JP3956738B2 - NOx purification device for internal combustion engine - Google Patents

NOx purification device for internal combustion engine Download PDF

Info

Publication number
JP3956738B2
JP3956738B2 JP2002088495A JP2002088495A JP3956738B2 JP 3956738 B2 JP3956738 B2 JP 3956738B2 JP 2002088495 A JP2002088495 A JP 2002088495A JP 2002088495 A JP2002088495 A JP 2002088495A JP 3956738 B2 JP3956738 B2 JP 3956738B2
Authority
JP
Japan
Prior art keywords
nox
catalyst
ammonia
amount
adsorption amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002088495A
Other languages
Japanese (ja)
Other versions
JP2003286828A (en
Inventor
律子 篠▲崎▼
好央 武田
智 平沼
剛 橋詰
礼子 百目木
聖 川谷
健二 河合
真一 斎藤
嘉則 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002088495A priority Critical patent/JP3956738B2/en
Publication of JP2003286828A publication Critical patent/JP2003286828A/en
Application granted granted Critical
Publication of JP3956738B2 publication Critical patent/JP3956738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気ガス中のNOxを浄化するNOx浄化装置、特に、排気系に設けた還元触媒の上流側に排気ガス還元剤の供給装置を配した内燃機関のNOx浄化装置に関する。
【0002】
【従来の技術】
内燃機関が排出する排気ガス中のNOxはNOx浄化装置により浄化されているが、特に、ディーゼルエンジンで用いられるNOx浄化装置はその排気系に選択還元型のSCR触媒を置き、その上流側にユリア水を還元剤として供給し、酸素過剰雰囲気下においてNOxを浄化できるようにしている。このNOx浄化装置におけるNOx浄化率はユリアSCR触媒の温度が約350℃を上回る領域で高効率でNOxを還元処理して無害化できる。
ここで、ユリア水は式(1)のように加水分解及び熱分解して、NHを放出する。
【0003】
(NH2)2CO+HO→2NH+CO・・・・(1)
また、SCR触媒上でのNHと窒素酸化物との間の脱硝反応は以下の(2)、(3)の反応がそれぞれ行われることが知られている。
【0004】
4NH+4NO+O→4N+6H0・・・・(2)
2NH+NO+NO→2N+3H0・・・・(3)
このようなユリア水(又はアンモニア)添加式のSCR触媒は、例えば、図6に実線で示すように、触媒へのアンモニアの吸着量が多いほどNOx浄化率が高く、このため、低温域で高浄化率を得るにはアンモニア吸着量を高く制御することが好ましい。一方、SCR触媒に吸着できるアンモニア吸着量には限界があり、例えば、図7に示すように、限界値(実線n)は触媒温度に依存する。ここで、NOx還元剤であるアンモニアが過剰に投入されると吸着量限界値(実線n)を越える余剰アンモニアが排出され、アンモニアスリップが生じる。環境を配慮する上で、アンモニアスリップを防止するため、アンモニア吸着量を限界内(実線nと破線との間の領域)に保持するように制御する必要があり、特に、触媒温度が急激に変化する車両用触媒においてはその必要性が高い。
【0005】
このようなNOx浄化装置において、SCR触媒中のアンモニア吸着量(ユリア水添加量)が適正な範囲内となるように制御している。この場合、エンジンからNOx排出量と、SCR触媒の温度及びマップからのNOx浄化率とから触媒でのアンモニア消費量を計算し、これと添加した還元剤量からアンモニア吸着量が計算可能である。
なお、排気ガス中の窒素酸化物の変換を行う触媒において、有害物質が許容量を超えると触媒に添加される還元剤量を増量し、下回れば還元剤量を低下する排気系への還元剤の供給量の調量方法が特表平11−512799号公報に開示される。
【0006】
【発明が解決しようとする課題】
ところで、上述のように、エンジンからのNOx排出量とマップからのNOx浄化率から触媒でのアンモニア消費量を計算し、これと添加した還元剤量からアンモニア吸着量を計算可能であるが、この演算はオープンループ制御であるため、誤差が生じ易い。
特に、触媒温度が所定値以下では、例えば、後述する図2に示すように、温度変化に対するNOx浄化率の傾き(変化量)が大きいため、触媒温度差に起因するNOx浄化率のずれを生じ易い。
【0007】
このため、エンジン運転状態が変化して排気温度が増減すると、触媒温度が変化することになり、NOx浄化性能も変化する。
また、後述する図3に示すように、触媒温度が所定値以下ではアンモニア吸着量限界が高いため、より大きな吸着量計算誤差を許容してしまう可能性がある。
【0008】
このため、アンモニア吸着量限界の高いSCR触媒の温度が所定温度(例えば、350℃)以下の状態での運転時間が所定時間以上に長くなると、アンモニア消費量の演算誤差が積算され、アンモニア吸着量の演算誤差が大きくなる。アンモニア吸着量の演算誤差が大きくなるとアンモニア吸着量が吸着量の限界値を越えて、アンモニアスリップが生じたり、或いはアンモニア吸着量が少なくなり、初期のNOx浄化性能が得られないという不具合が生じる虞があった。
【0009】
本発明は、以上のような課題に基づき、SCR触媒の温度が所定温度以下の状態での運転が所定時間以上になった場合でもアンモニアスリップやNOx浄化性能の低下を防止できる内燃機関のNOx浄化装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の発明は、内燃機関の排気系に設けられアンモニアを吸着して排気ガス中のNOxを選択還元するNOx触媒、前記NOx触媒にアンモニア又はユリア水を供給する還元剤供給手段、前記NOx触媒の触媒温度又は触媒温度に相関するパラメータを検出又は推定する触媒温度検出手段、前記触媒温度検出手段の検出又は推定結果に応じて、前記NOx触媒温度が所定温度以下の状態にある時間が所定時間以上のとき、前記NOx触媒に吸着されたアンモニアの吸着量を減少するよう制御する吸着量減少促進手段を備えたことを特徴とする。
ここでは、NOx触媒温度が所定温度以下の状態にある時間が所定時間以上になりアンモニアの吸着量や消費量に誤差が生じる比率が増加する運転が継続すると、NOx触媒に吸着されているアンモニアを減少させるよう制御する。このように、アンモニアの吸着量をゼロ側に戻し、更に、アンモニアの吸着量の演算結果をリセットして、演算誤差を排除し、これ以後の吸着量や消費量の演算に誤差が含まれないようにし、アンモニアの添加量を求めるにあたり、アンモニアスリップやNOx浄化性能の低下が継続して発生することがないよう未然に防止することができる。
【0011】
好ましくは、前記吸着量減少促進手段は、前記還元剤供給手段による尿素水の添加量を減少するよう制御しても良い。この場合、尿素水供給装置による減少処理を容易に制御でき、以後のアンモニアの吸着量の演算誤差を確実に排除して、アンモニアスリップやNOx浄化性能の低下を容易に防止できる。
