JP3956728B2 - NOx purification device for internal combustion engine - Google Patents

NOx purification device for internal combustion engine Download PDF

Info

Publication number
JP3956728B2
JP3956728B2 JP2002065301A JP2002065301A JP3956728B2 JP 3956728 B2 JP3956728 B2 JP 3956728B2 JP 2002065301 A JP2002065301 A JP 2002065301A JP 2002065301 A JP2002065301 A JP 2002065301A JP 3956728 B2 JP3956728 B2 JP 3956728B2
Authority
JP
Japan
Prior art keywords
supply
urea water
air
supply passage
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002065301A
Other languages
Japanese (ja)
Other versions
JP2003269145A (en
Inventor
嘉則 ▼高▼橋
好央 武田
聖 川谷
智 平沼
健二 河合
剛 橋詰
礼子 百目木
真一 斎藤
律子 篠▼崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2002065301A priority Critical patent/JP3956728B2/en
Publication of JP2003269145A publication Critical patent/JP2003269145A/en
Application granted granted Critical
Publication of JP3956728B2 publication Critical patent/JP3956728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1824Properties of the air to be mixed with added substances, e.g. air pressure or air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内撚機関の排気ガス中のNOxを浄化するNOx浄化装置、特に、排気系に設けた還元触媒の上流側に排気ガス還元剤を噴霧する装置を配した内燃機関のNOx浄化装置に関する。
【0002】
【従来の技術】
内撚機関が排出する排気ガス中のNOxはNOx浄化装置により浄化されているが、特に、ディーゼルエンジンで用いられるNOx浄化装置はその排気系にユリアSCR触媒(NOx触媒)を置き、その上流側に還元剤供給手段を配備したものが知られている。この還元剤供給手段は排気系に尿素水(ユリア水)を供給し、そこに含まれた尿素が下記の式(1)のように加水分解及び熱分解して、NH3を放出する。
【0003】
(NH)2CO+HO→2NH+CO・・・・(1)
加水分解して発生したアンモニア(NH)はSCR触媒(NOx触媒)に還元剤として供給される。これによりSCR触媒が酸素過剰雰囲気下においてNOxを浄化できるようにしている。
ところで、上述のように、尿素水添加式のNOx浄化装置は還元剤として用いるアンモニアを直接排気路に供給するのに代え、取り扱いの容易な尿素水を用い、その尿素水を霧化して搬送用のエア流に乗せて排気路に供給、即ち、エアアシスト方式を用いて排気路に供給し、そこで加水分解されたアンモニアをSCR触媒に供給している。
【0004】
【発明が解決しようとする課題】
ところで、エアアシスト方式を採るNOx浄化装置では、供給通路を流動する搬送用のエア流に尿素水を乗せて供給通路の下流端のインジェクタより排気路に尿素水を供給する。この供給通路の上流部には搬送エアの供給手段が連結され、このエア供給手段とインジェクタとの間に還元剤供給手段から延びる尿素水添加管の添加口が開口している。ここで、尿素水添加管の添加口より供給通路に吹出し添加された霧状の尿素水は供給通路の内壁面に付着し易く、これが搬送用のエア流の影響で水分を蒸発した場合に固形物となりやすく、この固形物発生自体を避けることはできない。
特に、エアアシスト方式を採るNOx浄化装置が車載された場合、搬送用のエアが流れる供給通路が湾曲されたり、流路断面積が変化することが多く、これら部位や、尿素水添加管の添加口やインジェクタの近傍には、エア流線が乱れる部分や渦巻き部分(乱流)が発生し易く、このような部位に尿素水が付着し易くなる。
【0005】
この尿素水付着状態が続くと、その都度水分が蒸発して固化量が増加し、その部位のエア流路断面積を狭めることとなり、場合によっては流路を閉鎖し、いわゆる尿素プラギング現象が発生し、これにより、尿素水添加式の還元剤供給手段が適正作動しなくなり、NOx浄化機能が停止してしまうという問題がある。
【0006】
しかも、このようなNOx浄化装置の制御手段が、予め、プラギング検出手段を備える場合、このプラギング検出手段は、例えば、搬送用エアが流れる供給通路のエア圧を検出し、これがプラギング発生で所定値を上回っていると、直ちにNOx浄化装置に故障があると判定を行うこととなる。このため、たとえ尿素プラギング現象発生部が容易に溶解可能で、通路を連通状態へ回復することが可能な時であっても、故障であると判定することとなり、NOx浄化装置の停止頻度がむやみに増加することになり易い。
本発明は、以上のような課題に基づき、尿素水添加を行うNOx浄化装置における尿素プラギング現象によるNOx浄化装置の停止頻度がむやみに増加することを防止できる内燃機関のNOx浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1の発明は、内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒、前記NOx触媒上流の前記排気系に連通する供給通路、前記供給通路を介して前記排気系に尿素水を供給する還元剤供給手段、前記供給通路における前記尿素水の供給部位より上流部位から前記排気系に加圧空気を供給する空気供給手段、前記尿素水の温度を検出する温度センサ、前記還元剤供給手段及び前記空気供給手段の作動を制御する制御手段、前記供給通路内の圧力又は流量を検出する空気供給状態検出手段、前記制御手段により前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定し、且つ、同判定作動を前記温度センサにより検出された尿素水温度が所定温度未満のときには禁止する判定手段、を備えたことを特徴とする。 排気系に加圧空気に乗せて尿素を供給する供給通路はその内壁部等で尿素水の水分が蒸発して固形化し、これが流路を目詰まり、即ち尿素プラギング現象が生じる可能性がある。ここでは目詰まり故障を圧力又は流量に応じて容易に判断し、対処できる。
【0008】
特に、尿素水が低温であると飽和濃度が低下し、このような低温尿素水での供給通路の目詰まり部の溶解排出を期待することができないので、このような場合は、無駄となるような判定手段による供給通路の目詰まり有無の判定を禁止し、高温化を待つ。
好ましくは、請求項1に記載の内燃機関のNOx浄化装置において、尿素水の温度を上昇させるヒータを備え、前記判定手段は、前記温度センサにより検出された尿素水温度が所定温度未満のとき、前記ヒータを作動させても良い。
【0009】
この場合、尿素水が所定温度未満のとき、ヒータを作動させて尿素水の温度を上昇させ、飽和濃度の高い尿素水で供給通路の目詰まり部の溶解排出を容易に行うことができる。
【0010】
好ましくは、請求項1に記載の内燃機関のNOx浄化装置において、尿素水の温度を上昇させるヒータを備え、判定手段は、前記温度センサにより検出された尿素水温度が所定温度未満のとき、前記ヒータを作動させ、前記ヒータの作動後に、前記温度センサにより検出された尿素水温度が所定温度以上と判定したとき、前記供給通路の目詰まり有無を判定するとしても良い。
この場合、判定手段が尿素水が所定温度未満のとき、ヒータを作動させて尿素水の温度を上昇させ、尿素水温度が所定温度以上になるとその尿素水で供給通路の目詰まり部の溶解排出を容易に確実に行うことができ、判定手段による供給通路の目詰まり有無の判定を的確に行うことができる。
【0011】
請求項2の発明は、請求項1に記載の内燃機関のNOx浄化装置において、前記判定手段により前記供給通路の流路回復処理を必要とする目詰まり故障と判定されたとき、前記還元剤供給手段による尿素水の供給を禁止することを特徴とする。
判定手段が加圧空気により供給通路の流路回復処理を必要とする目詰まり故障を判定すると尿素水の供給を禁止するので、NOx浄化装置の不必要な作動を停止できると共に、例えば、乗員に修理工場での整備を促すことによって、環境への配慮が速やかに成される。
【0012】
請求項3の発明は、内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒、前記NOx触媒上流の前記排気系に連通する供給通路を介して尿素水を供給する還元剤供給手段、前記還元剤供給手段から供給される尿素水の供給部位より上流の前記供給通路から加圧空気を供給する空気供給手段、前記還元剤供給手段及び前記空気供給手段の作動を制御する制御手段、前記供給通路内の圧力又は流量を検出する空気供給状態検出手段、前記制御手段により前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定する判定手段を備え、前記判定手段は、前記供給通路の目詰まり有と判定されたとき、前記制御手段により前記還元剤供給手段を作動させ尿素水を供給した後に、前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定することを特徴とする。
このように、判定手段は供給通路の目詰まりを判定すると、一旦、尿素水を供給することによって、供給通路内に固体化して目詰まりした尿素を溶解排出し、その上で、再度目詰まりを判定するので、溶解可能な目詰まりであれば異常の誤判定を防止してNOx浄化を図ることができ、一旦、尿素水を供給しても、供給通路内に固体化した尿素を溶解排出できないときには目詰まりと判定することで、的確に尿素目詰まりを診断することができる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態としての内燃機関のNOx浄化装置を図1を参照して説明する。ここでの内燃機関のNOx浄化装置(以後単にNOx浄化装置と記す)は、図示しない車両に搭載された多気筒ディーゼルエンジン(以後単にエンジンと記す)1の排気系2に装着される。
エンジン1はエンジン制御装置(図には主要制御部を成すエンジンECU10を記す)3を備え、エンジン1の排気系にNOx浄化装置が配備される。なお、エンジン制御装置3のエンジンECU10と、NOx浄化装置の制御部を成す排気ガス制御装置(以後単に排気系ECUと記す)4とはCAN相互通信システム(以後単に通信回線と記す)5によって相互通信可能に連結される。
【0014】
図1において、エンジン1は図示しない燃焼室に供給される燃料量を調整する燃料噴射系と、燃料ポンプの吐出量を調整する燃料供給系と、排気ガス後処理装置であるNOx浄化装置を備えた排気系とを備える。
図1において、エンジン1が用いるエンジンECU10はエンジン1のアクセルペダル開度θaを検出するアクセルペダル開度センサ9と、クランク角情報Δθを検出するクランク角センサ15が接続される。ここでクランク角情報ΔθはエンジンECU10においてエンジン回転数Neの導出に用いられると共に後述の燃料噴射時期制御に使用される。
【0015】
エンジンECU10はその入出力回路に多数のポートを有し、アクセルペダル開度センサ9、クランク角センサ15等よりの検出信号を取込み、図示しない回線を介して、燃料調整部11に制御信号を送出するよう機能する。
燃料噴射系は図示しない燃焼室にインジェクタ12により燃料噴射を行う燃料調整部11を備え、同部を燃料制御部n2として機能するエンジンECU10が制御する。
【0016】
燃料吐出量調整部121はエンジン駆動の高圧燃料ポンプ123の高圧燃料を定圧化した上でコモンレール122に供給する。燃料吐出量調整部121はエンジンECU10に接続され、燃料圧力制御部n1の出力D(pf)に応じてコモンレール122内の圧力が所定圧力pfとなるよう吐出量を調整可能である。 燃料調整部11はコモンレール122に電磁バルブVpを介して連結されたインジェクタ12により高圧燃料噴射を行うコモンレール方式を採る。電磁バルブVpはエンジンECU10に接続され、燃料制御部n2の出力D(injn)信号に応じて燃料噴射量、噴射時期を調整可能である。なお、電磁バルブVpとエンジンECU10の接続回線は1つのみ図示した。
【0017】
ここで燃料制御部n2はエンジン回転数Neとアクセルペダル開度θa(レバー開度θrに対応する)に応じた基本燃料噴射量INJbを求め、運転条件に応じた、たとえば水温や大気圧の各補正値dt,dpを加えて燃料噴射量INJn(=INJb+dt+dp)を導出する。更に噴射時期は、周知の基本進角値に運転条件に応じた補正を加えて導出される。その上で、演算された噴射時期及び燃料噴射量INJ相当の出力D(injn)信号を図示しない燃料噴射用ドライバにセットし、燃料調整部11の電磁バルブVpに出力し、インジェクタ12の燃料噴射を制御する。
【0018】
エンジン1の排気系2はNOx浄化装置を備える。
NOx浄化装置は排気管16の途中に装着されたNOx触媒であるSCR触媒17と、その上流に配備される尿素水の添加ノズル18と、添加ノズル18の上流側のNOx濃度Snoxfを出力するNOxセンサ19と、SCR触媒17の触媒温度tgを出力する触媒温度センサ22と、NOx浄化装置の制御部を成す排気系ECU4とを備える。触媒温度は相関するパラメータ、例えばエンジン回転数及び燃料量、各エンジン運転領域毎の運転時間や外気温を考慮して触媒温度の推定値を演算して採用しても良い。
エンジン1より排気路Eに流出した排気は排気多岐管25を通過し、その下流のNOx触媒コンバータ27を装備する排気管28を通過し、図示しないマフラーを介して大気放出される。
【0019】
NOx触媒コンバータ27はケーシング内に図示しないハニカム構造のセラミック製触媒担体を備え、同担体にSCR触媒17として機能するための触媒金属(例えばバナジウム)が担持される。SCR触媒17は後述する還元剤供給手段からのアンモニア(NH3)を吸着して排気ガス中のNOxを選択還元可能である。ここでSCR触媒17はアンモニア吸着状態において、排気ガス中のNOxを雰囲気温度の高低に応じ、即ち、高温時には下記の式(2)、低温時には式(3)の反応を主に行い、NH3と窒素酸化物との間の脱硝反応を促進することができる。
【0020】
4NH+4NO+O→4N+6HO・・・・(2)
2NH+NO+NO→2N+3HO・・・・・(3)
排気管28の排気路E中に供給通路rnを介して尿素水を供給する還元剤供給手段としての尿素水供給装置29及び空気供給手段としての高圧エアタンク32が装着される。
【0021】
図1、図2に示すように、供給通路rnは供給管31で形成され、供給管31の上流端にエアタンク32が連結され、下流端に排気路Eに臨む添加ノズル18が連結され、これにより下流側、即ち、NOx触媒コンバータ27の上流開口側に向けて尿素水を噴霧するように形成される。後述する尿素水の添加位置gは、添加ノズル18による尿素添加位置としての供給部位fより上流部位、且つエアタンク32の下流部位に配備される。なお、エアタンク32には図示しない圧縮エア補給手段が接続され、エア圧は常時定圧に保持される。供給管31の供給通路rnはエアタンク32からエアバルブ33を通過して排気路Eに加圧空気を流出する。供給通路rnの中間部の添加位置gには、尿素水供給装置29側の尿素水パイプ34の下流端開口が連通される。図1、図2に示すように、尿素水パイプ34は下流端開口を供給通路rnの湾曲部311の近傍上流に開口する。尿素水パイプ34はその上流端に尿素水タンク35を連結し、尿素水タンク35の尿素水を尿素水供給部37を経由し供給通路rn側に供給する。
【0022】
図2に示すように、尿素水パイプ34の下流端開口は添加位置gにおいて供給管31の内壁面に向けて開口し、圧縮エアに尿素水を噴出できる。なお、供給管31は添加位置gの下流側に湾曲部311、312を備え、その下流端に添加ノズル18が配備されている。このような供給管31は添加位置gにおける尿素水パイプ34の対向内壁面f0と、湾曲部311、312の各内壁面においてエア流の流線flが湾曲すると共にその一部に渦巻き部fsを生じ易く、後述のように、これら各部位では経時的には尿素プラギング現象を発生させ、流路断面積を狭め易い部位となっている。
更に、尿素水タンク35には尿素水を加熱するヒータ21が取付けられ、同ヒータ21は排気系ECU4により駆動制御される。
【0023】
尿素水供給部37、エアバルブ33、ヒータ21は排気系ECU4に連結され、駆動制御される。なお、ヒータ21は尿素水タンク35以外の、例えば、尿素水供給部37側に取付けられても良い。
なお、供給管31の下流端(添加ノズル18近傍)には供給管31内のエア圧paを出力する空気供給状態検出手段としてのエア圧センサ24が、尿素水タンク35には尿素水の温度Turaを出力する尿素水温度センサ38がそれぞれ配備され、これらの出力は排気系ECU4に供給される。
排気系ECU4はその入出力回路に多数のポートを有し、NOxセンサ19、触媒温度センサ22、エア圧センサ24、尿素水温度センサ38等よりの検出信号を入力でき、エアバルブ33、尿素水供給部37、ヒータ21に制御信号を送出する。しかも、CAN通信回線5を介しエンジンECU10とデータの送受を可能としている。
【0024】
排気系ECU4は入出力インターフェース401、記憶部402、バッテリバックアップ用の不揮発性メモリ403および中央処理部404を備え、特に、NOx浄化制御機能を備える。
次に、図1のエンジンECU10及びNOx浄化装置のNOx浄化制御処理を、図3、図4のNOx浄化処理の各制御ルーチンに沿って説明する。
【0025】
NOx浄化装置を搭載した図示しない車両のエンジン1の駆動時において、エンジンECU10は複数の制御系、例えば、燃料噴射系、燃料供給系で適宜駆動されている関連機器、センサ類の自己チェック結果を取込み、これが正常であったか否かを確認し、正常(OK)では上述の各センサの入力値に応じて燃料圧力制御部n1が燃料吐出量調整部121を、燃料制御部n2が燃料調整部11を運転域に応じたそれぞれの制御を実行し、その際得られた各センサ出力等を排気系ECU4にも送信する。
【0026】
一方、排気系ECU4は、エンジンキーのオンと同時に図3のメインルーチンを所定制御サイクル毎に繰り返す。ここではステップsaでキーオンを確認し、ステップsbに達すると、触媒温度tg、NOx濃度Snoxf、エンジンECU10からの吸入空気量Ua、その他のデータを取込み、適正値か否かの判断をし、正常でないと図示しない故障表示灯を駆動し、正常ではステップscに進む。ステップscでは目詰りチェック処理を行い、この後、ステップsdではNOx浄化処理を、次いで、ステップseではその他の周知の制御処理を実行し、リターンする。
【0027】
目詰りチェック処理を示す図4の目詰りチェックルーチンのステップa1に達すると、ここでは尿素水の温度Turaを取込み,その値が十分な尿素溶解性能を発揮できる所定温度Turaβを上回っているか判断する。
ステップa1の判断の結果、最初尿素水の温度が低いとステップa2に達する。ここでは添加量出力DUをゼロ(DU=0)に固定し、次に、ステップa3において、ヒータ駆動中フラグFLGHがオンか判断する。フラグFLGHがオフ(=0)のときステップa4に達し、ここではヒータ21を駆動して尿素水を加熱すると共にフラグFLGHをオン(=1)とする。この後、ステップa5では尿素水の温度Turaが尿素を十分に溶解可能な所定温度Turaβを上回るまで、上記ステップの処理を繰り返し、上回るとステップa6に進み、ヒータ21駆動を停止させ、ヒータ駆動中フラグFLGHをオフ(=0)にし、リターンする。
【0028】
尿素水の温度Turaが所定温度Turaβを上回った後は、ステップa7に進む。
ステップa7ではエアバルブ33を開いて供給通路rnにエアを一定状態で流動させる。
ステップa8に達すると、エア圧センサ24により検出されたエア圧力paが目詰り判定値paαを上回るか否か判定し、エア圧paが判定値paα以上では供給通路rnが目詰り無く開放とみなし、ステップa9に進み、判定値paαを下回ると供給通路rnが目詰りとみなし、ステップa10に進む。
【0029】
ステップa9では、供給通路rnが開放し、正常状態にあるとみなし、尿素水添加許可となるように設定される。これにより、NOx触媒17に適量のアンモニアを供給でき、排気ガス中のNOxを還元処理できる。
ステップa8において、流路目詰りと判断されステップa10に達すると、ここでは尿素水供給装置29の尿素水供給部37を目詰り溶解排出する洗浄用の洗浄出力DUを=DUcrで作動させ、ステップa11に達する。ステップa11ではタイマtnを駆動し、目詰り溶解排出する洗浄時間tcrの経過を待ち、経過後にステップa12に進む。ステップa12では再度エア圧センサ24により検出されたエア圧力paが目詰り判定値paαと比較される。ここで、エア圧力paが目詰り判定値paαを下回ると目詰りであると判断しステップa13に、エア圧力paが目詰り判定値paα以上では供給通路rn開放とみなし、ステップa14に進む。
【0030】
ステップa14では、供給通路rnが開放して正常状態に有るとみなされ、尿素水添加許可となるように設定される。これにより、NOx触媒17にアンモニアを供給でき、排気ガス中のNOxを還元処理できる。
目詰り溶解排出する洗浄処理後であるにもかかわらず目詰まりが解消しない時はステップa13において、目詰り故障出力を故障表示灯rpに出力して点灯し、尿素水添加量出力DU(=0)に保持し、尿素水添加禁止に切換える。
これにより乗員は目詰まり故障後に故障表示灯rpによりアンモニア添加が禁止されたことを知ると、目詰まり故障であることより供給通路rn開放のための回復処理のメンテナンスを行うべく、速やかに修理工場等に車両を搬送することとなる。
【0031】
ここでは、エア圧センサ24により検出されたエア圧力paが洗浄後において、ステップa12において、再度、目詰り判定値paαを上回るか判断していたが、これに代えて、ステップa8およびステップa12の夫々の目詰り判定値paαを次のように設定してもよい。即ち、ステップa8の目詰り判定値paαをステップa12の目詰り判定値paβよりも大きく設定することによって、相対的にステップa8の目詰り判定値paαの値を比較的大きくでき、即ち、目詰りがわずかに生じた場合に速やかに洗浄処理に入ることができ、洗浄比率を高めて目詰りを早期に防止でき、しかも、供給通路rn開放のためのメンテナンスを行う頻度を低減できる。
【0032】
上述の実施形態において、供給管31には供給通路rnのエア圧paを出力する空気供給状態検出手段としてのエア圧センサ24が配備され、ステップa8ではエア圧センサ24により検出されたエア圧力paが目詰り判定値paαを上回るか否かで供給通路rnの目詰まり有無を判定している。しかし、場合によりエア圧センサ24に代えて、図示しないエア流量センサを用い、図5に示すようなステップa8’の処理を行うようにしてもよい。
【0033】
この場合、図4に示すステップa8をステップa8’に代えた以外は同一の制御を実行することより、重複説明を略す。
図5に示すように、ステップa7よりステップa8’に達すると、ここでは図示しないエア流量センサにより検出された供給通路rnのエア流量Qrnが目詰り判定値Qrnα以上では目詰りなくステップa9に進み、下回ると尿素析出により供給通路rnが目詰り有と判定してステップa10に進むこととなる。なお、ステップa12でも同様の判定を行っても良い。
この場合も、エア圧センサ24を用いた場合と同様の作用効果を得られる。
【0034】
【発明の効果】
以上のように、本発明は、排気系に加圧空気に乗せて尿素を供給する供給通路はその内壁部等に尿素水が付着して尿素が固形化し、これが流路を目詰まりさせる可能性があるとしても、ここでは目詰まり故障を圧力又は流量に応じて容易に判断し、対処できる。
【0035】
特に、尿素水が低温であると飽和濃度が低下し、このような低温尿素水での供給通路の目詰まり部の溶解排出を期待することができないので、このような場合は、無駄となるような判定手段による供給通路の目詰まり有無の判定を禁止し、高温化を待つ。
【0036】
請求項2の発明は、判定手段が加圧空気により供給通路の流路回復処理を必要とする目詰まり故障を判定すると尿素水の供給を禁止するので、NOx浄化装置の不必要な作動を停止できると共に、例えば、乗員に修理工場での整備を促すことによって、環境への配慮が速やかに成される。
【0037】
請求項3の発明は、判定手段は供給通路の目詰まりを判定すると、一旦、尿素水を供給することによって、供給通路内に固体化して目詰まりした尿素を溶解排出し、その上で、再度目詰まりを判定するので、溶解可能な目詰まりであれば異常の誤判定を防止してNOx浄化を図ることができ、一旦、尿素水を供給しても、供給通路内に固体化した尿素を溶解排出できないときには目詰まりと判定することで、的確に尿素目詰まりを診断することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのNOx浄化装置と同装置を装着するエンジンの概略構成図である。
【図2】図1のNOx浄化装置で用いる供給通路及び排気路の部分拡大断面図である。
【図3】図1の排気系ECUが用いるメインルーチンのフローチャートである。
【図4】図1の排気系ECUが用いる目詰りチェックルーチンのフローチャートである。
【図5】図1の排気系ECUが用いる目詰りチェックルーチンの変形例の要部フローチャートである。
【符号の説明】
1 エンジン
2 排気系
4 排気系ECU
17 SCR触媒(NOx触媒)
22 触媒温度センサ(触媒温度検出手段)
24 エア圧センサ(空気供給状態検出手段)
29 尿素水供給装置(還元剤供給手段)
31 供給管
37 尿素水供給部
tg 触媒温度
DU 添加量相当出力
g 尿素水の供給部位
rn 供給通路
pa 圧力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NOx purification device that purifies NOx in exhaust gas of an internal twist engine, and in particular, a NOx purification device for an internal combustion engine in which a device for spraying an exhaust gas reducing agent is disposed upstream of a reduction catalyst provided in an exhaust system. About.
[0002]
[Prior art]
The NOx in the exhaust gas discharged from the internal twisting engine is purified by the NOx purification device. In particular, the NOx purification device used in the diesel engine places a urea SCR catalyst (NOx catalyst) in its exhaust system, and its upstream side. There is known a device provided with a reducing agent supply means. This reducing agent supply means supplies urea water (urea water) to the exhaust system, and urea contained therein is hydrolyzed and thermally decomposed as shown in the following formula (1) to release NH3.
[0003]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 ... (1)
Ammonia (NH 3 ) generated by hydrolysis is supplied as a reducing agent to the SCR catalyst (NOx catalyst). As a result, the SCR catalyst can purify NOx in an oxygen-excess atmosphere.
By the way, as described above, the urea water addition type NOx purifying apparatus uses urea water that is easy to handle instead of directly supplying ammonia used as a reducing agent to the exhaust passage, and atomizes the urea water for transportation. The air flow is supplied to the exhaust passage, that is, supplied to the exhaust passage using an air assist method, and the hydrolyzed ammonia is supplied to the SCR catalyst.
[0004]
[Problems to be solved by the invention]
By the way, in the NOx purification device employing the air assist method, urea water is put on the air flow for conveyance flowing in the supply passage, and the urea water is supplied to the exhaust passage from the injector at the downstream end of the supply passage. A carrier air supply means is connected to an upstream portion of the supply passage, and an addition port of a urea water addition pipe extending from the reducing agent supply means is opened between the air supply means and the injector. Here, the mist-like urea water blown out and added to the supply passage from the addition port of the urea water addition pipe easily adheres to the inner wall surface of the supply passage, and this solids when water is evaporated by the influence of the air flow for transportation. This solid matter generation itself cannot be avoided.
In particular, when a NOx purification device employing an air assist system is mounted on a vehicle, the supply passage through which the air for conveyance flows is often curved or the cross-sectional area of the flow path changes. In the vicinity of the mouth and the injector, a portion where the air stream line is disturbed or a spiral portion (turbulent flow) is likely to occur, and urea water tends to adhere to such a portion.
[0005]
If this urea water adhesion state continues, moisture will evaporate each time and the amount of solidification will increase, which will reduce the cross-sectional area of the air flow path at that part, possibly closing the flow path and causing the so-called urea plugging phenomenon Thus, there is a problem that the urea water addition type reducing agent supply means does not operate properly and the NOx purification function stops.
[0006]
Moreover, when the control means of such a NOx purification device is provided with a plugging detection means in advance, this plugging detection means detects, for example, the air pressure in the supply passage through which the carrier air flows, and this is a predetermined value when the plugging occurs. If it exceeds the value, it is immediately determined that there is a failure in the NOx purification device. For this reason, even if the urea plugging phenomenon occurrence part can be easily dissolved and the passage can be restored to the communication state, it is determined that there is a failure, and the stop frequency of the NOx purification device is insignificant. It is easy to increase.
The present invention provides a NOx purification device for an internal combustion engine that can prevent the frequency of stoppage of the NOx purification device from increasing excessively due to the urea plugging phenomenon in the NOx purification device that performs urea water addition based on the above problems. With the goal.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas, a supply passage communicating with the exhaust system upstream of the NOx catalyst, and the exhaust system via the supply passage. A reducing agent supply means for supplying urea water to the air supply means for supplying pressurized air to the exhaust system from a portion upstream of the urea water supply portion in the supply passage, a temperature sensor for detecting the temperature of the urea water , Control means for controlling the operation of the reducing agent supply means and the air supply means, an air supply state detection means for detecting pressure or flow rate in the supply passage, and the control means to operate the air supply means to generate pressurized air. determining clogging presence of the supply passage in accordance with the detected pressure or flow by the air supply state detecting means supplies, and, by the temperature sensor of the same judgment operation Issued urea water temperature when less than the predetermined temperature characterized by comprising a judgment means for inhibiting. In the supply passage for supplying urea by putting pressurized air on the exhaust system, the water content of urea water evaporates and solidifies at the inner wall or the like, which may clog the flow path, that is, the urea plugging phenomenon may occur . Here, the clogging failure can be easily determined and dealt with according to the pressure or flow rate.
[0008]
In particular, if the urea water is at a low temperature, the saturation concentration decreases, and it is not possible to expect the dissolution and discharge of the clogged portion of the supply passage with such a low temperature urea water. The determination of whether or not the supply passage is clogged by a simple determination means is prohibited, and the temperature rises.
Preferably, in the NOx purification device for an internal combustion engine according to claim 1 , further comprising a heater for increasing the temperature of the urea water, and the determination means, when the urea water temperature detected by the temperature sensor is less than a predetermined temperature, The heater may be operated.
[0009]
In this case, when the urea water is lower than the predetermined temperature, the temperature of the urea water is increased by operating the heater, and the clogged portion of the supply passage can be easily dissolved and discharged with the urea water having a high saturation concentration.
[0010]
Preferably, in the NOx purification device for an internal combustion engine according to claim 1 , further comprising a heater for increasing the temperature of the urea water, and when the urea water temperature detected by the temperature sensor is less than a predetermined temperature, the determination means When the heater is activated and the urea water temperature detected by the temperature sensor is determined to be equal to or higher than a predetermined temperature after the heater is activated, it may be determined whether the supply passage is clogged.
In this case, when the urea solution is lower than the predetermined temperature, the determination unit operates the heater to increase the temperature of the urea water, and when the urea water temperature exceeds the predetermined temperature, the urea water dissolves and discharges the clogged portion of the supply passage. Therefore, it is possible to accurately determine whether the supply passage is clogged by the determination means.
[0011]
According to a second aspect of the present invention, in the NOx purification device for an internal combustion engine according to the first aspect, when the determination means determines that the clogging failure requires a flow path recovery process of the supply passage, the reducing agent supply The supply of urea water by the means is prohibited.
When the determination means determines a clogging failure that requires a flow path recovery process of the supply passage with pressurized air, the supply of urea water is prohibited, so that unnecessary operation of the NOx purification device can be stopped, and for example, to the passenger By encouraging maintenance at repair shops, environmental considerations are promptly made.
[0012]
According to a third aspect of the present invention, there is provided a NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas, and a reducing agent for supplying urea water via a supply passage communicating with the exhaust system upstream of the NOx catalyst. Control for controlling the operation of the supply means, the air supply means for supplying pressurized air from the supply passage upstream of the supply site of urea water supplied from the reducing agent supply means, the reducing agent supply means and the air supply means Means, air supply state detection means for detecting pressure or flow rate in the supply passage, operating the air supply means by the control means to supply pressurized air and pressure or flow rate detected by the air supply state detection means And determining means for determining whether or not the supply passage is clogged, and when the determination means determines that the supply passage is clogged, After the base agent supply means is operated and urea water is supplied, the air supply means is operated to supply pressurized air and the supply passage is clogged according to the pressure or flow rate detected by the air supply state detection means. The presence or absence is determined.
As described above, when the determination unit determines that the supply passage is clogged, by temporarily supplying urea water, the solidified and clogged urea is dissolved and discharged in the supply passage, and then clogging is performed again. Therefore, if it is clogged so that it can be dissolved, erroneous determination of abnormality can be prevented and NOx purification can be achieved. Even if urea water is once supplied, solidified urea cannot be dissolved and discharged in the supply passage. Sometimes it is possible to accurately diagnose urea clogging by determining clogging.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An internal combustion engine NOx purification device as an embodiment of the present invention will be described below with reference to FIG. The internal combustion engine NOx purification device (hereinafter simply referred to as NOx purification device) is mounted on an exhaust system 2 of a multi-cylinder diesel engine (hereinafter simply referred to as engine) 1 mounted on a vehicle (not shown).
The engine 1 includes an engine control device (an engine ECU 10 that constitutes a main control unit in the figure) 3, and a NOx purification device is provided in the exhaust system of the engine 1. An engine ECU 10 of the engine control device 3 and an exhaust gas control device (hereinafter simply referred to as an exhaust system ECU) 4 constituting a control unit of the NOx purification device are mutually connected by a CAN mutual communication system (hereinafter simply referred to as a communication line) 5. It is connected so that it can communicate.
[0014]
In FIG. 1, an engine 1 includes a fuel injection system that adjusts the amount of fuel supplied to a combustion chamber (not shown), a fuel supply system that adjusts the discharge amount of a fuel pump, and a NOx purification device that is an exhaust gas aftertreatment device. And an exhaust system.
In FIG. 1, an engine ECU 10 used by the engine 1 is connected to an accelerator pedal opening sensor 9 that detects an accelerator pedal opening θa of the engine 1 and a crank angle sensor 15 that detects crank angle information Δθ. Here, the crank angle information Δθ is used in the engine ECU 10 for derivation of the engine speed Ne and for fuel injection timing control described later.
[0015]
The engine ECU 10 has a large number of ports in its input / output circuit, takes in detection signals from the accelerator pedal opening sensor 9, the crank angle sensor 15 and the like, and sends a control signal to the fuel adjustment unit 11 via a line (not shown). To function.
The fuel injection system includes a fuel adjusting unit 11 that injects fuel with an injector 12 in a combustion chamber (not shown), and this part is controlled by an engine ECU 10 that functions as a fuel control unit n2.
[0016]
The fuel discharge amount adjusting unit 121 supplies high-pressure fuel from the engine-driven high-pressure fuel pump 123 to the common rail 122 after making the pressure constant. The fuel discharge amount adjusting unit 121 is connected to the engine ECU 10 and can adjust the discharge amount so that the pressure in the common rail 122 becomes a predetermined pressure pf in accordance with the output D (pf) of the fuel pressure control unit n1. The fuel adjustment unit 11 adopts a common rail system in which high-pressure fuel injection is performed by an injector 12 connected to a common rail 122 via an electromagnetic valve Vp. The electromagnetic valve Vp is connected to the engine ECU 10 and can adjust the fuel injection amount and the injection timing in accordance with the output D (injn) signal of the fuel control unit n2. Only one connection line between the electromagnetic valve Vp and the engine ECU 10 is shown.
[0017]
Here, the fuel control unit n2 obtains the basic fuel injection amount INJb according to the engine speed Ne and the accelerator pedal opening θa (corresponding to the lever opening θr), and for example, each of water temperature and atmospheric pressure according to the operating conditions. The fuel injection amount INJn (= INJb + dt + dp) is derived by adding the correction values dt and dp. Further, the injection timing is derived by adding a correction corresponding to the operating condition to a known basic advance value. After that, an output D (injn) signal corresponding to the calculated injection timing and fuel injection amount INJ is set in a fuel injection driver (not shown), and is output to the electromagnetic valve Vp of the fuel adjustment unit 11 to inject fuel from the injector 12. To control.
[0018]
The exhaust system 2 of the engine 1 includes a NOx purification device.
The NOx purification device outputs an SCR catalyst 17 that is a NOx catalyst mounted in the middle of the exhaust pipe 16, an urea water addition nozzle 18 disposed upstream thereof, and a NOx concentration Snoxf upstream of the addition nozzle 18. A sensor 19, a catalyst temperature sensor 22 that outputs the catalyst temperature tg of the SCR catalyst 17, and an exhaust system ECU 4 that forms a control unit of the NOx purification device are provided. For the catalyst temperature, an estimated value of the catalyst temperature may be calculated and used in consideration of correlated parameters such as the engine speed and fuel amount, the operation time for each engine operation region, and the outside air temperature.
Exhaust gas flowing out from the engine 1 to the exhaust passage E passes through the exhaust manifold 25, passes through the exhaust pipe 28 equipped with the NOx catalytic converter 27 downstream thereof, and is released into the atmosphere through a muffler (not shown).
[0019]
The NOx catalytic converter 27 includes a honeycomb-shaped ceramic catalyst carrier (not shown) in a casing, and a catalytic metal (for example, vanadium) for functioning as the SCR catalyst 17 is supported on the carrier. The SCR catalyst 17 can selectively reduce NOx in the exhaust gas by adsorbing ammonia (NH 3) from a reducing agent supply means described later. Here, when the SCR catalyst 17 is in an ammonia adsorption state, the NOx in the exhaust gas is subjected to the reaction of the following formula (2) at a high temperature, that is, the following formula (2) at a high temperature, and the formula (3) at a low temperature. The denitration reaction between nitrogen oxides can be promoted.
[0020]
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O (2)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (3)
A urea water supply device 29 as a reducing agent supply means for supplying urea water through a supply passage rn and a high-pressure air tank 32 as an air supply means are mounted in the exhaust path E of the exhaust pipe 28.
[0021]
As shown in FIGS. 1 and 2, the supply passage rn is formed by a supply pipe 31, an air tank 32 is connected to the upstream end of the supply pipe 31, and the addition nozzle 18 facing the exhaust path E is connected to the downstream end. Thus, urea water is sprayed toward the downstream side, that is, toward the upstream opening side of the NOx catalytic converter 27. A urea water addition position g, which will be described later, is disposed upstream of the supply site f as a urea addition position by the addition nozzle 18 and downstream of the air tank 32. The air tank 32 is connected to a compressed air supply means (not shown) so that the air pressure is always kept constant. The supply passage rn of the supply pipe 31 passes the air valve 33 from the air tank 32 and flows out the pressurized air to the exhaust passage E. The downstream end opening of the urea water pipe 34 on the urea water supply device 29 side communicates with the addition position g in the intermediate portion of the supply passage rn. As shown in FIGS. 1 and 2, the urea water pipe 34 opens at the downstream end at the upstream in the vicinity of the curved portion 311 of the supply passage rn. The urea water pipe 34 has a urea water tank 35 connected to the upstream end thereof, and supplies urea water in the urea water tank 35 to the supply passage rn side via the urea water supply unit 37.
[0022]
As shown in FIG. 2, the downstream end opening of the urea water pipe 34 opens toward the inner wall surface of the supply pipe 31 at the addition position g, and urea water can be jetted into the compressed air. The supply pipe 31 includes curved portions 311 and 312 on the downstream side of the addition position g, and the addition nozzle 18 is provided at the downstream end thereof. In such a supply pipe 31, the flow line fl of the air flow is curved at the inner wall face f0 of the urea water pipe 34 at the addition position g and the inner wall faces of the curved parts 311 and 312, and the spiral part fs is formed in a part thereof. As will be described later, the urea plugging phenomenon occurs over time in each of these portions, and the cross-sectional area of the flow channel is easily narrowed as will be described later.
Further, a heater 21 for heating urea water is attached to the urea water tank 35, and the heater 21 is driven and controlled by the exhaust system ECU 4.
[0023]
The urea water supply unit 37, the air valve 33, and the heater 21 are connected to the exhaust system ECU 4 and driven and controlled. In addition, the heater 21 may be attached to the urea water supply part 37 side other than the urea water tank 35, for example.
An air pressure sensor 24 serving as an air supply state detecting means for outputting the air pressure pa in the supply pipe 31 is provided at the downstream end of the supply pipe 31 (in the vicinity of the addition nozzle 18). A urea water temperature sensor 38 that outputs Tura is provided, and these outputs are supplied to the exhaust system ECU 4.
The exhaust system ECU 4 has a large number of ports in its input / output circuit, and can input detection signals from the NOx sensor 19, the catalyst temperature sensor 22, the air pressure sensor 24, the urea water temperature sensor 38, etc. A control signal is sent to the unit 37 and the heater 21. In addition, data can be exchanged with the engine ECU 10 via the CAN communication line 5.
[0024]
The exhaust system ECU 4 includes an input / output interface 401, a storage unit 402, a non-volatile memory 403 for battery backup, and a central processing unit 404, and particularly has a NOx purification control function.
Next, the NOx purification control processing of the engine ECU 10 and the NOx purification device of FIG. 1 will be described along the control routines of the NOx purification processing of FIGS.
[0025]
When driving the engine 1 of a vehicle (not shown) equipped with a NOx purification device, the engine ECU 10 displays self-check results of related devices and sensors that are appropriately driven by a plurality of control systems, for example, a fuel injection system and a fuel supply system. In the normal (OK) state, the fuel pressure control unit n1 uses the fuel discharge amount adjusting unit 121 and the fuel control unit n2 uses the fuel adjusting unit 11 according to the input value of each sensor. Each control according to the operation range is executed, and the sensor outputs and the like obtained at that time are also transmitted to the exhaust system ECU 4.
[0026]
On the other hand, the exhaust system ECU 4 repeats the main routine of FIG. 3 for each predetermined control cycle simultaneously with the turning on of the engine key. Here, key-on is confirmed in step sa, and when step sb is reached, the catalyst temperature tg, NOx concentration Snoxf, intake air amount Ua from the engine ECU 10 and other data are taken in, and it is determined whether or not it is an appropriate value. Otherwise, a failure indicator lamp (not shown) is driven, and normally proceeds to step sc. In step sc, a clogging check process is performed. After that, in step sd, a NOx purification process is executed, and in step se, other known control processes are executed, and the process returns.
[0027]
When step c1 of the clogging check routine of FIG. 4 showing the clogging check process is reached, the temperature Tura of urea water is taken here, and it is determined whether the value exceeds a predetermined temperature Turaβ capable of exhibiting sufficient urea dissolution performance. .
If the temperature of the urea aqueous solution is initially low as a result of the determination in step a1, step a2 is reached. Here, the addition amount output DU is fixed to zero (DU = 0), and then it is determined in step a3 whether the heater driving flag FLGH is on. When the flag FLGH is off (= 0), step a4 is reached. Here, the heater 21 is driven to heat the urea water and the flag FLGH is turned on (= 1). Thereafter, in step a5, the above steps are repeated until the temperature Tura of the urea water exceeds a predetermined temperature Turaβ at which urea can be sufficiently dissolved, and if it exceeds, the process proceeds to step a6 to stop the heater 21 and stop the heater being driven. The flag FLGH is turned off (= 0) and the process returns.
[0028]
After the temperature Tura of the urea water exceeds the predetermined temperature Turaβ, the process proceeds to step a7.
In step a7, the air valve 33 is opened to allow air to flow into the supply passage rn in a constant state.
When step a8 is reached, it is determined whether or not the air pressure pa detected by the air pressure sensor 24 exceeds the clogging determination value paα. If the air pressure pa is equal to or higher than the determination value paα, the supply passage rn is regarded as being open without clogging. The process proceeds to step a9, and if it falls below the determination value paα, the supply passage rn is regarded as clogged, and the process proceeds to step a10.
[0029]
In step a9, the supply passage rn is opened, and it is assumed that the supply passage rn is in a normal state, and the urea water addition permission is set. As a result, an appropriate amount of ammonia can be supplied to the NOx catalyst 17, and NOx in the exhaust gas can be reduced.
If it is determined in step a8 that the flow path is clogged and step a10 is reached, the cleaning output DU for cleaning that discharges the urea water supply unit 37 of the urea water supply device 29 by clogging is operated at DUcr. a11 is reached. In step a11, the timer tn is driven to wait for the elapse of the cleaning time tcr for clogging and discharging, and after elapse, the process proceeds to step a12. In step a12, the air pressure pa detected by the air pressure sensor 24 is again compared with the clogging judgment value paα. Here, if the air pressure pa falls below the clogging determination value paα, it is determined that clogging occurs. In step a13, if the air pressure pa is equal to or higher than the clogging determination value paα, the supply passage rn is considered to open, and the process proceeds to step a14.
[0030]
In step a14, it is considered that the supply passage rn is opened and in a normal state, and the urea water addition permission is set. Thereby, ammonia can be supplied to the NOx catalyst 17, and NOx in the exhaust gas can be reduced.
If the clogging is not solved even after the cleaning process for clogging and discharging, in step a13, the clogging fault output is output to the fault indicator lamp rp and turned on, and the urea water addition amount output DU (= 0) ) And switch to prohibiting urea water addition.
As a result, when the passenger knows that the addition of ammonia is prohibited by the failure indicator lamp rp after the clogging failure, the repair factory promptly performs maintenance of the recovery process for opening the supply passage rn due to the clogging failure. For example, the vehicle is transported.
[0031]
Here, after the air pressure pa detected by the air pressure sensor 24 is cleaned, it is determined again in step a12 whether it exceeds the clogging determination value paα. Instead, in steps a8 and a12, Each clogging determination value paα may be set as follows. That is, by setting the clogging determination value paα in step a8 to be larger than the clogging determination value paβ in step a12, the clogging determination value paα in step a8 can be relatively increased, that is, clogging occurs. If a slight amount of water is generated, the cleaning process can be started promptly, the cleaning ratio can be increased to prevent clogging at an early stage, and the frequency of maintenance for opening the supply passage rn can be reduced.
[0032]
In the above-described embodiment, the supply pipe 31 is provided with the air pressure sensor 24 as an air supply state detection unit that outputs the air pressure pa of the supply passage rn. In step a8, the air pressure pa detected by the air pressure sensor 24 is provided. Whether or not the supply passage rn is clogged is determined based on whether or not the value exceeds the clogging determination value paα. However, in some cases, instead of the air pressure sensor 24, an air flow rate sensor (not shown) may be used to perform the process of step a8 ′ as shown in FIG.
[0033]
In this case, duplicated explanation is omitted by executing the same control except that step a8 shown in FIG. 4 is replaced with step a8 ′.
As shown in FIG. 5, when step a7 is reached from step a7, if the air flow rate Qrn in the supply passage rn detected by an air flow sensor (not shown) is not less than the clogging judgment value Qrnα, the process proceeds to step a9 without clogging. If it falls below, the supply passage rn is determined to be clogged due to urea precipitation, and the process proceeds to step a10. Note that the same determination may be made in step a12.
In this case as well, the same effect as when the air pressure sensor 24 is used can be obtained.
[0034]
【The invention's effect】
As described above, the present invention has a possibility that urea water is attached to the inner wall portion or the like of urea in the supply passage that supplies pressurized air to the exhaust system to solidify the urea, which may clog the flow path. In this case, the clogging failure can be easily determined and dealt with according to the pressure or the flow rate.
[0035]
In particular, if the urea water is at a low temperature, the saturation concentration decreases, and it is not possible to expect the dissolution and discharge of the clogged portion of the supply passage with such a low temperature urea water. The determination of whether or not the supply passage is clogged by a simple determination means is prohibited, and the temperature rises.
[0036]
The invention according to claim 2 stops the unnecessary operation of the NOx purification device because the supply of urea water is prohibited when the determination means determines a clogging failure that requires a flow path recovery process of the supply passage by pressurized air. At the same time, for example, by prompting passengers to perform maintenance at a repair shop, consideration for the environment can be made promptly.
[0037]
In the invention of claim 3 , when the determination means determines that the supply passage is clogged, once the urea water is supplied, the urea solidified and clogged in the supply passage is dissolved and discharged. Since clogging is determined, if it is clogging that can be dissolved, erroneous determination of abnormality can be prevented and NOx purification can be achieved. When it cannot be dissolved and discharged, it is determined as clogged so that urea clogging can be diagnosed accurately.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a NOx purification device and an engine equipped with the same as an embodiment of the present invention.
2 is a partially enlarged cross-sectional view of a supply passage and an exhaust passage used in the NOx purification device of FIG. 1. FIG.
FIG. 3 is a flowchart of a main routine used by the exhaust system ECU of FIG.
4 is a flowchart of a clogging check routine used by the exhaust system ECU of FIG.
FIG. 5 is a main part flowchart of a modified example of a clogging check routine used by the exhaust system ECU of FIG. 1;
[Explanation of symbols]
1 Engine 2 Exhaust system 4 Exhaust system ECU
17 SCR catalyst (NOx catalyst)
22 Catalyst temperature sensor (catalyst temperature detection means)
24 Air pressure sensor (air supply state detection means)
29 Urea water supply device (reducing agent supply means)
31 supply pipe 37 urea water supply part tg catalyst temperature DU addition amount equivalent output g urea water supply part rn supply passage pa pressure

Claims (3)

内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒、
前記NOx触媒上流の前記排気系に連通する供給通路、
前記供給通路を介して前記排気系に尿素水を供給する還元剤供給手段、
前記供給通路における前記尿素水の供給部位より上流部位から前記排気系に加圧空気を供給する空気供給手段、
前記尿素水の温度を検出する温度センサ
前記還元剤供給手段及び前記空気供給手段の作動を制御する制御手段、
前記供給通路内の圧力又は流量を検出する空気供給状態検出手段、
前記制御手段により前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定し、且つ、同判定作動を前記温度センサにより検出された尿素水温度が所定温度未満のときには禁止する判定手段、
を備えたことを特徴とする内燃機関のNOx浄化装置。
A NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in the exhaust gas,
A supply passage communicating with the exhaust system upstream of the NOx catalyst;
Reducing agent supply means for supplying urea water to the exhaust system via the supply passage;
An air supply means for supplying pressurized air to the exhaust system from a portion upstream of the urea water supply portion in the supply passage;
A temperature sensor for detecting the temperature of the urea water ,
Control means for controlling the operation of the reducing agent supply means and the air supply means;
Air supply state detection means for detecting pressure or flow rate in the supply passage;
The control means operates the air supply means to supply pressurized air, determines whether the supply passage is clogged according to the pressure or flow rate detected by the air supply state detection means, and performs the same determination operation. Determining means for prohibiting when the temperature of the urea water detected by the temperature sensor is lower than a predetermined temperature ,
A NOx purification device for an internal combustion engine, comprising:
前記判定手段により前記供給通路の流路回復処理を必要とする目詰まり故障と判定されたとき、前記還元剤供給手段による尿素水の供給を禁止することを特徴とする請求項1に記載の内燃機関のNOx浄化装置。 2. The internal combustion engine according to claim 1 , wherein when the determination unit determines that the clogging failure requires a flow path recovery process of the supply passage, supply of urea water by the reducing agent supply unit is prohibited. Engine NOx purification device. 内燃機関の排気系に設けられ排気ガス中のNOxを選択還元するNOx触媒、
前記NOx触媒上流の前記排気系に連通する供給通路を介して尿素水を供給する還元剤供給手段、
前記還元剤供給手段から供給される尿素水の供給部位より上流の前記供給通路から加圧空気を供給する空気供給手段、
前記還元剤供給手段及び前記空気供給手段の作動を制御する制御手段、
前記供給通路内の圧力又は流量を検出する空気供給状態検出手段、
前記制御手段により前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定する判定手段を備え、
前記判定手段は、前記供給通路の目詰まり有と判定されたとき、前記制御手段により前記還元剤供給手段を作動させ尿素水を供給した後に、前記空気供給手段を作動させ加圧空気を供給すると共に前記空気供給状態検出手段により検出された圧力又は流量に応じて前記供給通路の目詰まり有無を判定すること、
を特徴とする内燃機関のNOx浄化装置。
A NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in the exhaust gas,
A reducing agent supply means for supplying urea water via a supply passage communicating with the exhaust system upstream of the NOx catalyst;
An air supply means for supplying pressurized air from the supply passage upstream from a supply site of urea water supplied from the reducing agent supply means;
Control means for controlling the operation of the reducing agent supply means and the air supply means;
Air supply state detection means for detecting pressure or flow rate in the supply passage;
A determination means for operating the air supply means by the control means to supply pressurized air and determining whether the supply passage is clogged according to the pressure or flow rate detected by the air supply state detection means;
When the determination means determines that the supply passage is clogged, the control means operates the reducing agent supply means to supply urea water, and then operates the air supply means to supply pressurized air. And determining whether or not the supply passage is clogged according to the pressure or flow rate detected by the air supply state detection means,
An NOx purification device for an internal combustion engine characterized by the above .
JP2002065301A 2002-03-11 2002-03-11 NOx purification device for internal combustion engine Expired - Fee Related JP3956728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002065301A JP3956728B2 (en) 2002-03-11 2002-03-11 NOx purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002065301A JP3956728B2 (en) 2002-03-11 2002-03-11 NOx purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003269145A JP2003269145A (en) 2003-09-25
JP3956728B2 true JP3956728B2 (en) 2007-08-08

Family

ID=29197673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002065301A Expired - Fee Related JP3956728B2 (en) 2002-03-11 2002-03-11 NOx purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3956728B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004015317D1 (en) * 2003-09-30 2008-09-04 Nissan Diesel Motor Co EXHAUST GAS DETECTION DEVICE FOR MOTOR
WO2005033482A1 (en) 2003-10-02 2005-04-14 Nissan Diesel Motor Co., Ltd. Exhaust gas cleaner for engine
JP3732493B2 (en) * 2003-10-02 2006-01-05 日産ディーゼル工業株式会社 Engine exhaust purification system
JP3687916B2 (en) 2003-10-28 2005-08-24 日産ディーゼル工業株式会社 Engine exhaust purification system
JP4137821B2 (en) * 2004-03-08 2008-08-20 日産ディーゼル工業株式会社 Engine exhaust purification system
DE102004043366A1 (en) * 2004-09-08 2006-03-09 Robert Bosch Gmbh Injecting a reagent into an engine exhaust system comprises determining if a spray pipe is blocked by monitoring reagent and air pressures
JP3686670B1 (en) 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 Exhaust purification device
JP3714559B1 (en) * 2004-11-05 2005-11-09 日産ディーゼル工業株式会社 Exhaust purification device
JP2006250117A (en) 2005-03-14 2006-09-21 Nissan Diesel Motor Co Ltd Device for judging reducing agent injection condition in exhaust emission control system
JP4509871B2 (en) * 2005-06-09 2010-07-21 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP4444165B2 (en) 2005-06-10 2010-03-31 日産ディーゼル工業株式会社 Engine exhaust purification system
JP4748664B2 (en) * 2005-12-09 2011-08-17 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP4799289B2 (en) * 2006-06-26 2011-10-26 Udトラックス株式会社 Engine exhaust purification system
JP4804242B2 (en) * 2006-06-26 2011-11-02 Udトラックス株式会社 Engine exhaust purification system
JP4605205B2 (en) * 2007-11-05 2011-01-05 株式会社デンソー Exhaust purification device
JP2009097479A (en) * 2007-10-19 2009-05-07 Bosch Corp Device and method for controlling reducing agent supplying device
JP5071341B2 (en) * 2008-10-17 2012-11-14 マツダ株式会社 Engine exhaust purification system
DE102009014831A1 (en) * 2009-03-25 2010-09-30 Daimler Ag A method of operating a reductant supply system
JP5928884B2 (en) * 2012-04-26 2016-06-01 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
JP6492637B2 (en) * 2014-12-24 2019-04-03 三菱ふそうトラック・バス株式会社 Vehicle exhaust purification system
CN107321536A (en) * 2017-07-31 2017-11-07 苏州卡布斯精工科技有限公司 A kind of urea nozzle cleaning device and restorative procedure

Also Published As

Publication number Publication date
JP2003269145A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
JP3956728B2 (en) NOx purification device for internal combustion engine
JP3979153B2 (en) NOx purification device for internal combustion engine
JP3714559B1 (en) Exhaust purification device
JP3951774B2 (en) NOx purification device for internal combustion engine
JP4114425B2 (en) Engine control device
JP3732493B2 (en) Engine exhaust purification system
US8181448B2 (en) System for controlling urea injection quantity of vehicle and method thereof
US7703276B2 (en) Exhaust gas purifying apparatus for engine
JP4470987B2 (en) Reducing agent injection control device
JP4114389B2 (en) Exhaust purification device
WO2005124116A1 (en) Exhaust gas purification apparatus
JP3718208B2 (en) Engine exhaust purification system
WO2005033483A1 (en) Engine exhaust emission control device and exhaust emission control method
JP2009121413A (en) Apparatus for diagnosis of abnormality in exhaust gas purifuication system
US20100199642A1 (en) Exhaust gas purifying apparatus and method for regenerating particulate filter thereof
JP3956738B2 (en) NOx purification device for internal combustion engine
JP4358007B2 (en) Exhaust gas purification device for internal combustion engine
JP2008163795A (en) Exhaust emission control device for internal combustion engine
CN202926444U (en) Device and system for correcting selective catalytic reduction (SCR) urea spraying
WO2006006441A1 (en) System and method for purification of exhaust gas
JP2009264222A (en) Exhaust emission control device
JP3979150B2 (en) NOx purification device for internal combustion engine
JP4445000B2 (en) Exhaust purification device
JP2010196522A (en) Abnormality diagnostic device for exhaust emission control system
CN102926847B (en) Selective catalytic reduction urea spouting correction method, device and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees