JP4912189B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP4912189B2
JP4912189B2 JP2007065019A JP2007065019A JP4912189B2 JP 4912189 B2 JP4912189 B2 JP 4912189B2 JP 2007065019 A JP2007065019 A JP 2007065019A JP 2007065019 A JP2007065019 A JP 2007065019A JP 4912189 B2 JP4912189 B2 JP 4912189B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust
nox
aqueous solution
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007065019A
Other languages
Japanese (ja)
Other versions
JP2008223670A (en
Inventor
公信 平田
信彦 正木
雅一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2007065019A priority Critical patent/JP4912189B2/en
Publication of JP2008223670A publication Critical patent/JP2008223670A/en
Application granted granted Critical
Publication of JP4912189B2 publication Critical patent/JP4912189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンの排気浄化装置(以下「排気浄化装置」という)において、尿素水溶液から生成されるアンモニアを還元剤として使用し、排気中の窒素酸化物(NOx)を還元浄化する技術に関する。   The present invention relates to a technology for reducing and purifying nitrogen oxide (NOx) in exhaust gas by using ammonia generated from an aqueous urea solution as a reducing agent in an exhaust gas purification device (hereinafter referred to as “exhaust gas purification device”) of an engine.

エンジン排気に含まれるNOxを浄化する触媒浄化システムとして、特開2000−27627号公報(特許文献1)に記載された排気浄化装置が提案されている。かかる排気浄化装置は、排気通路に配設されたNOx還元触媒の排気上流に、エンジン運転状態に応じた還元剤前駆体を噴射供給することで、排気中のNOxと還元剤とを触媒還元反応させて、NOxを無害成分に浄化処理するものである。ここで、還元剤前駆体としては、安全性及び取扱性などを考慮し、排気熱及び排気中の水蒸気を利用した加水分解によりアンモニアを生成する尿素水溶液が用いられる。
特開2000−27627号公報
As a catalyst purification system for purifying NOx contained in engine exhaust, an exhaust purification device described in Japanese Patent Laid-Open No. 2000-27627 (Patent Document 1) has been proposed. Such an exhaust purification device injects and supplies a reducing agent precursor corresponding to the engine operating state to the exhaust upstream of the NOx reduction catalyst disposed in the exhaust passage, thereby catalytically reducing NOx and the reducing agent in the exhaust. Thus, NOx is purified to harmless components. Here, as the reducing agent precursor, an aqueous urea solution that generates ammonia by hydrolysis using exhaust heat and water vapor in the exhaust is used in consideration of safety and handling.
JP 2000-27627 A

しかしながら、従来提案の排気浄化装置では、排気中のNOx濃度に応じて尿素水溶液の添加流量を増減制御していたため、例えば、NOx還元触媒に未反応の尿素水溶液又はアンモニアが吸蔵されていた場合、尿素水溶液又はアンモニアが過剰供給され、その利用率低下につながるおそれがあった。また、NOx濃度の瞬時変化に応じた尿素水溶液の噴射供給制御では、機械的又は電気的な制御遅れがあるため、意図したタイミングで尿素水溶液の噴射供給(添加)が行われず、過渡期にNOx浄化率が低下するおそれもあった。   However, in the conventionally proposed exhaust purification device, since the addition flow rate of the urea aqueous solution is controlled to increase or decrease according to the NOx concentration in the exhaust gas, for example, when the unreacted urea aqueous solution or ammonia is occluded in the NOx reduction catalyst, There was a possibility that an aqueous urea solution or ammonia was excessively supplied, leading to a decrease in the utilization rate. In addition, in the urea aqueous solution injection supply control according to the instantaneous change in the NOx concentration, since there is a mechanical or electrical control delay, the urea aqueous solution injection supply (addition) is not performed at the intended timing, and the NOx in the transition period. There was also a risk that the purification rate would decrease.

そこで、本発明は以上のような従来の問題点に鑑み、NOx還元触媒における尿素水溶液又はアンモニアの吸蔵量を能動的に制御することで、尿素水溶液利用率,NOx浄化率などを向上させた排気浄化装置を提供することを目的とする。   Therefore, in view of the above-mentioned conventional problems, the present invention actively controls the urea aqueous solution or ammonia occlusion amount in the NOx reduction catalyst to improve the urea aqueous solution utilization rate, the NOx purification rate, and the like. An object is to provide a purification device.

このため、請求項1記載の発明では、エンジンの排気浄化装置は、エンジン排気管に配設され、尿素水溶液から生成されるアンモニアを使用して排気中の窒素酸化物を還元浄化する還元触媒と、尿素水溶液を貯蔵する還元剤容器と、前記還元触媒の排気上流に尿素水溶液を噴射供給する噴射ノズルと、前記還元剤容器と前記噴射ノズルとを連通する配管に配設され、ポンプ及び流量制御弁としての開閉弁を内蔵した還元剤添加装置と、前記還元触媒の排気下流のアンモニア濃度を検出するアンモニア濃度検出手段と、前記還元触媒の排気下流の窒素酸化物濃度を検出する窒素酸化物濃度検出手段と、前記アンモニア濃度検出手段により検出されたアンモニア濃度が許容上限値未満、かつ、前記窒素酸化物濃度検出手段により検出された窒素酸化物濃度が目標値以上となったときに、前記還元剤添加装置の開閉弁を開いて尿素水溶液の噴射供給を開始する噴射供給開始手段と、前記アンモニア濃度検出手段により検出されたアンモニア濃度が許容上限値以上となったときに、前記還元剤添加装置の開閉弁を閉じて尿素水溶液の噴射供給を中止する噴射供給中止手段と、を含んで構成されたことを特徴とする。 Therefore, according to the first aspect of the present invention, the engine exhaust gas purification device includes a reduction catalyst disposed in the engine exhaust pipe for reducing and purifying nitrogen oxides in the exhaust gas using ammonia generated from an aqueous urea solution. A reducing agent container for storing an aqueous urea solution, an injection nozzle for injecting and supplying the aqueous urea solution upstream of the exhaust of the reduction catalyst, and a pipe communicating the reducing agent container and the injection nozzle, and a pump and flow control A reducing agent addition device having a built-in on-off valve as a valve; ammonia concentration detecting means for detecting ammonia concentration downstream of the reduction catalyst; and nitrogen oxide concentration for detecting nitrogen oxide concentration downstream of the reduction catalyst Nitric acid detected by the detection means and the ammonia concentration detected by the ammonia concentration detection means is less than an allowable upper limit, and detected by the nitrogen oxide concentration detection means When the object density is equal to or greater than the target value, the ammonia concentration detected and the injection supply start means for starting the injection-supply of the urea aqueous solution by opening the closing valve, by the ammonia concentration detection means of the reducing agent addition device is acceptable And an injection supply stopping unit that closes the on-off valve of the reducing agent addition device and stops the injection supply of the urea aqueous solution when the value exceeds the upper limit value.

請求項2記載の発明では、前記還元触媒に導入される排気の排気温度を検出する排気温度検出手段を備え、前記噴射供給開始手段は、前記条件に加え、前記排気温度検出手段により検出された排気温度が所定温度より高いときに、前記尿素水溶液の噴射供給を開始することを特徴とする。 According to a second aspect of the invention, there is provided exhaust temperature detection means for detecting an exhaust temperature of the exhaust gas introduced into the reduction catalyst, and the injection supply start means is detected by the exhaust temperature detection means in addition to the conditions. When the exhaust gas temperature is higher than a predetermined temperature, the urea aqueous solution injection supply is started.

請求項1記載の発明によれば、還元触媒の排気下流におけるアンモニア濃度及び窒素酸化物濃度が常時監視され、アンモニア濃度が許容上限値に達したことを契機として、尿素水溶液の噴射供給が中止される一方、アンモニア濃度が許容上限値未満かつ窒素酸化物濃度が目標値以上となったことを契機として、尿素水溶液の噴射供給が開始される。このため、大気中にアンモニアが許容上限値以上放出されないという条件下で、還元触媒における尿素水溶液又はアンモニアの吸蔵量が能動的に制御され、尿素水溶液利用率,窒素酸化物浄化率などを向上させることができる。また、尿素水溶液の噴射供給は、開始するか又は中止するか制御可能であれば足りるので、例えば、安価な開閉弁の使用が可能となり、コストダウンも併せて図ることができる。なお、尿素水溶液の噴射供給が中止された状態では、還元触媒に吸蔵された尿素水溶液又はアンモニアを使用して窒素酸化物浄化が行われるので、排気性状の低下を来たすことがない。   According to the first aspect of the present invention, the ammonia concentration and the nitrogen oxide concentration in the exhaust gas downstream of the reduction catalyst are constantly monitored, and when the ammonia concentration reaches the allowable upper limit value, the injection supply of the urea aqueous solution is stopped. On the other hand, when the ammonia concentration is less than the allowable upper limit value and the nitrogen oxide concentration is equal to or higher than the target value, the injection supply of the urea aqueous solution is started. For this reason, the urea aqueous solution or ammonia occlusion amount in the reduction catalyst is actively controlled under the condition that ammonia is not released above the allowable upper limit to the atmosphere, and the urea aqueous solution utilization rate, the nitrogen oxide purification rate, etc. are improved. be able to. In addition, since it is sufficient if the injection supply of the urea aqueous solution can be controlled to be started or stopped, for example, an inexpensive on-off valve can be used, and the cost can be reduced. In the state where the urea aqueous solution injection is stopped, the nitrogen oxide purification is performed using the urea aqueous solution or ammonia stored in the reduction catalyst, so that the exhaust property does not deteriorate.

請求項2記載の発明によれば、尿素水溶液の噴射供給を開始する条件に、還元触媒に導入される排気温度が所定温度より高いことが付加されるため、還元触媒が活性していない状態での尿素水溶液の噴射供給が禁止され、尿素水溶液又はアンモニアが大気中に放出されることを抑制することができる。 According to the second aspect of the present invention, since the exhaust temperature introduced into the reduction catalyst is added to the conditions for starting the injection supply of the urea aqueous solution, the reduction catalyst is not activated. This prevents the urea aqueous solution from being injected and supplied, and the urea aqueous solution or ammonia can be prevented from being released into the atmosphere.

以下、添付された図面を参照して本発明を詳述する。
図1は、本発明を具現化した排気浄化装置の全体構成を示す。
エンジン10の排気マニフォールド12に接続される排気管14には、排気流通方向に沿って、一酸化窒素(NO)を二酸化窒素(NO2)へと酸化させる窒素酸化触媒16と、尿素水溶液を噴射供給する噴射ノズル18と、尿素水溶液を加水分解して生成されるアンモニアを利用してNOxを還元浄化するNOx還元触媒20と、NOx還元触媒20を通過したアンモニアを酸化させるアンモニア酸化触媒22と、が夫々配設される。また、還元剤容器24に貯蔵される尿素水溶液は、その底部で吸込口が開口する配管26を介して、ポンプ及び流量制御弁が内蔵された還元剤添加装置28に供給される。なお、噴射ノズル18,還元剤容器24,配管26及び還元剤添加装置28を含んで噴射供給手段が構成される。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows the overall configuration of an exhaust emission control device embodying the present invention.
A nitrogen oxidation catalyst 16 that oxidizes nitrogen monoxide (NO) into nitrogen dioxide (NO 2 ) and an aqueous urea solution are injected along the exhaust circulation direction into the exhaust pipe 14 connected to the exhaust manifold 12 of the engine 10. An injection nozzle 18 for supplying, a NOx reduction catalyst 20 for reducing and purifying NOx using ammonia generated by hydrolyzing a urea aqueous solution, an ammonia oxidation catalyst 22 for oxidizing ammonia that has passed through the NOx reduction catalyst 20, Are arranged respectively. Further, the urea aqueous solution stored in the reducing agent container 24 is supplied to a reducing agent adding device 28 having a built-in pump and a flow rate control valve through a pipe 26 having a suction opening at the bottom thereof. The injection supply means includes the injection nozzle 18, the reducing agent container 24, the pipe 26, and the reducing agent addition device 28.

排気浄化装置の制御系として、アンモニア酸化触媒22の排気下流に位置する排気管14には、排気中のアンモニア(NH3)濃度を検出するアンモニアセンサ30(アンモニア濃度検出手段)と、排気中のNOx濃度を検出するNOxセンサ32(窒素酸化物濃度検出手段)と、が夫々取り付けられる。噴射ノズル18とNOx還元触媒20との間に位置する排気管14には、NOx還元触媒20に導入される排気の排気温度を検出する温度センサ34(排気温度検出手段)が取り付けられる。アンモニアセンサ30,NOxセンサ32及び温度センサ34の各出力信号は、コンピュータを内蔵した還元剤添加コントロールユニット(以下「還元剤添加ECU」という)36へと入力される。また、還元剤添加ECU36は、CAN(Controller Area Network)などのネットワークを介してエンジンコントロールユニット(以下「エンジンECU」という)38と通信可能に接続され、エンジン運転状態として、少なくとも、エンジン回転速度及びエンジン負荷を適宜読み込み可能となっている。なお、エンジン負荷としては、燃料噴射量,トルク,アクセル開度,吸気負圧,吸気流量などの公知の状態量を適用することができる。 As an exhaust purification device control system, an exhaust pipe 14 located downstream of the ammonia oxidation catalyst 22 is provided with an ammonia sensor 30 (ammonia concentration detection means) for detecting the ammonia (NH 3 ) concentration in the exhaust, and in the exhaust. A NOx sensor 32 (nitrogen oxide concentration detecting means) for detecting the NOx concentration is attached. A temperature sensor 34 (exhaust temperature detection means) for detecting the exhaust temperature of the exhaust gas introduced into the NOx reduction catalyst 20 is attached to the exhaust pipe 14 positioned between the injection nozzle 18 and the NOx reduction catalyst 20. The output signals of the ammonia sensor 30, NOx sensor 32, and temperature sensor 34 are input to a reducing agent addition control unit (hereinafter referred to as “reducing agent addition ECU”) 36 having a built-in computer. Further, the reducing agent addition ECU 36 is communicably connected to an engine control unit (hereinafter referred to as “engine ECU”) 38 via a network such as a CAN (Controller Area Network). The engine load can be read appropriately. As the engine load, known state quantities such as fuel injection amount, torque, accelerator opening, intake negative pressure, intake flow rate, etc. can be applied.

そして、還元剤添加ECU36は、そのROM(Read Only Memory)などに記憶された制御プログラムを実行することで、各種入力信号に応じて還元剤添加装置28を電子制御し、適量な尿素水溶液が噴射ノズル18に供給される。なお、還元剤添加ECU36が制御プログラムを実行することで、噴射供給開始手段及び噴射供給中止手段が夫々具現化される。 The reducing agent addition ECU 36 executes a control program stored in a ROM (Read Only Memory) or the like to electronically control the reducing agent addition device 28 in accordance with various input signals, and an appropriate amount of urea aqueous solution is injected. It is supplied to the nozzle 18. The reducing agent addition ECU 36 executes the control program, thereby realizing the injection supply start means and the injection supply stop means .

かかる排気浄化装置において、噴射ノズル18から添加された尿素水溶液は、排気熱及び排気中の水蒸気により加水分解され、アンモニアへと転化される。転化されたアンモニアは、NOx還元触媒20において排気中のNOxと還元反応し、水(H2O)及び窒素(N2)へと浄化されることは知られたことである。このとき、NOx還元触媒20によるNOx浄化率を向上させるべく、窒素酸化触媒16によりNOがNO2へと酸化され、排気中のNOとNO2との比率が触媒還元反応に適したものに改善される。一方、NOx還元触媒20を通過したアンモニアは、その排気下流に配設されたアンモニア酸化触媒22により酸化されるので、アンモニアがそのまま放出されることを抑制できる。 In such an exhaust purification device, the urea aqueous solution added from the injection nozzle 18 is hydrolyzed by exhaust heat and water vapor in the exhaust, and converted into ammonia. It is known that the converted ammonia undergoes a reduction reaction with NOx in the exhaust gas in the NOx reduction catalyst 20 and is purified to water (H 2 O) and nitrogen (N 2 ). At this time, in order to improve the NOx purification rate by the NOx reduction catalyst 20, NO is oxidized to NO 2 by the nitrogen oxidation catalyst 16, and the ratio of NO and NO 2 in the exhaust gas is improved to be suitable for the catalytic reduction reaction. Is done. On the other hand, the ammonia that has passed through the NOx reduction catalyst 20 is oxidized by the ammonia oxidation catalyst 22 disposed downstream of the exhaust gas, so that it is possible to suppress the release of ammonia as it is.

図2は、還元剤添加ECU36において、エンジン始動を契機として、所定時間ごとに繰り返し実行される制御プログラムの第1実施形態を示す。なお、本制御プログラムにより、噴射供給開始手段及び噴射供給中止手段が夫々具現化される。
ステップ1(図では「S1」と略記する。以下同様)では、温度センサ34により検出された排気温度が所定温度Tより高いか否かを判定する。ここで、所定温度Tは、NOx還元触媒20が活性化されているか否かを判定するための閾値であって、例えば、その触媒成分の活性温度より若干高い温度に設定される。そして、排気温度が所定温度Tより高ければステップ2へと進む一方(Yes)、排気温度が所定温度T以下であれば処理を終了する(No)。
FIG. 2 shows a first embodiment of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 36 when the engine is started. The control program implements the injection supply start unit and the injection supply stop unit .
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), it is determined whether or not the exhaust gas temperature detected by the temperature sensor 34 is higher than a predetermined temperature T. Here, the predetermined temperature T is a threshold for determining whether or not the NOx reduction catalyst 20 is activated, and is set to a temperature slightly higher than the activation temperature of the catalyst component, for example. If the exhaust gas temperature is higher than the predetermined temperature T, the process proceeds to step 2 (Yes), while if the exhaust gas temperature is equal to or lower than the predetermined temperature T, the process is terminated (No).

ステップ2では、還元剤添加装置28に添加開始信号を出力し、尿素水溶液の添加を開始する。
ステップ3では、アンモニアセンサ30により検出されたアンモニア濃度が許容上限値CNH3以上であるか否かを判定する。ここで、許容上限値CNH3は、大気中へのアンモニア放出が許容される上限値を画定する閾値であって、例えば、法規による規定値若しくはこれよりも若干低い値に設定される。そして、アンモニア濃度が許容上限値CNH3以上であればステップ4へと進む一方(Yes)、アンモニア濃度が許容上限値CNH3未満であれば待機する(No)。
In step 2, an addition start signal is output to the reducing agent addition device 28, and the addition of the urea aqueous solution is started.
In step 3, it is determined whether or not the ammonia concentration detected by the ammonia sensor 30 is equal to or higher than the allowable upper limit value C NH3 . Here, the allowable upper limit value C NH3 is a threshold value that defines an upper limit value at which ammonia release into the atmosphere is allowed, and is set to a value prescribed by law or a value slightly lower than this, for example. If the ammonia concentration is equal to or higher than the allowable upper limit value C NH3 , the process proceeds to step 4 (Yes), while if the ammonia concentration is less than the allowable upper limit value C NH3 , the process waits (No).

ステップ4では、還元剤添加装置28に添加中止信号を出力し、尿素水溶液の添加を中止する。
ステップ5では、アンモニアセンサ30により検出されたアンモニア濃度が許容上限値CNH3未満であるか否かを判定する。そして、アンモニア濃度が許容上限値CNH3未満であればステップ6へと進む一方(Yes)、アンモニア濃度が許容上限値CNH3以上であれば待機する(No)。
In step 4, an addition stop signal is output to the reducing agent adding device 28, and the addition of the urea aqueous solution is stopped.
In step 5, it is determined whether the ammonia concentration detected by the ammonia sensor 30 is less than the allowable upper limit value C NH3 . If the ammonia concentration is less than the allowable upper limit value C NH3 , the process proceeds to step 6 (Yes), while if the ammonia concentration is equal to or higher than the allowable upper limit value C NH3 , the process waits (No).

ステップ6では、NOxセンサ32により検出されたNOx濃度が目標値CNOx以上であるか否かを判定する。ここで、目標値CNOxは、排気中のNOx浄化の目標を画定する閾値であって、例えば、法規による規定値若しくはこれよりも若干低い値に設定される。そして、NOx濃度が目標値CNOx以上であれば処理を終了する一方(Yes)、NOx濃度が目標値CNOx未満であればステップ5へと戻る(No)。 In step 6, it is determined that the NOx concentration detected by the NOx sensor 32 whether a target value C NOx more. Here, the target value C NOx is a threshold value that defines a target for purifying NOx in the exhaust gas, and is set to, for example, a legally prescribed value or a value slightly lower than this. Then, while the NOx concentration to end the process if the target value C NOx or (Yes), the NOx concentration returns to step 5 if it is less than the target value C NOx (No).

かかる制御プログラムによれば、エンジン始動後、排気温度が所定温度Tより高くなると、エンジン運転状態の如何にかかわらず、図3に示すように、最大流量の尿素水溶液が添加される。この場合、添加された尿素水溶液の全量がNOx浄化に資されず、その一部が尿素水溶液のまま又はアンモニアへと転化された状態でNOx還元触媒20に吸蔵される。NOx還元触媒20における吸蔵量が飽和状態に近づくと、アンモニア酸化触媒22で酸化しきれなかったアンモニアの濃度が徐々に増加し、許容上限値CNH3に達する。アンモニア濃度が許容上限値CNH3に達すると、大気中へのアンモニア放出を抑制すべく、尿素水溶液の添加が中止される。その後、アンモニア濃度が許容上限値CNH3未満、かつ、NOx濃度が目標値CNOx以上となるまで、尿素水溶液の添加が中止されたままとなる。このとき、排気中への尿素水溶液の添加は行われないが、NOx還元触媒20に吸蔵された尿素水溶液又はアンモニアを使用してNOx浄化が行われるので、排気性状の低下を来たすことはない。 According to such a control program, when the exhaust gas temperature becomes higher than the predetermined temperature T after the engine is started, the urea water solution having the maximum flow rate is added as shown in FIG. 3 regardless of the engine operating state. In this case, the entire amount of the added urea aqueous solution is not contributed to NOx purification, and a part of the urea aqueous solution is occluded in the NOx reduction catalyst 20 in the state of being converted into ammonia aqueous solution or ammonia. When the amount of occlusion in the NOx reduction catalyst 20 approaches a saturated state, the concentration of ammonia that could not be oxidized by the ammonia oxidation catalyst 22 gradually increases and reaches an allowable upper limit value C NH3 . When the ammonia concentration reaches the allowable upper limit value C NH3 , the addition of the urea aqueous solution is stopped in order to suppress the release of ammonia into the atmosphere. Thereafter, the addition of the aqueous urea solution remains suspended until the ammonia concentration is less than the allowable upper limit value C NH3 and the NOx concentration is equal to or higher than the target value C NOx . At this time, the urea aqueous solution is not added to the exhaust gas, but the NOx purification is performed using the urea aqueous solution or ammonia stored in the NOx reduction catalyst 20, so that the exhaust property does not deteriorate.

即ち、NOx還元触媒20の排気下流におけるアンモニア濃度及びNOx濃度を常時監視し、アンモニア濃度が許容上限値CNH3に達したことを契機として、尿素水溶液の添加を中止する一方、アンモニア濃度が許容上限値CNH3未満かつNOx濃度が目標値CNOx以上となったことを契機として、尿素水溶液の添加を開始する。このため、大気中にアンモニアが許容上限値CNH3以上放出されないという条件下で、NOx還元触媒20における尿素水溶液又はアンモニアの吸蔵量が能動的に制御され、尿素水溶液利用率,NOx浄化率などを向上させることができる。また、還元剤添加装置28の流量制御弁としては、尿素水溶液を添加するか否か制御可能であれば足りるので、例えば、安価な開閉弁を用いることで、コストダウンなども図ることができる。 That is, the ammonia concentration and the NOx concentration downstream of the exhaust of the NOx reduction catalyst 20 are constantly monitored, and when the ammonia concentration reaches the allowable upper limit C NH3 , the addition of the urea aqueous solution is stopped, while the ammonia concentration is the allowable upper limit. The addition of the urea aqueous solution is started when the value C is less than NH3 and the NOx concentration is equal to or higher than the target value CNOx . For this reason, under the condition that ammonia is not released into the atmosphere above the allowable upper limit C NH3, the urea aqueous solution or ammonia storage amount in the NOx reduction catalyst 20 is actively controlled, and the urea aqueous solution utilization rate, NOx purification rate, etc. Can be improved. The flow rate control valve of the reducing agent adding device 28 only needs to be able to control whether or not the urea aqueous solution is added. For example, by using an inexpensive on-off valve, the cost can be reduced.

図4は、還元剤添加ECU36において、エンジン始動を契機として、所定時間ごとに繰り返し実行される制御プログラムの第2実施形態を示す。
ステップ11では、温度センサ34により検出された排気温度が所定温度Tより高いか否かを判定する。そして、排気温度が所定温度Tより高ければステップ12へと進む一方(Yes)、排気温度が所定温度T以下であれば処理を終了する(No)。
FIG. 4 shows a second embodiment of a control program that is repeatedly executed at predetermined time intervals in the reducing agent addition ECU 36 when the engine is started .
In step 11, it is determined whether the exhaust temperature detected by the temperature sensor 34 is higher than a predetermined temperature T. If the exhaust temperature is higher than the predetermined temperature T, the process proceeds to step 12 (Yes), while if the exhaust temperature is equal to or lower than the predetermined temperature T, the process is ended (No).

ステップ12では、図5に示すように、エンジン回転速度及び負荷に対応した添加流量が設定された制御マップを参照し、エンジンECU38から読み込んだエンジン回転速度及び負荷に適合した尿素水溶液の添加流量を決定する。
ステップ13では、尿素水溶液の添加流量に応じた制御信号を還元剤添加装置28に出力し、尿素水溶液の添加を開始する。
In step 12, referring to the control map in which the addition flow rate corresponding to the engine rotation speed and the load is set as shown in FIG. 5, the addition flow rate of the urea aqueous solution that matches the engine rotation speed and the load read from the engine ECU 38 is determined. decide.
In step 13, a control signal corresponding to the addition flow rate of the urea aqueous solution is output to the reducing agent addition device 28, and the addition of the urea aqueous solution is started.

ステップ14では、アンモニアセンサ30により検出されたアンモニア濃度が許容上限値CNH3以上であるか否かを判定する。そして、アンモニア濃度が許容上限値CNH3以上であればステップ15へと進む一方(Yes)、アンモニア濃度が許容上限値CNH3未満であればステップ17へと進む(No)。
ステップ15では、還元剤添加装置28に添加中止信号を出力し、尿素水溶液の添加を中止する。
In step 14, it is determined whether the ammonia concentration detected by the ammonia sensor 30 is equal to or higher than the allowable upper limit C NH3 . If the ammonia concentration is greater than or equal to the allowable upper limit value C NH3 , the process proceeds to step 15 (Yes), while if the ammonia concentration is less than the allowable upper limit value C NH3 , the process proceeds to step 17 (No).
In step 15, an addition stop signal is output to the reducing agent adding device 28, and the addition of the urea aqueous solution is stopped.

ステップ16では、NOxセンサ32により検出されたNOx濃度が目標値CNOx以上であるか否かを判定する。そして、NOx濃度が目標値CNOx以上であれば処理を終了する一方(Yes)、NOx濃度が目標値CNOx未満であれば待機する(No)。
ステップ17では、NOxセンサ32により検出されたNOx濃度が目標値CNOx以下であるか否かを判定する。そして、NOx濃度が目標値CNOx以下であればステップ18へと進む一方(Yes)、NOx濃度が目標値CNOxより高ければステップ14へと戻る(No)。
In step 16, it determines the NOx concentration detected by the NOx sensor 32 whether a target value C NOx more. Then, while the NOx concentration to end the process if the target value C NOx or (Yes), the NOx concentration wait if it is less than the target value C NOx (No).
In step 17, determines the NOx concentration detected by the NOx sensor 32 to or less than the target value C NOx. If the NOx concentration is less than or equal to the target value C NOx , the process proceeds to step 18 (Yes), while if the NOx concentration is higher than the target value C NOx , the process returns to step 14 (No).

ステップ18では、図6に示すように、NOx濃度及び排気温度に対応した低減率が設定された制御マップを参照し、NOxセンサ32及び温度センサ34により夫々検出されたNOx濃度及び排気温度に適合した流量低減率を決定する。
ステップ19では、尿素水溶液の添加流量に流量低減率を乗算した値に応じた制御信号を還元剤添加装置28に出力し、尿素水溶液の添加流量を低減させた後、ステップ14へと戻る。
In step 18, as shown in FIG. 6, the control map in which the reduction rate corresponding to the NOx concentration and the exhaust temperature is set is referred to, and the NOx concentration and the exhaust temperature detected by the NOx sensor 32 and the temperature sensor 34 are adapted. Determine the reduced flow rate.
In step 19, a control signal corresponding to a value obtained by multiplying the addition flow rate of the urea aqueous solution by the flow rate reduction rate is output to the reducing agent addition device 28 to reduce the addition flow rate of the urea aqueous solution, and then the process returns to step 14.

かかる制御プログラムによれば、エンジン始動後、排気温度が所定温度Tより高くなると、図7に示すように、エンジン運転状態に応じた添加流量の尿素水溶液の添加が開始される。この場合、添加された尿素水溶液の全量がNOx浄化に資されず、その一部が尿素水溶液のまま又はアンモニアへと転化された状態でNOx還元触媒20に吸蔵される。NOx還元触媒20における吸蔵量が飽和状態に近づくと、アンモニア酸化触媒22で酸化しきれなかったアンモニアの濃度が徐々に増加し、許容上限値CNH3に達する。アンモニア濃度が許容上限値CNH3に達すると、大気中へのアンモニア放出を抑制すべく、尿素水溶液の添加が中止される。その後、NOx濃度が目標値CNOx以上となるまで、尿素水溶液の添加が中止されたままとなる。このとき、排気中への尿素水溶液の添加は行われないが、NOx還元触媒20に吸蔵された尿素水溶液又はアンモニアを使用してNOx浄化が行われるので、排気性状の低下を来たすことはない。 According to such a control program, when the exhaust gas temperature becomes higher than the predetermined temperature T after the engine is started, the addition of the urea aqueous solution with the addition flow rate corresponding to the engine operation state is started as shown in FIG. In this case, the entire amount of the added urea aqueous solution is not contributed to NOx purification, and a part of the urea aqueous solution is occluded in the NOx reduction catalyst 20 in the state of being converted into ammonia aqueous solution or ammonia. When the amount of occlusion in the NOx reduction catalyst 20 approaches a saturated state, the concentration of ammonia that could not be oxidized by the ammonia oxidation catalyst 22 gradually increases and reaches an allowable upper limit value C NH3 . When the ammonia concentration reaches the allowable upper limit value C NH3 , the addition of the urea aqueous solution is stopped in order to suppress the release of ammonia into the atmosphere. Thereafter, the addition of the urea aqueous solution remains stopped until the NOx concentration becomes equal to or higher than the target value CNOx . At this time, the urea aqueous solution is not added to the exhaust gas, but the NOx purification is performed using the urea aqueous solution or ammonia stored in the NOx reduction catalyst 20, so that the exhaust property does not deteriorate.

一方、尿素水溶液が添加された状態において、アンモニア濃度が許容上限値CNH3未満かつNOx濃度が目標値CNOx以下であれば、NOx浄化が十分行われているため、NOx濃度及び排気温度に応じて尿素水溶液の添加流量が低減される。
即ち、NOx還元触媒20の排気下流におけるアンモニア濃度及びNOx濃度を常時監視し、アンモニア濃度が許容上限値CNH3に達したことを契機として、尿素水溶液の添加を中止する一方、NOx濃度が目標値CNOx以上となったことを契機として、尿素水溶液の添加を開始する。このため、大気中にアンモニアが許容上限値CNH3以上放出されないという条件下で、NOx還元触媒20における尿素水溶液又はアンモニアの吸蔵量が能動的に制御され、尿素水溶液利用率,NOx浄化率などを向上させることができる。また、尿素水溶液が添加された状態において、アンモニア濃度が許容上限値CNH3未満かつNOx濃度が目標値CNOx以下であれば、NOx濃度及び排気温度に応じて尿素水溶液の添加流量を低減することで、尿素水溶液の添加停止を極力短時間とし、例えば、噴射ノズル18の噴孔に目詰まりが発生することを抑制できる。
On the other hand, if the ammonia concentration is less than the allowable upper limit value C NH3 and the NOx concentration is equal to or less than the target value C NOx in the state where the urea aqueous solution is added, NOx purification is sufficiently performed. Thus, the flow rate of the urea aqueous solution is reduced.
That is, the ammonia concentration and NOx concentration downstream of the NOx reduction catalyst 20 are constantly monitored, and when the ammonia concentration reaches the allowable upper limit C NH3 , the addition of the urea aqueous solution is stopped, while the NOx concentration is the target value. Addition of urea aqueous solution is started when it becomes CNOx or more. For this reason, under the condition that ammonia is not released into the atmosphere above the allowable upper limit C NH3, the urea aqueous solution or ammonia storage amount in the NOx reduction catalyst 20 is actively controlled, and the urea aqueous solution utilization rate, NOx purification rate, etc. Can be improved. If the ammonia concentration is less than the allowable upper limit C NH3 and the NOx concentration is equal to or less than the target value C NOx in the state in which the urea aqueous solution is added, the addition flow rate of the urea aqueous solution should be reduced according to the NOx concentration and the exhaust temperature. Thus, the stop of the addition of the urea aqueous solution can be made as short as possible, and for example, the occurrence of clogging in the injection hole of the injection nozzle 18 can be suppressed.

さらに、制御プログラムの第1及び第2実施形態では、アンモニアセンサ30でアンモニア排出量をモニタできるため、アンモニア酸化触媒22が不要となり、システムの小型化及びコストダウンを図ることができる。
なお、制御プログラムの第1及び第2実施形態において、アンモニア酸化触媒22の排気下流におけるNOx濃度と目標値CNOxとを比較する代わりに、そのNOx濃度をエンジン10の出口におけるNOx濃度で除算した浄化率と目標浄化率とを比較するようにしてもよい。この場合、エンジン10の出口におけるNOx濃度は、NOxセンサで直接検出するか、又は、エンジン回転速度及び負荷から推測演算すればよい。また、制御プログラムの第1及び第2実施形態の一部を相互に置換するような制御としてもよい。さらに、アンモニアセンサ30及びNOxセンサ32は、NOx還元触媒20の直後、即ち、NOx還元触媒20とアンモニア酸化触媒22との間に位置する排気管14に取り付けるようにしてもよい。
Furthermore, in the first and second embodiments of the control program, the ammonia emission amount can be monitored by the ammonia sensor 30, so the ammonia oxidation catalyst 22 is not necessary, and the system can be reduced in size and cost.
In the first and second embodiments of the control program, instead of comparing the NOx concentration downstream of the ammonia oxidation catalyst 22 with the target value C NOx , the NOx concentration is divided by the NOx concentration at the outlet of the engine 10. The purification rate and the target purification rate may be compared. In this case, the NOx concentration at the outlet of the engine 10 may be detected directly by the NOx sensor or may be estimated from the engine speed and load. Moreover, it is good also as control which mutually replaces a part of 1st and 2nd embodiment of a control program. Furthermore, the ammonia sensor 30 and the NOx sensor 32 may be attached to the exhaust pipe 14 positioned immediately after the NOx reduction catalyst 20, that is, between the NOx reduction catalyst 20 and the ammonia oxidation catalyst 22.

本発明を具現化した排気浄化装置の全体構成図1 is an overall configuration diagram of an exhaust emission control device embodying the present invention. 制御プログラムの第1実施形態を示すフローチャートFlowchart showing the first embodiment of the control program アンモニア濃度,NOx濃度及び添加流量の相関関係を示すタイムチャートTime chart showing the correlation between ammonia concentration, NOx concentration and addition flow rate 制御プログラムの第2実施形態を示すフローチャートFlowchart showing the second embodiment of the control program 尿素水溶液の添加流量が設定された制御マップの説明図Explanatory drawing of the control map in which the addition flow rate of urea aqueous solution is set 尿素水溶液の低減率が設定された制御マップの説明図Explanatory drawing of the control map in which the reduction rate of urea aqueous solution is set アンモニア濃度,NOx濃度及び添加流量の相関関係を示すタイムチャートTime chart showing the correlation between ammonia concentration, NOx concentration and addition flow rate

符号の説明Explanation of symbols

10 エンジン
14 排気管
18 噴射ノズル
20 NOx還元触媒
24 還元剤容器
26 配管
28 還元剤添加装置
30 アンモニアセンサ
32 NOxセンサ
34 温度センサ
36 還元剤添加ECU
38 エンジンECU
DESCRIPTION OF SYMBOLS 10 Engine 14 Exhaust pipe 18 Injection nozzle 20 NOx reduction catalyst 24 Reductant container 26 Piping 28 Reductant addition apparatus 30 Ammonia sensor 32 NOx sensor 34 Temperature sensor 36 Reductant addition ECU
38 Engine ECU

Claims (2)

エンジン排気管に配設され、尿素水溶液から生成されるアンモニアを使用して排気中の窒素酸化物を還元浄化する還元触媒と、
尿素水溶液を貯蔵する還元剤容器と、
前記還元触媒の排気上流に尿素水溶液を噴射供給する噴射ノズルと、
前記還元剤容器と前記噴射ノズルとを連通する配管に配設され、ポンプ及び流量制御弁としての開閉弁を内蔵した還元剤添加装置と、
前記還元触媒の排気下流のアンモニア濃度を検出するアンモニア濃度検出手段と、
前記還元触媒の排気下流の窒素酸化物濃度を検出する窒素酸化物濃度検出手段と、
前記アンモニア濃度検出手段により検出されたアンモニア濃度が許容上限値未満、かつ、前記窒素酸化物濃度検出手段により検出された窒素酸化物濃度が目標値以上となったときに、前記還元剤添加装置の開閉弁を開いて尿素水溶液の噴射供給を開始する噴射供給開始手段と、
前記アンモニア濃度検出手段により検出されたアンモニア濃度が許容上限値以上となったときに、前記還元剤添加装置の開閉弁を閉じて尿素水溶液の噴射供給を中止する噴射供給中止手段と、
を含んで構成されたことを特徴とするエンジンの排気浄化装置。
A reduction catalyst disposed in the engine exhaust pipe for reducing and purifying nitrogen oxides in the exhaust gas using ammonia generated from an aqueous urea solution;
A reducing agent container for storing an aqueous urea solution;
An injection nozzle for injecting and supplying an aqueous urea solution upstream of the exhaust of the reduction catalyst;
A reducing agent addition device that is disposed in a pipe that communicates the reducing agent container and the injection nozzle, and that has a built-in on-off valve as a pump and a flow rate control valve;
Ammonia concentration detection means for detecting the ammonia concentration downstream of the exhaust of the reduction catalyst;
Nitrogen oxide concentration detecting means for detecting the nitrogen oxide concentration downstream of the exhaust of the reduction catalyst;
When the ammonia concentration detected by the ammonia concentration detecting means is less than an allowable upper limit value and the nitrogen oxide concentration detected by the nitrogen oxide concentration detecting means is equal to or higher than a target value, the reducing agent adding device Injection supply start means for opening an on-off valve and starting injection supply of urea aqueous solution;
An injection supply stopping means for closing the on-off valve of the reducing agent addition device and stopping the injection supply of the urea aqueous solution when the ammonia concentration detected by the ammonia concentration detection means is equal to or higher than an allowable upper limit;
An exhaust emission control device for an engine characterized by comprising:
前記還元触媒に導入される排気の排気温度を検出する排気温度検出手段を備え、
前記噴射供給開始手段は、前記条件に加え、前記排気温度検出手段により検出された排気温度が所定温度より高いときに、前記尿素水溶液の噴射供給を開始することを特徴とする請求項1記載のエンジンの排気浄化装置。
An exhaust gas temperature detecting means for detecting an exhaust gas temperature of the exhaust gas introduced into the reduction catalyst;
The injection supply start unit starts injection supply of the urea aqueous solution when the exhaust gas temperature detected by the exhaust gas temperature detection unit is higher than a predetermined temperature in addition to the condition . Engine exhaust purification system.
JP2007065019A 2007-03-14 2007-03-14 Engine exhaust purification system Active JP4912189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065019A JP4912189B2 (en) 2007-03-14 2007-03-14 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065019A JP4912189B2 (en) 2007-03-14 2007-03-14 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2008223670A JP2008223670A (en) 2008-09-25
JP4912189B2 true JP4912189B2 (en) 2012-04-11

Family

ID=39842565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065019A Active JP4912189B2 (en) 2007-03-14 2007-03-14 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP4912189B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986839B2 (en) * 2007-12-27 2012-07-25 日野自動車株式会社 Exhaust treatment device
JP5276460B2 (en) * 2009-01-30 2013-08-28 三菱重工業株式会社 Exhaust gas purification device
DE102009025135A1 (en) * 2009-06-17 2010-12-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for evaporating a urea-water solution
JP2011117386A (en) * 2009-12-04 2011-06-16 Volvo Powertrain Ab Engine exhaust emission control device
JP2011226402A (en) * 2010-04-21 2011-11-10 Nippon Soken Inc Exhaust emission control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213824A (en) * 1986-03-14 1987-09-19 Mitsubishi Heavy Ind Ltd Nh3 injecting controller for denitration equipment
EP1164266B1 (en) * 2000-06-13 2009-10-07 Ford Global Technologies, Inc. Method of optimizing reductant addition to an SCR catalyst coupled to an internal combustion engine
DE10100420A1 (en) * 2001-01-08 2002-07-11 Bosch Gmbh Robert Method and device for controlling an exhaust gas aftertreatment system
US6928359B2 (en) * 2001-08-09 2005-08-09 Ford Global Technologies, Llc High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature
US6698191B2 (en) * 2001-08-09 2004-03-02 Ford Global Technologies, Llc High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature
JP2003293738A (en) * 2002-03-29 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP4358007B2 (en) * 2004-03-23 2009-11-04 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2008223670A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4290109B2 (en) Exhaust purification equipment
US10138793B2 (en) Exhaust gas purification system and method for controlling the same
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
US8413425B2 (en) Control device and control method for exhaust gas purification apparatus, and internal combustion engine exhaust gas purification apparatus
US20100111774A1 (en) Exhaust gas purification system for internal combustion engine
EP2216520A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
EP2570626B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP4912189B2 (en) Engine exhaust purification system
WO2010147107A1 (en) Exhaust purification device and exhaust purification method, for engine
JP5560426B2 (en) Engine exhaust purification system
JP2008180202A (en) Exhaust emission control device
JP5194590B2 (en) Engine exhaust purification system
US20140123629A1 (en) Ammonia slip detection
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
US9500111B2 (en) Method for determining reducing agent slippage and motor vehicle employing the method
JP4445000B2 (en) Exhaust purification device
JP4781151B2 (en) Exhaust gas purification system for internal combustion engine
JP4261393B2 (en) Exhaust purification device control method
CN113692481A (en) Exhaust gas aftertreatment system
JP4091013B2 (en) Engine exhaust purification system
JP5570188B2 (en) Engine exhaust purification system
JP2015194120A (en) Exhaust emission control system
US8146348B2 (en) Exhaust emission control device
JP6573225B2 (en) Automatic engine stop control device
JP2019157632A (en) Post-processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4912189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250