好ましくは、前記吸着量減少促進手段は、前記NOx触媒の温度を上昇させるよう制御しても良い。この場合、エンジンへの燃料量増や、燃料噴射時期の遅角処理等を行い排気ガス温度を上昇させ、これにより、NOx触媒の温度上昇を図るので、アンモニアの吸着量を強制的に低減させ、この後の吸着量の演算に誤差が含まれないようにし、アンモニアスリップやNOx浄化性能の低下が継続して発生することがないようにできる。
【0012】
請求項2の発明は、請求項1記載の内燃機関のNOx浄化装置において、前記吸着量減少促進手段が、アンモニア又はユリア水の供給を停止して、前記NOx触媒に吸着されたアンモニアの吸着量を減少させることを特徴とする。
この場合、NOx触媒のアンモニア吸着量を一旦ゼロに戻し、更に、アンモニアの吸着量の演算結果をリセットするので、以後のアンモニアの吸着量の演算誤差を排除して、アンモニアスリップやNOx浄化性能の低下を容易に防止できる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態としての内燃機関のNOx浄化装置を説明する。ここでの内燃機関のNOx浄化装置(以後単にNOx浄化装置と記す)は、図示しない車両に搭載されたディーゼルエンジン(以後単にエンジンと記す)1の排気系2に装着される。
エンジン1はエンジン制御装置(図には主要制御部を成すエンジンECU301を記す)3を備え、このエンジン1の排気系にNOx浄化装置が配備される。なお、エンジン制御装置のエンジンECU10と、NOx浄化装置の制御部を成す排気ガス制御装置(以後単に排気系ECU4と記す)とは制御系通信回線であるCAN(Controller Arer Network)相互通信システム(以後単にCAN通信回線と記す)5によって相互通信可能に連結される。なお、CAN通信装置はエンジンECU10と排気系ECU4の相互通信を可能とし、特に、相互データ通信に用いる接続回線が比較的簡素化されるという利点がある。
【0014】
図1において、NOx浄化装置を装備したエンジン1は図示しない燃焼室に吸気を導く吸気系と、燃料噴射量、噴射圧力、噴射時期などを調整する燃料制御系とを備える。
エンジンECU10は要求出力が得られるような燃料量及び噴射時期を設定する燃料噴射量設定部10aと燃料噴射時期設定部10bとを有する。
【0015】
エンジンECU10の入力側には、アクセルペダル踏込量(アクセル踏込量)Accを検出するアクセル踏込量センサ14、エンジン回転数Neを演算するためのクランク角センサ15等の各種センサ類が接続され、出力側には図示しない高圧燃料ポンプにより供給される高圧燃料を貯留するコモンレール6と各気筒毎に設けられた燃料噴射ノズル7との間を接続する燃料通路6aを開閉する開閉弁8を駆動する燃料噴射用ドライバ9、図示しない高圧ポンプの燃料供給量を制御する調量部等の各種デバイス類が接続されている。
【0016】
これにより、例えば、クランク角センサ15により検出されたクランク信号θcに基き演算されたエンジン回転数Neとアクセル開度センサ14により検出されたアクセルペダル踏込量Accとに応じて演算された要求燃料噴射Qに基き、開閉弁の開弁時期、開弁期間が燃料噴射用ドライバ9によって可変調整され、さらに、高圧燃料ポンプの調量部がコモンレール6内の燃料圧力に応じてフィードバック制御される。
【0017】
エンジン1の排気系に設けたNOx浄化装置は排気管16の途中に装着されたNOx触媒であるSCR触媒17と、その上流に配備されるユリア水の添加ノズル18と、添加ノズル18の上流側のNOx濃度Snoxfを出力するNOxセンサ19とSCR触媒17の温度Tgを出力する触媒温度センサ22と、NOx浄化装置の制御部を成す排気系ECU4とを備える。ここで、触媒温度センサ22はNOx触媒の触媒温度を検出する触媒温度検出手段を成しているが、これに代えて触媒前後の排気温度から触媒温度を推定してもよい。更に、触媒温度に相関するパラメータ、例えばエンジンの運転状態(燃料量、エンジン回転数)、所定運転域毎の運転時間や外気温度を考慮して触媒温度の推定値を演算してもよい。
エンジン1から流出した排気は排気多岐管25、NOx触媒コンバータ27を配備した排気管16を通過し、図示しないマフラーを介して大気放出される。
【0018】
NOx触媒コンバータ27はケーシング内に図示しないハニカム構造のセラミック製触媒担体を備え、同担体にSCR触媒17として機能するための触媒金属(例えば、バナジウム)が担持される。或いは、NOx触媒コンバータ27はSCR触媒17として機能するための触媒金属(例えば、バナジウム)などによってハニカム構造が形成され、ケーシングされても良い。SCR触媒17はアンモニア(NH)により排気ガス中のNOxを選択還元可能である。ここでSCR触媒17は後述のアンモニア吸着状態において、上述した式(2),(3)の反応を行い、NHと窒素酸化物との間の反応を促進することができる。なお、SCR触媒17の触媒温度−目標浄化率特性を図2に、触媒温度−アンモニア吸着量特性を図3に示した。
【0019】
SCR触媒17の上流の排気路24中にユリア水を供給する還元剤供給手段としてのユリア水供給装置29が装着される。このユリア水供給装置29は、NOx触媒コンバータ27の上流開口側に向けてユリア水を噴霧する添加ノズル18と、添加ノズル18に接続された噴射管31と、噴射管31の上流端のエアタンク32と、同エアタンク近傍に設けた圧縮エア制御弁33と、圧縮エア制御弁33より下流位置でユリア水を供給するユリア水供給部37とユリア水供給部37の上流に位置し、ユリア水を貯蔵するユリア水タンク35と、これらの制御手段を成す排気系ECU4とを備える。
【0020】
排気系ECU4はその入出力回路に多数のポートを有し、NOxセンサ19と触媒温度センサ22等よりの検出信号を入力でき、圧縮エア制御弁33、ユリア供給部37に制御信号を送出する。しかも、CAN通信回線5を介しエンジンECU10とデータの送受を可能としている。
排気系ECU4は入出力インターフェース401、記憶部402、バッテリバックアップ用の不揮発性メモリ403および中央処理部404を備え、特に、NOx浄化処理機能を備える。
【0021】
図1の排気系ECU4は、基本的にユリア水供給装置29を駆動する添加制御手段A0を備える。特に、吸着量減少促進手段A1として、触媒温度検出手段(温度センサ22)の検出又は推定結果に応じて、SCR触媒温度Tgが所定温度tgα以下の状態にある時間CT1が所定時間ctα以上の時、SCR触媒17に吸着されたアンモニアの吸着量ANH3を減少するよう、即ち、添加量Dureaを減少、例えばゼロに制御する。ここで、所定温度tgα、例えば350℃としているが、この値は触媒特性により変わる。所定時間ctαはアンモニアの吸着量の演算誤差による不具合が生じないよう、適正値が選択される。
【0022】
次に、図1のエンジンECU10及びNOx浄化装置の添加制御処理を、図4、5のNOx浄化処理ルーチン及び図2、図3の触媒特性マップを用いて説明する。
ここで、NOx浄化装置を搭載した図示しない車両のエンジン1の駆動時において、エンジンECU10は複数の制御系、例えば、燃料制御系で適宜実行されている関連機器、センサ類が正常か否かの自己チェック結果が正常であったか否かを確認し、正常(OK)では上述の関連センサの各入力値に応じて燃料噴射用ドライバ9、調量部等に制御信号を送出し、制御を実行し、その際得られたセンサ出力等を排気系ECU4にも送信する。
【0023】
一方、排気系ECU4は、エンジンキーのオンと同時に図4、5のNOx浄化処理ルーチンのNOx浄化処理制御を所定制御サイクル毎に繰り返す。ここで、ステップs1でキーオンを確認し、ステップs2に達すると、SCR触媒温度Tg、NOx排出量Unox、エンジンECU10からの燃料量Qf、エンジン回転速度Ne、その他のデータを取込む。
【0024】
ステップs3に達すると、SCR触媒温度Tgに基きNOx浄化率ηbを算出し、ステップs4達する。
ステップs4では、SCR触媒温度Tgより目標吸着量ANH3(n)を演算し、ステップs5に達する。
ステップs5でNOx排出量UnoxとNOx浄化率ηbに基づきアンモニアの消費量CNH3を導出する。
【0025】
