WO2006048977A1 - Exhaust gas purifying device - Google Patents

Exhaust gas purifying device Download PDF

Info

Publication number
WO2006048977A1
WO2006048977A1 PCT/JP2005/017128 JP2005017128W WO2006048977A1 WO 2006048977 A1 WO2006048977 A1 WO 2006048977A1 JP 2005017128 W JP2005017128 W JP 2005017128W WO 2006048977 A1 WO2006048977 A1 WO 2006048977A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
pressure
engine
agent container
upper space
Prior art date
Application number
PCT/JP2005/017128
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiko Masaki
Tomoyasu Harada
Original Assignee
Nissan Diesel Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Diesel Motor Co., Ltd. filed Critical Nissan Diesel Motor Co., Ltd.
Publication of WO2006048977A1 publication Critical patent/WO2006048977A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a technique that makes it difficult for clogging to occur in a reducing agent supply system in an exhaust purification device that reduces and purifies nitrogen oxides (NOx) in exhaust using a liquid reducing agent.
  • NOx nitrogen oxides
  • Patent Document 1 As a catalyst purification system for removing NOx contained in engine exhaust, an exhaust purification device disclosed in Japanese Patent Application Laid-Open No. 2000-27627 (Patent Document 1) has been proposed. Such an exhaust purification device performs catalytic reduction of NOx and liquid reducing agent in the exhaust gas by injecting and supplying a liquid reducing agent according to the engine operating state upstream of the reduction catalyst disposed in the engine exhaust system. It reacts to purify NOx into harmless components.
  • the liquid reducing agent an aqueous urea solution that generates ammonia by hydrolysis using exhaust heat and water vapor in the exhaust is used.
  • Patent Document 1 JP 2000-27627 A
  • the present invention supplies the liquid reducing agent by pressurizing the upper space of the closed reducing agent container for storing the liquid reducing agent to a predetermined pressure or higher. It is an object of the present invention to provide an exhaust purification device that assists in reducing the clogging of the reducing agent supply system.
  • the exhaust emission control device stores a liquid reducing agent.
  • a reducing agent container having a sealed structure; a reduction catalyst disposed in an engine exhaust passage for reducing and purifying nitrogen oxides in the exhaust gas using a liquid reducing agent supplied from the reducing agent container; and an upper portion of the reducing agent container
  • a pressure regulator capable of adjusting the space to an arbitrary pressure, an operation state detection device that detects the engine operation state, and a control that controls the pressure regulator by inputting the engine operation state detected by the operation state detection device.
  • the control unit determines whether or not the engine is operating based on the engine operating state, and when determining that the engine is operating, the reducing agent container
  • the pressure regulator is controlled so that the upper space of the chamber becomes equal to or higher than a predetermined pressure.
  • the exhaust gas purification apparatus is provided in a sealed reducing agent container for storing a liquid reducing agent and an engine exhaust passage, and is supplied from the reducing agent container.
  • An air supply control valve that controls the supply of the decompressed air into the reducing agent container, an operation state detection device that detects the engine operation state, and an engine operation state detected by the operation state detection device are input.
  • a control unit that controls opening and closing of the air supply control valve, and the control unit determines whether or not the engine is operating based on the engine operating state. The air supply control valve is opened when it is determined that the engine is operating.
  • the exhaust emission control device of the present invention when the engine is operating, the upper space of the reducing agent container is pressurized to at least a predetermined pressure, so that the liquid reduction stored in the reducing agent container is performed.
  • the agent is pressed by the air present in the upper space and is pumped to the reducing agent supply system. For this reason, even if a slight clogging occurs in the reducing agent supply system, it is forcibly discharged by the liquid reducing agent that is pumped, so that the clogging in the reducing agent supply system can be made difficult to occur.
  • the liquid reducing agent is pumped to the reducing agent supply system, the degree of freedom in equipment layout can be improved.
  • FIG. 1 is an overall configuration diagram of an exhaust emission control device to which the present invention is applied. 2] FIG. 2 is an enlarged view of a main part of the exhaust gas purification apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing the control content of the above.
  • FIG. 4 is an enlarged view of a main part of an exhaust purification apparatus according to a second embodiment.
  • FIG. 5 is a flowchart showing the control content of the above.
  • Figure 1 shows the overall configuration of an exhaust purification system that uses urea aqueous solution as a liquid reducing agent to purify NOx in engine exhaust by a catalytic reduction reaction.
  • An exhaust pipe 14 connected to the exhaust manifold 12 of the engine 10 includes a nitrogen oxidation catalyst 16 that oxidizes monoxide-nitrogen (NO) to diacid-nitrogen (NO) along the exhaust flow direction.
  • a nitrogen oxidation catalyst 16 that oxidizes monoxide-nitrogen (NO) to diacid-nitrogen (NO) along the exhaust flow direction.
  • a soot ammonia acid catalyst 22 is provided.
  • the aqueous urea solution stored in the reducing agent container 24 having a sealed structure is supplied to the reducing agent addition device 28 through a supply pipe 26 having a suction opening at the bottom thereof, while the reducing agent-added calorie is supplied. Excess urea aqueous solution that does not contribute to the injection in the apparatus 28 is returned to the upper space of the reducing agent container 24 through the return pipe 30.
  • the reducing agent addition device 28 is controlled by a reducing agent addition control unit (hereinafter referred to as "reducing agent addition ECU") 32 having a built-in computer, and mixes an aqueous urea solution according to the engine operating state with air. While being supplied to the injection nozzle 18.
  • reducing agent addition ECU reducing agent addition control unit
