JP2003293738A - NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE - Google Patents

NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE

Info

Publication number
JP2003293738A
JP2003293738A JP2002096026A JP2002096026A JP2003293738A JP 2003293738 A JP2003293738 A JP 2003293738A JP 2002096026 A JP2002096026 A JP 2002096026A JP 2002096026 A JP2002096026 A JP 2002096026A JP 2003293738 A JP2003293738 A JP 2003293738A
Authority
JP
Japan
Prior art keywords
nox
catalyst
purification rate
nоx
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002096026A
Other languages
Japanese (ja)
Inventor
Kenji Kawai
健二 河合
Yoshihisa Takeda
好央 武田
Sei Kawatani
聖 川谷
Satoshi Hiranuma
智 平沼
Takeshi Hashizume
剛 橋詰
Reiko Domeki
礼子 百目木
Ritsuko Shinozaki
律子 篠▲崎▼
Shinichi Saito
真一 斎藤
嘉則 ▲高▼橋
Yoshinori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002096026A priority Critical patent/JP2003293738A/en
Publication of JP2003293738A publication Critical patent/JP2003293738A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a NOx cleaning device for effectively suppressing the occurrence of ammonia slip while maintaining a high NOx cleaning factor. <P>SOLUTION: When ammonia or urea water is supplied to a NOx catalyst 17, provided in an exhaust system 2 for an engine 1 for adsorbing the ammonia and selectively reducing NOx in exhaust gas, with reducer supply means 29, a target NOx cleaning factor Mη is derived by target NOx cleaning factor deriving means, in accordance with the operated condition of the engine 1 and a catalyst temperature Tg of the NOx catalyst 17, an actual NOx cleaning factor η of the NOx catalyst 17 is derived by actual NOx cleaning factor deriving means 44, and an ammonia addition amount DNH<SB>3</SB>of the reducer supply means 29 is controlled by control means 45, depending on a comparison result of the target NOx cleaning factor Mη with the actual NOx cleaning factor η. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、排気ガスが酸素過
剰雰囲気下でNОx浄化作用を有するNОx触媒を備え
た内燃機関のNОx浄化装置に関する。 【0002】 【従来の技術】排気ガス中に尿素水を添加して加水分解
により発生するアンモニアや直接添加によるアンモニア
を、選択還元触媒の還元剤として使用するNОx浄化装
置が知られている。このようなNОx浄化装置を、エン
ジン等の内燃機関を備えた車両に搭載する場合、内燃機
関の排気系に排気ガスが酸素リッチ又は空気過剰率大雰
囲気下でNOxを浄化できる選択還元触媒、所謂ユリア
SCR触媒(以下「NОx触媒」と称す)を配置し、この
触媒の上流側から尿素水あるいはアンモニアを還元剤と
して排気ガス中に添加してNОx触媒に供給するように
構成している。一般にNOx浄化装置におけるNOx浄
化率は、NОx触媒の性能に依存するところが大きく、
上記のようなアンモニアを還元剤とするNОx触媒は、
その温度が約350℃を上回る領域において高効率でN
Oxを還元処理する特性を有している。 【0003】排気ガス中に尿素水を添加する場合、式
(1)のように加水分解及び熱分解されることでアンモ
ニア(NH3)が生成される。 (NH2)2CO+HO→2NH+CO・・・・(1) NОx触媒上でのアンモニア(NH3)と窒素酸化物(N
Оx)との間の脱硝反応は触媒温度の高低に応じ、即ち、
高温時には主に式(2)、低温時には主に式(3)の反
応がそれぞれ行われることが知られている。 4NH+4NO+O→4N+6HO・・・・・(2) 2NH+NO+NO→2N+3HO・・・・・(3) このようなアンモニアを還元剤とするNОx触媒は、図
5に実線で示すように、NОx触媒へのアンモニアの吸
着量が多いほどNOx浄化率が高いため、低温域でNО
x触媒の高浄化率を得るにはアンモニア吸着量を高く制
御することが好ましい。NОx触媒に吸着できるアンモ
ニア吸着量には限界があり、図6に実線L1で示す吸着
限界値は触媒温度に依存している。 【0004】 【発明が解決しようとする課題】このような特性のNО
x触媒を有するNОx浄化装置を車両に搭載する場合、
車両は、その運転状態が時々刻々と変化して内燃機関か
ら排出される排気ガス流量、排気ガス中のNОx量や触
媒温度の変化が大きいため、運転状態に対応するNОx
触媒へのアンモニア供給が要求される。NОx触媒への
アンモニア供給が運転状態に対応できない場合、例えば
アンモニアの供給量が少ないとNОx触媒のアンモニア
吸着量が不足して十分なNОx還元が行えず、アンモニ
アの供給量が多すぎて吸着限界値を超えると、NОx触