ステップs6に達すると、目標吸着量ANH3(n)とアンモニアの消費量CNH3を採り込み、この値及び前回の前回吸着量ANH3(n−1)を用いて、下式(4)より、NH添加量BNH3を演算する。
NH3=ANH3(n)−ANH3(n−1)+CNH3・・・・・(4)
ステップs7に達すると吸気量減少促進制御を実行中か否か、即ち、実行フラグF=1の場合は、ステップs14に、F=1でない場合には、ステップs8に進む。
次いでステップs8に達すると、SCR触媒温度Tgが所定温度(例えば、350℃)を上回るか否か判断し、上回る(No)とステップs9に進み、未満(Yes)ではステップs10に達する。
【0026】
所定温度(350℃)未満でステップs10に達すると、ここでは、この状態に入った時間をカウンタCT1により積算する。ステップs11で積算時間CT1(又は継続時間)が所定時間ctα以上であるか否か判断し、否の場合には、ステップs9、ステップs12の処理を行う。
ステップs11において、積算時間CT1が所定時間ctα以上であると判断されると、ステップs13では吸着量減少促進制御を実行中であることを示すフラグF=を1に設定し、更に、ステップs14において今回の添加量出力Dureaをゼロに決定する。
【0027】
ステップs15に達すると、添加量出力Dureaをゼロとした時間をカウンタCT2により積算する。ステップs16に達すると、ユリア水添加量=0を維持する積算時間が所定時間ctβ未満の場合は、ステップs12に移り、ユリア水添加を停止するように、ユリア水供給装置29のユリア水供給部37を制御する。また、積算時間CT2が所定時間(ctβ)以上の場合は、ステップs17に移りSCR触媒のアンモニア吸着量をゼロとするための動作が終了したと見做して、カウンタ値CT2のクリアを実施し、更に、ステップs18において、実行フラグFを0に設定する。
【0028】
またステップs8で所定温度(350℃)を上回っている場合に、ステップs9に達するとNH添加量BNH3相当の今回のユリア水添加量出力Dureaを決定し、ステップs12においてユリア水添加量出力Dureaでユリア水供給装置29のユリア水供給部37を駆動し、今回の制御サイクルを終了する。これによりユリア水供給部37はユリア水添加量出力Dureaに基きユリア水タンクからユリア水パイプ34を経由し、添加量Dureaのユリア水を噴射管31の圧縮エアに載せ添加ノズル18より排気路24に供給する。これにより、SCR触媒17は目標吸着量ANH3を保持し、NOxを効率よく無害化処理することとなる。
【0029】
このように、SCR触媒温度Tgが所定温度以下の状態が所定時間ctα以上となると、ユリア水添加量出力Durea=0でユリア水供給を停止することで、SCR触媒17に吸着されているNHは時間経過と共にNOx浄化に消費されSCR触媒17の吸着量ANH3がゼロに強制的に戻される。このような処理の結果、この後における、アンモニアの吸着量ANH3が確実にゼロよりスタートすることとなり、この値のリセットが確実に成され、以後の演算に誤差が引き継がれることを排除できる。即ち、この後の吸着量ANH3の演算に誤差が含まれないので、アンモニアスリップやNOx浄化性能の低下が継続して発生するという事故に陥ることを未然に防止することができる。
【0030】
上述のところにおいて、所定温度(350℃)以下の積算時間CT1が所定時間ctα以上のとき、添加量出力Dureaをゼロに決定し、SCR触媒17の吸着量ANH3をゼロに強制的に戻して、以後の吸着量ANH3に誤差が含まれないようにしていた。これに代えて、エンジンECU10の燃料制御によって排気ガス温度を上昇させても良い。
【0031】
この場合、ECU10の燃料噴射量設定部10a、燃料噴射時期設定部10bにおいて、排気ガス温度を上昇すべく燃料噴射時期を遅角設定すると共に、出力低下を回避するように、基本噴射量INJbに各種補正量INJαを加算して最新の噴射量Ufを決定した後に排気昇温指令の受信時には噴射量INJの算出に当たり、噴射量増量補正分(ΔINJ)を更に加算するように制御する。即ち、噴射量Uf(=INJb+INJα+ΔINJ)を演算し、その噴射量INJで燃料噴射開始時期を遅角して駆動し、燃料噴射を実行することとなる。
【0032】
この噴射時期遅角及び燃料増量は図3の触媒特性マップからアンモニア吸着量が所定値となるようなSCR触媒17の温度となるまで継続する。この間、排気ガスは高温化し、SCR触媒17の触媒温度も除々に上昇され、SCR触媒17の吸着量ANH3を強制的に減少することができる。このような処理をした場合も、アンモニアの吸着量ANH3の演算をリセットすることができ、アンモニアの吸着量の演算誤差を排除できる。
【0033】
更に、上述の噴射時期遅角及び燃料増量に代えて、主燃料の噴射の後の膨張行程において、追加燃料が燃焼室内で燃焼しうる時期(出力アップを生じない時期)に追加噴射しても良い。この場合も。排気ガスを高温化でき、SCR触媒17の吸着量ANH3を強制的に所定値まで減少することができる。このような追加燃料噴射の処理をした場合もアンモニアの吸着量ANH3の演算をリセットすることができ、演算誤差を排除できる。
【0034】
【発明の効果】
以上のように、本発明は、SCR触媒温度が所定温度以下の状態にある時間が所定時間以上になりアンモニアの吸着量に誤差が生じる比率が増加する運転域にあると、SCR触媒に吸着されているアンモニアを減少させるよう制御する。このように、アンモニアの吸着量の演算をリセットして、演算誤差を排除し、この後の吸着量の演算に誤差が含まれないようにし、アンモニアの添加量を求めるにあたり、アンモニアスリップやNOx浄化性能の低下が継続して発生することがないよう未然に防止することができる。
更に、アンモニア又はユリア水の供給を停止するようにした場合、NOx触媒のアンモニア吸着量を一旦ゼロに戻し、更に、アンモニアの吸着量の演算結果をリセットするので、以後のアンモニアの吸着量の演算誤差を排除して、アンモニアスリップやNOx浄化性能の低下を容易に防止できる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのNOx浄化装置と同装置にCAN通信装置を介し接続されるエンジンECUと、これらを装着するエンジンの概略構成図である。
【図2】図1の排気系ECUが用いる排気ガス温度に応じたNOx浄化率マップの特性説明図である。
【図3】図1の排気系ECUが用いる排気ガス−アンモニア吸着量マップの特性説明図である。
【図4】図1の排気系ECUが用いるNOx浄化処理ルーチンの上側フローチャートである。
【図5】図1の排気系ECUが用いるNOx浄化処理ルーチンの下側フローチャートである。
【図6】SCR触媒のアンモニア吸着量−NOx浄化率の特性線図である。
【図7】SCR触媒の触媒温度−アンモニア吸着量の特性線図である。
【符号の説明】
1 エンジン
2 排気系
4 排気系ECU
10 エンジンECU
17 SCR触媒(NOx触媒)
22 触媒温度センサ(触媒温度検出手段)
29 ユリア水供給装置(還元剤供給手段)
Tg 触媒温度
tgα 所定温度
A0 添加制御手段
A1 吸着量減少促進手段
A2 目標吸着量設定手段
Durea アンモニアの添加量
NH3 アンモニアの吸着量
ηb 目標NOx浄化率
NH3 消費量
NH3 NH添加量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NOx purification device that purifies NOx in exhaust gas of an internal combustion engine, and more particularly to a NOx purification device for an internal combustion engine in which an exhaust gas reducing agent supply device is disposed upstream of a reduction catalyst provided in an exhaust system.
[0002]