  • the engine operation state including the engine operation information is read from an engine control unit (hereinafter referred to as “engine ECU”! 34 connected via CAN (Controller Area Network).
  • engine ECU 34 corresponds to the driving state detection device, but the driving state detection device may be configured by various sensors (the same applies hereinafter).
  • reference numeral 36 in the figure denotes a concentration sensor that detects the concentration of the urea aqueous solution stored in the reducing agent container 24 that ensures the function as an exhaust gas purification device.
  • the urea aqueous solution injected and supplied from the injection nozzle 18 through the powerful exhaust purifier is hydrolyzed by the exhaust heat and the water vapor in the exhaust, and converted into ammonia. It is known that the converted ammonia reacts with NOx in the exhaust gas in the NOx reduction catalyst 20 and is purified into water and harmless gas. At this time, NO is reduced by NOx reduction catalyst 20 to improve NO X purification efficiency.
  • the ammonia that has passed through the original catalyst 20 is oxidized by the ammonia acid catalyst 22 disposed downstream of the exhaust gas, so that it is possible to prevent ammonia that emits a strange odor from being released into the atmosphere as it is.
  • the reducing agent container 24 includes a pressure regulator 38 that can adjust the upper space to an arbitrary pressure, and a pressure detection device that detects the pressure p of the upper space.
  • a pressure sensor 40 is attached respectively.
  • the reducing agent addition ECU 32 controls the pressure regulator 38 according to signals from the engine ECU 34 and the pressure sensor 40 by executing a control program stored in the ROM (Read Only Memory).
  • FIG. 3 shows specific contents of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 32.
  • step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the pressure sensor 40 starts the reducing agent. Read the pressure p in the upper space of container 24.
  • step 2 it is determined whether or not the engine 10 is operating based on the engine operation information read from the engine ECU 34 via CAN. Then, if the engine 10 is operating, the process proceeds to step 3 (Yes), while if the engine 10 is stopped! / Speaks, the process proceeds to step 5 (No).
  • step 3 whether the pressure p in the upper space of the reducing agent container 24 is less than a first predetermined value p.
  • the first predetermined value p is a value for pressurizing the upper space of the reducing agent container 24.
  • pressurization control of the pressure regulator 38 is performed. On the other hand, if the pressure p is greater than or equal to the first predetermined value p
  • step 5 whether the pressure p in the upper space of the reducing agent container 24 is greater than a second predetermined value p.
  • the second predetermined value p is a value for depressurizing the upper space of the reducing agent container 24.
  • the pressure regulator 38 is pressure-reduced. On the other hand, if the pressure p is less than or equal to the second predetermined value p, the pressure is reduced.
  • the upper space of the reducing agent container 24 is pressurized to a pressure equal to or higher than the first predetermined value p by the pressure regulator 38. Is done.
  • the urea aqueous solution stored in the reducing agent container 24 is pressed by the air existing in the upper space and is pumped to the supply pipe 26. Therefore, even if a slight clogging occurs in the reducing agent supply system, it is forcibly discharged from the injection nozzle 18 by the urea aqueous solution that is pumped, so that the reducing agent supply system is hardly clogged.
  • the reducing agent addition device 28 can be positioned above the reducing agent container 24, and the degree of freedom in equipment layout can be improved.
  • the reducing agent supply system The existing urea aqueous solution is sucked into the reducing agent container 24 by a negative pressure, and can be reliably collected in the reducing agent container 24 in a short time. Therefore, when the engine 10 is stopped, the solute (urea) is hardly precipitated from the urea aqueous solution present in the reducing agent supply system, and clogging is less likely to occur in the reducing agent supply system.
  • the reducing agent container 24 is controlled to control the supply of air that has been regulated to a predetermined pressure and the atmospheric release control valve 42 that is an electromagnetic on-off valve that arbitrarily opens the upper space to the atmosphere.
  • An air supply control valve 44 composed of an electromagnetic on-off valve is attached.
  • the air stored in the air reservoir 46 is supplied to the air supply control valve 44 after being reduced to a predetermined pressure by the pressure reducing valve 48.
  • the reducing agent addition ECU 32 executes the control program stored in the ROM, thereby controlling the opening / closing of the air release control valve 42 and the air supply control valve 44 according to the signal from the engine ECU 34.
  • FIG. 5 shows specific contents of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 32.
  • step 11 it is determined whether or not the engine 10 is operating based on the engine operation information read from the engine ECU 34 via CAN. If the engine 10 is operating, the process proceeds to step 12 (Yes), while if the engine 10 is stopped, the process proceeds to step 13 (No).
  • step 12 the air release control valve 42 is closed while the air supply control valve 44 is opened.
  • step 13 the air release control valve 42 is opened while the air supply control valve 44 is closed.
  • the upper space of the reducing agent container 24 can be secured by the air release control valve 42 being closed.
  • the air supply control valve 44 is opened, so that the air reduced to a predetermined pressure is supplied from the air reservoir 46.
  • the urea aqueous solution stored in the reducing agent container 24 is pressed by the air supplied to the upper space and is pumped to the supply pipe 26.
  • the pressure force in the upper space of the reducing agent container 24 becomes equal to the pressure of the air reduced by the pressure reducing valve 48, Since the air supply to the reducing agent container 24 is stopped, the air stored in the air reservoir 46 is not wasted even if the air supply control valve 44 is kept open.
  • the present invention is not limited to an exhaust gas purification device that uses an aqueous urea solution as a reducing agent, but can also be applied to an ammonia aqueous solution, light oil mainly composed of hydrocarbons, gasoline, kerosene, or the like as a reducing agent. That's ugly! /

Abstract

While an engine runs, the pressure in upper space of a reducing agent container having a sealed structure is increased up to a predetermined pressure p1 by a pressure regulator that is capable of arbitrarily regulating the pressure in closed space. On the other hand, while the engine is stopped, the pressure in the upper space of the reducing agent container is reduced by the pressure regulator to a predetermined pressure p2 that is at least equal to or below atmospheric pressure. While the engine runs, a liquid reducing agent is pressed by air present in the upper space of the reducing agent container and sent by pressure to a reducing agent supply system. Further, while the engine is stopped, the liquid reducing agent in the reducing agent supply system is reliably recovered to the reducing agent container. As a result, even if slight clogging occurs in the reducing agent supply system, the clogging is forcibly eliminated by the reducing agent sent by pressure, and only a solvent evaporates from the liquid reducing agent during the stop of the engine to suppress the solute of the agent from separating.

Description

明 細 書  Specification
排気浄化装置  Exhaust purification equipment
技術分野  Technical field
[0001] 本発明は、液体還元剤を用いて排気中の窒素酸ィ匕物 (NOx)を還元浄化する排気 浄ィ匕装置において、還元剤供給系に目詰まりが起こり難くする技術に関する。  TECHNICAL FIELD [0001] The present invention relates to a technique that makes it difficult for clogging to occur in a reducing agent supply system in an exhaust purification device that reduces and purifies nitrogen oxides (NOx) in exhaust using a liquid reducing agent.
背景技術  Background art
[0002] エンジン排気に含まれる NOxを除去する触媒浄ィ匕システムとして、特開 2000— 27 627号公報 (特許文献 1)に開示された排気浄ィ匕装置が提案されている。かかる排気 浄化装置は、エンジン排気系に配設された還元触媒の排気上流に、エンジン運転状 態に応じた液体還元剤を噴射供給することで、排気中の NOxと液体還元剤とを触媒 還元反応させて、 NOxを無害成分に浄化処理するものである。ここで、液体還元剤と しては、排気熱及び排気中の水蒸気を利用した加水分解によりアンモニアを発生す る尿素水溶液が用いられる。  As a catalyst purification system for removing NOx contained in engine exhaust, an exhaust purification device disclosed in Japanese Patent Application Laid-Open No. 2000-27627 (Patent Document 1) has been proposed. Such an exhaust purification device performs catalytic reduction of NOx and liquid reducing agent in the exhaust gas by injecting and supplying a liquid reducing agent according to the engine operating state upstream of the reduction catalyst disposed in the engine exhaust system. It reacts to purify NOx into harmless components. Here, as the liquid reducing agent, an aqueous urea solution that generates ammonia by hydrolysis using exhaust heat and water vapor in the exhaust is used.
特許文献 1:特開 2000— 27627号公報  Patent Document 1: JP 2000-27627 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、従来の排気浄化装置では、排気熱により還元剤供給系が加熱された 結果、液体還元剤の温度が溶媒の沸点以上になると、溶媒のみが蒸発して溶質が 析出し、還元剤供給系に目詰まりが発生するおそれがある。還元剤供給系に目詰ま りが発生すると、還元触媒に液体還元剤が供給されないことから、還元触媒における NOxの還元反応が進行せず、所要の排気浄ィ匕性能を発揮できなくなってしまう。  [0003] However, in the conventional exhaust purification device, as a result of heating the reducing agent supply system by exhaust heat, when the temperature of the liquid reducing agent becomes equal to or higher than the boiling point of the solvent, only the solvent evaporates and a solute precipitates, There is a risk of clogging in the agent supply system. When clogging occurs in the reducing agent supply system, the liquid reducing agent is not supplied to the reducing catalyst, so that the reduction reaction of NOx in the reducing catalyst does not proceed and the required exhaust purification performance cannot be exhibited.
[0004] そこで、本発明は以上のような従来の問題点に鑑み、液体還元剤を貯蔵する密閉 構造の還元剤容器の上部空間を所定圧力以上に加圧することで、液体還元剤の供 給を補助し、還元剤供給系に目詰まりが発生し難くした排気浄ィ匕装置を提供すること を目的とする。  [0004] Therefore, in view of the conventional problems as described above, the present invention supplies the liquid reducing agent by pressurizing the upper space of the closed reducing agent container for storing the liquid reducing agent to a predetermined pressure or higher. It is an object of the present invention to provide an exhaust purification device that assists in reducing the clogging of the reducing agent supply system.
課題を解決するための手段  Means for solving the problem
[0005] このため、本発明の第 1実施形態に係る排気浄化装置は、液体還元剤を貯蔵する 密閉構造の還元剤容器と、エンジン排気通路に配設され、前記還元剤容器から供給 される液体還元剤を用いて排気中の窒素酸化物を還元浄化する還元触媒と、前記 還元剤容器の上部空間を任意圧力に調圧可能な圧力調整器と、エンジン運転状態 を検出する運転状態検出装置と、前記運転状態検出装置により検出されたエンジン 運転状態を入力し、前記圧力調整器を制御するコントロールユニットと、を含んで構 成され、前記コントロールユニットは、エンジン運転状態に基づいてエンジンが稼動し ている力否かを判定し、エンジンが稼動していると判定したときに、前記還元剤容器 の上部空間が所定圧力以上になるように圧力調整器を制御することを特徴とする。 [0005] Therefore, the exhaust emission control device according to the first embodiment of the present invention stores a liquid reducing agent. A reducing agent container having a sealed structure; a reduction catalyst disposed in an engine exhaust passage for reducing and purifying nitrogen oxides in the exhaust gas using a liquid reducing agent supplied from the reducing agent container; and an upper portion of the reducing agent container A pressure regulator capable of adjusting the space to an arbitrary pressure, an operation state detection device that detects the engine operation state, and a control that controls the pressure regulator by inputting the engine operation state detected by the operation state detection device. And the control unit determines whether or not the engine is operating based on the engine operating state, and when determining that the engine is operating, the reducing agent container The pressure regulator is controlled so that the upper space of the chamber becomes equal to or higher than a predetermined pressure.
[0006] また、本発明の第 2実施形態に係る排気浄ィ匕装置は、液体還元剤を貯蔵する密閉 構造の還元剤容器と、エンジン排気通路に配設され、前記還元剤容器から供給され る液体還元剤を用いて排気中の窒素酸化物を還元浄化する還元触媒と、エアを貯 留するエアリザーバと、前記エアリザーバに貯留されるエアを所定圧力に減圧する減 圧弁と、前記減圧弁により減圧されたエアの還元剤容器内への供給を制御するエア 供給制御弁と、エンジン運転状態を検出する運転状態検出装置と、前記運転状態検 出装置により検出されたエンジン運転状態を入力し、前記エア供給制御弁を開閉制 御するコントロールユニットと、を含んで構成され、前記コントロールユニットは、ェン ジン運転状態に基づ 、てエンジンが稼動して 、る力否かを判定し、エンジンが稼動 していると判定したときに、前記エア供給制御弁を開弁させることを特徴とする。 発明の効果  [0006] In addition, the exhaust gas purification apparatus according to the second embodiment of the present invention is provided in a sealed reducing agent container for storing a liquid reducing agent and an engine exhaust passage, and is supplied from the reducing agent container. A reduction catalyst for reducing and purifying nitrogen oxides in the exhaust gas using a liquid reducing agent, an air reservoir for storing air, a pressure reducing valve for reducing the air stored in the air reservoir to a predetermined pressure, and the pressure reducing valve An air supply control valve that controls the supply of the decompressed air into the reducing agent container, an operation state detection device that detects the engine operation state, and an engine operation state detected by the operation state detection device are input. A control unit that controls opening and closing of the air supply control valve, and the control unit determines whether or not the engine is operating based on the engine operating state. The air supply control valve is opened when it is determined that the engine is operating. The invention's effect
[0007] 本発明に係る排気浄化装置によれば、エンジンが稼動しているときには、還元剤容 器の上部空間が少なくとも所定圧力に加圧されるので、還元剤容器に貯蔵される液 体還元剤は、上部空間に存在する空気により押圧され、還元剤供給系へと圧送され る。このため、還元剤供給系に軽微な目詰まりが発生しても、これが圧送される液体 還元剤により強制排出されるので、還元剤供給系に目詰まりが起こり難くすることが できる。また、液体還元剤が還元剤供給系に圧送されるため、機器レイアウトの自由 度を向上させることができる。  [0007] According to the exhaust emission control device of the present invention, when the engine is operating, the upper space of the reducing agent container is pressurized to at least a predetermined pressure, so that the liquid reduction stored in the reducing agent container is performed. The agent is pressed by the air present in the upper space and is pumped to the reducing agent supply system. For this reason, even if a slight clogging occurs in the reducing agent supply system, it is forcibly discharged by the liquid reducing agent that is pumped, so that the clogging in the reducing agent supply system can be made difficult to occur. In addition, since the liquid reducing agent is pumped to the reducing agent supply system, the degree of freedom in equipment layout can be improved.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1は、本発明の適用対象である排気浄化装置の全体構成図である。 圆 2]図 2は、第 1実施形態に係る排気浄ィ匕装置の要部拡大図である。 FIG. 1 is an overall configuration diagram of an exhaust emission control device to which the present invention is applied. 2] FIG. 2 is an enlarged view of a main part of the exhaust gas purification apparatus according to the first embodiment.
[図 3]図 3は、同上の制御内容を示すフローチャートである。 FIG. 3 is a flowchart showing the control content of the above.
[図 4]図 4は、第 2実施形態に係る排気浄ィ匕装置の要部拡大図である。 [Fig. 4] Fig. 4 is an enlarged view of a main part of an exhaust purification apparatus according to a second embodiment.
[図 5]図 5は、同上の制御内容を示すフローチャートである。 FIG. 5 is a flowchart showing the control content of the above.
符号の説明 Explanation of symbols
10 エンジン  10 engine
14 排気管  14 Exhaust pipe
20 NOx還元触媒  20 NOx reduction catalyst
24 還元剤容器  24 Reducing agent container
32 還元剤添加 ECU  32 Reducing agent added ECU
34 エンジン ECU  34 Engine ECU
38 圧力調整器  38 Pressure regulator
40 圧力センサ  40 Pressure sensor
42 大気開放制御弁  42 Air release control valve
44 ヱァ供給制御弁  44 Air supply control valve
46 エアリザーノ  46 Airizano
48 減圧弁  48 Pressure reducing valve
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、添付された図面を参照して本発明を詳述する。  Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
図 1は、尿素水溶液を液体還元剤として使用し、エンジン排気中の NOxを触媒還 元反応により浄化する排気浄化装置の全体構成を示す。  Figure 1 shows the overall configuration of an exhaust purification system that uses urea aqueous solution as a liquid reducing agent to purify NOx in engine exhaust by a catalytic reduction reaction.
エンジン 10の排気マ-フォールド 12に接続される排気管 14には、排気流通方向 に沿って、一酸ィ匕窒素 (NO)を二酸ィ匕窒素 (NO )へと酸化させる窒素酸化触媒 16  An exhaust pipe 14 connected to the exhaust manifold 12 of the engine 10 includes a nitrogen oxidation catalyst 16 that oxidizes monoxide-nitrogen (NO) to diacid-nitrogen (NO) along the exhaust flow direction.
2  2
と、尿素水溶液を噴射供給する噴射ノズル 18と、尿素水溶液を加水分解して得られ るアンモニアにより NOxを還元浄ィ匕する NOx還元触媒 20と、 NOx還元触媒 20を通 過したアンモニアを酸ィ匕させるアンモニア酸ィ匕触媒 22と、が夫々配設される。また、 密閉構造を有する還元剤容器 24に貯蔵される尿素水溶液は、その底部で吸込口が 開口する供給配管 26を通って還元剤添加装置 28に供給される一方、還元剤添カロ 装置 28で噴射に寄与しない余剰の尿素水溶液は、戻り配管 30を通って還元剤容器 24の上部空間内へと戻される。 An injection nozzle 18 for supplying an aqueous urea solution, an NOx reduction catalyst 20 that reduces and purifies NOx with ammonia obtained by hydrolyzing the aqueous urea solution, and an ammonia that passes through the NOx reduction catalyst 20 A soot ammonia acid catalyst 22 is provided. The aqueous urea solution stored in the reducing agent container 24 having a sealed structure is supplied to the reducing agent addition device 28 through a supply pipe 26 having a suction opening at the bottom thereof, while the reducing agent-added calorie is supplied. Excess urea aqueous solution that does not contribute to the injection in the apparatus 28 is returned to the upper space of the reducing agent container 24 through the return pipe 30.
[0011] そして、還元剤添加装置 28は、コンピュータを内蔵した還元剤添加コントロールュ ニット(以下「還元剤添加 ECU」という) 32により制御され、エンジン運転状態に応じ た尿素水溶液を、空気と混合しつつ噴射ノズル 18に供給する。ここで、エンジン運転 情報を含むエンジン運転状態は、 CAN (Controller Area Network)を介して接続さ れるエンジンコントロールユニット(以下「エンジン ECU」と!、う) 34から読み込まれる。 本実施形態においては、エンジン ECU34が運転状態検出装置に該当するが、各種 センサにより運転状態検出装置を構成するようにしてもよい (以下同様)。  [0011] The reducing agent addition device 28 is controlled by a reducing agent addition control unit (hereinafter referred to as "reducing agent addition ECU") 32 having a built-in computer, and mixes an aqueous urea solution according to the engine operating state with air. While being supplied to the injection nozzle 18. Here, the engine operation state including the engine operation information is read from an engine control unit (hereinafter referred to as “engine ECU”!) 34 connected via CAN (Controller Area Network). In the present embodiment, the engine ECU 34 corresponds to the driving state detection device, but the driving state detection device may be configured by various sensors (the same applies hereinafter).
[0012] なお、図中の符号 36は、排気浄ィ匕装置としての機能を確保すベぐ還元剤容器 24 に貯蔵される尿素水溶液の濃度を検出する濃度センサである。  Note that reference numeral 36 in the figure denotes a concentration sensor that detects the concentration of the urea aqueous solution stored in the reducing agent container 24 that ensures the function as an exhaust gas purification device.
力かる排気浄ィ匕装置にぉ ヽて、噴射ノズル 18から噴射供給された尿素水溶液は、 排気熱及び排気中の水蒸気により加水分解され、アンモニアへと転化される。転化さ れたアンモニアは、 NOx還元触媒 20において排気中の NOxと反応し、水及び無害 なガスに浄化されることは知られたことである。このとき、 NOx還元触媒 20による NO X浄化効率を向上させるベぐ窒素酸化触媒 16により NOが NO  The urea aqueous solution injected and supplied from the injection nozzle 18 through the powerful exhaust purifier is hydrolyzed by the exhaust heat and the water vapor in the exhaust, and converted into ammonia. It is known that the converted ammonia reacts with NOx in the exhaust gas in the NOx reduction catalyst 20 and is purified into water and harmless gas. At this time, NO is reduced by NOx reduction catalyst 20 to improve NO X purification efficiency.
2へと酸化され、排気 中の NOと NOとの割合が触媒還元反応に適したものに改善される。また、 NOx還  It is oxidized to 2, and the ratio of NO to NO in the exhaust is improved to be suitable for catalytic reduction reaction. NOx return
2  2
元触媒 20を通過したアンモニアは、その排気下流に配設されたアンモニア酸ィ匕触媒 22により酸ィ匕されるので、異臭を放つアンモニアがそのまま大気中に放出されること を防止できる。  The ammonia that has passed through the original catalyst 20 is oxidized by the ammonia acid catalyst 22 disposed downstream of the exhaust gas, so that it is possible to prevent ammonia that emits a strange odor from being released into the atmosphere as it is.
[0013] 一方、還元剤容器 24には、図 2に示すように、その上部空間を任意圧力に調圧可 能な圧力調整器 38と、上部空間の圧力 pを検出する圧力検出装置としての圧力セン サ 40と、が夫々取り付けられる。そして、還元剤添加 ECU32は、その ROM (Read O nly Memory)に記憶された制御プログラムを実行することで、エンジン ECU34及び 圧力センサ 40からの信号に応じて圧力調整器 38を制御する。  On the other hand, as shown in FIG. 2, the reducing agent container 24 includes a pressure regulator 38 that can adjust the upper space to an arbitrary pressure, and a pressure detection device that detects the pressure p of the upper space. A pressure sensor 40 is attached respectively. The reducing agent addition ECU 32 controls the pressure regulator 38 according to signals from the engine ECU 34 and the pressure sensor 40 by executing a control program stored in the ROM (Read Only Memory).
[0014] 図 3は、還元剤添加 ECU32において、所定時間ごとに繰り返し実行される制御プ ログラムの具体的内容を示す。  FIG. 3 shows specific contents of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 32.
ステップ 1 (図では「S1」と略記する。以下同様)では、圧力センサ 40から、還元剤 容器 24の上部空間の圧力 pを読み込む。 In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the pressure sensor 40 starts the reducing agent. Read the pressure p in the upper space of container 24.
ステップ 2では、 CANを介してエンジン ECU34から読み込んだエンジン運転情報 に基づいて、エンジン 10が稼動しているか否かを判定する。そして、エンジン 10が稼 動して ヽればステップ 3へと進む一方 (Yes)、エンジン 10が停止して!/ヽればステップ 5へと進む(No)。  In step 2, it is determined whether or not the engine 10 is operating based on the engine operation information read from the engine ECU 34 via CAN. Then, if the engine 10 is operating, the process proceeds to step 3 (Yes), while if the engine 10 is stopped! / Speaks, the process proceeds to step 5 (No).
[0015] ステップ 3では、還元剤容器 24の上部空間の圧力 pが第 1の所定値 p未満であるか  [0015] In step 3, whether the pressure p in the upper space of the reducing agent container 24 is less than a first predetermined value p.
1  1
否かを判定する。ここで、第 1の所定値 pは、還元剤容器 24の上部空間を加圧すベ  Determine whether or not. Here, the first predetermined value p is a value for pressurizing the upper space of the reducing agent container 24.
1  1
き力否かを判定するための閾値であって、尿素水溶液を供給配管 26へと圧送可能 な値に設定される。そして、圧力 pが第 1の所定値 p未満であればステップ 4へと進み  This is a threshold value for determining whether or not the pressure is sufficient, and is set to a value that allows the urea aqueous solution to be pumped to the supply pipe 26. If the pressure p is less than the first predetermined value p, proceed to step 4.
1  1
(Yes)、圧力調整器 38を加圧制御する。一方、圧力 pが第 1の所定値 p以上であれ  (Yes), pressurization control of the pressure regulator 38 is performed. On the other hand, if the pressure p is greater than or equal to the first predetermined value p
1  1
ば加圧が不要であるので、処理を終了する(No)。  Since no pressurization is required, the process is terminated (No).
[0016] ステップ 5では、還元剤容器 24の上部空間の圧力 pが第 2の所定値 pより大きいか [0016] In step 5, whether the pressure p in the upper space of the reducing agent container 24 is greater than a second predetermined value p.
2  2
否かを判定する。ここで、第 2の所定値 pは、還元剤容器 24の上部空間を減圧すベ  Determine whether or not. Here, the second predetermined value p is a value for depressurizing the upper space of the reducing agent container 24.
2  2
きカゝ否かを判定するための閾値であって、還元剤添加装置 28を含んで構成される還 元剤供給系から尿素水溶液を吸引可能な値、具体的には、大気圧以下の負圧に設 定される。そして、圧力 pが第 2の所定値 pより大きければステップ 6へと進み (Yes)、  This is a threshold value for determining whether or not there is a leakage, and is a value that allows the urea aqueous solution to be sucked from the reducing agent supply system including the reducing agent addition device 28, specifically, a negative pressure below atmospheric pressure. Set to pressure. Then, if the pressure p is larger than the second predetermined value p, proceed to Step 6 (Yes),
2  2
圧力調整器 38を減圧制御する。一方、圧力 pが第 2の所定値 p以下であれば減圧が  The pressure regulator 38 is pressure-reduced. On the other hand, if the pressure p is less than or equal to the second predetermined value p, the pressure is reduced.
2  2
不要であるので、処理を終了する(No)。  Since it is unnecessary, the process is terminated (No).
[0017] 力かる排気浄ィ匕装置によれば、エンジン 10が稼動しているときには、還元剤容器 2 4の上部空間は、圧力調整器 38により第 1の所定値 p以上の圧力に加圧される。こ [0017] According to the exhaust gas purification device, when the engine 10 is operating, the upper space of the reducing agent container 24 is pressurized to a pressure equal to or higher than the first predetermined value p by the pressure regulator 38. Is done. This
1  1
のため、還元剤容器 24に貯蔵される尿素水溶液は、上部空間に存在する空気により 押圧され、供給配管 26へと圧送される。従って、還元剤供給系に軽微な目詰まりが 発生しても、これが圧送される尿素水溶液により噴射ノズル 18から強制排出されるの で、還元剤供給系に目詰まりが起こり難くすることができる。また、尿素水溶液が還元 剤供給系に圧送されるため、還元剤容器 24の上方に還元剤添加装置 28を位置さ せることが可能となり、機器レイアウトの自由度を向上させることができる。  Therefore, the urea aqueous solution stored in the reducing agent container 24 is pressed by the air existing in the upper space and is pumped to the supply pipe 26. Therefore, even if a slight clogging occurs in the reducing agent supply system, it is forcibly discharged from the injection nozzle 18 by the urea aqueous solution that is pumped, so that the reducing agent supply system is hardly clogged. In addition, since the urea aqueous solution is pumped to the reducing agent supply system, the reducing agent addition device 28 can be positioned above the reducing agent container 24, and the degree of freedom in equipment layout can be improved.
[0018] 一方、エンジン 10が停止しているときには、還元剤容器 24の上部空間は、圧力調 整器 38により第 2の所定値 p以下の負圧に減圧される。このため、還元剤供給系に 存在する尿素水溶液は、負圧により還元剤容器 24へと吸引され、短時間かつ確実 に還元剤容器 24へと回収することができる。従って、エンジン 10が停止しているとき に、還元剤供給系に存在する尿素水溶液から溶質 (尿素)が析出され難くなり、還元 剤供給系に目詰まりが起こり難くすることができる。 On the other hand, when the engine 10 is stopped, the upper space of the reducing agent container 24 is reduced to a negative pressure equal to or less than the second predetermined value p by the pressure regulator 38. For this reason, the reducing agent supply system The existing urea aqueous solution is sucked into the reducing agent container 24 by a negative pressure, and can be reliably collected in the reducing agent container 24 in a short time. Therefore, when the engine 10 is stopped, the solute (urea) is hardly precipitated from the urea aqueous solution present in the reducing agent supply system, and clogging is less likely to occur in the reducing agent supply system.
[0019] また、還元剤容器 24の上部空間を加圧及び減圧するために、次のような構成を採 用してもよい。即ち、図 4に示すように、還元剤容器 24には、その上部空間を任意に 大気開放する電磁開閉弁からなる大気開放制御弁 42と、所定圧力に調圧されたェ ァの供給を制御する電磁開閉弁からなるエア供給制御弁 44と、が夫々取り付けられ る。エア供給制御弁 44には、エアリザーバ 46に貯留されるエアが減圧弁 48により所 定圧力に減圧された後供給される。そして、還元剤添加 ECU32は、その ROMに記 憶された制御プログラムを実行することで、エンジン ECU34からの信号に応じて大 気開放制御弁 42及びエア供給制御弁 44を夫々開閉制御する。  [0019] In order to pressurize and depressurize the upper space of the reducing agent container 24, the following configuration may be employed. That is, as shown in FIG. 4, the reducing agent container 24 is controlled to control the supply of air that has been regulated to a predetermined pressure and the atmospheric release control valve 42 that is an electromagnetic on-off valve that arbitrarily opens the upper space to the atmosphere. An air supply control valve 44 composed of an electromagnetic on-off valve is attached. The air stored in the air reservoir 46 is supplied to the air supply control valve 44 after being reduced to a predetermined pressure by the pressure reducing valve 48. Then, the reducing agent addition ECU 32 executes the control program stored in the ROM, thereby controlling the opening / closing of the air release control valve 42 and the air supply control valve 44 according to the signal from the engine ECU 34.
[0020] 図 5は、還元剤添加 ECU32において、所定時間ごとに繰り返し実行される制御プ ログラムの具体的内容を示す。  FIG. 5 shows specific contents of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 32.
ステップ 11では、 CANを介してエンジン ECU34から読み込んだエンジン運転情 報に基づいて、エンジン 10が稼動しているか否かを判定する。そして、エンジン 10が 稼動していればステップ 12へと進む一方 (Yes)、エンジン 10が停止していればステ ップ 13へと進む(No)。  In step 11, it is determined whether or not the engine 10 is operating based on the engine operation information read from the engine ECU 34 via CAN. If the engine 10 is operating, the process proceeds to step 12 (Yes), while if the engine 10 is stopped, the process proceeds to step 13 (No).
[0021] ステップ 12では、大気開放制御弁 42を閉弁させる一方、エア供給制御弁 44を開 弁させる。  [0021] In step 12, the air release control valve 42 is closed while the air supply control valve 44 is opened.
ステップ 13では、大気開放制御弁 42を開弁させる一方、エア供給制御弁 44を閉 弁させる。  In step 13, the air release control valve 42 is opened while the air supply control valve 44 is closed.
力かる排気浄ィ匕装置によれば、エンジン 10が稼動しているときには、還元剤容器 2 4の上部空間は、大気開放制御弁 42が閉弁することでその気密性が確保されると共 に、エア供給制御弁 44が開弁することでエアリザーバ 46から所定圧力に減圧された エアが供給される。このため、還元剤容器 24に貯蔵される尿素水溶液は、上部空間 に供給されたエアにより押圧され、供給配管 26へと圧送される。このとき、還元剤容 器 24の上部空間の圧力力 減圧弁 48により減圧されたエアの圧力と等しくなると、 還元剤容器 24へのエア供給が停止するので、エア供給制御弁 44を開弁させたまま でも、エアリザーバ 46に貯留されたエアを無駄に消費することがない。 According to a powerful exhaust purification system, when the engine 10 is in operation, the upper space of the reducing agent container 24 can be secured by the air release control valve 42 being closed. In addition, the air supply control valve 44 is opened, so that the air reduced to a predetermined pressure is supplied from the air reservoir 46. For this reason, the urea aqueous solution stored in the reducing agent container 24 is pressed by the air supplied to the upper space and is pumped to the supply pipe 26. At this time, when the pressure force in the upper space of the reducing agent container 24 becomes equal to the pressure of the air reduced by the pressure reducing valve 48, Since the air supply to the reducing agent container 24 is stopped, the air stored in the air reservoir 46 is not wasted even if the air supply control valve 44 is kept open.
[0022] 一方、エンジン 10が停止しているときには、還元剤容器 24の上部空間は、大気開 放制御弁 42が開弁することで大気圧まで減圧されると共に、エア供給制御弁 44が 閉弁することでエアリザーノ 6からのエア供給が遮断される。このため、エアリザー ノ 6に貯留されるエアの不必要な消費を抑制しつつ、還元剤供給系に存在する尿 素水溶液を支障なく還元剤容器 24へと回収することができる。  On the other hand, when the engine 10 is stopped, the upper space of the reducing agent container 24 is depressurized to atmospheric pressure by opening the air release control valve 42 and the air supply control valve 44 is closed. The air supply from Air Lisano 6 is shut off by valve. For this reason, it is possible to recover the aqueous urea solution present in the reducing agent supply system to the reducing agent container 24 without any trouble while suppressing unnecessary consumption of the air stored in the air reservoir 6.
[0023] 他の作用及び効果については、図 2及び図 3に示す排気浄化装置と同様であるの で、そちらを参照されたい。  [0023] The other actions and effects are the same as those of the exhaust gas purification apparatus shown in Figs. 2 and 3, so refer to them.
なお、本発明は、尿素水溶液を還元剤として用いる排気浄化装置に限らず、アンモ ユア水溶液,炭化水素を主成分とする軽油,ガソリン,灯油などを還元剤として用い るものにも適用可能であることは 、うまでもな!/、。  The present invention is not limited to an exhaust gas purification device that uses an aqueous urea solution as a reducing agent, but can also be applied to an ammonia aqueous solution, light oil mainly composed of hydrocarbons, gasoline, kerosene, or the like as a reducing agent. That's ugly! /

Claims

請求の範囲 The scope of the claims
[1] 液体還元剤を貯蔵する密閉構造の還元剤容器と、  [1] a closed reducing agent container for storing a liquid reducing agent;
エンジン排気通路に配設され、前記還元剤容器から供給される液体還元剤を用い て排気中の窒素酸化物を還元浄化する還元触媒と、  A reduction catalyst disposed in the engine exhaust passage and reducing and purifying nitrogen oxides in the exhaust gas using a liquid reducing agent supplied from the reducing agent container;
前記還元剤容器の上部空間を任意圧力に調圧可能な圧力調整器と、 エンジン運転状態を検出する運転状態検出装置と、  A pressure regulator capable of adjusting the upper space of the reducing agent container to an arbitrary pressure, an operation state detection device for detecting an engine operation state,
前記運転状態検出装置により検出されたエンジン運転状態を入力し、前記圧力調 整器を制御するコントロールユニットと、  A control unit for inputting the engine operating state detected by the operating state detecting device and controlling the pressure regulator;
を含んで構成され、  Comprising
前記コントロールユニットは、エンジン運転状態に基づいてエンジンが稼動している か否かを判定し、エンジンが稼動していると判定したときに、前記還元剤容器の上部 空間が所定圧力以上になるように圧力調整器を制御することを特徴とする排気浄ィ匕 装置。  The control unit determines whether or not the engine is operating based on the engine operating state, and when determining that the engine is operating, the upper space of the reducing agent container becomes equal to or higher than a predetermined pressure. An exhaust purification device characterized by controlling a pressure regulator.
[2] 前記還元剤容器の上部空間の圧力を検出する圧力検出装置を備え、  [2] A pressure detection device that detects the pressure in the upper space of the reducing agent container,
前記コントロールユニットは、前記圧力検出装置により検出された圧力が第 1の所 定値未満のときに、前記圧力調整器を加圧制御することを特徴とする請求項 1記載 の排気浄化装置。  2. The exhaust emission control device according to claim 1, wherein the control unit controls the pressurization of the pressure regulator when the pressure detected by the pressure detection device is less than a first predetermined value.
[3] 前記コントロールユニットは、更に、エンジン運転状態に基づいてエンジンが停止し ている力否かを判定し、エンジンが停止していると判定したときに、前記還元剤容器 の上部空間が大気圧以下になるように圧力調整器を制御することを特徴とする請求 項 1記載の排気浄化装置。  [3] The control unit further determines whether or not the engine is stopped based on the engine operating state. When determining that the engine is stopped, the upper space of the reducing agent container is large. The exhaust emission control device according to claim 1, wherein the pressure regulator is controlled so as to be equal to or lower than the atmospheric pressure.
[4] 前記還元剤容器の上部空間の圧力を検出する圧力検出装置を備え、  [4] A pressure detection device that detects the pressure in the upper space of the reducing agent container,
前記コントロールユニットは、前記圧力検出装置により検出された圧力が第 2の所 定値より大きいときに、前記圧力調整器を減圧制御することを特徴とする請求項 3記 載の排気浄化装置。  4. The exhaust emission control device according to claim 3, wherein the control unit controls the pressure regulator to be depressurized when the pressure detected by the pressure detection device is greater than a second predetermined value.
[5] 液体還元剤を貯蔵する密閉構造の還元剤容器と、  [5] a closed reducing agent container for storing the liquid reducing agent;
エンジン排気通路に配設され、前記還元剤容器から供給される液体還元剤を用い て排気中の窒素酸化物を還元浄化する還元触媒と、 エアを貯留するエアリザーバと、 A reduction catalyst that is disposed in the engine exhaust passage and that reduces and purifies nitrogen oxides in the exhaust gas using a liquid reducing agent supplied from the reducing agent container; An air reservoir for storing air;
前記エアリザーバに貯留されるエアを所定圧力に減圧する減圧弁と、  A pressure reducing valve for reducing the air stored in the air reservoir to a predetermined pressure;
前記減圧弁により減圧されたエアの還元剤容器内への供給を制御するエア供給制 御弁と、  An air supply control valve for controlling the supply of air decompressed by the pressure reducing valve into the reducing agent container;
エンジン運転状態を検出する運転状態検出装置と、  An operation state detection device for detecting an engine operation state;
前記運転状態検出装置により検出されたエンジン運転状態を入力し、前記エア供 給制御弁を開閉制御するコントロールユニットと、  A control unit that inputs an engine operation state detected by the operation state detection device and controls opening and closing of the air supply control valve;
を含んで構成され、  Comprising
前記コントロールユニットは、エンジン運転状態に基づいてエンジンが稼動している か否かを判定し、エンジンが稼動していると判定したときに、前記エア供給制御弁を 開弁させることを特徴とする排気浄ィ匕装置。  The control unit determines whether or not the engine is operating based on an engine operating state, and when determining that the engine is operating, opens the air supply control valve. Exhaust purification equipment.
前記還元剤容器の上部空間を任意に大気開放する大気開放制御弁を備え、 前記コントロールユニットは、更に、エンジン運転状態に基づいてエンジンが停止し ている力否かを判定し、エンジンが停止していると判定したときに、前記エア供給制 御弁を閉弁させる一方、前記大気開放制御弁を開弁させることを特徴とする請求項 5 記載の排気浄化装置。  An air release control valve for arbitrarily opening the upper space of the reducing agent container to the atmosphere is provided, and the control unit further determines whether or not the engine is stopped based on the engine operating state, and the engine is stopped. 6. The exhaust emission control device according to claim 5, wherein when it is determined that the air supply control valve is closed, the air supply control valve is closed and the atmosphere release control valve is opened.
PCT/JP2005/017128 2004-11-04 2005-09-16 Exhaust gas purifying device WO2006048977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-320528 2004-11-04
JP2004320528A JP4290110B2 (en) 2004-11-04 2004-11-04 Exhaust purification equipment

Publications (1)

Publication Number Publication Date
WO2006048977A1 true WO2006048977A1 (en) 2006-05-11

Family

ID=36318992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017128 WO2006048977A1 (en) 2004-11-04 2005-09-16 Exhaust gas purifying device

Country Status (2)

Country Link
JP (1) JP4290110B2 (en)
WO (1) WO2006048977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449499A (en) * 2006-06-19 2008-11-26 Ford Global Tech Llc A method for venting a vehicle emissions treatment system
US20140227138A1 (en) * 2011-09-28 2014-08-14 Isuzu Motors Limited Method for removing foreign matter and selective reduction catalyst system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730278B2 (en) * 2006-10-20 2011-07-20 株式会社デンソー Engine exhaust purification system
JP2008151094A (en) 2006-12-20 2008-07-03 Aisan Ind Co Ltd Exhaust emission control device for internal combustion engine
JP4853472B2 (en) * 2007-12-21 2012-01-11 株式会社デンソー Urea water pump and urea water injection system
JP5475243B2 (en) * 2008-03-07 2014-04-16 ボッシュ株式会社 Control device for reducing agent supply device, recovery method for reducing agent, and exhaust purification device
JP5255427B2 (en) * 2008-12-26 2013-08-07 三菱ふそうトラック・バス株式会社 Urea water tank
JP5091933B2 (en) * 2009-10-01 2012-12-05 日立建機株式会社 Exhaust purification device
JP5010662B2 (en) * 2009-10-08 2012-08-29 ヤンマー株式会社 Exhaust purification device
JP5325850B2 (en) * 2009-10-30 2013-10-23 ボッシュ株式会社 Abnormality detection device and abnormality detection method for reducing agent injection valve, and exhaust purification device for internal combustion engine
JP6506679B2 (en) * 2015-11-09 2019-04-24 日立建機株式会社 Work machine
KR101960689B1 (en) * 2017-12-13 2019-07-15 한국에너지기술연구원 A urea water injection device using air pressure and an nox reduction device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210017A (en) * 1988-02-19 1989-08-23 Mitsubishi Heavy Ind Ltd Nox reducer injection method for exhaust gas denitration
JPH03129712U (en) * 1990-04-10 1991-12-26
JPH08193511A (en) * 1994-10-12 1996-07-30 Robert Bosch Gmbh Device for post-treating exhaust gas
JP2001523165A (en) * 1997-12-12 2001-11-20 エフエーファウ・モトーレンテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト Method for reducing nitrogen oxides in exhaust gas containing oxygen, especially exhaust gas of an internal combustion engine
JP2002327617A (en) * 2001-03-02 2002-11-15 Haldor Topsoe As METHOD AND DEVICE FOR REDUCING EXHAUST AMOUNT OF SCRNOx
WO2003018177A1 (en) * 2001-08-18 2003-03-06 Robert Bosch Gmbh Method and device for storing and dosing a reducing agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210017A (en) * 1988-02-19 1989-08-23 Mitsubishi Heavy Ind Ltd Nox reducer injection method for exhaust gas denitration
JPH03129712U (en) * 1990-04-10 1991-12-26
JPH08193511A (en) * 1994-10-12 1996-07-30 Robert Bosch Gmbh Device for post-treating exhaust gas
JP2001523165A (en) * 1997-12-12 2001-11-20 エフエーファウ・モトーレンテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディトゲゼルシャフト Method for reducing nitrogen oxides in exhaust gas containing oxygen, especially exhaust gas of an internal combustion engine
JP2002327617A (en) * 2001-03-02 2002-11-15 Haldor Topsoe As METHOD AND DEVICE FOR REDUCING EXHAUST AMOUNT OF SCRNOx
WO2003018177A1 (en) * 2001-08-18 2003-03-06 Robert Bosch Gmbh Method and device for storing and dosing a reducing agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449499A (en) * 2006-06-19 2008-11-26 Ford Global Tech Llc A method for venting a vehicle emissions treatment system
US20140227138A1 (en) * 2011-09-28 2014-08-14 Isuzu Motors Limited Method for removing foreign matter and selective reduction catalyst system
US9441521B2 (en) * 2011-09-28 2016-09-13 Isuzu Motors Limited Method for removing foreign matter from a selective reduction catalyst system

Also Published As

Publication number Publication date
JP4290110B2 (en) 2009-07-01
JP2006132384A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
WO2006048977A1 (en) Exhaust gas purifying device
US7673444B2 (en) Exhaust gas purification apparatus
JP4789242B2 (en) Exhaust purification device
JP3732493B2 (en) Engine exhaust purification system
JP5465407B2 (en) Exhaust gas purification device for ship use
US8133444B2 (en) Exhaust gas purification system for internal combustion engine
WO2008001596A1 (en) Engine exhaust emission control device
US20100290957A1 (en) Exhaust gas purifying system
WO2006003868A1 (en) Exhaust purifying device
WO2005012702A1 (en) Exhaust gas purification apparatus of engine
US20100199642A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
JP2009036109A (en) Exhaust emission control device
JP3956728B2 (en) NOx purification device for internal combustion engine
JP5465408B2 (en) Exhaust gas purification device for ship use
JP2012127214A (en) Reducing agent supplying system, and exhaust gas purifying system of internal combustion engine
WO2005085607A1 (en) Exhaust emission control device of engine
JP4271124B2 (en) Vehicle idle stop device
JP2009127473A (en) Exhaust emission control device
JP4912189B2 (en) Engine exhaust purification system
KR102012274B1 (en) Temperature and pressure controller of selective catalytic reduction system
JP4091013B2 (en) Engine exhaust purification system
JP2013032777A (en) Exhaust gas purifying apparatus to be mounted in ship
WO2005078250A1 (en) Engine exhaust emission control system
WO2006061943A1 (en) Exhaust gas purification apparatus
JP7403274B2 (en) Reducing agent supply control device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05783311

Country of ref document: EP

Kind code of ref document: A1