媒に吸着されなかったアンモニアが大気中に排出される
アンモニアスリップと称する現象が発生し易くなる。本
発明は、NОx浄化率を高く維持しながらも、アンモニ
アスリップの発生を効果的に抑制することが可能な内燃
機関のNOx浄化装置を提供することを目的とする。 【0005】 【課題を解決するための手段】本発明にかかる内燃機関
のNOx浄化装置は、内燃機関の排気系に設けられアン
モニアを吸着して排気ガス中のNOxを選択還元するN
Ox触媒と、NOx触媒にアンモニア又は尿素水を供給
する還元剤供給手段と、内燃機関の運転状態、及びNO
x触媒の触媒温度又は触媒温度に相関するパラメータの
一つに基づき基準となる目標NOx浄化率を導出する目
標NOx浄化率導出手段と、NOx触媒による実NOx
浄化率を導出する実NOx浄化率導出手段と、目標NO
x浄化率導出手段により導出された目標NOx浄化率及
び実NOx浄化率導出手段により導出された実NOx浄
化率との比較結果に応じて還元剤供給手段を制御する制
御手段とを備えている。本発明によると、目標NОx浄
化率と実NОx浄化率との比較結果に応じて還元剤供給
手段による添加量が補正されるので、NOx排出量の還
元に必要なアンモニア吸着量となるように適量の還元剤
が供給可能となる。 【0006】 【発明の実施の形態】本発明の実施形態としての内燃機
関のNOx浄化装置を説明する。図1において符号1
は、図示しない車両に搭載されたディーゼルエンジン
(以後「エンジン」と記す)を示す。エンジン1はエン
ジン制御装置5によってその出力制御が行われる。エン
ジン制御装置5は、ここでは、吸気系に配置される周知
のエアーフローセンサからの吸気流量や、燃料系から得
られる燃料噴射量、燃料噴射時期、エンジン回転数等の
園児か暗転状態を示す信号を、排気ガス制御装置4へ出
力している。排気ガス制御装置4及びエンジン制御装置
5は、周知のマイクロコンピュータでその主要部が構成
されていて、互いに制御系通信回線で相互通信可能に連
結されている。 【0007】NOx浄化装置は、エンジン1の排気マニ
ホールド25につながり排気系を構成する排気管28に
設けられて排気ガス24中のNOxを選択還元するNO
x触媒17と、NOx触媒17にアンモニアを供給する
還元剤供給手段29と、還元剤供給手段29によるアン
モニアの基本添加量DNH3を導出する基本添加量導出
手段42と、NOx触媒17の触媒温度Tgに基づき基
準となる目標NOx浄化率Mηを導出する目標NOx浄
化率導出手段43と、NOx触媒17による実NOx浄
化率ηを導出する実NOx浄化率導出手段44と、目標
NOx浄化率導出手段43により導出された目標NOx
浄化率Mη及び実NOx浄化率導出手段44により導出
された実NOx浄化率ηとの比較結果に応じて、還元剤
供給手段29を制御する制御手段45とを備えている。 【0008】NOx触媒17は、ハニカム構造の触媒担
体に触媒成分を付着させたもので、排気管28に設けら
れたNOx触媒コンバータ27のケーシング内に収納さ
れている。選択還元触媒であるNOx触媒17として
は、バナジウム系、白金系、ゼオライト系などがある。
NOx触媒17は、アンモニア(NH)を吸着して排
気ガス24中のNOxを選択還元するものであり、アン
モニア吸着状態において、排気ガス24中のNOxを触
媒温度の高低に応じ、即ち、高温時には上述した式
(2)、低温時には上述した式(3)の反応を主に行
い、アンモニアと窒素酸化物との間の脱硝反応を促進す
るものである。 【0009】NОx触媒17には、触媒温度Tgを出力
する触媒温度センサ22が設けられている。この他、触
媒温度に相関するパラメータとなる、例えばエンジン回
転数及び燃料噴射量、エンジン運転領域毎の運転時間や
外気温を考慮して触媒温度の推定値を演算して触媒温度
Tgとして用いても良い。 【0010】還元剤供給手段29は、前NОxセンサ1
9とNОx触媒17との間の排気管28に装着され、N
Ox触媒コンバータ27の上流開口側に向けて尿素水を
噴霧して添加する添加ノズル18と、添加ノズル18に
接続された噴射管31と、噴射管31の上流端に連結さ
れたエアタンク32と、噴射管31への圧縮エア供給を
制御する圧縮エア制御弁33と、圧縮エア制御弁33よ
りも下流位置で噴射管に連結する尿素水供給管34と、
添加用の尿素水を収容した尿素水タンク35と、尿素水
タンク35内の尿素水を尿素水供給管34から噴射管3
1へと調量、供給する尿素水供給部37とを備えてい
る。これら圧縮エア制御弁33と尿素水供給部37は、
制御手段45に信号線で接続されている。 【0011】NOx触媒17の下流側の排気管28に
は、NОx触媒17の下流側のNOx濃度Snoxrを
検出する後NОxセンサ26が配設されている。各NО
xセンサ19,26からのNOx濃度Snoxf、Sn
oxrは、実NOx浄化率導出手段44に出力される。 【0012】目標NОx浄化率導出手段43は、例えば
図4に示すような、触媒温度Tgによって定められる目
標NОx浄化率Mηのマップであり、このマップから触
媒温度Tgに相関する目標NOx浄化率Mηを導出して
制御手段45に出力する。 【0013】実NOx浄化率導出手段44は、各NОx
センサ19,26からのNOx濃度Snoxf、Sno
xrを、Snoxf−Snoxrとする差分処理し、さ
らにその値をSnoxfで除算して実NOx浄化率(η)
を算出する演算回路である。 【0014】基本添加量導出手段42は、図6に破線L
2で示すNОx触媒17でのアンモニア吸着量を充たす
ような添加量マップを有し、触媒温度Tgに応じて適宜
アンモニアの基本添加量DNH3を選択して制御手段4
5に出力する。 【0015】本形態では、基本添加量導出手段42、目
標NОx浄化率導出手段43、実NОx浄化率導出手段
44及び制御手段45によって排気ガス制御装置4が構
成される。制御手段45は、圧縮エア制御弁33と尿素
水供給部37の駆動を制御する。 【0016】次に、NOx浄化装置によるNОx制御処
理を、図2のNOx浄化処理ルーチンに沿って説明す
る。NOx浄化装置を搭載した図示しない車両のエンジ
ン1の駆動時において、エンジン制御装置5はエンジン
駆動に関する各種制御系のセンサ類が正常か否かの自己
チェック結果が正常であったか否かを確認し、正常(O
K)では上述の関連センサの各入力値に応じて周知の燃
料噴射系、燃料供給系に制御信号を送出し、制御を実行
し、その際得られたセンサ出力等を排気ガス制御装置4
にも送信する。 【0017】排気ガス制御装置4は、エンジンキーのオ
ンと同時に図2のNOx浄化処理ルーチンのNOx浄化
処理制御を所定制御サイクル毎に繰り返す。NOx浄化
処理ルーチンでは、ステップS1でキーオンを確認し、
ステップS2で触媒温度Tg、NOx濃度Snoxf,
Snoxr、その他のデータを取込む。 【0018】ステップS3では、NOx濃度Snoxf,
Snoxrを用いて実NОx浄化率ηを、触媒温度Tg
に基づいてNОx触媒17に新たに吸着すべきアンモニ
ア量としての基本添加量DNH3をそれぞれ演算すると
共に、触媒温度Tgに基づいて目標NОx浄化率Mη
を、目標NОx浄化率導出手段43であるマップより演
算し、ステップS4に進む。 【0019】ステップS4では、実NОx浄化率ηと目
標NОx浄化率Mηとを比較して、実NОx浄化率ηが
目標NОx浄化率Mηを超えている場合には、アンモニ
アスリップの恐れがあるのでステップS7に進み、還元
剤供給手段29を停止制御すべく尿素水供給部37にお
いて尿素水の添加を禁止して今回の制御サイクルを終了
する。 【0020】実NОx浄化率ηが目標NОx浄化率Mη
を超えていない場合には、ステップS5に進む。ステッ
プS5において、実NОx浄化率=目標NОx浄化率M
ηの場合にはアンモニアの基本添加量DNH3に対する
補正はないが、実NОx浄化率η<目標NОx浄化率M
ηの場合に、基本添加量DNH3が、目標NОx浄化率
Mηを充たすように差分補正されて還元剤添加量(アン
モニアの実添加量)D H3(n)が決定されてステップ
S6に進む。ステップS6では、還元剤添加量D NH3
(n)あるいは基本添加量DNH3のアンモニア量に相当
する尿素水量を添加できるように、還元剤供給手段29
の尿素水供給部37を駆動制御して今回の制御サイクル
を終了する。 【0021】これにより尿素水供給部37は、アンモニ
アの基本添加量DNH3あるいは基本添加量が補正され
た還元剤添加量DNH3(n)相当の流量に調整した尿素
水を、噴射管31を経由して添加ノズル18より排気管
28に供給する。 【0022】本形態では、実NОx浄化率ηと目標NО
x浄化率Mηとの比較結果に応じて還元剤供給手段29
を制御手段45で制御するので、実NОx浄化率ηに誤
差がある場合でもアンモニアの基本添加量DNH3が適
切に補正されるため、NOx排出量の還元に必要なアン
モニア吸着量となるように適量のアンモニアをNОx触
媒17へ供給してNОx触媒17にアンモニアを吸着さ
せることができ、NОx浄化率を高く維持しながらも、
アンモニアスリップの発生を効果的に抑制することがで
きる。 【0023】本形態では、図2のステップS4におい
て、実NОx浄化率ηが目標NОx浄化率Mηを超えて
いる場合には、ステップS7に進んで還元剤供給手段2
9を停止制御して尿素水の添加を禁止する制御形態とし
ているが、このような形態に限定されるものではない。 【0024】図3のフローチャートを用いて別な制御形
態を示す。図3においてステップT1からT4までは図
2のステップS1からS4と同一内容であるので、これ
らの内容の説明は省略する。また、この制御を実施する
に当たり、排気ガス制御装置4は、基本添加量DNH3
に対して加減算するための補正量を図示しないマップ情
報として予め図示しないメモリー内に記憶されている。 【0025】図3において、ステップT1から順次ステ
ップが実行され、ステップT4において実NОx浄化率
ηが目標NОx浄化率Mηを超えている場合には、ステ
ップT7に進んでアンモニアの基本添加量DNH3から
所定量減算した還元剤添加量DNH3(n)を決定し、ス
テップT6に進む。実NОx浄化率ηが目標NОx浄化
率Mη未満の場合には、ステップT5に進みアンモニア
の基本添加量DNH3に所定量加算した還元剤添加量D
NH3(n)を決定し、ステップT6に進む。ステップT
6では、実NОx浄化率ηと目標NОx浄化率Mηとの
比較結果に応じて加算あるいは減算補正された還元剤添
加量DNH3(n)のアンモニア量に相当する尿素水量を
添加できるように、還元剤供給手段29の尿素水供給部
37を駆動制御して今回の制御サイクルを終了する。 【0026】このようにすれば、尿素水供給部37は、
加算あるいは減算補正された相当の流量に調整した尿素
水を、噴射管31を経由して添加ノズル18より排気管
28に供給する。よって、NОx触媒17への尿素水の
無添加状態をなくすことができ、より高いNОx浄化率
を維持しながらアンモニアスリップの発生を効果的に抑
制することができる。 【0027】 【発明の効果】本発明によれば、目標NOx浄化率と実
NOx浄化率との比較結果に応じて、NOx排出量の還
元に必要なアンモニア吸着量となる適量のアンモニアを
供給することができ、高いNОx浄化率とアンモニアス
リップの低減とを両立することができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] [0001] The present invention relates to an exhaust gas containing oxygen
Equipped with NОx catalyst having NОx purifying action under excess atmosphere
The present invention also relates to an NОx purification device for an internal combustion engine. [0002] 2. Description of the Related Art Urea water is added to exhaust gas for hydrolysis.
Ammonia generated by or directly added ammonia
Purifying device using as a reducing agent of a selective reduction catalyst
Is known. Such an NОx purification device is
When mounted on a vehicle equipped with an internal combustion engine such as a gin,
Exhaust gas in the exhaust system of Seki
Selective reduction catalyst capable of purifying NOx under ambient atmosphere, so-called urea
An SCR catalyst (hereinafter referred to as “NОx catalyst”) is provided,
Urea water or ammonia is used as a reducing agent from the upstream side of the catalyst.
So that it is added to the exhaust gas and supplied to the NОx catalyst.
Make up. Generally, NOx purification in a NOx purification device
The conversion rate largely depends on the performance of the NОx catalyst,
The N @ x catalyst using ammonia as a reducing agent as described above is
In the region where the temperature exceeds about 350 ° C., N
It has the property of reducing Ox. [0003] When urea water is added to exhaust gas,
As a result of hydrolysis and thermal decomposition as in (1),
Near (NH3) is generated.     (NH2) 2CO + H2O → 2NH3+ CO2... (1) Ammonia (NH3) and nitrogen oxides (N
Оx) depends on the level of the catalyst temperature, that is,
Equation (2) is mainly used at high temperature, and equation (3) is mainly used at low temperature.
It is known that each response takes place.     4NH3+ 4NO + O2→ 4N2+ 6H2O ... (2)     2NH3+ NO + NO2→ 2N2+ 3H2O · · · · (3) The N @ x catalyst using ammonia as a reducing agent is shown in FIG.
As shown by the solid line in FIG. 5, the absorption of ammonia into the NОx catalyst
Since the NOx purification rate is higher as the deposition amount is higher, NО
To obtain a high purification rate of the x catalyst, control the ammonia adsorption
It is preferable to control. Ammo that can be adsorbed on NОx catalyst
There is a limit in the near adsorption amount, and the adsorption indicated by a solid line L1 in FIG.
The limit value depends on the catalyst temperature. [0004] SUMMARY OF THE INVENTION
When a NОx purification device having an x catalyst is mounted on a vehicle,
The vehicle changes its operating state from moment to moment.
Flow rate of exhaust gas, NОx amount in exhaust gas,
Since the change in the medium temperature is large, NОx corresponding to the operating state
Ammonia supply to the catalyst is required. NОx catalyst
If the ammonia supply cannot correspond to the operating state, for example
If the supply amount of ammonia is small, the ammonia
The amount of adsorption is insufficient and sufficient N が x reduction cannot be performed.
If the supply amount is too large and exceeds the adsorption limit, NОx
Ammonia not adsorbed by the medium is discharged into the atmosphere
A phenomenon called ammonia slip easily occurs. Book
The present invention provides a method for reducing ammonia while maintaining a high NОx purification rate.
Internal combustion that can effectively suppress the occurrence of aslip
An object of the present invention is to provide a NOx purification device for an engine. [0005] SUMMARY OF THE INVENTION An internal combustion engine according to the present invention
NOx purifying devices are provided in an exhaust system of an internal combustion engine.
N that adsorbs monia and selectively reduces NOx in exhaust gas
Supply ammonia or urea water to Ox catalyst and NOx catalyst
Reducing agent supply means, the operating state of the internal combustion engine, and NO
x of the catalyst temperature of the catalyst or a parameter correlated to the catalyst temperature
The purpose of deriving the target NOx purification rate as a reference based on one
Target NOx purification rate deriving means and actual NOx by the NOx catalyst
Means for deriving an actual NOx purification rate for deriving a purification rate;
and the target NOx purification rate derived by the x purification rate deriving means.
NOx purification derived by the actual NOx purification rate deriving means
System for controlling the reducing agent supply means according to the comparison result with the conversion rate
Control means. According to the present invention, the target NОx
Supply of reducing agent according to the result of comparison between conversion rate and actual N 実 x purification rate
Since the amount of addition is corrected by the means, the return of NOx emission
An appropriate amount of reducing agent so that the required amount of ammonia is absorbed
Can be supplied. [0006] DESCRIPTION OF THE PREFERRED EMBODIMENTS Internal combustion engine as an embodiment of the present invention
The NOx purification device of Seki will be described. In FIG.
Indicates a diesel engine mounted on a vehicle (not shown)
(Hereinafter referred to as “engine”). Engine 1 is engine
The output control is performed by the gin controller 5. En
The gin control device 5 is, here, a well-known
Of the intake air flow from the airflow sensor and the fuel system
Fuel injection amount, fuel injection timing, engine speed, etc.
A signal indicating that the child is in a dark state is sent to the exhaust gas control device 4.
I'm working. Exhaust gas control device 4 and engine control device
5 is a well-known microcomputer whose main part is composed
Are connected so that they can communicate with each other via a control communication line.
Is tied. [0007] The NOx purifying device is an exhaust manifold of the engine 1.
To the exhaust pipe 28 that connects to the hold 25 and composes the exhaust system
NO that is provided to selectively reduce NOx in the exhaust gas 24
Supply ammonia to x catalyst 17 and NOx catalyst 17
The reducing agent supply means 29 and the
Monia basic addition amount DNH3Derivation of basic additive amount
Means 42 and a base based on the catalyst temperature Tg of the NOx catalyst 17.
The target NOx purification rate for deriving the reference target NOx purification rate Mη
Actual NOx purification by the conversion rate deriving means 43 and the NOx catalyst 17
Actual NOx purification rate deriving means 44 for deriving the conversion rate η;
Target NOx derived by the NOx purification rate deriving means 43
Derived by the purification rate Mη and the actual NOx purification rate deriving means 44
In accordance with the result of comparison with the actual NOx purification rate η
And control means 45 for controlling the supply means 29. [0008] The NOx catalyst 17 is a catalyst supporting catalyst having a honeycomb structure.
A catalyst component is attached to the body.
Stored in the casing of the NOx catalytic converter 27
Have been. As the NOx catalyst 17 which is a selective reduction catalyst
Are vanadium-based, platinum-based, and zeolite-based.
The NOx catalyst 17 uses ammonia (NH3)
This is for selectively reducing NOx in the gas 24,
In the monia adsorption state, NOx in the exhaust gas 24 is touched.
According to the medium temperature, that is, at a high temperature, the above equation
(2) When the temperature is low, the reaction of the above formula (3) is mainly performed.
Promotes the denitration reaction between ammonia and nitrogen oxides
Things. The NОx catalyst 17 outputs a catalyst temperature Tg.
A catalyst temperature sensor 22 is provided. In addition,
A parameter that correlates to the medium temperature, such as engine
The number of turns, fuel injection amount, operating time for each engine operating area,
Calculate the estimated value of the catalyst temperature considering the outside air temperature and calculate the catalyst temperature.
It may be used as Tg. The reducing agent supply means 29 includes a front N @ x sensor 1
9 and an exhaust pipe 28 between the NОx catalyst 17 and
Urea water is directed toward the upstream opening side of the Ox catalytic converter 27.
The addition nozzle 18 to be sprayed and added,
The connected injection pipe 31 and the upstream end of the injection pipe 31
Supply of compressed air to the blown air tank 32 and the injection pipe 31
The compressed air control valve 33 to be controlled and the compressed air control valve 33
A urea water supply pipe 34 connected to the injection pipe at a downstream position,
A urea water tank 35 containing urea water for addition,
The urea water in the tank 35 is supplied from the urea water supply pipe 34 to the injection pipe 3
1 and a urea water supply unit 37 for metering and supplying
You. These compressed air control valve 33 and urea water supply unit 37
It is connected to the control means 45 by a signal line. The exhaust pipe 28 on the downstream side of the NOx catalyst 17
Is the NOx concentration Snoxr downstream of the NОx catalyst 17.
After the detection, an NОx sensor 26 is provided. Each NО
NOx concentrations Snoxf, Sn from x sensors 19, 26
oxr is output to the actual NOx purification rate deriving means 44. The target NОx purification rate deriving means 43 is, for example,
An eye determined by the catalyst temperature Tg as shown in FIG.
This is a map of the target NОx purification rate Mη.
Deriving the target NOx purification rate Mη correlated to the medium temperature Tg
Output to control means 45. The actual NOx purification rate deriving means 44 calculates each N は x
NOx concentrations Snoxf and Sno from sensors 19 and 26
xr is subjected to a difference process of Snoxf-Snoxr,
Further, the value is divided by Snoxf to obtain the actual NOx purification rate (η).
Is an arithmetic circuit that calculates. The basic addition amount deriving means 42 is shown in FIG.
The amount of ammonia adsorbed on the N @ x catalyst 17 indicated by 2 is satisfied.
Such an addition amount map, and appropriately according to the catalyst temperature Tg.
Basic amount of ammonia added DNH3Select the control means 4
5 is output. In the present embodiment, the basic addition amount deriving means 42
Target NОx purification rate deriving means 43, actual NОx purification rate deriving means
The exhaust gas control device 4 is configured by the control unit 44 and the control unit 45.
Is done. The control means 45 includes the compressed air control valve 33 and the urea
The driving of the water supply unit 37 is controlled. Next, the NОx control process by the NOx purifying device
The process will be described with reference to the NOx purification processing routine of FIG.
You. Engine of a vehicle (not shown) equipped with a NOx purification device
When the engine 1 is driven, the engine control device 5
Whether the sensors of various control systems related to drive are normal or not
Check whether the check result is normal,
In K), a well-known fuel in accordance with each input value of the above-mentioned related sensor is used.
Sends control signals to the fuel injection system and fuel supply system to execute control
The sensor output and the like obtained at that time are
Also to send. The exhaust gas control device 4 has an engine key
NOx purification in the NOx purification processing routine of FIG.
The processing control is repeated every predetermined control cycle. NOx purification
In the processing routine, key-on is confirmed in step S1,
In step S2, the catalyst temperature Tg, the NOx concentration Snoxf,
Capture Snoxr and other data. In step S3, the NOx concentration Snoxf,
The actual NОx purification rate η is calculated using the Snoxr and the catalyst temperature Tg.
To be newly adsorbed to the NОx catalyst 17 based on the
A) Basic addition amount D as amountNH3When each is calculated
In both cases, the target NОx purification rate Mη based on the catalyst temperature Tg
From the map which is the target NОx purification rate deriving means 43.
Then, the process proceeds to step S4. In step S4, the actual NОx purification rate η is
The actual NОx purification rate η is compared with the target NОx purification rate Mη.
If the target NОx purification rate Mη is exceeded, the ammonia
Proceed to step S7 because there is a risk of aslip and return
Urea water supply unit 37 to stop and control the agent supply means 29.
To stop the addition of urea water and end this control cycle
I do. The actual NОx purification rate η is equal to the target NОx purification rate Mη.
If not, the process proceeds to step S5. Step
In step S5, actual NОx purification rate = target NОx purification rate M
In the case of η, the basic addition amount of ammonia DNH3Against
There is no correction, but actual NОx purification rate η <target NОx purification rate M
η, the basic addition amount DNH3Is the target NОx purification rate
The difference is corrected so as to satisfy Mη, and the reducing agent addition amount (an
Actual amount of monia) DN H3(n) is determined and step
Proceed to S6. In step S6, the reducing agent addition amount D NH3
(n) or basic addition amount DNH3Equivalent to the amount of ammonia
So that the amount of urea water to be added can be added.
Drive control of the urea water supply unit 37 of the
To end. As a result, the urea water supply unit 37
A Basic addition amount DNH3Or the basic addition amount is corrected
Amount of reducing agent added DNH3(n) Urea adjusted to a corresponding flow rate
Water is discharged from the addition nozzle 18 via the injection pipe 31 to the exhaust pipe.
28. In this embodiment, the actual NОx purification rate η and the target NО
x reducing agent supply means 29 according to the result of comparison with x purification rate Mη.
Is controlled by the control means 45, the actual NОx purification rate η is incorrect.
Even if there is a difference, the basic addition amount of ammonia DNH3Suitable
The correction required for the reduction of NOx emissions
Apply an appropriate amount of ammonia to NОx
Ammonia is adsorbed on the NОx catalyst 17
While maintaining a high NОx purification rate,
The generation of ammonia slip can be effectively suppressed.
Wear. In this embodiment, in step S4 of FIG.
The actual N 実 x purification rate η exceeds the target NОx purification rate Mη
If there is, the flow proceeds to step S7 and the reducing agent supply means 2
9 to stop and inhibit the addition of urea water
However, the present invention is not limited to such a form. Another control type using the flowchart of FIG.
State. In FIG. 3, steps T1 to T4 are diagrams.
Since the contents are the same as Steps S1 to S4 of Step 2,
The description of these contents is omitted. Also implement this control
, The exhaust gas control device 4 determines the basic addition amount DNH3
Map information (not shown) indicating the amount of correction for addition / subtraction to
The information is stored in advance in a memory (not shown). In FIG. 3, the steps are sequentially performed from step T1.
Is performed, and in step T4, the actual NОx purification rate
If η exceeds the target NОx purification rate Mη,
Proceeding to T7, the basic addition amount of ammonia DNH3From
Reduction agent addition amount D after subtracting a predetermined amountNH3(n)
Proceed to step T6. Actual NОx purification rate η is the target NОx purification
If the ratio is less than the rate Mη, the process proceeds to step T5 where the ammonia
Basic addition amount DNH3Amount of reducing agent added D
NH3(n) is determined, and the process proceeds to step T6. Step T
6, the actual NОx purification rate η and the target NОx purification rate Mη
The reducing agent added or subtracted according to the comparison result
Addition DNH3The amount of aqueous urea corresponding to the amount of ammonia in (n)
The urea water supply unit of the reducing agent supply means 29 is added so that it can be added.
37, and the current control cycle is completed. With this configuration, the urea water supply unit 37
Urea adjusted to a substantial flow rate that has been added or subtracted
Water is discharged from the addition nozzle 18 via the injection pipe 31 to the exhaust pipe.
28. Therefore, urea water is supplied to the NОx catalyst 17.
Higher NОx purification rate by eliminating the additive-free state
While effectively suppressing the occurrence of ammonia slip
Can be controlled. [0027] According to the present invention, the target NOx purification rate and the actual
Return NOx emissions according to the comparison result with NOx purification rate
The appropriate amount of ammonia that will be the amount of ammonia needed
High N 、 x purification rate and ammonia
The reduction of the lip can be achieved at the same time.

【図面の簡単な説明】 【図1】本発明の一実施形態を示すNОx浄化装置の全
体構成図である。 【図2】図1のNОx浄化装置で実行されるNОx浄化
処理のルーチンを示すフローチャートである。 【図3】図1のNОx浄化装置で実行されるNОx浄化
処理の別なルーチンを示すフローチャートである。 【図4】目標NОx浄化率と触媒温度の関係を示す特性
線図である。 【図5】NОx触媒のアンモニア吸着量とNOx浄化率
との関係を示す特性線図である。 【図6】NОx触媒の触媒温度とアンモニア吸着量との
関係を示す特性線図である。 【符号の説明】 1 内燃機関 2 排気系 17 NOx触媒 24 排気ガス 29 還元剤供給手段 43 目標NОx浄化率導出手段 44 実NOx浄化率導出手段 45 制御手段 Tg 触媒温度 η 実NOx浄化率 Mη 基準NOx浄化率
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram of an NОx purification device showing one embodiment of the present invention. FIG. 2 is a flowchart showing a routine of NОx purification processing executed by the NОx purification device of FIG. 1; FIG. 3 is a flowchart showing another routine of the NОx purification process executed by the NОx purification device of FIG. 1; FIG. 4 is a characteristic diagram showing a relationship between a target NОx purification rate and a catalyst temperature. FIG. 5 is a characteristic diagram showing a relationship between an ammonia adsorption amount of a NOx catalyst and a NOx purification rate. FIG. 6 is a characteristic diagram showing a relationship between a catalyst temperature of an NОx catalyst and an amount of adsorbed ammonia. [Description of Signs] 1 Internal combustion engine 2 Exhaust system 17 NOx catalyst 24 Exhaust gas 29 Reductant supply means 43 Target NОx purification rate derivation means 44 Actual NOx purification rate derivation means 45 Control means Tg Catalyst temperature η Actual NOx purification rate Mη Reference NOx Purification rate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川谷 聖 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 平沼 智 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 橋詰 剛 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 百目木 礼子 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 篠▲崎▼ 律子 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 斎藤 真一 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 ▲高▼橋 嘉則 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 Fターム(参考) 3G091 AA02 AA18 AA28 AB05 BA14 CA13 CA17 DB10 EA01 EA05 EA08 EA09 EA14 EA18 EA30 EA33 GA06 GB01W GB06W GB09W HA36 HA37 HA39 HA42 4D048 AA06 AB02 AB07 AC03 AC04 CC61 DA01 DA02 DA06 DA10 DA20 EA04    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kiyoshi Kawatani             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor Satoshi Hiranuma             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor Takeshi Hashizume             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor Reiko Momomeki             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor Shino Saki Ritsuko             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor Shinichi Saito             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. (72) Inventor ▲ Taka ▼ Bridge Yoshinori             5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors             Industrial Co., Ltd. F-term (reference) 3G091 AA02 AA18 AA28 AB05 BA14                       CA13 CA17 DB10 EA01 EA05                       EA08 EA09 EA14 EA18 EA30                       EA33 GA06 GB01W GB06W                       GB09W HA36 HA37 HA39                       HA42                 4D048 AA06 AB02 AB07 AC03 AC04                       CC61 DA01 DA02 DA06 DA10                       DA20 EA04

Claims (1)

【特許請求の範囲】 【請求項1】内燃機関の排気系に設けられアンモニアを
吸着して排気ガス中のNOxを選択還元するNOx触媒
と、 前記NOx触媒にアンモニア又は尿素水を供給する還元
剤供給手段と、 前記内燃機関の運転状態、及び前記NOx触媒の触媒温
度又は触媒温度に相関するパラメータの一つに基づき基
準となる目標NOx浄化率を導出する目標NOx浄化率
導出手段と、 前記NOx触媒による実NOx浄化率を導出する実NO
x浄化率導出手段と、 前記目標NOx浄化率導出手段により導出された目標N
Ox浄化率及び前記実NOx浄化率導出手段により導出
された実NOx浄化率との比較結果に応じて、前記還元
剤供給手段を制御する制御手段とを備えたことを特徴と
する内燃機関のNOx浄化装置。
1. A NOx catalyst provided in an exhaust system of an internal combustion engine for adsorbing ammonia and selectively reducing NOx in exhaust gas, and a reducing agent for supplying ammonia or urea water to the NOx catalyst. Supply means; target NOx purification rate deriving means for deriving a reference target NOx purification rate based on an operating state of the internal combustion engine, and a catalyst temperature of the NOx catalyst or one of parameters correlated to the catalyst temperature; Actual NO for deriving the actual NOx purification rate by the catalyst
x purification rate deriving means, and the target N derived by the target NOx purification rate deriving means.
Control means for controlling the reducing agent supply means in accordance with a comparison result between the Ox purification rate and the actual NOx purification rate derived by the actual NOx purification rate deriving means. Purification device.
JP2002096026A 2002-03-29 2002-03-29 NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE Pending JP2003293738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096026A JP2003293738A (en) 2002-03-29 2002-03-29 NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096026A JP2003293738A (en) 2002-03-29 2002-03-29 NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE

Publications (1)

Publication Number Publication Date
JP2003293738A true JP2003293738A (en) 2003-10-15

Family

ID=29239267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096026A Pending JP2003293738A (en) 2002-03-29 2002-03-29 NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE

Country Status (1)

Country Link
JP (1) JP2003293738A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223670A (en) * 2007-03-14 2008-09-25 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
DE102009002950A1 (en) 2008-05-26 2009-12-24 DENSO CORPORATION, Kariya-shi Exhaust gas purification device of an internal combustion engine
DE102009026510A1 (en) 2008-06-03 2009-12-31 Denso Corporation, Kariya-City Exhaust gas purification device for internal combustion engine
JP2012072667A (en) * 2010-09-27 2012-04-12 Mitsubishi Heavy Ind Ltd Method and apparatus for control of exhaust emission control device
US8418438B2 (en) 2009-04-14 2013-04-16 Denso Corporation Exhaust gas purifying device for internal combustion engine
US8540953B2 (en) 2010-07-07 2013-09-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
KR101500350B1 (en) * 2009-12-03 2015-03-09 현대자동차 주식회사 Ammonia injection control method when nox sensor is not operated
JP2017110594A (en) * 2015-12-17 2017-06-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US9943806B2 (en) 2014-04-16 2018-04-17 Isuzu Motors Limited Exhaust gas purification system
US10100698B2 (en) 2014-05-08 2018-10-16 Isuzu Motors Limited Exhaust purification system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223670A (en) * 2007-03-14 2008-09-25 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
US8201397B2 (en) 2008-05-26 2012-06-19 Denso Corporation Exhaust gas purification device of internal combustion engine
DE102009002950A1 (en) 2008-05-26 2009-12-24 DENSO CORPORATION, Kariya-shi Exhaust gas purification device of an internal combustion engine
DE102009002950B4 (en) * 2008-05-26 2016-06-16 Denso Corporation Exhaust gas purification device of an internal combustion engine
DE102009026510A1 (en) 2008-06-03 2009-12-31 Denso Corporation, Kariya-City Exhaust gas purification device for internal combustion engine
US8176730B2 (en) 2008-06-03 2012-05-15 Denso Corporation Exhaust gas purification device of internal combustion engine
US8418438B2 (en) 2009-04-14 2013-04-16 Denso Corporation Exhaust gas purifying device for internal combustion engine
KR101500350B1 (en) * 2009-12-03 2015-03-09 현대자동차 주식회사 Ammonia injection control method when nox sensor is not operated
US8540953B2 (en) 2010-07-07 2013-09-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
JP2012072667A (en) * 2010-09-27 2012-04-12 Mitsubishi Heavy Ind Ltd Method and apparatus for control of exhaust emission control device
US9943806B2 (en) 2014-04-16 2018-04-17 Isuzu Motors Limited Exhaust gas purification system
US10100698B2 (en) 2014-05-08 2018-10-16 Isuzu Motors Limited Exhaust purification system
JP2017110594A (en) * 2015-12-17 2017-06-22 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100490813B1 (en) NOx CLEANING APPARATUS OF INTERNAL COMBUSTION ENGINE
JP3979153B2 (en) NOx purification device for internal combustion engine
US9097163B2 (en) Method, apparatus, and system to control selective catalytic reduction (SCR) catalyst ammonia slip during high temperature transitions
US20060130458A1 (en) System for controlling the urea supply to SCR catalysts
WO2014073408A1 (en) Exhaust gas purification device for internal-combustion engine
JP5398372B2 (en) Engine exhaust purification system
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP2003314256A (en) Exhaust emission control device
JP2004060515A (en) Engine control device
JP2011196311A (en) Exhaust emission purifying method and exhaust emission purifying apparatus
JP2003293738A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2003301737A (en) NOx PURIFIER OF INTERNAL COMBUSTION ENGINE
JP3956738B2 (en) NOx purification device for internal combustion engine
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JP2011196309A (en) Exhaust emission control method and exhaust emission control device
JP2009293605A (en) Control device for exhaust treatment device
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP2003293735A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
CN109154223B (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP4445000B2 (en) Exhaust purification device
JP2015101968A (en) Exhaust emission control device for internal combustion engine
JP3945291B2 (en) NOx purification device for internal combustion engine
JP2005226504A (en) Method for controlling exhaust emission control device
JP5126141B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080613

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080718