[Prior art]
NOx in exhaust gas discharged from an internal combustion engine is purified by a NOx purification device. In particular, a NOx purification device used in a diesel engine places a selective reduction type SCR catalyst in its exhaust system, and a urea is disposed upstream of it. Water is supplied as a reducing agent so that NOx can be purified under an oxygen-excess atmosphere. The NOx purification rate in this NOx purification device can be rendered harmless by reducing NOx with high efficiency in a region where the temperature of the urea SCR catalyst exceeds about 350 ° C.
Here, urea water is hydrolyzed and thermally decomposed as shown in formula (1) to release NH 3 .
[0003]
(NH2) 2CO + H 2 O2NH 3 + CO 2 ···· (1)
Further, it is known that the denitration reaction between NH 3 and nitrogen oxide on the SCR catalyst is performed by the following reactions (2) and (3), respectively.
[0004]
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 0 (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 0 (3)
Such urea water (or ammonia) addition type SCR catalyst has a higher NOx purification rate as the amount of ammonia adsorbed on the catalyst increases, for example, as shown by a solid line in FIG. In order to obtain a purification rate, it is preferable to control the ammonia adsorption amount high. On the other hand, there is a limit to the ammonia adsorption amount that can be adsorbed to the SCR catalyst. For example, as shown in FIG. 7, the limit value (solid line n) depends on the catalyst temperature. Here, when ammonia as the NOx reducing agent is excessively added, excess ammonia exceeding the adsorption amount limit value (solid line n) is discharged, and ammonia slip occurs. In consideration of the environment, in order to prevent ammonia slip, it is necessary to control the ammonia adsorption amount to be within the limit (the region between the solid line n and the broken line). In particular, the catalyst temperature changes rapidly. The necessity for such a vehicle catalyst is high.
[0005]
In such a NOx purification device, the ammonia adsorption amount (urea water addition amount) in the SCR catalyst is controlled to be within an appropriate range. In this case, the ammonia consumption amount at the catalyst can be calculated from the NOx emission amount from the engine, the temperature of the SCR catalyst and the NOx purification rate from the map, and the ammonia adsorption amount can be calculated from this and the amount of added reducing agent.
In addition, in a catalyst that converts nitrogen oxides in exhaust gas, the amount of reducing agent added to the catalyst is increased when the harmful substance exceeds the allowable amount, and the amount of reducing agent is reduced if the amount is below the reducing agent. No. 11-512799 gazette discloses a method for metering the amount of supply.
[0006]
[Problems to be solved by the invention]
By the way, as described above, it is possible to calculate the ammonia consumption amount in the catalyst from the NOx emission amount from the engine and the NOx purification rate from the map, and it is possible to calculate the ammonia adsorption amount from the added reducing agent amount. Since the calculation is open loop control, an error is likely to occur.
In particular, when the catalyst temperature is equal to or lower than a predetermined value, for example, as shown in FIG. 2 to be described later, the slope (change amount) of the NOx purification rate with respect to the temperature change is large. easy.
[0007]
For this reason, when the engine operating state changes and the exhaust gas temperature increases or decreases, the catalyst temperature changes and the NOx purification performance also changes.
Further, as shown in FIG. 3 described later, since the ammonia adsorption amount limit is high when the catalyst temperature is equal to or lower than a predetermined value, a larger adsorption amount calculation error may be allowed.
[0008]
For this reason, if the operating time in a state where the temperature of the SCR catalyst having a high ammonia adsorption amount limit is lower than a predetermined temperature (for example, 350 ° C.) is longer than the predetermined time, the calculation error of ammonia consumption is integrated and the ammonia adsorption amount The calculation error becomes larger. If the calculation error of the ammonia adsorption amount becomes large, the ammonia adsorption amount may exceed the limit value of the adsorption amount, and ammonia slip may occur, or the ammonia adsorption amount may decrease, resulting in failure to obtain the initial NOx purification performance. was there.
[0009]
The present invention is based on the above-described problems, and NOx purification of an internal combustion engine that can prevent ammonia slip and NOx purification performance from being reduced even when the operation of the SCR catalyst at a temperature equal to or lower than a predetermined temperature exceeds a predetermined time. An object is to provide an apparatus.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas by adsorbing ammonia, a reducing agent supply means for supplying ammonia or urea water to the NOx catalyst, and the NOx The catalyst temperature detecting means for detecting or estimating the catalyst temperature of the catalyst or a parameter correlated with the catalyst temperature, and the time during which the NOx catalyst temperature is lower than the predetermined temperature is determined in accordance with the detection or estimation result of the catalyst temperature detecting means. Adsorption amount decrease promoting means is provided for controlling to decrease the adsorption amount of ammonia adsorbed on the NOx catalyst when the time is longer than the time.
Here, when the operation in which the time during which the NOx catalyst temperature is equal to or lower than the predetermined temperature becomes longer than the predetermined time and the ratio of the error in the amount of ammonia adsorbed or consumed increases continues, the ammonia adsorbed on the NOx catalyst is removed. Control to decrease. In this way, the ammonia adsorption amount is returned to the zero side, and the calculation result of the ammonia adsorption amount is reset to eliminate the calculation error, and the subsequent calculation of the adsorption amount and consumption does not include the error. Thus, in determining the amount of ammonia added, it is possible to prevent the ammonia slip and the NOx purification performance from being continuously reduced.
[0011]
Preferably, the adsorption amount decrease promoting means may control to reduce the amount of urea water added by the reducing agent supply means. In this case, the reduction process by the urea water supply device can be easily controlled, and the subsequent calculation error of the adsorption amount of ammonia can be surely eliminated, so that ammonia slip and NOx purification performance can be easily prevented.
Preferably, the adsorption amount decrease promoting means may be controlled to increase the temperature of the NOx catalyst. In this case, the exhaust gas temperature is increased by increasing the amount of fuel to the engine, retarding the fuel injection timing, etc., thereby increasing the temperature of the NOx catalyst, thereby forcibly reducing the ammonia adsorption amount. Thus, it is possible to prevent errors from being included in the calculation of the subsequent adsorption amount so that ammonia slip and NOx purification performance are not continuously reduced.
[0012]
According to a second aspect of the present invention, in the NOx purification device for an internal combustion engine according to the first aspect, the adsorption amount decrease promoting means stops the supply of ammonia or urea water, and the adsorption amount of ammonia adsorbed on the NOx catalyst It is characterized by decreasing.
In this case, the ammonia adsorption amount of the NOx catalyst is once reset to zero, and further, the calculation result of the ammonia adsorption amount is reset, so that the subsequent calculation error of the ammonia adsorption amount is eliminated, and the ammonia slip and NOx purification performance is improved. Decline can be easily prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an NOx purification device for an internal combustion engine as one embodiment of the present invention will be described. The internal combustion engine NOx purification device (hereinafter simply referred to as NOx purification device) is mounted on an exhaust system 2 of a diesel engine (hereinafter simply referred to as engine) 1 mounted on a vehicle (not shown).
The engine 1 includes an engine control device 3 (in the figure, an engine ECU 301 that constitutes a main control unit) 3, and a NOx purification device is provided in the exhaust system of the engine 1. An engine ECU 10 of the engine control device and an exhaust gas control device (hereinafter simply referred to as an exhaust system ECU 4) constituting a control unit of the NOx purification device are a CAN (Controller Arreer Network) mutual communication system (hereinafter referred to as a control system communication line). 5) (hereinafter simply referred to as a CAN communication line). The CAN communication device enables mutual communication between the engine ECU 10 and the exhaust system ECU 4, and in particular has an advantage that a connection line used for mutual data communication is relatively simplified.
[0014]
In FIG. 1, an engine 1 equipped with a NOx purification device includes an intake system that guides intake air to a combustion chamber (not shown), and a fuel control system that adjusts fuel injection amount, injection pressure, injection timing, and the like.
The engine ECU 10 includes a fuel injection amount setting unit 10a and a fuel injection timing setting unit 10b that set a fuel amount and an injection timing so that a required output can be obtained.
[0015]
Various sensors such as an accelerator pedal depression amount sensor 14 for detecting an accelerator pedal depression amount (accelerator depression amount) Acc and a crank angle sensor 15 for calculating an engine speed Ne are connected to the input side of the engine ECU 10 and output. On the side, the fuel that drives the on-off valve 8 that opens and closes the fuel passage 6a that connects between the common rail 6 that stores high-pressure fuel supplied by a high-pressure fuel pump (not shown) and the fuel injection nozzle 7 provided for each cylinder. Various devices such as an injection driver 9 and a metering unit for controlling the fuel supply amount of a high pressure pump (not shown) are connected.
[0016]
Thus, for example, the required fuel injection calculated according to the engine speed Ne calculated based on the crank signal θc detected by the crank angle sensor 15 and the accelerator pedal depression amount Acc detected by the accelerator opening sensor 14. Based on Q, the opening timing and opening period of the on-off valve are variably adjusted by the fuel injection driver 9, and the metering section of the high-pressure fuel pump is feedback-controlled according to the fuel pressure in the common rail 6.
[0017]
The NOx purification device provided in the exhaust system of the engine 1 includes an SCR catalyst 17 that is a NOx catalyst mounted in the middle of an exhaust pipe 16, an urea water addition nozzle 18 disposed upstream thereof, and an upstream side of the addition nozzle 18. The NOx sensor 19 for outputting the NOx concentration Snoxf, the catalyst temperature sensor 22 for outputting the temperature Tg of the SCR catalyst 17, and the exhaust system ECU 4 constituting the control unit of the NOx purification device are provided. Here, the catalyst temperature sensor 22 constitutes a catalyst temperature detecting means for detecting the catalyst temperature of the NOx catalyst. Alternatively, the catalyst temperature may be estimated from exhaust temperatures before and after the catalyst. Further, an estimated value of the catalyst temperature may be calculated in consideration of parameters correlated with the catalyst temperature, for example, the operating state of the engine (fuel amount, engine speed), the operating time for each predetermined operating range, and the outside air temperature.
The exhaust gas flowing out from the engine 1 passes through the exhaust manifold 25 and the exhaust pipe 16 provided with the NOx catalytic converter 27, and is discharged to the atmosphere through a muffler (not shown).
[0018]
The NOx catalytic converter 27 includes a ceramic catalyst carrier having a honeycomb structure (not shown) in a casing, and a catalytic metal (for example, vanadium) for functioning as the SCR catalyst 17 is supported on the carrier. Alternatively, the NOx catalytic converter 27 may have a honeycomb structure formed of a catalyst metal (for example, vanadium) for functioning as the SCR catalyst 17 and may be casingd. The SCR catalyst 17 can selectively reduce NOx in the exhaust gas with ammonia (NH 3 ). Here, the SCR catalyst 17 can promote the reaction between NH 3 and nitrogen oxides by performing the reactions of the above-described formulas (2) and (3) in the ammonia adsorption state described later. The catalyst temperature-target purification rate characteristic of the SCR catalyst 17 is shown in FIG. 2, and the catalyst temperature-ammonia adsorption amount characteristic is shown in FIG.
[0019]
A urea water supply device 29 is attached as a reducing agent supply means for supplying urea water into the exhaust passage 24 upstream of the SCR catalyst 17. The urea water supply device 29 includes an addition nozzle 18 that sprays urea water toward the upstream opening side of the NOx catalytic converter 27, an injection pipe 31 connected to the addition nozzle 18, and an air tank 32 at the upstream end of the injection pipe 31. And a compressed air control valve 33 provided in the vicinity of the air tank, a urea water supply part 37 for supplying urea water at a position downstream of the compressed air control valve 33, and an upstream of the urea water supply part 37, for storing urea water. A urea water tank 35 and an exhaust system ECU 4 constituting these control means.
[0020]
The exhaust system ECU 4 has a large number of ports in its input / output circuit, can input detection signals from the NOx sensor 19 and the catalyst temperature sensor 22, etc., and sends control signals to the compressed air control valve 33 and the urea supply unit 37. In addition, data can be exchanged with the engine ECU 10 via the CAN communication line 5.
The exhaust system ECU 4 includes an input / output interface 401, a storage unit 402, a non-volatile memory 403 for battery backup, and a central processing unit 404, and particularly has a NOx purification processing function.
[0021]
The exhaust system ECU 4 of FIG. 1 basically includes addition control means A0 that drives the urea water supply device 29. In particular, as the adsorption amount decrease promoting means A1, when the time SCR1 in which the SCR catalyst temperature Tg is equal to or lower than the predetermined temperature tgα is equal to or longer than the predetermined time ctα according to the detection or estimation result of the catalyst temperature detecting means (temperature sensor 22) The ammonia adsorption amount A NH3 adsorbed on the SCR catalyst 17 is decreased, that is, the addition amount Durea is decreased, for example, controlled to zero. Here, the predetermined temperature tgα is set to 350 ° C., for example, but this value varies depending on the catalyst characteristics. An appropriate value is selected for the predetermined time ctα so as not to cause a problem due to a calculation error of the ammonia adsorption amount.
[0022]
Next, the addition control processing of the engine ECU 10 and the NOx purification device of FIG. 1 will be described using the NOx purification processing routines of FIGS. 4 and 5 and the catalyst characteristic maps of FIGS.
Here, when the engine 1 of the vehicle (not shown) equipped with the NOx purification device is driven, the engine ECU 10 determines whether or not related devices and sensors appropriately executed in a plurality of control systems, for example, the fuel control system are normal. Check whether the self-check result is normal, and if normal (OK), send a control signal to the fuel injection driver 9, the metering unit, etc. according to each input value of the related sensor described above, and execute the control Then, the sensor output obtained at that time is also transmitted to the exhaust system ECU 4.
[0023]
On the other hand, the exhaust system ECU 4 repeats the NOx purification process control of the NOx purification process routine of FIGS. 4 and 5 for each predetermined control cycle simultaneously with the turning on of the engine key. Here, key-on is confirmed in step s1, and when step s2 is reached, the SCR catalyst temperature Tg, the NOx emission amount Unox, the fuel amount Qf from the engine ECU 10, the engine speed Ne, and other data are taken in.
[0024]
When step s3 is reached, the NOx purification rate ηb is calculated based on the SCR catalyst temperature Tg, and step s4 is reached.
In Step s4, the target adsorption amount A NH3 (n) is calculated from the SCR catalyst temperature Tg, and Step s5 is reached.
In step s5 derives the consumption C NH3 ammonia based on NOx emissions Unox and NOx purification rate? B.
[0025]
When step s6 is reached, the target adsorption amount A NH3 (n) and the consumption amount C NH3 of ammonia are taken in, and using this value and the previous adsorption amount A NH3 (n-1), the following equation (4) , NH 3 addition amount B NH3 is calculated.
B NH3 = A NH3 (n) -A NH3 (n-1) + C NH3 (4)
When reaching step s7, it is determined whether or not the intake air amount decrease promoting control is being executed, that is, if the execution flag F R = 1, the process proceeds to step s14, and if F R = 1, the process proceeds to step s8.
Next, when reaching step s8, it is determined whether or not the SCR catalyst temperature Tg exceeds a predetermined temperature (for example, 350 ° C.), and if it exceeds (No), the process proceeds to step s9, and if it is less (Yes), step s10 is reached.
[0026]
When step s10 is reached at a temperature lower than the predetermined temperature (350 ° C.), the time for entering this state is integrated by the counter CT1 here. In step s11, it is determined whether or not the accumulated time CT1 (or duration) is equal to or longer than the predetermined time ctα. If not, the processing in steps s9 and s12 is performed.
If it is determined in step s11 that the accumulated time CT1 is equal to or longer than the predetermined time ctα, in step s13, a flag F R = indicating that the adsorption amount decrease promotion control is being executed is set to 1, and further, step s14. At this time, the current addition amount output Durea is determined to be zero.
[0027]
When step s15 is reached, the time when the addition amount output Durea is zero is accumulated by the counter CT2. When reaching the step s16, if the accumulated time for maintaining the urea water addition amount = 0 is less than the predetermined time ctβ, the process proceeds to the step s12, and the urea water supply unit of the urea water supply device 29 is configured to stop the urea water addition. 37 is controlled. On the other hand, if the accumulated time CT2 is equal to or longer than the predetermined time (ctβ), the process proceeds to step s17, assuming that the operation for reducing the ammonia adsorption amount of the SCR catalyst to zero is completed, and the counter value CT2 is cleared. , further, in step s18, the execution flag F R is set to 0.
[0028]
Further, when the temperature exceeds the predetermined temperature (350 ° C.) in step s8, when reaching step s9, the current urea water addition amount output Durea corresponding to the NH 3 addition amount B NH3 is determined, and in step s12 the urea water addition amount output The urea water supply unit 37 of the urea water supply device 29 is driven in Durea, and the current control cycle is completed. As a result, the urea water supply unit 37 places urea water of the addition amount Durea on the compressed air of the injection pipe 31 from the urea water tank via the urea water pipe 34 based on the urea water addition amount output Durea, and the exhaust passage 24 from the addition nozzle 18. To supply. As a result, the SCR catalyst 17 maintains the target adsorption amount ANH3 and efficiently detoxifies NOx.
[0029]
As described above, when the state where the SCR catalyst temperature Tg is equal to or lower than the predetermined temperature is equal to or higher than the predetermined time ctα, the urea water supply is stopped at the urea water addition amount output Durea = 0, so that NH 3 adsorbed on the SCR catalyst 17 is stopped. Is consumed for NOx purification over time, and the adsorption amount A NH3 of the SCR catalyst 17 is forcibly returned to zero. As a result of such processing, the subsequent ammonia adsorption amount A NH3 surely starts from zero, and this value is reliably reset, and it is possible to eliminate the fact that errors are inherited in subsequent calculations. That is, since an error is not included in the subsequent calculation of the adsorption amount A NH3 , it is possible to prevent an accident that ammonia slip and a decrease in NOx purification performance occur continuously.
[0030]
In the above description, when the accumulated time CT1 of the predetermined temperature (350 ° C.) or less is equal to or longer than the predetermined time ctα, the addition amount output Durea is determined to be zero, and the adsorption amount A NH3 of the SCR catalyst 17 is forcibly returned to zero. Thus, the subsequent adsorption amount A NH3 was designed not to include an error. Instead of this, the exhaust gas temperature may be raised by fuel control of the engine ECU 10.
[0031]
In this case, in the fuel injection amount setting unit 10a and the fuel injection timing setting unit 10b of the ECU 10, the fuel injection timing is set to be retarded to increase the exhaust gas temperature, and the basic injection amount INJb is set so as to avoid a decrease in output. After the various injection amounts INJα are added and the latest injection amount Uf is determined, when the exhaust gas temperature increase command is received, the injection amount INJ is calculated, and the injection amount increase correction amount (ΔINJ) is further added. That is, the injection amount Uf (= INJb + INJα + ΔINJ) is calculated, the fuel injection start timing is retarded by the injection amount INJ, and the fuel is injected.
[0032]
The injection timing retardation and the fuel increase amount are continued until the temperature of the SCR catalyst 17 reaches a temperature at which the ammonia adsorption amount becomes a predetermined value from the catalyst characteristic map of FIG. During this time, the exhaust gas is heated to a high temperature, the catalyst temperature of the SCR catalyst 17 is gradually increased, and the adsorption amount A NH3 of the SCR catalyst 17 can be forcibly reduced. Even when such a process is performed, the calculation of the ammonia adsorption amount A NH3 can be reset, and the calculation error of the ammonia adsorption amount can be eliminated.
[0033]
Further, instead of the above-mentioned retarded injection timing and fuel increase, additional injection may be performed at a time when additional fuel can be combusted in the combustion chamber (a time when no output increase occurs) in the expansion stroke after the main fuel injection. good. Again. The exhaust gas can be heated to a high temperature, and the adsorption amount A NH3 of the SCR catalyst 17 can be forcibly reduced to a predetermined value. Even when such additional fuel injection processing is performed, the calculation of the ammonia adsorption amount A NH3 can be reset, and the calculation error can be eliminated.
[0034]
【The invention's effect】
As described above, the present invention allows the SCR catalyst to be adsorbed to the SCR catalyst when the time during which the SCR catalyst temperature is equal to or lower than the predetermined temperature is in the operating range in which the ratio of the error in the ammonia adsorption amount increases for a predetermined time or longer. Control to reduce ammonia. In this way, the calculation of the ammonia adsorption amount is reset to eliminate the calculation error so that the subsequent calculation of the adsorption amount does not include an error. It is possible to prevent the deterioration of performance from occurring continuously.
Further, when the supply of ammonia or urea water is stopped, the ammonia adsorption amount of the NOx catalyst is once reset to zero, and the calculation result of the ammonia adsorption amount is reset, so that the subsequent calculation of the ammonia adsorption amount is performed. By eliminating the error, it is possible to easily prevent ammonia slip and NOx purification performance from decreasing.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a NOx purification device as an embodiment of the present invention, an engine ECU connected to the same device via a CAN communication device, and an engine on which these are mounted.
FIG. 2 is a characteristic explanatory diagram of a NOx purification rate map according to the exhaust gas temperature used by the exhaust system ECU of FIG. 1;
3 is a characteristic explanatory diagram of an exhaust gas-ammonia adsorption amount map used by the exhaust system ECU of FIG. 1. FIG.
4 is an upper flowchart of a NOx purification processing routine used by the exhaust system ECU of FIG. 1. FIG.
FIG. 5 is a lower flowchart of a NOx purification processing routine used by the exhaust system ECU of FIG. 1;
FIG. 6 is a characteristic diagram of ammonia adsorption amount-NOx purification rate of an SCR catalyst.
FIG. 7 is a characteristic diagram of catalyst temperature-ammonia adsorption amount of an SCR catalyst.
[Explanation of symbols]
1 Engine 2 Exhaust system 4 Exhaust system ECU
10 Engine ECU
17 SCR catalyst (NOx catalyst)
22 Catalyst temperature sensor (catalyst temperature detection means)
29 Urea water supply device (reducing agent supply means)
Tg catalyst temperature tgα predetermined temperature A0 addition control means A1 adsorption ηb target NOx purification rate C NH3 consumption B NH3 NH 3 amount of amount A NH3 ammonia adsorption amount decreased promoting means A2 target adsorption amount setting means Durea ammonia

Claims (2)

内燃機関の排気系に設けられアンモニアを吸着して排気ガス中のNOxを選択還元するNOx触媒、
前記NOx触媒にアンモニア又はユリア水を供給する還元剤供給手段、
前記NOx触媒の触媒温度又は触媒温度に相関するパラメータを検出又は推定する触媒温度検出手段、
前記触媒温度検出手段の検出又は推定結果に応じて、前記NOx触媒温度が所定温度以下の状態にある時間が所定時間以上のとき、前記NOx触媒に吸着されたアンモニアの吸着量を減少するよう制御する吸着量減少促進手段、
を備えたことを特徴とする内燃機関のNOx浄化装置。
A NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas by adsorbing ammonia;
Reducing agent supply means for supplying ammonia or urea water to the NOx catalyst;
A catalyst temperature detecting means for detecting or estimating a catalyst temperature of the NOx catalyst or a parameter correlated with the catalyst temperature;
Control to reduce the adsorption amount of ammonia adsorbed on the NOx catalyst when the time during which the NOx catalyst temperature is below a predetermined temperature is a predetermined time or longer according to the detection or estimation result of the catalyst temperature detecting means. Means for facilitating the reduction of adsorption
A NOx purification device for an internal combustion engine, comprising:
前記吸着量減少促進手段が、アンモニア又はユリア水の供給を停止して、前記NOx触媒に吸着されたアンモニアの吸着量を減少させることを特徴とする請求項1記載の内燃機関のNOx浄化装置。  2. The NOx purification device for an internal combustion engine according to claim 1, wherein the adsorption amount decrease promoting means stops the supply of ammonia or urea water to reduce the adsorption amount of ammonia adsorbed on the NOx catalyst.
JP2002088495A 2002-03-27 2002-03-27 NOx purification device for internal combustion engine Expired - Fee Related JP3956738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088495A JP3956738B2 (en) 2002-03-27 2002-03-27 NOx purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088495A JP3956738B2 (en) 2002-03-27 2002-03-27 NOx purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003286828A JP2003286828A (en) 2003-10-10
JP3956738B2 true JP3956738B2 (en) 2007-08-08

Family

ID=29234345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088495A Expired - Fee Related JP3956738B2 (en) 2002-03-27 2002-03-27 NOx purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3956738B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853549B1 (en) 2015-08-06 2018-04-30 도요타 지도샤(주) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730216B2 (en) 2005-09-26 2011-07-20 株式会社デンソー Reducing agent reforming apparatus and exhaust gas purification apparatus using the same
JP4720773B2 (en) * 2007-04-06 2011-07-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4710863B2 (en) * 2007-04-06 2011-06-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4215808B2 (en) 2007-05-11 2009-01-28 ボッシュ株式会社 Control device and control method for exhaust gas purification device, and exhaust gas purification device for internal combustion engine
JP4459987B2 (en) 2007-06-27 2010-04-28 株式会社デンソー Exhaust purification agent addition amount control device and exhaust purification system
JP4388103B2 (en) 2007-06-27 2009-12-24 株式会社デンソー Exhaust purification agent addition amount control device and exhaust purification system
US7708966B2 (en) * 2008-02-04 2010-05-04 Ceramatec, Inc. Systems and methods for on-site selective catalytic reduction
JP4598843B2 (en) * 2008-06-03 2010-12-15 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine
JP4729631B2 (en) 2009-03-11 2011-07-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4874364B2 (en) * 2009-04-14 2012-02-15 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine
JP5754000B2 (en) * 2009-09-25 2015-07-22 国立研究開発法人海上技術安全研究所 Denitration catalyst deterioration prediction method, deterioration countermeasure method, deterioration countermeasure system, and exhaust gas treatment system design method
EP2865856A4 (en) 2012-06-20 2015-07-22 Toyota Motor Co Ltd Exhaust purification device for internal combustion engine
JP6087580B2 (en) * 2012-10-30 2017-03-01 三菱重工業株式会社 Exhaust purification device for internal combustion engine and exhaust purification method thereof
JP6108847B2 (en) * 2013-01-28 2017-04-05 ヤンマー株式会社 Power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853549B1 (en) 2015-08-06 2018-04-30 도요타 지도샤(주) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine

Also Published As

Publication number Publication date
JP2003286828A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP3951774B2 (en) NOx purification device for internal combustion engine
CN102037230B (en) NOx sensor abnormality diagnosing apparatus and abnormality diagnosing method
JP4438828B2 (en) Exhaust gas purification device for internal combustion engine
JP3979153B2 (en) NOx purification device for internal combustion engine
US7950224B2 (en) Method for controlling exhaust gas purification system
EP2918805B1 (en) Exhaust gas purification device for internal-combustion engine
JP3956738B2 (en) NOx purification device for internal combustion engine
US20100107610A1 (en) Exhaust System for an Internal Combustion Engine
JP4114389B2 (en) Exhaust purification device
US20090104085A1 (en) Reducing agent spray control system ensuring operation efficiency
JP4114425B2 (en) Engine control device
JP2006125247A (en) Exhaust emission control method and exhaust emission control device for engine
US8540953B2 (en) Exhaust gas control apparatus and reductant dispensing method for internal combustion engine
US8136348B2 (en) Exhaust purification apparatus for engine
JP3956728B2 (en) NOx purification device for internal combustion engine
US9051865B2 (en) Method for controlling a system for the treatment of exhaust gases from an internal combustion engine
JP4075440B2 (en) NOx purification device for internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
CN104583550A (en) Exhaust purification device and exhaust purification method for internal combustion engine
US9644513B2 (en) Method of regenerating lean NOx trap of exhaust purification system provided with lean NOx trap and selective catalytic reduction catalyst and exhaust purification system
US10954838B2 (en) System and methods of integrated control of combustion and SCR systems
WO2006006441A1 (en) System and method for purification of exhaust gas
CN110630358B (en) Passive nitrogen oxide storage catalyst management
JP2008144711A (en) ABNORMALITY DIAGNOSIS DEVICE AND ABNORMALITY DIAGNOSIS METHOD OF NOx CATALYST
JP3945291B2 (en) NOx purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Ref document number: 3956738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees