanger 16 from the path 31, and is cooled to a predetermined temperature by exchanging heat with product nitrogen gas and waste gas in the main heat exchanger 16.
  • the cooled raw material air is introduced into the lower part of the first rectifying column 11 through the raw material air inflow path 32, and nitrogen gas (first nitrogen) in the upper part of the column is obtained by low-temperature distillation in the first rectifying column 11.
  • Gas) and the oxygen-enriched liquefied fluid first oxygen-enriched liquefied fluid at the bottom of the column (first separation step).
  • Part of the first nitrogen gas extracted from the top of the tower to the path 33 is branched to the path 34, exchanges heat with the raw material air in the main heat exchanger 16, and is recovered as cold. It is derived from the recovery path 35 as the first product nitrogen gas (first product recovery process).
  • the remaining first nitrogen gas is introduced into the first condenser 12 through the path 36.
  • the first oxygen-enriched liquefied fluid is extracted to the lower force path 37 of the first rectifying column 11, and is reduced by the pressure reducing valve 17 to a pressure at which the first nitrogen gas can be liquefied. And introduced into the first condenser 12 from the path 38.
  • the first oxygen-enriched liquid fluid and the first nitrogen gas undergo indirect heat exchange in the first condenser 12, and the first nitrogen gas condenses and becomes liquid nitrogen (first liquid nitrogen).
  • the first oxygen-enriched liquid fluid evaporates to become an oxygen-enriched gas fluid (first oxygen-enriched gas fluid) (first indirect heat exchange step).
  • the first liquefied nitrogen is introduced into the upper part of the first rectifying column 11 through the path 39 to become a reflux liquid.
  • the first oxygen-enriched gas fluid evaporated in the first condenser 12 is introduced into the lower part of the second rectifying column 13 through the path 40 and is subjected to low-temperature distillation in the second rectifying column 13.
  • the gas is separated into nitrogen gas (second nitrogen gas) at the top of the tower and oxygen-enriched liquefied fluid (second oxygen-enriched liquefied fluid) at the bottom of the tower (second separation step).
  • Part of the second nitrogen gas extracted from the tower top force into the path 41 is also branched into the path 42 to exchange heat with the raw material air in the main heat exchange.
  • the second product nitrogen gas is derived from the route 43 (second product recovery step), compressed to a predetermined pressure by the nitrogen compressor 18, and sent to the user from the route 44 (compression step). o)
  • the remaining second nitrogen gas is introduced into the second condenser 14 through the path 45.
  • the second oxygen-enriched liquefied fluid is withdrawn into the lower force path 46 of the second rectifying column 13, branched from the path 37 to the path 47, and is reduced by the pressure reducing valve 19 with the second oxygen-enriched liquid.
  • the pressure is reduced to a pressure at which the second nitrogen gas can be liquefied by the pressure reducing valve 20, It is introduced into the condenser 14.
  • the mixed fluid of the first oxygen-enriched liquid and the second oxygen-enriched liquid and the second nitrogen gas exchange heat indirectly, and the second nitrogen gas is condensed.
  • liquid nitrogen (second liquid nitrogen) is formed, and at the same time, the mixed fluid is evaporated to become oxygen-enriched gas fluid (second oxygen-enriched gas fluid) (second indirect heat exchange step).
  • the second liquefied nitrogen is introduced into the upper part of the second rectifying column 13 through the path 49 and becomes a reflux liquid.
  • the second oxygen-enriched gas fluid led out from the second condenser 14 to the path 50 is branched into a path 51 and a path 52, and most of the fluid is introduced into the main heat exchange through the path 52.
  • the temperature is raised to an intermediate temperature, extracted to path 53, and introduced into low-pressure expansion turbine 15.
  • the remaining part of the path 51 is decompressed by the valve 21.
  • the second oxygen-enriched gas fluid that has generated the cold necessary for the operation of the apparatus by adiabatic expansion in the low-pressure expansion turbine 15 (the cold generation process) passes through the path 54 and branches to the path 51 to be a valve.
  • the second oxygen-enriched gas fluid depressurized in 21 is merged, and after recovering cold by main heat exchange, it is led out as waste gas from path 55. Part of this waste gas is used to regenerate the adsorber, which purifies the raw air.
  • the first oxygen-enriched liquefied fluid branched into the path 47 is branched in a small amount for the purpose of cold replenishment of the second rectification column 13, and most of the first oxygen-enriched liquefied fluid.
  • the fluid is introduced into the first condenser 12.
  • the first oxygen-enriched liquid fluid branched into this path 47 may be introduced into the middle stage of the second rectification column 13.
  • a part of the first oxygen-enriched gas fluid flowing through the path 40 may be flowed to the path 50 through the control valve.
  • the first oxygen-enriched gas fluid flowing from 40 to the path 50 is small, and most of the first oxygen-enriched gas fluid is introduced into the second fractionator 13.
  • the second product nitrogen gas is compressed by the nitrogen compressor 18 and is usually brought to the same pressure as the first product nitrogen gas led out from the first product recovery path 35, but depends on the situation of the user. Any pressure can be selected at the same time, and the second product recovery path 43 can be supplied at the same pressure without installing the nitrogen compressor 18. It is also possible to install a compressor that compresses the first product nitrogen gas as needed.
  • the low-pressure expansion turbine 15 can also be introduced with the entire amount of the second oxygen-enriched gas fluid passing through the path 50, and the first liquid in the path 39 can be utilized by utilizing the increased coldness due to the increased processing amount. Nitrogen and a part of the second liquid nitrogen in channel 49 can be collected as product liquid nitrogen.
  • the operating pressure of the rectifying columns 11 and 13 is determined by the pressure of the waste gas taken out from the path 55. That is, the second oxygen-enriched gas fluid (waste gas) derived from the low-pressure expansion turbine 15 is recovered by cooling with the main heat exchanger 16 and then used for regeneration of the adsorber.
  • the second oxygen-enriched gas fluid in path 54 in the air must have a pressure that can be released to the atmosphere after regeneration of the adsorber, including pressure loss in the main heat exchanger 16 etc.
  • the pressure of the second oxygen-enriched gas fluid in the passage 53 at the inlet of the pipe should be about 0.16 MPa or more.
  • the second oxygen-enriched liquid fluid and the second nitrogen gas are indirectly heat-exchanged, and the second nitrogen gas is liquefied to produce the second oxygen-enriched liquid. It is necessary to evaporate the fluid. Therefore, if the minimum pressure of the second oxygen-enriched gas fluid is about 0.16 MPa, the pressure at the top of the second rectifying column 13, which is the pressure of the second nitrogen gas, will be about 0.4 MPa or more. Must be set.
  • the pressure at the top of the second rectifying column 13 is about 0.4 MPa or more, the pressure in the second rectifying column 13 is changed to the first nitrogen in the first condenser 12 as described above. Because it is the pressure of the first oxygen-enriched gas fluid that indirectly exchanges heat with the gas, the pressure at the top of the first rectification column 11 that is the pressure of the first nitrogen gas is set to about 0.8 MPa or more. There is a need.
  • the operating pressure of the first rectifying column 11 must be set to 0.8 MPa or more,
  • the operating pressure of the rectifying column 13 is 0.4 MPa or more, and the necessary power to receive the first oxygen-enriched gas fluid.
  • the operating pressure of the rectifying column 13 must be set lower than the operating pressure of the first rectifying column 11.
  • FIG. 2 shows a second embodiment of the present invention, and is a system diagram of a nitrogen production apparatus to which the second aspect of the nitrogen production method and the nitrogen production apparatus is applied.
  • the same components as those in the nitrogen production apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the nitrogen production apparatus shown in the present embodiment has a main heat exchanger that is compressed and refined and branches a part of the raw material air that has flowed into the main heat exchanger 16 from the path 31 to the path 71 at an intermediate temperature.
  • an expansion turbine hereinafter referred to as an air turbine 72 using a part of the raw material air, it is adiabatically expanded to generate cold (chill generation process), and then passed through an air introduction path 73. Then, it is introduced into the intermediate stage of the second rectification column 13 (air introduction process).
  • the ratio of the raw material air branched into the air turbine 72 is a force that can be appropriately set according to the required amount of cold, turbine efficiency, etc. Usually, a range of 10 to 20% is appropriate.
  • the connection position of the air introduction path 73 and the oxygen-enriched liquefied fluid introduction path 74 to the second rectification column 13 can be arbitrarily set according to the design conditions, but is usually set to the same position.
  • first oxygen-enriched gas fluid from path 40 first oxygen-enriched liquid fluid from oxygen-enriched liquefied fluid inlet path 74, and second liquid-nitrogen from path 49 low temperature It is distilled and separated into nitrogen gas (second nitrogen gas) at the top of the column and oxygen-enriched liquefied fluid (second oxygen-enriched liquefied fluid) at the bottom of the column.
  • Part of the second nitrogen gas passes through the path 42, the main heat exchanger 16, and the path 43, and is led out as the second product nitrogen gas.
  • the second oxygen-enriched gas fluid evaporated by indirect heat exchange in the second condenser 14 and led to the path 50 is recovered as cold by the main heat exchanger 16 and then led out as waste gas from the path 55. .
  • the second oxygen-enriched gas fluid (waste gas) evaporated by the second condenser 14 and led to the path 50 passes through the main heat exchanger 16 without passing through the expansion turbine. Since it is exhausted through and then used only for regeneration of the adsorber, it is not necessary to consider the expansion in the expansion turbine as in the first embodiment, so that it is derived from the second condenser 14.
  • the pressure can be about atmospheric pressure. In order to liquefy the second nitrogen gas with the second oxygen-enriched liquid near the atmospheric pressure, it is necessary to set the pressure at the top of the second rectifying column 13 to about 0.3 MPa or more.
  • the pressure of the second rectification column 13 is the pressure of the first oxygen-enriched gas fluid that indirectly exchanges heat with the first nitrogen gas in the first condenser 12 as described above, the pressure of the first nitrogen gas
  • the pressure at the top of the first rectification column 11, which is the pressure, must be set to about 0.6 MPa or more.
  • the second rectifying column is introduced by introducing a part of the first oxygen-enriched liquid soot extracted from the first rectifying column 11 into the path 46 or the second rectifying column.
  • the cold necessary for the operation of 13 is covered, but other cold supply means can be used as the cold source, for example, liquid nitrogen from the outside of the equipment should be introduced into the second rectification column 13.
  • a cold source such as liquefied nitrogen from the outside of the apparatus can be appropriately selected according to the operation state of the apparatus and the required amount of cold, and liquid nitrogen or the like is introduced into the first rectification column 11. But ⁇ .
  • FIG. 3 shows a system diagram of a conventional two-column nitrogen production apparatus used for comparison, in which the pressure of the fluid introduced into the expansion turbine is the second oxygen-enriched gas shown in the first embodiment. Since the pressure is intermediate between the pressure of the fluid and the pressure of a part of the raw air shown in the second embodiment, the first embodiment is hereinafter referred to as a low-pressure turbine process, Two examples will be referred to as an air turbine process and a conventional example as an intermediate pressure turbine process.
  • the same components as those in the nitrogen production apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the low pressure turbine process of the first embodiment and the conventional intermediate pressure turbine process are different in the fluid introduced into the expansion turbine. That is, the first oxygen-enriched gas fluid is not used in the low-pressure turbine process, and most of the second oxygen-enriched gas fluid derived from the second condenser 14 to the path 50 is introduced to the low-pressure expansion turbine 15 from the path 53.
  • the medium pressure turbine process as shown in FIG. 3, a part of the first oxygen-enriched gas fluid evaporated in the first condenser 12 is branched from the path 40 to the path 81 and extracted. Further, a part thereof is branched into a path 82, and the remaining part is introduced into the main heat exchanger from the path 83, extracted into the path 84 at an intermediate temperature, and introduced into the expansion turbine (medium pressure expansion turbine) 85.
  • the first oxygen-enriched gas fluid adiabatically expanded by the intermediate-pressure expansion turbine 85 and led to the path 86 is the second oxygen-enriched gas fluid decompressed by the pressure-reducing valve 87 from the path 50 and the decompression of the path 82.
  • the first oxygen-enriched gas fluid depressurized by the valve 88 is merged, and cold heat is recovered by the main heat exchanger 16, and then is discharged as waste gas from the path 55.
  • reference signs A to M shown in the tables are reference feed air for path 31 and reference sign B is feed air for the first rectification column introduced in path 32.
  • C is the first product nitrogen gas in the first product recovery path 35
  • code D is the first oxygen-enriched liquefied fluid derived from the first rectification column in path 37
  • code E is the branched first oxygen-enriched liquid in path 47 Fluid
  • sign F is the first condenser in path 38 Introduced first oxygen-enriched liquefied fluid
  • symbol G is the second rectifying column introduced first rectifier in channel 40 or 40a
  • symbol H is second product nitrogen gas in symbol second product recovery channel 43
  • symbol I Is the compressed second product nitrogen gas in path 44
  • J is the second condenser-derived second oxygen-enriched gas fluid in path 50
  • K is the second oxygen-enriched gas fluid in path 53 in the low-pressure turbine process, air In the turbine process, the feed air in path 71, and in the intermediate pressure turbine process, the first oxygen-enriched gas fluid in path 84,
  • the flow rate of the second product nitrogen gas (H) obtained from the second rectification column 13 is different and the flow rate of the intermediate pressure turbine process is 19, whereas the flow rate of the low pressure turbine process is 2 2. Increased in number. From this, the total flow rate of product nitrogen in the medium-pressure turbine process is 59 with raw air at a flow rate of 100, whereas the total flow rate of product nitrogen is increased to 62 in the low-pressure turbine process.
  • the raw air and oxygen-enriched liquid derived from the expansion turbine from the air introduction path 73 are connected to the second rectifying column 13 only by the first oxygen-enriched gas fluid from the path 40. Since the first oxygen-enriched liquid fluid from the fluid introduction path 74 is introduced, the second The flow rate of the second product nitrogen gas (H) obtained from the rectification column 13 is greatly increased.
  • the flow rate of the intermediate pressure turbine process is 19, whereas the flow rate is increased to 30 in the air turbine process. Therefore, the total flow rate of product nitrogen is increased to 59 for the medium pressure turbine process and 63 for the air turbine process.
  • Table 4 shows the results of calculating the power consumption in each of the above processes.
  • each rectification column is a tray-type rectification column.
  • each rectification column is a regular-packed rectification column that is generally used. A distillation column or the like can be used, and even if these are used, substantially the same effect can be obtained.
  • FIG. 4 is a system diagram showing an example of a nitrogen production apparatus employing a conventional low-pressure process using one rectification column.
  • This nitrogen production apparatus operates the rectifying column 91 at a low pressure of about 0.5 MPa, compresses the obtained product nitrogen gas to a required pressure with a nitrogen compressor 92, and supplies raw air (not shown).
  • This is a method of realizing a low unit by reducing the compressor power and simultaneously improving the yield of the rectification column, and has been widely practiced.
  • the explanation of each part of the device and the flow of each gas and liquid in Fig. 4 are well known in the past. Will not be described.
  • FIG. 5 shows the power unit for each product pressure in the low-pressure type process and the low-pressure turbine process and the air turbine process described above. From Fig. 5, it can be seen that the product pressure of the low-pressure turbine process and the air turbine process is smaller on the low-pressure side than the product pressure of 1.1 MPa. It can be seen that the force unit becomes smaller.
  • the product nitrogen pressure that is, in the low-pressure turbine process and the air turbine process
  • the top force of the first rectification column 11 is also extracted and is derived from the first product recovery path 35.
  • the pressure of the product nitrogen gas is 1. Both the limit that IMPa can expect the effects of the present invention is the limit.
  • the conventional low pressure process is more advantageous. Become.
  • Table 5 shows the specifications of the expansion turbine in the low-pressure turbine process and the air turbine process, which are compared in the case where the same level of product nitrogen is collected.
  • the expansion turbine used in these processes is a general-purpose general-purpose expansion turbine.
  • the volume flow rate is extremely small, it may be difficult to adopt a general-purpose product.
  • the volumetric flow rate is extremely high, it may be difficult to adopt general-purpose products, or it may be necessary to install multiple expansion turbines!
  • Fig. 6 shows the ranges of product pressure and product flow rate that are advantageous for the low-pressure turbine process and the air turbine process in consideration of this point.
  • the treatment flow rate of the expansion turbine varies depending on whether or not the product liquefied nitrogen is collected and the equipment is kept cool
  • the selection of the low-pressure turbine process and the air turbine process is determined in consideration of various conditions. It is desirable to do so.
  • a low-pressure turbine process is advantageous in the case of small-scale nitrogen production equipment with a product nitrogen flow rate of several thousand Nm3Zh or less, and a medium to large scale with a product nitrogen flow rate of several thousand Nm3Zh to tens of thousands Nm3Zh.
  • the air turbine process seems to be advantageous.

Abstract

A process and apparatus for producing nitrogen by which product nitrogen can be efficiently supplied. The nitrogen production process comprises: a first separation step in which feed air is distilled at a low temperature; a first indirect heat exchange step in which a first nitrogen gas and a first oxygen-enriched liquefied fluid which have been separated in the first separation step are subjected to indirect heat exchange to obtain a first liquefied nitrogen and a first oxygen-enriched gas fluid; a second separation step in which the first oxygen-enriched gas fluid is distilled at a low temperature; a second indirect heat exchange step in which a second nitrogen gas and a second oxygen-enriched liquefied fluid which have been separated in the second separation step are subjected to indirect heat exchange to obtain a second liquefied nitrogen and a second oxygen-enriched gas fluid; a cold generation step in which the second oxygen-enriched gas fluid is adiabatically expanded to generate cold; a first product recovery step in which part of the first nitrogen gas is discharged as a first product nitrogen gas; and a second product recovery step in which part of the second nitrogen gas is discharged as a second product nitrogen gas after the cold is recovered.

Description

明 細 書  Specification
窒素製造方法及び装置  Nitrogen production method and apparatus
技術分野  Technical field
[0001] 本発明は、窒素製造方法及び装置に関し、詳しくは、深冷液化分離法により原料 空気を分離精製して窒素を採取する方法及び装置であって、特に、圧力範囲が 0. 6 〜1. IMPa (絶対圧力、以下同じ)程度の製品窒素を採取するのに最適な窒素製造 方法及び装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a method and apparatus for producing nitrogen, and more particularly, a method and apparatus for separating and refining raw material air by a cryogenic liquefaction separation method to collect nitrogen, particularly in a pressure range of 0.6 to 1. It relates to the most suitable nitrogen production method and equipment for collecting product nitrogen of about IMPa (absolute pressure, the same shall apply hereinafter).
背景技術  Background art
[0002] 窒素の工業的な製造には、深冷液化分離法による空気液化分離が多く採用されて おり、製品窒素ガスの動力原単位の改善や減量幅の拡大のために様々な方法や装 置が提案されている。例えば、運転圧力が異なる第 1精留塔と第 2精留塔とを使用す ることにより、製品窒素の動力原単位の低減を図るとともに、製品窒素の減量幅を大 きくした窒素製造方法及び装置が提案されている (例えば、特許文献 1参照。 ) o 特許文献 1 :特開 2003— 156284公報。  [0002] Air liquefaction separation by a cryogenic liquefaction separation method is often used for industrial production of nitrogen, and various methods and equipment are used to improve the power unit of product nitrogen gas and expand the range of weight loss. Has been proposed. For example, by using the first rectification column and the second rectification column that have different operating pressures, the power unit of product nitrogen can be reduced, and the amount of product nitrogen reduced can be increased. An apparatus has been proposed (see, for example, Patent Document 1) o Patent Document 1: Japanese Patent Application Laid-Open No. 2003-156284.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、製品窒素の動力原単位については更に改善が求められている。特に、圧 力が 0. 6〜1. IMPa程度の製品窒素は需要が多いので、効率よく製造することがで きる方法及び装置の開発が望まれている。例えば、前記特開 2003— 156284公報 に記載された二塔式の窒素製造装置は、第 1精留塔力 抜き出して第 1凝縮器で蒸 発した第 1酸素富化ガス流体の一部を膨張タービンに導入して寒冷を発生させてい るため、第 2精留塔の処理量が少ない。また、小規模な窒素製造装置の場合には、 膨張タービンの処理量が少なくなるため、膨張タービンの機種の選択幅が狭くなつて しまうなど、まだ改善の余地があった。  [0003] However, further improvements are required for the power unit of product nitrogen. In particular, since product nitrogen with a pressure of about 0.6 to 1. IMPa is in great demand, development of a method and apparatus that can be efficiently produced is desired. For example, the two-column nitrogen production apparatus described in JP-A-2003-156284 expands a part of the first oxygen-enriched gas fluid extracted from the first rectifying column and evaporated in the first condenser. Since it is introduced into the turbine to generate cold, the throughput of the second fractionator is small. In addition, in the case of a small-scale nitrogen production system, there was still room for improvement, for example, because the throughput of the expansion turbine was reduced, and the range of expansion turbine models was narrowed.
[0004] 本発明は、二塔式の窒素製造装置を用いて、圧力範囲が 0. 6〜1. IMPa程度の 製品窒素を効率よく経済的に供給することができ、最適な構成機器を容易に選択す ることができる窒素製造方法及び窒素製造装置を提供することを目的として!/、る。 課題を解決するための手段 [0004] The present invention is capable of efficiently and economically supplying product nitrogen having a pressure range of about 0.6 to 1. IMPa using a two-column type nitrogen production apparatus, and facilitates optimal configuration of equipment. The purpose is to provide a nitrogen production method and a nitrogen production apparatus that can be selected. Means for solving the problem
[0005] 本発明の原料空気を深冷液化分離して製品窒素を採取する窒素製造方法の第 1 の観点は、圧縮、精製、冷却した原料空気を 0. 8MPa以上、 1. IMPa以下の圧力 で低温蒸留して第 1窒素ガスと第 1酸素富化液ィヒ流体とに分離する第 1分離工程と; 前記第 1窒素ガスと前記第 1酸素富化液化流体とを間接熱交換させて第 1窒素ガス を凝縮して第 1液化窒素を得ると同時に第 1酸素富化液化流体を蒸発して第 1酸素 富化ガス流体を得る第 1間接熱交換工程と;前記第 1酸素富化ガス流体を 0. 4MPa 以上で、かつ、前記第 1分離工程より低い圧力で低温蒸留して第 2窒素ガスと第 2酸 素富化液化流体とに分離する第 2分離工程と;前記第 2窒素ガスと前記第 2酸素富化 液ィ匕流体とを間接熱交換させて第 2窒素ガスを凝縮して第 2液ィ匕窒素を得ると同時 に第 2酸素富化液化流体を蒸発して第 2酸素富化ガス流体を得る第 2間接熱交換ェ 程と;前記第 2酸素富化ガス流体を断熱膨張させることにより運転に必要な寒冷を発 生させる寒冷発生工程と;前記第 1窒素ガスの一部を冷熱回収後に第 1製品窒素ガ スとして導出する第 1製品回収工程と;前記第 2窒素ガスの一部を冷熱回収後に第 2 製品窒素ガスとして導出する第 2製品回収工程と;を含んで!/ヽる。  [0005] The first aspect of the nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of the raw material air of the present invention is to compress the raw material air that has been compressed, purified, and cooled to a pressure of 0.8 MPa or more and 1. IMPa or less. A first separation step in which the first nitrogen gas and the first oxygen-enriched liquid fluid are separated by low-temperature distillation at an indirect heat exchange between the first nitrogen gas and the first oxygen-enriched liquid fluid; A first indirect heat exchange step of condensing the first nitrogen gas to obtain first liquefied nitrogen and at the same time evaporating the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; and A second separation step of separating the gas fluid into a second nitrogen gas and a second oxygen-enriched liquefied fluid by low-temperature distillation at a pressure of 0.4 MPa or more and lower pressure than the first separation step; Nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain the second liquid nitrogen, and at the same time, the second acid A second indirect heat exchange step of evaporating the enriched liquefied fluid to obtain a second oxygen-enriched gas fluid; and A first product recovery step for deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery; and a part of the second nitrogen gas as a second product nitrogen gas after cold recovery Including the second product recovery process to be derived!
[0006] 本発明の窒素製造方法の第 2の観点は、圧縮、精製、冷却した原料空気を 0. 6M Pa以上、 1. IMPa以下の圧力で低温蒸留して第 1窒素ガスと第 1酸素富化液ィ匕流 体とに分離する第 1分離工程と;前記第 1窒素ガスと前記第 1酸素富化液化流体とを 間接熱交換させて第 1窒素ガスを凝縮して第 1液ィ匕窒素を得ると同時に第 1酸素富 化液化流体を蒸発して第 1酸素富化ガス流体を得る第 1間接熱交換工程と;前記第 1酸素富化ガス流体を 0. 3MPa以上で、かつ、前記第 1分離工程より低い圧力で低 温蒸留して第 2窒素ガスと第 2酸素富化液化流体とに分離する第 2分離工程と;前記 第 2窒素ガスと前記第 2酸素富化液ィ匕流体とを間接熱交換させて第 2窒素ガスを凝 縮して第 2液ィヒ窒素を得ると同時に第 2酸素富化液ィヒ流体を蒸発して第 2酸素富化 ガス流体を得る第 2間接熱交換工程と;前記原料空気の一部を断熱膨張させること により運転に必要な寒冷を発生させる寒冷発生工程と;該寒冷発生工程を経た原料 空気を前記第 2分離工程の中間段に導入する空気導入工程と;前記第 1窒素ガスの 一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品回収工程と;前記第 2 窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品回収工程 と;を含んでいる。また、前記窒素製造方法の前記第 1及び第 2の観点は、前記第 2 製品窒素ガスを圧縮する工程を含んでもょ ヽ。 [0006] A second aspect of the nitrogen production method of the present invention is that the compressed, purified, and cooled raw material air is subjected to low temperature distillation at a pressure of 0.6 MPa or more and 1. IMPa or less to produce first nitrogen gas and first oxygen. A first separation step of separating the enriched liquid into a first fluid; indirect heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid to condense the first nitrogen gas to form a first liquid A first indirect heat exchange step of obtaining a first oxygen-enriched gas fluid by evaporating the first oxygen-enriched liquefied fluid at the same time as obtaining nitrogen; and said first oxygen-enriched gas fluid at 0.3 MPa or more, and A second separation step of separating into a second nitrogen gas and a second oxygen-enriched liquefied fluid by low-temperature distillation at a lower pressure than the first separation step; the second nitrogen gas and the second oxygen-enriched liquid The second nitrogen gas is condensed by indirect heat exchange with the fluid to obtain the second liquid nitrogen, and at the same time, the second oxygen-enriched liquid fluid is evaporated to produce the second oxygen-enriched gas stream. A second indirect heat exchange step for obtaining a cold; a cold generation step for generating cold necessary for operation by adiabatically expanding a part of the raw material air; and a raw material air that has undergone the cold generation step in the second separation step An air introduction step for introducing into the intermediate stage; a first product recovery step for deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery; and the second A second product recovery step of extracting a part of the nitrogen gas as a second product nitrogen gas after cold recovery. Further, the first and second aspects of the nitrogen production method may include a step of compressing the second product nitrogen gas.
[0007] 本発明の原料空気を深冷液化分離して製品窒素を採取する窒素製造装置の第 1 の観点は、原料空気を深冷液化分離して製品窒素を採取する窒素製造装置であつ て;窒素製造装置は;圧縮、精製、冷却された原料空気を 0. 8MPa以上、 1. IMPa 以下の圧力で低温蒸留して塔上部の第 1窒素ガスと塔底部の第 1酸素富化液ィ匕流 体とに分離する第 1精留塔と;前記第 1窒素ガスと前記第 1酸素富化液化流体とを間 接熱交換させて第 1窒素ガスを凝縮して第 1液ィ匕窒素を得ると同時に第 1酸素富化 液化流体を蒸発して第 1酸素富化ガス流体を得る第 1凝縮器と;前記第 1酸素富化ガ ス流体を 0. 4MPa以上で、かつ、前記第 1精留塔より低い圧力で低温蒸留して塔上 部の第 2窒素ガスと塔底部の第 2酸素富化液化流体とに精留分離する第 2精留塔と; 前記第 2窒素ガスと前記第 2酸素富化液化流体とを間接熱交換させて第 2窒素ガス を凝縮して第 2液化窒素を得ると同時に第 2酸素富化液化流体を蒸発して第 2酸素 富化ガス流体を得る第 2凝縮器と;第 2酸素富化ガス流体を断熱膨張させて装置の 運転に必要な寒冷を発生する膨張タービンと;前記第 1窒素ガスの一部を冷熱回収 後に第 1製品窒素ガスとして導出する第 1製品回収経路と;前記第 2窒素ガスの一部 を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品回収経路と;を含んで!/、る [0007] A first aspect of the nitrogen production apparatus for collecting product nitrogen by cryogenic liquefaction separation of raw material air of the present invention is a nitrogen production apparatus for collecting product nitrogen by cryogenic liquefaction separation of raw material air. The nitrogen production equipment is: low-temperature distillation of compressed, refined, and cooled raw material air at a pressure of 0.8 MPa or higher, 1. IMPa or lower, and the first nitrogen gas at the top of the tower and the first oxygen-enriched liquid at the bottom of the tower. A first rectifying column that is separated into a fluid; a heat exchange between the first nitrogen gas and the first oxygen-enriched liquefied fluid to condense the first nitrogen gas to form a first liquid nitrogen A first condenser for evaporating the first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; and the first oxygen-enriched gas fluid at 0.4 MPa or more and the first oxygen-enriched gas fluid A second rectifying column that is subjected to low-temperature distillation at a pressure lower than that of the rectifying column and rectifying and separating the second nitrogen gas at the top of the column and the second oxygen-enriched liquefied fluid at the bottom of the column; Gas and the second oxygen-enriched liquefied fluid are indirectly heat-exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time, the second oxygen-enriched liquefied fluid is evaporated to produce the second oxygen-enriched gas. A second condenser that obtains fluid; an expansion turbine that adiabatically expands the second oxygen-enriched gas fluid to generate the cold necessary to operate the apparatus; and first product after cold recovery of part of the first nitrogen gas A first product recovery path that leads out as nitrogen gas; and a second product recovery path that leads out part of the second nitrogen gas as second product nitrogen gas after cold recovery.
[0008] 本発明の窒素製造装置の第 2の観点は、圧縮、精製、冷却された原料空気を 0. 6 MPa以上、 1. IMPa以下の圧力で低温蒸留して塔上部の第 1窒素ガスと塔底部の 第 1酸素富化液化流体とに分離する第 1精留塔と;前記第 1窒素ガスと前記第 1酸素 富化液ィ匕流体とを間接熱交換させて第 1窒素ガスを凝縮して第 1液ィ匕窒素を得ると 同時に第 1酸素富化液化流体を蒸発して第 1酸素富化ガス流体を得る第 1凝縮器と; 前記第 1酸素富化ガス流体を 0. 3MPa以上で、かつ、前記第 1精留塔より低い圧力 で低温蒸留して塔上部の第 2窒素ガスと塔底部の第 2酸素富化液化流体とに精留分 離する第 2精留塔と;前記第 2窒素ガスと前記第 2酸素富化液化流体とを間接熱交換 させて第 2窒素ガスを凝縮して第 2液ィ匕窒素を得ると同時に第 2酸素富化液ィ匕流体を 蒸発して第 2酸素富化ガス流体を得る第 2凝縮器と;前記原料空気の一部を断熱膨 張させて装置の運転に必要な寒冷を発生する膨張タービンと;前記膨張タービンを 経た原料空気を前記第 2精留塔の中間段に導入する空気導入経路と;前記第 1窒素 ガスの一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品回収経路と;前 記第 2窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品回 収経路と;を含んでいる。 [0008] A second aspect of the nitrogen production apparatus of the present invention is the first nitrogen gas at the top of the tower by low-temperature distillation of the compressed, purified and cooled raw material air at a pressure of 0.6 MPa or more and 1. IMPa or less. A first rectifying column that is separated into a first oxygen-enriched liquefied fluid at the bottom of the column; the first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat-exchanged to produce a first nitrogen gas A first condenser for condensing to obtain a first liquid-nitrogen and simultaneously evaporating a first oxygen-enriched liquefied fluid to obtain a first oxygen-enriched gas fluid; and A second rectifying column that is 3 MPa or more and is subjected to low-temperature distillation at a pressure lower than that of the first rectifying column to separate a rectified fraction into a second nitrogen gas at the top of the column and a second oxygen-enriched liquefied fluid at the bottom of the column. The second nitrogen gas and the second oxygen-enriched liquefied fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain a second liquid nitrogen, and at the same time a second oxygen-enriched liquid fluid The A second condenser that evaporates to obtain a second oxygen-enriched gas fluid; an expansion turbine that adiabatically expands part of the raw material air to generate cold necessary for operation of the apparatus; and a raw material that passes through the expansion turbine An air introduction path for introducing air into the intermediate stage of the second rectification column; a first product recovery path for extracting a portion of the first nitrogen gas as a first product nitrogen gas after cold recovery; and A second product recovery route for extracting a part of the nitrogen gas as a second product nitrogen gas after cold recovery.
[0009] 前記窒素製造装置の第 1及び第 2の観点は、前記第 2製品窒素ガスの圧縮工程を 行う窒素圧縮機を備えることができ、また、前記第 2精留塔が装置外からの液化窒素 を導入する液ィ匕窒素導入経路を備えることができる。 発明の効果 [0009] The first and second aspects of the nitrogen production apparatus may include a nitrogen compressor that performs a compression step of the second product nitrogen gas, and the second rectification column is provided from outside the apparatus. A liquid nitrogen introducing path for introducing liquefied nitrogen can be provided. The invention's effect
[0010] 本発明に関する窒素製造方法及び窒素製造装置の第 1の観点では、寒冷発生ェ 程を行う膨張タービンに導入する流体として、第 2間接熱交換工程を行う第 2凝縮器 で蒸発した第 2酸素富化ガス流体を使用している。したがって、第 1凝縮器で蒸発し た第 1酸素富化ガス流体を分岐して膨張タービンに導入する必要がなぐ第 1酸素富 化ガス流体の殆ど全量を第 2精留塔に導入するので、第 2精留塔の処理量が従来よ り多くなつて第 2精留塔力 採取する製品窒素を増量できる。  [0010] In the first aspect of the nitrogen production method and the nitrogen production apparatus according to the present invention, as a fluid to be introduced into the expansion turbine that performs the cold generation process, the second vapor that has evaporated in the second condenser that performs the second indirect heat exchange step. 2Oxygen-enriched gas fluid is used. Therefore, almost the entire amount of the first oxygen-enriched gas fluid that does not need to be branched and introduced into the expansion turbine is introduced into the second rectification column. The amount of product nitrogen collected from the second rectification column can be increased because the throughput of the second rectification column is higher than before.
[0011] 本発明に関する窒素製造方法及び窒素製造装置の第 2の観点では、圧縮、精製、 冷却された原料空気の一部を分岐して寒冷発生工程を行う膨張タービンに導入し、 断熱膨張させて装置の運転に必要な寒冷を発生させた後、第 2精留塔の中間段に 導入する。したがって、必要量の寒冷を効率よく得ることができるとともに、従来に比 ベて第 2精留塔の処理量を増加でき、第 2精留塔力 採取する製品窒素を増量でき る。  [0011] In a second aspect of the nitrogen production method and nitrogen production apparatus according to the present invention, a part of the compressed, refined, and cooled raw material air is branched into an expansion turbine that performs a cold generation step, and adiabatic expansion is performed. After generating the cold necessary for the operation of the equipment, it is introduced into the intermediate stage of the second rectification column. Therefore, the required amount of cold can be efficiently obtained, the throughput of the second rectification column can be increased, and the amount of product nitrogen collected from the second rectification column can be increased.
[0012] さらに、窒素圧縮機を設置して第 2製品窒素ガスを圧縮することにより、第 2製品窒 素ガスの圧力を第 1製品窒素ガスと同じ圧力にして使用先に供給することができる。 また、装置外力 の液ィ匕窒素を導入することにより、第 1酸素富化液ィ匕流体の一部を 第 2精留塔に寒冷補給用として導入する必要がなくなり、さらに、膨張タービンの処 理量を減少、させることもできる。  [0012] Furthermore, by installing a nitrogen compressor to compress the second product nitrogen gas, the pressure of the second product nitrogen gas can be made the same as that of the first product nitrogen gas and supplied to the user. . In addition, by introducing liquid-nitrogen as an external force of the apparatus, it is not necessary to introduce a part of the first oxygen-enriched liquid-fluid to the second rectifying column for cold replenishment, and further, the treatment of the expansion turbine. It can also reduce or reduce the reasoning.
図面の簡単な説明 [0013] [図 1]本発明の第 1形態例 (低圧タービンプロセス)を示す窒素製造装置の系統図で ある。 Brief Description of Drawings FIG. 1 is a system diagram of a nitrogen production apparatus showing a first embodiment (low pressure turbine process) of the present invention.
[図 2]本発明の第 2形態例 (空気タービンプロセス)を示す窒素製造装置の系統図で ある。  FIG. 2 is a system diagram of a nitrogen production apparatus showing a second embodiment (air turbine process) of the present invention.
[図 3]本発明との比較に使用した従来の中圧タービンプロセスに関する窒素製造装 置の系統図である。  FIG. 3 is a system diagram of a nitrogen production apparatus related to a conventional medium pressure turbine process used for comparison with the present invention.
[図 4]一つの精留塔を使用した従来の低圧型プロセスに関する窒素製造装置の一例 を示す系統図である。  FIG. 4 is a system diagram showing an example of a nitrogen production apparatus related to a conventional low-pressure process using one rectification column.
[図 5]低圧型プロセス、低圧タービンプロセス及び空気タービンプロセスとにおける製 品圧力毎の動力原単位を示す図である。  [FIG. 5] A diagram showing a power unit for each product pressure in the low pressure type process, the low pressure turbine process, and the air turbine process.
[図 6]低圧タービンプロセス及び空気タービンプロセスが有利な製品圧力及び製品 流量の範囲を示す図である。  [FIG. 6] A diagram showing a range of product pressure and product flow rate advantageous for the low-pressure turbine process and the air turbine process.
符号の説明  Explanation of symbols
[0014] 11· ··第 1精留塔、 12· ··第 1凝縮器、 13…第 2精留塔、 14· ··第 2凝縮器、 15…低 圧膨張タービン、 16…主熱交翻、 17…減圧弁、 18…窒素圧縮機、 19…減圧弁、 20…減圧弁、 32· ··原料空気流入経路、 35…第 1製品回収経路、 43…第 2製品回 収経路、 72· ··空気タービン、 73· ··空気導入経路、 74· ··酸素富化液化流体導入経 路、 85· ··中圧膨張タービン  [0014] 11 ··· First fractionator, 12 ··· First condenser, 13 ··· Second fractionator, ·················· Second condenser, 15… low pressure expansion turbine, 16… main heat 17 ... pressure reducing valve, 18 ... nitrogen compressor, 19 ... pressure reducing valve, 20 ... pressure reducing valve, 32 ... raw material air inflow path, 35 ... first product recovery path, 43 ... second product recovery path, 72 ... Air turbine, 73 ... Air introduction path, 74 ... Oxygen-enriched liquefied fluid introduction path, 85 ... Medium pressure expansion turbine
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 図 1は本発明の第 1形態例を示すもので、前記窒素製造方法及び窒素製造装置の 第 1の観点を適用した窒素製造装置の系統図である。  FIG. 1 shows a first embodiment of the present invention and is a system diagram of a nitrogen production apparatus to which a first aspect of the nitrogen production method and the nitrogen production apparatus is applied.
[0016] 本形態例に示す窒素製造装置は、圧縮、精製、冷却された原料空気を 0. 8MPa 以上、 1. IMPa以下の圧力で低温蒸留して塔上部の第 1窒素ガスと塔底部の第 1酸 素富化液化流体とに分離する第 1精留塔 11と、前記第 1窒素ガスと前記第 1酸素富 化液ィ匕流体とを間接熱交換させて第 1窒素ガスを凝縮して第 1液ィ匕窒素を得ると同 時に第 1酸素富化液化流体を蒸発して第 1酸素富化ガス流体を得る第 1凝縮器 12と 、前記第 1酸素富化ガス流体を 0. 4MPa以上で、かつ、前記第 1精留塔 11より低い 圧力で低温蒸留して塔上部の第 2窒素ガスと塔底部の第 2酸素富化液化流体とに精 留分離する第 2精留塔 13と、前記第 2窒素ガスと前記第 2酸素富化液化流体とを間 接熱交換させて第 2窒素ガスを凝縮して第 2液ィ匕窒素を得ると同時に第 2酸素富化 液化流体を蒸発して第 2酸素富化ガス流体を得る第 2凝縮器 14と、第 2酸素富化ガ ス流体を断熱膨張させて装置の運転に必要な寒冷を発生する膨張タービン (以下、 低圧膨張タービンという) 15とを含んでいる。 [0016] The nitrogen production apparatus shown in the present embodiment is a low-temperature distillation of compressed, purified, and cooled raw material air at a pressure of 0.8 MPa or more and 1. IMPa or less, and the first nitrogen gas at the top of the tower and the bottom of the tower A first rectifying column 11 that separates into a first oxygen-enriched liquefied fluid, and the first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas. The first condenser 12 for obtaining the first oxygen-enriched gas fluid by evaporating the first oxygen-enriched liquefied fluid at the same time as obtaining the first liquid nitrogen, and the first oxygen-enriched gas fluid is reduced to 0. 4 MPa or more and low-temperature distillation at a pressure lower than that of the first rectifying column 11 to refine the second nitrogen gas at the top of the column and the second oxygen-enriched liquefied fluid at the bottom of the column. When the second rectifying column 13 for fractional separation and the second nitrogen gas and the second oxygen-enriched liquefied fluid are subjected to an indirect heat exchange to condense the second nitrogen gas to obtain a second liquid nitrogen. At the same time, the second condenser 14 that evaporates the second oxygen-enriched fluid to obtain the second oxygen-enriched gas fluid, and the second oxygen-enriched gas fluid is adiabatically expanded to generate the cold necessary for the operation of the device. Expansion turbine (hereinafter referred to as a low pressure expansion turbine) 15.
[0017] 圧縮、精製された原料空気は、経路 31から主熱交 16に流入し、この主熱交換 器 16で製品窒素ガスや廃ガスと熱交換を行って所定の温度に冷却される。冷却され た原料空気は、原料空気流入経路 32を通って第 1精留塔 11の下部に導入され、該 第 1精留塔 11内での低温蒸留により、塔上部の窒素ガス (第 1窒素ガス)と塔底部の 酸素富化液化流体 (第 1酸素富化液化流体)とに分離される (第 1分離工程)。塔頂 部から経路 33に抜き出された前記第 1窒素ガスは、一部が経路 34に分岐して主熱 交換器 16で前記原料空気と熱交換を行い、冷熱回収された後に第 1製品回収経路 35から第 1製品窒素ガスとして導出される (第 1製品回収工程)。また、残部の第 1窒 素ガスは、経路 36を通って第 1凝縮器 12に導入される。  [0017] The compressed and refined raw material air flows into the main heat exchanger 16 from the path 31, and is cooled to a predetermined temperature by exchanging heat with product nitrogen gas and waste gas in the main heat exchanger 16. The cooled raw material air is introduced into the lower part of the first rectifying column 11 through the raw material air inflow path 32, and nitrogen gas (first nitrogen) in the upper part of the column is obtained by low-temperature distillation in the first rectifying column 11. Gas) and the oxygen-enriched liquefied fluid (first oxygen-enriched liquefied fluid) at the bottom of the column (first separation step). Part of the first nitrogen gas extracted from the top of the tower to the path 33 is branched to the path 34, exchanges heat with the raw material air in the main heat exchanger 16, and is recovered as cold. It is derived from the recovery path 35 as the first product nitrogen gas (first product recovery process). The remaining first nitrogen gas is introduced into the first condenser 12 through the path 36.
[0018] 前記第 1酸素富化液化流体は、第 1精留塔 11の下部力 経路 37に抜き出され、減 圧弁 17で前記第 1窒素ガスを液ィ匕できる温度となる圧力に減圧され、経路 38から第 1凝縮器 12に導入される。この第 1酸素富化液ィ匕流体と前記第 1窒素ガスとは、第 1 凝縮器 12で間接熱交換を行い、第 1窒素ガスが凝縮して液ィ匕窒素 (第 1液ィ匕窒素) になると同時に、第 1酸素富化液ィ匕流体が蒸発して酸素富化ガス流体 (第 1酸素富 化ガス流体)となる(第 1間接熱交換工程)。前記第 1液化窒素は、経路 39を通って 第 1精留塔 11の上部に導入されて還流液となる。  [0018] The first oxygen-enriched liquefied fluid is extracted to the lower force path 37 of the first rectifying column 11, and is reduced by the pressure reducing valve 17 to a pressure at which the first nitrogen gas can be liquefied. And introduced into the first condenser 12 from the path 38. The first oxygen-enriched liquid fluid and the first nitrogen gas undergo indirect heat exchange in the first condenser 12, and the first nitrogen gas condenses and becomes liquid nitrogen (first liquid nitrogen). At the same time, the first oxygen-enriched liquid fluid evaporates to become an oxygen-enriched gas fluid (first oxygen-enriched gas fluid) (first indirect heat exchange step). The first liquefied nitrogen is introduced into the upper part of the first rectifying column 11 through the path 39 to become a reflux liquid.
[0019] 第 1凝縮器 12で蒸発した第 1酸素富化ガス流体は、経路 40を通って第 2精留塔 13 の下部に導入され、該第 2精留塔 13内での低温蒸留により、塔上部の窒素ガス (第 2 窒素ガス)と塔底部の酸素富化液化流体 (第 2酸素富化液化流体)とに分離される ( 第 2分離工程)。塔頂部力も経路 41に抜き出された前記第 2窒素ガスは、一部が経 路 42に分岐して主熱交 で前記原料空気と熱交換を行い、冷熱回収された後 に第 2製品回収経路 43から第 2製品窒素ガスとして導出され (第 2製品回収工程)、 窒素圧縮機 18で所定圧力に圧縮されて経路 44から使用先に送出される (圧縮工程 ) oまた、残部の第 2窒素ガスは、経路 45を通って第 2凝縮器 14に導入される。 The first oxygen-enriched gas fluid evaporated in the first condenser 12 is introduced into the lower part of the second rectifying column 13 through the path 40 and is subjected to low-temperature distillation in the second rectifying column 13. The gas is separated into nitrogen gas (second nitrogen gas) at the top of the tower and oxygen-enriched liquefied fluid (second oxygen-enriched liquefied fluid) at the bottom of the tower (second separation step). Part of the second nitrogen gas extracted from the tower top force into the path 41 is also branched into the path 42 to exchange heat with the raw material air in the main heat exchange. The second product nitrogen gas is derived from the route 43 (second product recovery step), compressed to a predetermined pressure by the nitrogen compressor 18, and sent to the user from the route 44 (compression step). o) The remaining second nitrogen gas is introduced into the second condenser 14 through the path 45.
[0020] 前記第 2酸素富化液化流体は、第 2精留塔 13の下部力 経路 46に抜き出され、前 記経路 37から経路 47に分岐して減圧弁 19で第 2酸素富化液ィ匕流体の圧力に減圧 された前記第 1酸素富化液ィ匕流体と合流した後、減圧弁 20で前記第 2窒素ガスを液 化できる温度となる圧力に減圧され、経路 48から第 2凝縮器 14に導入される。この第 2凝縮器 14では、第 1酸素富化液ィ匕流体及び第 2酸素富化液ィ匕流体の混合流体と 前記第 2窒素ガスとが間接熱交換を行い、第 2窒素ガスが凝縮して液ィ匕窒素 (第 2液 化窒素)になると同時に、前記混合流体が蒸発して酸素富化ガス流体 (第 2酸素富化 ガス流体)となる(第 2間接熱交換工程)。前記第 2液化窒素は、経路 49を通って第 2 精留塔 13の上部に導入されて還流液となる。 [0020] The second oxygen-enriched liquefied fluid is withdrawn into the lower force path 46 of the second rectifying column 13, branched from the path 37 to the path 47, and is reduced by the pressure reducing valve 19 with the second oxygen-enriched liquid. After the first oxygen-enriched liquid, which has been reduced to the pressure of the fluid, is combined with the fluid, the pressure is reduced to a pressure at which the second nitrogen gas can be liquefied by the pressure reducing valve 20, It is introduced into the condenser 14. In the second condenser 14, the mixed fluid of the first oxygen-enriched liquid and the second oxygen-enriched liquid and the second nitrogen gas exchange heat indirectly, and the second nitrogen gas is condensed. At the same time, liquid nitrogen (second liquid nitrogen) is formed, and at the same time, the mixed fluid is evaporated to become oxygen-enriched gas fluid (second oxygen-enriched gas fluid) (second indirect heat exchange step). The second liquefied nitrogen is introduced into the upper part of the second rectifying column 13 through the path 49 and becomes a reflux liquid.
[0021] 第 2凝縮器 14から経路 50に導出した前記第 2酸素富化ガス流体は、経路 51と経 路 52とに分岐し、大部分が経路 52を通って主熱交 に導入され、中間温度ま で昇温して経路 53に抜き出され、低圧膨張タービン 15に導入される。経路 51に分 岐した残部は、弁 21で減圧される。低圧膨張タービン 15で断熱膨張することによつ て装置の運転に必要な寒冷を発生 (寒冷発生工程)した第 2酸素富化ガス流体は、 経路 54を通り、前記経路 51に分岐して弁 21で減圧した第 2酸素富化ガス流体と合 流し、主熱交 で冷熱回収された後に経路 55から廃ガスとして導出される。こ の廃ガスは、その一部が原料空気を精製する吸着器の再生に利用される。 [0021] The second oxygen-enriched gas fluid led out from the second condenser 14 to the path 50 is branched into a path 51 and a path 52, and most of the fluid is introduced into the main heat exchange through the path 52. The temperature is raised to an intermediate temperature, extracted to path 53, and introduced into low-pressure expansion turbine 15. The remaining part of the path 51 is decompressed by the valve 21. The second oxygen-enriched gas fluid that has generated the cold necessary for the operation of the apparatus by adiabatic expansion in the low-pressure expansion turbine 15 (the cold generation process) passes through the path 54 and branches to the path 51 to be a valve. The second oxygen-enriched gas fluid depressurized in 21 is merged, and after recovering cold by main heat exchange, it is led out as waste gas from path 55. Part of this waste gas is used to regenerate the adsorber, which purifies the raw air.
[0022] 前記経路 47に分岐される第 1酸素富化液化流体は、第 2精留塔 13の寒冷補給を 目的として少量が分岐されるものであって、大部分の第 1酸素富化液化流体は第 1 凝縮器 12に導入される。この経路 47に分岐される第 1酸素富化液ィ匕流体は、第 2精 留塔 13の中段に導入してもよい。また、第 2精留塔 13の圧力調節を目的として、経 路 40を流れる第 1酸素富化ガス流体の一部を調節弁を介して経路 50に流す場合も あるが、この場合も、経路 40から経路 50に流す第 1酸素富化ガス流体は少量であり 、大部分の第 1酸素富化ガス流体は第 2精留塔 13に導入される。したがって、第 1精 留塔 11で分離した第 1酸素富化液ィ匕流体は、その全量乃至大部分が第 1凝縮器 12 で蒸発して第 1酸素富化ガス流体となり、この第 1酸素富化ガス流体の全量乃至大部 分が第 2精留塔 13に導入されることになる。 [0023] 第 2製品窒素ガスは、前記窒素圧縮機 18によって圧縮され、通常は第 1製品回収 経路 35から導出される第 1製品窒素ガスと同じ圧力にされるが、使用先の状況に応 じて任意の圧力を選択することができ、窒素圧縮機 18を設置せずに第 2製品回収経 路 43からそのままの圧力で供給することもできる。また、第 1製品窒素ガスを圧縮す る圧縮機を必要に応じて設置することも可能である。 [0022] The first oxygen-enriched liquefied fluid branched into the path 47 is branched in a small amount for the purpose of cold replenishment of the second rectification column 13, and most of the first oxygen-enriched liquefied fluid. The fluid is introduced into the first condenser 12. The first oxygen-enriched liquid fluid branched into this path 47 may be introduced into the middle stage of the second rectification column 13. In addition, for the purpose of adjusting the pressure in the second rectification column 13, a part of the first oxygen-enriched gas fluid flowing through the path 40 may be flowed to the path 50 through the control valve. The first oxygen-enriched gas fluid flowing from 40 to the path 50 is small, and most of the first oxygen-enriched gas fluid is introduced into the second fractionator 13. Therefore, all or most of the first oxygen-enriched liquid fluid separated in the first rectification column 11 evaporates in the first condenser 12 to become the first oxygen-enriched gas fluid. All or most of the enriched gas fluid is introduced into the second fractionator 13. [0023] The second product nitrogen gas is compressed by the nitrogen compressor 18 and is usually brought to the same pressure as the first product nitrogen gas led out from the first product recovery path 35, but depends on the situation of the user. Any pressure can be selected at the same time, and the second product recovery path 43 can be supplied at the same pressure without installing the nitrogen compressor 18. It is also possible to install a compressor that compresses the first product nitrogen gas as needed.
[0024] 前記低圧膨張タービン 15には、経路 50を通る第 2酸素富化ガス流体の全量を導 入することもでき、処理量の増大により増加した寒冷を利用して経路 39の第 1液ィ匕窒 素や、経路 49の第 2液ィ匕窒素の一部を製品液ィ匕窒素として採取することができる。  [0024] The low-pressure expansion turbine 15 can also be introduced with the entire amount of the second oxygen-enriched gas fluid passing through the path 50, and the first liquid in the path 39 can be utilized by utilizing the increased coldness due to the increased processing amount. Nitrogen and a part of the second liquid nitrogen in channel 49 can be collected as product liquid nitrogen.
[0025] また、両精留塔 11, 13の運転圧力は、経路 55から取り出される廃ガスの圧力によ り、最低運転圧力が決まってくる。すなわち、低圧膨張タービン 15から導出した第 2 酸素富化ガス流体 (廃ガス)は、主熱交換器 16で冷熱回収した後、吸着器の再生に 使用することから、低圧膨張タービン 15の出口部における経路 54の第 2酸素富化ガ ス流体は、主熱交換器 16等での圧力損失を含めて吸着器再生後に大気に放出でき る圧力を有して 、なければならな 、。  [0025] Further, the operating pressure of the rectifying columns 11 and 13 is determined by the pressure of the waste gas taken out from the path 55. That is, the second oxygen-enriched gas fluid (waste gas) derived from the low-pressure expansion turbine 15 is recovered by cooling with the main heat exchanger 16 and then used for regeneration of the adsorber. The second oxygen-enriched gas fluid in path 54 in the air must have a pressure that can be released to the atmosphere after regeneration of the adsorber, including pressure loss in the main heat exchanger 16 etc.
[0026] さらに、低圧膨張タービン 15で装置の運転に必要な量の寒冷を発生させるために は、低圧膨張タービン 15において所定の膨張比を確保しておく必要があることから、 低圧膨張タービン 15の入口部における経路 53の第 2酸素富化ガス流体の圧力を、 約 0. 16MPa以上の圧力にしておく必要がある。  Furthermore, in order to generate the amount of cold necessary for the operation of the apparatus in the low-pressure expansion turbine 15, it is necessary to ensure a predetermined expansion ratio in the low-pressure expansion turbine 15, so the low-pressure expansion turbine 15 The pressure of the second oxygen-enriched gas fluid in the passage 53 at the inlet of the pipe should be about 0.16 MPa or more.
[0027] また、第 2凝縮器 14では、第 2酸素富化液ィ匕流体と第 2窒素ガスとを間接熱交換さ せ、第 2窒素ガスを液ィ匕して第 2酸素富化液ィ匕流体を蒸発させる必要がある。したが つて、第 2酸素富化ガス流体の最低圧力が約 0. 16MPaとすると、第 2窒素ガスの圧 力である第 2精留塔 13の塔頂部の圧力は、約 0. 4MPa以上に設定しておく必要が ある。  [0027] Further, in the second condenser 14, the second oxygen-enriched liquid fluid and the second nitrogen gas are indirectly heat-exchanged, and the second nitrogen gas is liquefied to produce the second oxygen-enriched liquid. It is necessary to evaporate the fluid. Therefore, if the minimum pressure of the second oxygen-enriched gas fluid is about 0.16 MPa, the pressure at the top of the second rectifying column 13, which is the pressure of the second nitrogen gas, will be about 0.4 MPa or more. Must be set.
[0028] さらに、第 2精留塔 13の塔頂部の圧力を約 0. 4MPa以上とすると、この第 2精留塔 13の圧力は、前述のように、第 1凝縮器 12で第 1窒素ガスと間接熱交換する第 1酸 素富化ガス流体の圧力であるから、第 1窒素ガスの圧力である第 1精留塔 11の塔頂 部の圧力は、約 0. 8MPa以上に設定する必要がある。  [0028] Furthermore, when the pressure at the top of the second rectifying column 13 is about 0.4 MPa or more, the pressure in the second rectifying column 13 is changed to the first nitrogen in the first condenser 12 as described above. Because it is the pressure of the first oxygen-enriched gas fluid that indirectly exchanges heat with the gas, the pressure at the top of the first rectification column 11 that is the pressure of the first nitrogen gas is set to about 0.8 MPa or more. There is a need.
[0029] すなわち、第 1精留塔 11の運転圧力は 0. 8MPa以上に設定する必要があり、第 2 精留塔 13の運転圧力は 0. 4MPa以上で、かつ、第 1酸素富化ガス流体を受け入れ る必要力 第 1精留塔 11の運転圧力より低い圧力に設定する必要がある。 That is, the operating pressure of the first rectifying column 11 must be set to 0.8 MPa or more, The operating pressure of the rectifying column 13 is 0.4 MPa or more, and the necessary power to receive the first oxygen-enriched gas fluid. The operating pressure of the rectifying column 13 must be set lower than the operating pressure of the first rectifying column 11.
[0030] 図 2は、本発明の第 2形態例を示すもので、前記窒素製造方法及び窒素製造装置 の第 2の観点を適用した窒素製造装置の系統図である。なお、以下の説明において 、前記第 1形態例で示した窒素製造装置における構成要素と同一の構成要素には、 それぞれ同一符号を付して詳細な説明は省略する。  FIG. 2 shows a second embodiment of the present invention, and is a system diagram of a nitrogen production apparatus to which the second aspect of the nitrogen production method and the nitrogen production apparatus is applied. In the following description, the same components as those in the nitrogen production apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0031] 本形態例に示す窒素製造装置は、圧縮、精製されて経路 31から主熱交換器 16〖こ 流入した原料空気の一部を、中間温度で経路 71に分岐して主熱交換器 16から抜き 出し、原料空気の一部を利用した膨張タービン (以下、空気タービンという) 72に導 入し、断熱膨張させて寒冷を発生させた (寒冷発生工程)後、空気導入経路 73を通 して第 2精留塔 13の中間段に導入している(空気導入工程)。また、前記経路 37から 経路 47に分岐して減圧弁 19で減圧した第 1酸素富化液ィ匕流体の一部は、酸素富化 液化流体導入経路 74を通して前記第 2精留塔 13の中間段に寒冷源として導入され ている。  [0031] The nitrogen production apparatus shown in the present embodiment has a main heat exchanger that is compressed and refined and branches a part of the raw material air that has flowed into the main heat exchanger 16 from the path 31 to the path 71 at an intermediate temperature. After being extracted from 16 and introduced into an expansion turbine (hereinafter referred to as an air turbine) 72 using a part of the raw material air, it is adiabatically expanded to generate cold (chill generation process), and then passed through an air introduction path 73. Then, it is introduced into the intermediate stage of the second rectification column 13 (air introduction process). In addition, a part of the first oxygen-enriched liquid soot fluid branched from the path 37 to the path 47 and depressurized by the pressure reducing valve 19 passes through the oxygen-enriched liquefied fluid introduction path 74 to the middle of the second rectifying column 13. It is introduced as a cold source in the stage.
[0032] なお、空気タービン 72に分岐する原料空気の割合は、必要寒冷量やタービン効率 等に応じて適当に設定することができる力 通常は、 10〜20%の範囲が適当である 。また、空気導入経路 73及び酸素富化液化流体導入経路 74の第 2精留塔 13への 接続位置は、設計条件に応じて任意に設定できるが、通常は同一位置に設定される  [0032] It should be noted that the ratio of the raw material air branched into the air turbine 72 is a force that can be appropriately set according to the required amount of cold, turbine efficiency, etc. Usually, a range of 10 to 20% is appropriate. The connection position of the air introduction path 73 and the oxygen-enriched liquefied fluid introduction path 74 to the second rectification column 13 can be arbitrarily set according to the design conditions, but is usually set to the same position.
[0033] 経路 31から主熱交 に流入した原料空気は、その大部分が所定温度に冷却 された後に経路 32を通って第 1精留塔 11の下部に導入される。該第 1精留塔 11で の低温蒸留によって分離された第 1窒素ガスの一部が第 1製品窒素ガスとして導出さ れるとともに、第 1凝縮器 12での間接熱交換によって第 1液ィ匕窒素と第 1酸素富化ガ ス流体とが得られる。 [0033] Most of the raw material air flowing into the main heat exchanger from the path 31 is cooled to a predetermined temperature, and then introduced into the lower part of the first rectifying column 11 through the path 32. A part of the first nitrogen gas separated by low-temperature distillation in the first rectification column 11 is led out as the first product nitrogen gas, and the first liquid is recovered by indirect heat exchange in the first condenser 12. Nitrogen and first oxygen-enriched gas fluid are obtained.
[0034] 前記経路 71に分岐して空気タービン 72に導入され、該空気タービン 72で断熱膨 張した後に空気導入経路 73に導出された原料空気は、第 2精留塔 13の中間段に上 昇ガスとして導入され、経路 40からの第 1酸素富化ガス流体、酸素富化液化流体導 入経路 74からの第 1酸素富化液ィ匕流体及び経路 49からの第 2液ィ匕窒素と共に低温 蒸留され、塔上部の窒素ガス (第 2窒素ガス)と塔底部の酸素富化液化流体 (第 2酸 素富化液化流体)とに分離される。第 2窒素ガスの一部は、経路 42、主熱交換器 16 、経路 43を通り、第 2製品窒素ガスとして導出される。第 2凝縮器 14で間接熱交換し て蒸発し、経路 50に導出した前記第 2酸素富化ガス流体は、主熱交換器 16で冷熱 回収された後、経路 55から廃ガスとして導出される。 The raw material air branched into the path 71 and introduced into the air turbine 72, and adiabatically expanded by the air turbine 72 and then led out to the air introduction path 73 rises to the intermediate stage of the second rectification column 13. Introduced as ascending gas, along with first oxygen-enriched gas fluid from path 40, first oxygen-enriched liquid fluid from oxygen-enriched liquefied fluid inlet path 74, and second liquid-nitrogen from path 49 low temperature It is distilled and separated into nitrogen gas (second nitrogen gas) at the top of the column and oxygen-enriched liquefied fluid (second oxygen-enriched liquefied fluid) at the bottom of the column. Part of the second nitrogen gas passes through the path 42, the main heat exchanger 16, and the path 43, and is led out as the second product nitrogen gas. The second oxygen-enriched gas fluid evaporated by indirect heat exchange in the second condenser 14 and led to the path 50 is recovered as cold by the main heat exchanger 16 and then led out as waste gas from the path 55. .
[0035] 本形態例において、第 2凝縮器 14で蒸発して経路 50に導出される前記第 2酸素富 化ガス流体 (廃ガス)は、膨張タービンを通らずにそのまま主熱交換器 16を通って排 出され、その後に吸着器の再生に利用されるだけであるから、前記第 1形態例のよう に膨張タービンでの膨張を考慮する必要がないため、第 2凝縮器 14からの導出圧力 を大気圧程度にすることができる。大気圧近くの第 2酸素富化液ィ匕流体で第 2窒素ガ スを液化させるためには、第 2精留塔 13の塔頂部の圧力を約 0. 3MPa以上に設定 する必要がある。この第 2精留塔 13の圧力は、前述のように、第 1凝縮器 12で第 1窒 素ガスと間接熱交換する第 1酸素富化ガス流体の圧力であるから、第 1窒素ガスの圧 力である第 1精留塔 11の塔頂部の圧力は、約 0. 6MPa以上に設定する必要がある In the present embodiment, the second oxygen-enriched gas fluid (waste gas) evaporated by the second condenser 14 and led to the path 50 passes through the main heat exchanger 16 without passing through the expansion turbine. Since it is exhausted through and then used only for regeneration of the adsorber, it is not necessary to consider the expansion in the expansion turbine as in the first embodiment, so that it is derived from the second condenser 14. The pressure can be about atmospheric pressure. In order to liquefy the second nitrogen gas with the second oxygen-enriched liquid near the atmospheric pressure, it is necessary to set the pressure at the top of the second rectifying column 13 to about 0.3 MPa or more. Since the pressure of the second rectification column 13 is the pressure of the first oxygen-enriched gas fluid that indirectly exchanges heat with the first nitrogen gas in the first condenser 12 as described above, the pressure of the first nitrogen gas The pressure at the top of the first rectification column 11, which is the pressure, must be set to about 0.6 MPa or more.
[0036] また、両形態例では、第 1精留塔 11から抜き出した第 1酸素富化液ィ匕流体の一部 を経路 46や第 2精留塔に導入することで第 2精留塔 13の運転に必要な寒冷をまか なっているが、他の寒冷供給手段を寒冷源として使用可能な場合は、例えば装置外 力もの液ィ匕窒素を第 2精留塔 13に導入することにより、第 1酸素富化液ィ匕流体の全 量を第 2精留塔に導入することができ、さらに、膨張タービンの処理量を減少させるこ とにもでき、これによつて製品採取量を向上させることができる。なお、液化窒素等の 寒冷源の装置外からの導入は、装置の運転状態や必要寒冷量に応じて適宜選択す ることができ、第 1精留塔 11に液ィ匕窒素等を導入してもよ ヽ。 [0036] In both embodiments, the second rectifying column is introduced by introducing a part of the first oxygen-enriched liquid soot extracted from the first rectifying column 11 into the path 46 or the second rectifying column. If the cold necessary for the operation of 13 is covered, but other cold supply means can be used as the cold source, for example, liquid nitrogen from the outside of the equipment should be introduced into the second rectification column 13. This makes it possible to introduce the entire amount of the first oxygen-enriched liquid-fluid into the second rectification column, and further reduce the throughput of the expansion turbine. Can be improved. The introduction of a cold source such as liquefied nitrogen from the outside of the apparatus can be appropriately selected according to the operation state of the apparatus and the required amount of cold, and liquid nitrogen or the like is introduced into the first rectification column 11. But ヽ.
[0037] 次に、前記両形態例に示した構成の窒素製造装置と従来の窒素製造装置とを比 較した結果を説明する。図 3は、比較に使用した従来の二塔式窒素製造装置の系統 図を示すものであって、膨張タービンに導入する流体の圧力が、前記第 1形態例で 示した第 2酸素富化ガス流体の圧力と、前記第 2形態例で示した原料空気の一部の 圧力との中間の圧力であるから、以下、前記第 1形態例を低圧タービンプロセス、第 2形態例を空気タービンプロセス、従来例を中圧タービンプロセスと呼ぶことにする。 なお、図 3では、前記第 1形態例で示した窒素製造装置における構成要素と同一の 構成要素には、それぞれ同一符号を付して詳細な説明は省略する。 [0037] Next, a result of comparison between the nitrogen production apparatus having the configuration shown in the both embodiments and a conventional nitrogen production apparatus will be described. FIG. 3 shows a system diagram of a conventional two-column nitrogen production apparatus used for comparison, in which the pressure of the fluid introduced into the expansion turbine is the second oxygen-enriched gas shown in the first embodiment. Since the pressure is intermediate between the pressure of the fluid and the pressure of a part of the raw air shown in the second embodiment, the first embodiment is hereinafter referred to as a low-pressure turbine process, Two examples will be referred to as an air turbine process and a conventional example as an intermediate pressure turbine process. In FIG. 3, the same components as those in the nitrogen production apparatus shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0038] 前記第 1形態例の低圧タービンプロセスと従来例の中圧タービンプロセスとは、膨 張タービンに導入する流体が相違している。すなわち、低圧タービンプロセスでは、 第 1酸素富化ガス流体は使用せず、第 2凝縮器 14から経路 50に導出した第 2酸素 富化ガス流体の大部分を経路 53から低圧膨張タービン 15に導入しているのに対し、 中圧タービンプロセスでは、図 3に示すように、第 1凝縮器 12で蒸発した第 1酸素富 化ガス流体の一部を経路 40から経路 81に分岐させて抜き出し、更にその一部を経 路 82に分岐させ、残部を経路 83から主熱交 に導入し、中間温度で経路 84 に抜き出して膨張タービン(中圧膨張タービン) 85に導入している。  [0038] The low pressure turbine process of the first embodiment and the conventional intermediate pressure turbine process are different in the fluid introduced into the expansion turbine. That is, the first oxygen-enriched gas fluid is not used in the low-pressure turbine process, and most of the second oxygen-enriched gas fluid derived from the second condenser 14 to the path 50 is introduced to the low-pressure expansion turbine 15 from the path 53. On the other hand, in the medium pressure turbine process, as shown in FIG. 3, a part of the first oxygen-enriched gas fluid evaporated in the first condenser 12 is branched from the path 40 to the path 81 and extracted. Further, a part thereof is branched into a path 82, and the remaining part is introduced into the main heat exchanger from the path 83, extracted into the path 84 at an intermediate temperature, and introduced into the expansion turbine (medium pressure expansion turbine) 85.
[0039] また、前記経路 40の第 1酸素富化ガス流体の大部分は、経路 40aを通って第 2精 留塔 13の下部に導入される。したがって、中圧タービンプロセスで第 2精留塔に導入 される第 1酸素富化ガス流体の量は、低圧タービンプロセスに比べて経路 81に分岐 させた量だけ少なくなる。  [0039] In addition, most of the first oxygen-enriched gas fluid in the path 40 is introduced into the lower part of the second rectification column 13 through the path 40a. Therefore, the amount of the first oxygen-enriched gas fluid introduced into the second rectification column in the intermediate pressure turbine process is reduced by the amount branched into the path 81 compared to the low pressure turbine process.
[0040] 中圧膨張タービン 85で断熱膨張して経路 86に導出した第 1酸素富化ガス流体は、 経路 50から減圧弁 87で減圧された第 2酸素富化ガス流体及び前記経路 82の減圧 弁 88で減圧された第 1酸素富化ガス流体と合流し、主熱交換器 16で冷熱回収され た後に経路 55から廃ガスとして導出される。  [0040] The first oxygen-enriched gas fluid adiabatically expanded by the intermediate-pressure expansion turbine 85 and led to the path 86 is the second oxygen-enriched gas fluid decompressed by the pressure-reducing valve 87 from the path 50 and the decompression of the path 82. The first oxygen-enriched gas fluid depressurized by the valve 88 is merged, and cold heat is recovered by the main heat exchanger 16, and then is discharged as waste gas from the path 55.
[0041] 第 1形態例の低圧タービンプロセス及び第 2形態例の空気タービンプロセスと従来 の中圧タービンプロセスとを略同じ圧力条件で運転したときの主要経路 A〜Mを流 れる各流体の流量 (相対値)、圧力、酸素濃度を表 1 (第 1形態例:低圧タービンプロ セス)、表 2 (第 2形態例:空気タービンプロセス)、表 3 (従来装置:中圧タービンプロ セス)にそれぞれ示す。  [0041] Flow rate of each fluid flowing through main paths A to M when the low pressure turbine process of the first embodiment and the air turbine process of the second embodiment and the conventional intermediate pressure turbine process are operated under substantially the same pressure conditions. (Relative values), pressure, and oxygen concentration are shown in Table 1 (first example: low-pressure turbine process), Table 2 (second example: air turbine process), and Table 3 (conventional equipment: medium-pressure turbine process). Shown respectively.
[0042] 各表に記載した符号 A〜Mは、図 1乃至図 3に示すように、符号 Aは経路 31の供給 原料空気、符号 Bは経路 32の第 1精留塔導入原料空気、符号 Cは第 1製品回収経 路 35の第 1製品窒素ガス、符号 Dは経路 37の第 1精留塔導出第 1酸素富化液化流 体、符号 Eは経路 47の分岐第 1酸素富化液ィ匕流体、符号 Fは経路 38の第 1凝縮器 導入第 1酸素富化液化流体、符号 Gは経路 40又は経路 40aの第 2精留塔導入第 1 酸素富化ガス流体、符号 Hは第 2製品回収経路 43の第 2製品窒素ガス、符号 Iは経 路 44の圧縮第 2製品窒素ガス、符号 Jは経路 50の第 2凝縮器導出第 2酸素富化ガス 流体、符号 Kは低圧タービンプロセスでは経路 53の第 2酸素富化ガス流体、空気タ 一ビンプロセスでは経路 71の原料空気、中圧タービンプロセスでは経路 84の第 1酸 素富化ガス流体であって、いずれも膨張タービン導入流体、符号 Lは低圧タービンプ ロセスでは経路 51の第 2酸素富化ガス流体、空気タービンプロセスでは経路 73の原 料空気、中圧タービンプロセスでは経路 82の第 1酸素富化ガス流体、符号 Mは経路 55の排出第 2酸素富化ガス流体 (廃ガス)である。 [0042] As shown in Figs. 1 to 3, reference signs A to M shown in the tables are reference feed air for path 31 and reference sign B is feed air for the first rectification column introduced in path 32. C is the first product nitrogen gas in the first product recovery path 35, code D is the first oxygen-enriched liquefied fluid derived from the first rectification column in path 37, and code E is the branched first oxygen-enriched liquid in path 47 Fluid, sign F is the first condenser in path 38 Introduced first oxygen-enriched liquefied fluid, symbol G is the second rectifying column introduced first rectifier in channel 40 or 40a, symbol H is second product nitrogen gas in symbol second product recovery channel 43, symbol I Is the compressed second product nitrogen gas in path 44, J is the second condenser-derived second oxygen-enriched gas fluid in path 50, and K is the second oxygen-enriched gas fluid in path 53 in the low-pressure turbine process, air In the turbine process, the feed air in path 71, and in the intermediate pressure turbine process, the first oxygen-enriched gas fluid in path 84, both of which are the expansion turbine introduction fluid, symbol L is the second in path 51 in the low pressure turbine process. Oxygen-enriched gas fluid, source air in path 73 for air turbine process, first oxygen-enriched gas fluid in path 82 for medium-pressure turbine process, sign M is exhausted second oxygen-enriched gas fluid in path 55 (waste gas ).
[表 1] [table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[表 2] [Table 2]
Figure imgf000014_0002
Figure imgf000014_0002
[表 3] 符号 A B C D E F G 流量 [-] 100 100 40 60 L 2 58 50 [Table 3] Symbol ABCDEFG Flow rate [-] 100 100 40 60 L 2 58 50
圧力 [MPa] 0.98 0.97 0.94 0.97 0.97 0.51 0.51  Pressure [MPa] 0.98 0.97 0.94 0.97 0.97 0.51 0.51
酸素濃度 21 % 21 ¾ 0.1 ppm 35% 35% 35% 35%  Oxygen concentration 21% 21 ¾ 0.1 ppm 35% 35% 35% 35%
符号 H I J K し M  Symbol H I J K and M
流量 [-] 19 19 33 7 1 41  Flow rate [-] 19 19 33 7 1 41
圧力 [MPa] 0.49 0.94 0.19 0.50 0.13 0.12  Pressure [MPa] 0.49 0.94 0.19 0.50 0.13 0.12
酸素澳度 0.1 ppm 0. 1 ppm 55% 35% 35% 51%  Oxygen concentration 0.1 ppm 0.1 ppm 55% 35% 35% 51%
[0043] まず、表 1及び表 3では、第 1精留塔 11は両者の圧力が同じなので窒素の収率も 同一となり、原料空気 (B)の流量 100に対して第 1製品窒素ガス (C)は両者とも流量 力 0となる。同様に、第 1精留塔 11から導出する第 1酸素富化液化流体 (D)も、そ れぞれ流量が 60である。 [0043] First, in Tables 1 and 3, since the first rectification column 11 has the same pressure, the yield of nitrogen is also the same. The first product nitrogen gas ( In C), the flow force is 0 in both cases. Similarly, the flow rate of the first oxygen-enriched liquefied fluid (D) derived from the first rectification column 11 is 60, respectively.
[0044] しかし、中圧タービンプロセスでは、第 1凝縮器 12から経路 40に導出した第 1酸素 富化ガス流体の一部を中圧膨張タービン 85に向けて分岐させて 、るため、経路 81 に分岐した第 1酸素富化ガス流体 (K+L)の流量 (7+ 1 = 8)分だけ第 2精留塔 13 に導入する第 1酸素富化ガス流体 (G)が減少し、その流量は 50となる。一方、低圧タ 一ビンプロセスでは、第 1凝縮器 12から経路 40に導出した第 1酸素富化ガス流体の 大部分を第 2精留塔 13に導入しているため、その流量は 58となる。  [0044] However, in the intermediate pressure turbine process, a part of the first oxygen-enriched gas fluid led out from the first condenser 12 to the path 40 is branched toward the intermediate pressure expansion turbine 85, so that the path 81 The first oxygen-enriched gas fluid (G) introduced into the second rectification column 13 is reduced by the flow rate (7 + 1 = 8) of the first oxygen-enriched gas fluid (K + L) branched to The flow rate is 50. On the other hand, in the low-pressure turbine process, most of the first oxygen-enriched gas fluid led out from the first condenser 12 to the path 40 is introduced into the second rectification column 13, so the flow rate is 58. .
[0045] したがって、第 2精留塔 13から得られる第 2製品窒素ガス (H)の流量が異なり、中 圧タービンプロセスの流量が 19であるのに対して、低圧タービンプロセスの流量は 2 2に増カロしている。これ〖こより、流量 100の原料空気で、中圧タービンプロセスの製品 窒素の全流量が 59であるのに対し、低圧タービンプロセスでは製品窒素の全流量が 62に増カロしている。  [0045] Therefore, the flow rate of the second product nitrogen gas (H) obtained from the second rectification column 13 is different and the flow rate of the intermediate pressure turbine process is 19, whereas the flow rate of the low pressure turbine process is 2 2. Increased in number. From this, the total flow rate of product nitrogen in the medium-pressure turbine process is 59 with raw air at a flow rate of 100, whereas the total flow rate of product nitrogen is increased to 62 in the low-pressure turbine process.
[0046] また、表 2及び表 3を比較すると、空気タービンプロセスでは原料空気の一部が空 気タービンに分岐するため、第 1精留塔 11から得られる第 1製品窒素ガス (C)は、中 圧タービンプロセスの流量 40に対して空気タービンプロセスでは流量が 33に減少し ている。  [0046] Further, comparing Table 2 and Table 3, in the air turbine process, part of the raw air is branched to the air turbine, so the first product nitrogen gas (C) obtained from the first rectification column 11 is On the other hand, the flow rate is reduced to 33 in the air turbine process compared to 40 in the medium pressure turbine process.
[0047] しかし、空気タービンプロセスでは、第 2精留塔 13に、経路 40からの第 1酸素富化 ガス流体だけでなぐ空気導入経路 73からの膨張タービン導出原料空気及び酸素 富化液ィ匕流体導入経路 74からの第 1酸素富化液ィ匕流体を導入しているので、第 2 精留塔 13から得られる第 2製品窒素ガス (H)の流量が大幅に増加し、中圧タービン プロセスの流量が 19であるのに対して空気タービンプロセスでは流量が 30に増加し ている。したがって、製品窒素の全流量は、中圧タービンプロセスの流量が 59に対し て空気タービンプロセスの流量は 63に増加している。 [0047] However, in the air turbine process, the raw air and oxygen-enriched liquid derived from the expansion turbine from the air introduction path 73 are connected to the second rectifying column 13 only by the first oxygen-enriched gas fluid from the path 40. Since the first oxygen-enriched liquid fluid from the fluid introduction path 74 is introduced, the second The flow rate of the second product nitrogen gas (H) obtained from the rectification column 13 is greatly increased. The flow rate of the intermediate pressure turbine process is 19, whereas the flow rate is increased to 30 in the air turbine process. Therefore, the total flow rate of product nitrogen is increased to 59 for the medium pressure turbine process and 63 for the air turbine process.
[0048] 表 4は、上記各プロセスにおける動力原単位をそれぞれ算出した結果を示している [0048] Table 4 shows the results of calculating the power consumption in each of the above processes.
[表 4] [Table 4]
Figure imgf000016_0001
Figure imgf000016_0001
[0049] この表 4から、低圧タービンプロセス及び空気タービンプロセスは、従来の中圧ター ビンプロセスに比べて動力原単位がそれそれ 4%程度改善されていることがわかる。 なお、ここでは、各精留塔が棚段式精留塔の場合を想定しているが、各精留塔は、 一般的に用いられている規則充填式精留塔ゃ不規則充填式精留塔等を使用するこ とができ、これらを使用しても略同様の効果が得られる。 [0049] From Table 4, it can be seen that the power unit is improved by about 4% in the low-pressure turbine process and the air turbine process compared to the conventional medium-pressure turbine process. Here, it is assumed that each rectification column is a tray-type rectification column. However, each rectification column is a regular-packed rectification column that is generally used. A distillation column or the like can be used, and even if these are used, substantially the same effect can be obtained.
[0050] 図 4は、一つの精留塔を使用した従来の低圧型プロセスを採用した窒素製造装置 の一例を示す系統図である。この窒素製造装置は、精留塔 91を 0. 5MPa程度の低 圧で運転し、得られた製品窒素ガスを窒素圧縮機 92で所要の圧力に圧縮して供給 するもので、図示しない原料空気圧縮機の動力低減と同時に精留塔の収率向上を 図ることにより低原単位を実現させる方法であって、従来から広く実施されている。な お、図 4における装置各部の説明や各気液の流れは従来力 周知であるから、ここで は説明を省略する。 FIG. 4 is a system diagram showing an example of a nitrogen production apparatus employing a conventional low-pressure process using one rectification column. This nitrogen production apparatus operates the rectifying column 91 at a low pressure of about 0.5 MPa, compresses the obtained product nitrogen gas to a required pressure with a nitrogen compressor 92, and supplies raw air (not shown). This is a method of realizing a low unit by reducing the compressor power and simultaneously improving the yield of the rectification column, and has been widely practiced. The explanation of each part of the device and the flow of each gas and liquid in Fig. 4 are well known in the past. Will not be described.
[0051] 図 5は、上記低圧型プロセスと、前述の低圧タービンプロセス及び空気タービンプロ セスとにおける製品圧力毎の動力原単位を示している。この図 5から、製品圧力 1. 1 MPa付近を境にして、これよりも低圧側では低圧タービンプロセス及び空気タービン プロセスの動力原単位が小さぐこれよりも高圧になると従来の低圧型プロセスの動 力原単位が小さくなることがわかる。  [0051] FIG. 5 shows the power unit for each product pressure in the low-pressure type process and the low-pressure turbine process and the air turbine process described above. From Fig. 5, it can be seen that the product pressure of the low-pressure turbine process and the air turbine process is smaller on the low-pressure side than the product pressure of 1.1 MPa. It can be seen that the force unit becomes smaller.
[0052] これは、低圧タービンプロセス及び空気タービンプロセスでは、製品圧力を高くする のに伴って第 1精留塔 11及び第 2精留塔 13の圧力が高くなり、廃ガスの圧力も高く なる。したがって、単に減圧されて排出されるだけで有効利用されない廃ガスのエネ ルギ一の割合が大きくなるため、製品窒素の圧力を上昇させると次第に無駄が大きく なって原単位が悪ィ匕するのに対して、低圧型プロセスでは、単に窒素圧縮機 92の動 力が増加するのみだ力もである。  [0052] This is because in the low-pressure turbine process and the air turbine process, as the product pressure is increased, the pressure in the first rectification column 11 and the second rectification column 13 is increased, and the pressure of the waste gas is also increased. . Therefore, the percentage of waste gas energy that cannot be effectively utilized simply by being decompressed and exhausted increases, so increasing the product nitrogen pressure gradually increases waste and reduces the basic unit. On the other hand, in the low pressure type process, the power of the nitrogen compressor 92 simply increases.
[0053] この結果から、製品窒素の圧力、すなわち、低圧タービンプロセス及び空気タービ ンプロセスでは、第 1精留塔 11の塔頂部力も抜き出されて第 1製品回収経路 35から 導出される第 1製品窒素ガスの圧力は、双方とも 1. IMPaが本発明の効果が期待で きる限界となり、これを超える圧力で製品窒素を使用先に送出する場合は、従来の低 圧型プロセスの方が有利となる。  [0053] From this result, in the product nitrogen pressure, that is, in the low-pressure turbine process and the air turbine process, the top force of the first rectification column 11 is also extracted and is derived from the first product recovery path 35. The pressure of the product nitrogen gas is 1. Both the limit that IMPa can expect the effects of the present invention is the limit. When sending product nitrogen to the user at a pressure exceeding this, the conventional low pressure process is more advantageous. Become.
[0054] 表 5は、前記低圧タービンプロセスと前記空気タービンプロセスとにおける膨張ター ビンの仕様を示すもので、同程度の製品窒素を採取する場合で比較して 、る。  [0054] Table 5 shows the specifications of the expansion turbine in the low-pressure turbine process and the air turbine process, which are compared in the case where the same level of product nitrogen is collected.
[表 5]  [Table 5]
Figure imgf000017_0001
この例では、両者の体積流量が約 10倍( = 172Z16)も異なっている。これは、低 圧膨張タービンプロセスでは,膨張タービンの入口圧力が低いために膨張比が小さ くなり、所定の寒冷を得るために比較的多くの流体を処理する必要があるからである 。この体積流量は、膨張タービンの機械的仕様 (寸法)に大きく影響を及ぼす。
Figure imgf000017_0001
In this example, the volume flow rate of both is about 10 times different (= 172Z16). This is because the low-pressure expansion turbine process has a low expansion ratio due to the low inlet pressure of the expansion turbine, and it is necessary to process a relatively large amount of fluid in order to obtain a predetermined cold. . This volumetric flow rate has a significant effect on the mechanical specifications (dimensions) of the expansion turbine.
[0056] これらのプロセスで用いる膨張タービンは、一般の汎用膨張タービンであり,体積 流量が極端に少ない場合は、汎用品の採用が困難になる場合がある。逆に体積流 量が極端に多い場合も、汎用品の採用が困難になったり、膨張タービンを複数設置 しなければならな!/ヽ場合がある。  [0056] The expansion turbine used in these processes is a general-purpose general-purpose expansion turbine. When the volume flow rate is extremely small, it may be difficult to adopt a general-purpose product. Conversely, even when the volumetric flow rate is extremely high, it may be difficult to adopt general-purpose products, or it may be necessary to install multiple expansion turbines!
[0057] しかし、低圧タービンプロセスを比較的小規模の窒素製造装置に採用した場合に は、装置規模の割に膨張タービンの処理流量が多くなり、極端に少なくならないこと から、一般の汎用膨張タービンを採用することが可能となる。逆に、空気タービンプロ セスを中大規模の窒素製造装置に採用した場合には、装置規模の割に膨張タービ ンの処理流量を少なくすることができるので、この場合も、一般の汎用膨張タービンを 採用することが可能となる。  [0057] However, when the low-pressure turbine process is adopted in a relatively small-scale nitrogen production apparatus, the processing flow rate of the expansion turbine increases with respect to the scale of the apparatus, and it does not become extremely small. Can be adopted. Conversely, when the air turbine process is adopted in a medium and large-scale nitrogen production apparatus, the processing flow rate of the expansion turbine can be reduced for the scale of the apparatus. Can be adopted.
[0058] この点を考慮して低圧タービンプロセスと空気タービンプロセスとにそれぞれ有利 な製品圧力及び製品流量の範囲を図 6に示す。但し、膨張タービンの処理流量は、 製品液化窒素の採取の有無、装置の保冷状態等の条件によって異なるから、低圧タ 一ビンプロセスと空気タービンプロセスとの選択は、様々な条件を勘案して決定する ことが望ましい。しかし、定性的には、製品窒素流量が数千 Nm3Zh以下の小規模 窒素製造装置の場合には低圧タービンプロセスが有利であり、製品窒素流量が数千 Nm3Zh以上〜数万 Nm3Zh程度の中大規模窒素製造装置の場合には空気ター ビンプロセスが有利であると ヽえる。  [0058] Fig. 6 shows the ranges of product pressure and product flow rate that are advantageous for the low-pressure turbine process and the air turbine process in consideration of this point. However, since the treatment flow rate of the expansion turbine varies depending on whether or not the product liquefied nitrogen is collected and the equipment is kept cool, the selection of the low-pressure turbine process and the air turbine process is determined in consideration of various conditions. It is desirable to do so. However, qualitatively, a low-pressure turbine process is advantageous in the case of small-scale nitrogen production equipment with a product nitrogen flow rate of several thousand Nm3Zh or less, and a medium to large scale with a product nitrogen flow rate of several thousand Nm3Zh to tens of thousands Nm3Zh. In the case of nitrogen production equipment, the air turbine process seems to be advantageous.

Claims

請求の範囲 The scope of the claims
[1] 原料空気を深冷液化分離して製品窒素を採取する窒素製造方法であって;該窒素 製造方法は;  [1] A nitrogen production method for collecting product nitrogen by subjecting raw material air to cryogenic liquefaction separation;
圧縮、精製、冷却した原料空気を 0. 8MPa以上、 1. IMPa以下の圧力で低温蒸 留して第 1窒素ガスと第 1酸素富化液化流体とに分離する第 1分離工程と;  A first separation step in which the compressed, refined, and cooled raw material air is subjected to low-temperature distillation at a pressure of 0.8 MPa or more and 1. IMPa or less and separated into a first nitrogen gas and a first oxygen-enriched liquefied fluid;
前記第 1窒素ガスと前記第 1酸素富化液ィヒ流体とを間接熱交換させて第 1窒素ガス を凝縮して第 1液化窒素を得ると同時に第 1酸素富化液化流体を蒸発して第 1酸素 富化ガス流体を得る第 1間接熱交換工程と;  The first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas to obtain first liquefied nitrogen, and at the same time evaporate the first oxygen-enriched liquefied fluid. A first indirect heat exchange step to obtain a first oxygen-enriched gas fluid;
前記第 1酸素富化ガス流体を 0. 4MPa以上で、かつ、前記第 1分離工程より低い 圧力で低温蒸留して第 2窒素ガスと第 2酸素富化液化流体とに分離する第 2分離ェ 程と;  A second separator that separates the first oxygen-enriched gas fluid into a second nitrogen gas and a second oxygen-enriched liquefied fluid by low-temperature distillation at a pressure of 0.4 MPa or more and lower pressure than the first separation step. About;
前記第 2窒素ガスと前記第 2酸素富化液ィヒ流体とを間接熱交換させて第 2窒素ガス を凝縮して第 2液化窒素を得ると同時に第 2酸素富化液化流体を蒸発して第 2酸素 富化ガス流体を得る第 2間接熱交換工程と;  The second nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the second oxygen-enriched liquefied fluid. A second indirect heat exchange step to obtain a second oxygen-enriched gas fluid;
前記第 2酸素富化ガス流体を断熱膨張させることにより運転に必要な寒冷を発生さ せる寒冷発生工程と;  A cold generating step of generating cold necessary for operation by adiabatic expansion of the second oxygen-enriched gas fluid;
前記第 1窒素ガスの一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品 回収工程と;  A first product recovery step of deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery;
前記第 2窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品 回収工程と;  A second product recovery step of extracting a part of the second nitrogen gas as a second product nitrogen gas after cold recovery;
を含む窒素製造方法。  A method for producing nitrogen.
[2] 原料空気を深冷液化分離して製品窒素を採取する窒素製造方法であって;該窒素 製造方法は;  [2] A nitrogen production method for collecting product nitrogen by cryogenic liquefaction separation of raw material air;
圧縮、精製、冷却した原料空気を 0. 6MPa以上、 1. IMPa以下の圧力で低温蒸 留して第 1窒素ガスと第 1酸素富化液化流体とに分離する第 1分離工程と;  A first separation step in which the compressed, refined and cooled raw material air is subjected to low-temperature distillation at a pressure of 0.6 MPa or more and 1. IMPa or less and separated into a first nitrogen gas and a first oxygen-enriched liquefied fluid;
前記第 1窒素ガスと前記第 1酸素富化液ィヒ流体とを間接熱交換させて第 1窒素ガス を凝縮して第 1液化窒素を得ると同時に第 1酸素富化液化流体を蒸発して第 1酸素 富化ガス流体を得る第 1間接熱交換工程と; 前記第 1酸素富化ガス流体を 0. 3MPa以上で、かつ、前記第 1分離工程より低い 圧力で低温蒸留して第 2窒素ガスと第 2酸素富化液化流体とに分離する第 2分離ェ 程と; The first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas to obtain first liquefied nitrogen, and at the same time evaporate the first oxygen-enriched liquefied fluid. A first indirect heat exchange step to obtain a first oxygen-enriched gas fluid; A second separator that separates the first oxygen-enriched gas fluid into a second nitrogen gas and a second oxygen-enriched liquefied fluid by low-temperature distillation at a pressure of 0.3 MPa or more and lower than the pressure in the first separation step. About;
前記第 2窒素ガスと前記第 2酸素富化液ィヒ流体とを間接熱交換させて第 2窒素ガス を凝縮して第 2液化窒素を得ると同時に第 2酸素富化液化流体を蒸発して第 2酸素 富化ガス流体を得る第 2間接熱交換工程と;  The second nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the second oxygen-enriched liquefied fluid. A second indirect heat exchange step to obtain a second oxygen-enriched gas fluid;
前記原料空気の一部を断熱膨張させることにより運転に必要な寒冷を発生させる 寒冷発生工程と;  Generating a cold necessary for operation by adiabatic expansion of a part of the raw material air;
該寒冷発生工程を経た原料空気を前記第 2分離工程の中間段に導入する空気導 入工程と;  An air introduction step of introducing the raw material air having passed through the cold generation step into an intermediate stage of the second separation step;
前記第 1窒素ガスの一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品 回収工程と;  A first product recovery step of deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery;
前記第 2窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品 回収工程と;  A second product recovery step of extracting a part of the second nitrogen gas as a second product nitrogen gas after cold recovery;
を含む窒素製造方法。  A method for producing nitrogen.
[3] 前記第 2製品窒素ガスを圧縮する工程を含んでいる請求項 1又は 2記載の窒素 製造方法。  [3] The method for producing nitrogen according to claim 1 or 2, further comprising a step of compressing the second product nitrogen gas.
[4] 原料空気を深冷液化分離して製品窒素を採取する窒素製造装置であって;窒素製 造装置は;  [4] Nitrogen production equipment that collects product nitrogen by cryogenic liquefaction separation of raw material air;
圧縮、精製、冷却された原料空気を 0. 8MPa以上、 1. IMPa以下の圧力で低温 蒸留して塔上部の第 1窒素ガスと塔底部の第 1酸素富化液化流体とに分離する第 1 精留塔と;  Compressed, refined, and cooled feed air is 0.8 MPa or higher and 1. IMPa or lower pressure is distilled at a low temperature to separate the first nitrogen gas at the top of the tower and the first oxygen-enriched liquefied fluid at the bottom of the tower. A rectifying tower;
前記第 1窒素ガスと前記第 1酸素富化液ィヒ流体とを間接熱交換させて第 1窒素ガス を凝縮して第 1液化窒素を得ると同時に第 1酸素富化液化流体を蒸発して第 1酸素 富化ガス流体を得る第 1凝縮器と;  The first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas to obtain first liquefied nitrogen, and at the same time evaporate the first oxygen-enriched liquefied fluid. A first condenser to obtain a first oxygen-enriched gas fluid;
前記第 1酸素富化ガス流体を 0. 4MPa以上で、かつ、前記第 1精留塔より低い圧 力で低温蒸留して塔上部の第 2窒素ガスと塔底部の第 2酸素富化液化流体とに精留 分離する第 2精留塔と; 前記第 2窒素ガスと前記第 2酸素富化液ィヒ流体とを間接熱交換させて第 2窒素ガス を凝縮して第 2液化窒素を得ると同時に第 2酸素富化液化流体を蒸発して第 2酸素 富化ガス流体を得る第 2凝縮器と; The first oxygen-enriched gas fluid is subjected to low-temperature distillation at a pressure of 0.4 MPa or more and lower pressure than the first rectification column, and the second nitrogen gas at the top of the column and the second oxygen-enriched liquefied fluid at the bottom of the column And a second rectifying column that separates The second nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the second oxygen-enriched liquefied fluid. A second condenser to obtain a second oxygen-enriched gas fluid;
第 2酸素富化ガス流体を断熱膨張させて装置の運転に必要な寒冷を発生する膨 張タービンと;  An expansion turbine that adiabatically expands the second oxygen-enriched gas fluid to generate the cold necessary to operate the device;
前記第 1窒素ガスの一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品 回収経路と;  A first product recovery path for deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery;
前記第 2窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品 回収経路と;  A second product recovery path for extracting a portion of the second nitrogen gas as a second product nitrogen gas after cold recovery;
を含む窒素製造装置。 Nitrogen production equipment.
原料空気を深冷液化分離して製品窒素を採取する窒素製造装置であって;窒素製 造装置は;  Nitrogen production equipment that collects product nitrogen by cryogenic liquefaction separation of raw material air;
圧縮、精製、冷却された原料空気を 0. 6MPa以上、 1. IMPa以下の圧力で低温 蒸留して塔上部の第 1窒素ガスと塔底部の第 1酸素富化液化流体とに分離する第 1 精留塔と;  The compressed, refined, and cooled raw air is distilled at a low temperature of 0.6 MPa or higher, 1. IMPa or lower, and separated into the first nitrogen gas at the top of the tower and the first oxygen-enriched liquefied fluid at the bottom of the tower. A rectifying tower;
前記第 1窒素ガスと前記第 1酸素富化液ィヒ流体とを間接熱交換させて第 1窒素ガス を凝縮して第 1液化窒素を得ると同時に第 1酸素富化液化流体を蒸発して第 1酸素 富化ガス流体を得る第 1凝縮器と;  The first nitrogen gas and the first oxygen-enriched liquid fluid are indirectly heat exchanged to condense the first nitrogen gas to obtain first liquefied nitrogen, and at the same time evaporate the first oxygen-enriched liquefied fluid. A first condenser to obtain a first oxygen-enriched gas fluid;
前記第 1酸素富化ガス流体を 0. 3MPa以上で、かつ、前記第 1精留塔より低い圧 力で低温蒸留して塔上部の第 2窒素ガスと塔底部の第 2酸素富化液化流体とに精留 分離する第 2精留塔と;  The first oxygen-enriched gas fluid is cryogenically distilled at a pressure of 0.3 MPa or higher and lower than the pressure of the first rectification column, and the second nitrogen gas at the top of the column and the second oxygen-enriched liquefied fluid at the bottom of the column And a second rectifying column that separates
前記第 2窒素ガスと前記第 2酸素富化液ィヒ流体とを間接熱交換させて第 2窒素ガス を凝縮して第 2液化窒素を得ると同時に第 2酸素富化液化流体を蒸発して第 2酸素 富化ガス流体を得る第 2凝縮器と;  The second nitrogen gas and the second oxygen-enriched liquid fluid are indirectly heat exchanged to condense the second nitrogen gas to obtain second liquefied nitrogen, and at the same time evaporate the second oxygen-enriched liquefied fluid. A second condenser to obtain a second oxygen-enriched gas fluid;
前記原料空気の一部を断熱膨張させて装置の運転に必要な寒冷を発生する膨張 タービンと;  An expansion turbine that adiabatically expands a part of the raw material air to generate cold necessary for operation of the apparatus;
前記膨張タービンを経た原料空気を前記第 2精留塔の中間段に導入する空気導 入経路と; 前記第 1窒素ガスの一部を冷熱回収後に第 1製品窒素ガスとして導出する第 1製品 回収経路と; An air introduction path for introducing the raw air passed through the expansion turbine into an intermediate stage of the second rectification column; A first product recovery path for deriving a part of the first nitrogen gas as a first product nitrogen gas after cold recovery;
前記第 2窒素ガスの一部を冷熱回収後に第 2製品窒素ガスとして導出する第 2製品 回収経路と;  A second product recovery path for extracting a portion of the second nitrogen gas as a second product nitrogen gas after cold recovery;
を含む窒素製造装置。  Nitrogen production equipment.
[6] 前記第 2製品窒素ガスを圧縮する窒素圧縮機を備えて 、る請求項 4又は 5記載の 窒素製造装置。  6. The nitrogen production apparatus according to claim 4 or 5, further comprising a nitrogen compressor that compresses the second product nitrogen gas.
[7] 前記第 2精留塔は、装置外からの液化窒素を導入する液化窒素導入経路を備えて V、る請求項 4又は 5記載の窒素製造装置。  7. The nitrogen production apparatus according to claim 4 or 5, wherein the second rectification column is provided with a liquefied nitrogen introduction path for introducing liquefied nitrogen from outside the apparatus.
PCT/JP2005/020340 2004-11-08 2005-11-07 Process and apparatus for nitrogen production WO2006049272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/667,164 US20080264101A1 (en) 2004-11-08 2005-11-07 Process and Apparatus for Nitrogen Production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004323273A JP4515225B2 (en) 2004-11-08 2004-11-08 Nitrogen production method and apparatus
JP2004-323273 2004-11-08

Publications (1)

Publication Number Publication Date
WO2006049272A1 true WO2006049272A1 (en) 2006-05-11

Family

ID=36319270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020340 WO2006049272A1 (en) 2004-11-08 2005-11-07 Process and apparatus for nitrogen production

Country Status (6)

Country Link
US (1) US20080264101A1 (en)
JP (1) JP4515225B2 (en)
KR (1) KR100859916B1 (en)
CN (1) CN100529622C (en)
TW (1) TWI326350B (en)
WO (1) WO2006049272A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032407B2 (en) * 2008-07-24 2012-09-26 大陽日酸株式会社 Nitrogen production method and apparatus
CN111141110B (en) * 2020-01-19 2021-05-07 杭州特盈能源技术发展有限公司 Low-energy-consumption medium-pressure nitrogen preparation process
CN111811211A (en) * 2020-07-07 2020-10-23 杭州杭氧低温液化设备有限公司 Nitrogen production device and method with refrigerating unit single tower
CN113883830B (en) * 2021-11-01 2022-11-18 四川空分设备(集团)有限责任公司 Method and device for preparing multi-liquid low-pressure high-purity nitrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122479A (en) * 1984-11-15 1986-06-10 ユニオン・カーバイド・コーポレーシヨン Hybrid nitrogen generator with auxiliary tower drive
JPH07146065A (en) * 1993-08-16 1995-06-06 Boc Group Inc:The Manufacture of high-purity nitrogen vapor product
JP2003156284A (en) * 2001-11-19 2003-05-30 Nippon Sanso Corp Nitrogen producing method and device
JP2004020158A (en) * 2002-06-20 2004-01-22 Air Water Inc Air separation equipment

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110872A (en) * 1984-11-02 1986-05-29 日本酸素株式会社 Manufacture of nitrogen
JPS6454187A (en) * 1987-08-25 1989-03-01 Nippon Oxygen Co Ltd Manufacture of nitrogen gas
JP2920392B2 (en) * 1989-11-20 1999-07-19 日本酸素株式会社 Supercooling method of liquefied nitrogen in air liquefaction separator
GB9008752D0 (en) * 1990-04-18 1990-06-13 Boc Group Plc Air separation
US5137559A (en) * 1990-08-06 1992-08-11 Air Products And Chemicals, Inc. Production of nitrogen free of light impurities
DE4109945A1 (en) * 1991-03-26 1992-10-01 Linde Ag METHOD FOR DEEP TEMPERATURE DISPOSAL OF AIR
US5165245A (en) * 1991-05-14 1992-11-24 Air Products And Chemicals, Inc. Elevated pressure air separation cycles with liquid production
US5396772A (en) * 1994-03-11 1995-03-14 The Boc Group, Inc. Atmospheric gas separation method
US5507148A (en) * 1994-10-25 1996-04-16 The Boc Group, Inc. Air separation method and apparatus to produce nitrogen
CN1153895A (en) * 1995-11-25 1997-07-09 林德股份公司 Method and apparatus for extracting oxygen and nitrogen under condition of super atmospheric pressure
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
GB9807833D0 (en) * 1998-04-09 1998-06-10 Boc Group Plc Separation of air
KR100275859B1 (en) * 1998-11-05 2000-12-15 김영대 A manufacturing method for high purity nitrogen gas
GB9910701D0 (en) * 1999-05-07 1999-07-07 Boc Group Plc Separation of air
US6125656A (en) * 1999-11-03 2000-10-03 Praxair Technology, Inc. Cryogenic rectification method for producing nitrogen gas and liquid nitrogen
FR2800859B1 (en) * 1999-11-05 2001-12-28 Air Liquide METHOD AND APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION
US6233970B1 (en) * 1999-11-09 2001-05-22 Air Products And Chemicals, Inc. Process for delivery of oxygen at a variable rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122479A (en) * 1984-11-15 1986-06-10 ユニオン・カーバイド・コーポレーシヨン Hybrid nitrogen generator with auxiliary tower drive
JPH07146065A (en) * 1993-08-16 1995-06-06 Boc Group Inc:The Manufacture of high-purity nitrogen vapor product
JP2003156284A (en) * 2001-11-19 2003-05-30 Nippon Sanso Corp Nitrogen producing method and device
JP2004020158A (en) * 2002-06-20 2004-01-22 Air Water Inc Air separation equipment

Also Published As

Publication number Publication date
CN101048637A (en) 2007-10-03
KR100859916B1 (en) 2008-09-23
CN100529622C (en) 2009-08-19
KR20070083808A (en) 2007-08-24
TWI326350B (en) 2010-06-21
US20080264101A1 (en) 2008-10-30
TW200617336A (en) 2006-06-01
JP2006132854A (en) 2006-05-25
JP4515225B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
CN103123203B (en) Method of preparing pure nitrogen by using exhaust gas with nitrogen to carry out once-more cryogenic distillation
JP5655104B2 (en) Air separation method and air separation device
JPH11351738A (en) Method and system for producing high purity oxygen
JPH07305953A (en) Cryogenic rectifying system for manufacturing low-purity oxygen
JP5417054B2 (en) Air separation method and apparatus
JP6092804B2 (en) Air liquefaction separation method and apparatus
WO2006049272A1 (en) Process and apparatus for nitrogen production
JP4841591B2 (en) Nitrogen production method and apparatus
JP4401999B2 (en) Air separation method and air separation device
JP2000329456A (en) Method and device for separating air
JP5032407B2 (en) Nitrogen production method and apparatus
JP2017072282A (en) Nitrogen manufacturing method and nitrogen manufacturing device
JP4447501B2 (en) Air liquefaction separation method and apparatus
CN113003553B (en) Recovery of krypton and xenon from liquid oxygen
JP3738213B2 (en) Nitrogen production method and apparatus
JP4447502B2 (en) Air liquefaction separation method and apparatus
JP5005708B2 (en) Air separation method and apparatus
JP5647853B2 (en) Air liquefaction separation method and apparatus
JP6159242B2 (en) Air separation method and apparatus
JP6591830B2 (en) Nitrogen and oxygen production method, and nitrogen and oxygen production apparatus
JP6431828B2 (en) Air liquefaction separation method and apparatus
JPH11132653A (en) Air separating method and device therefor
JP4698989B2 (en) Oxygen production equipment
JP4451438B2 (en) Nitrogen production method and apparatus
JP2005274008A (en) Air separating method and device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077009472

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580037129.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05805551

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11667164

Country of ref document: US