明 細 書 Specification
排気浄化装置 Exhaust purification equipment
技術分野 Technical field
[0001] 本発明は、排気に含まれる窒素酸化物 (NOx)を除去する排気浄ィ匕装置に係り、 特に、選択触媒還元 (SCR)を採用した排気浄化装置に関する。 The present invention relates to an exhaust purification device that removes nitrogen oxides (NOx) contained in exhaust gas, and more particularly to an exhaust purification device that employs selective catalytic reduction (SCR).
背景技術 Background art
[0002] 排気に含まれる NOxを除去する排気浄ィ匕装置として、特許文献 1に開示されたよう な SCRを採用した排気浄ィ匕装置が提案されている。 [0002] As an exhaust purification device that removes NOx contained in exhaust gas, an exhaust purification device employing SCR as disclosed in Patent Document 1 has been proposed.
この排気浄化装置は、排気系に還元触媒を配設し、該還元触媒の排気上流にノズ ルから還元剤を噴射して添加することにより、排気中の NOxと還元剤とを触媒還元 反応させて、 NOxを無害成分に浄ィ匕処理するものである。その還元反応は、 NOxと 反応性が良好なアンモニアを用いるものであり、このための還元剤としては、排気熱 及び排気中の水蒸気により加水分解してアンモニアを容易に発生する尿素水溶液 やアンモニア水溶液又は HC系などの液体還元剤が用いられる。 In this exhaust purification device, a reduction catalyst is disposed in the exhaust system, and a reducing agent is injected from the nozzle upstream of the reduction catalyst and added to cause a catalytic reduction reaction between NOx in the exhaust and the reducing agent. NOx is treated as a harmless component. The reduction reaction uses ammonia that has good reactivity with NOx, and as a reducing agent therefor, an aqueous urea solution or aqueous ammonia solution that easily generates ammonia by hydrolysis with exhaust heat and water vapor in the exhaust. Alternatively, a liquid reducing agent such as HC is used.
特許文献 1:特開 2003 - 293740号公報 Patent Document 1: Japanese Patent Laid-Open No. 2003-293740
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0003] 上記従来技術のような排気浄化装置では、ノズルによる排気中への液体還元剤の 噴射に際して、噴射された液体還元剤が排気中へできるだけ均等に分散しないと、 排気中の液体還元剤濃度にムラが生じるため、還元触媒における還元剤利用効率と NOx還元効率を十分に得ることができな 、。 [0003] In the exhaust gas purification apparatus as in the above prior art, when the liquid reducing agent is injected into the exhaust gas by the nozzle and the injected liquid reducing agent is not evenly dispersed in the exhaust gas, the liquid reducing agent in the exhaust gas Due to unevenness in concentration, it is not possible to obtain sufficient reducing agent utilization efficiency and NOx reduction efficiency in the reduction catalyst.
そこで本発明は、液体還元剤を排気中へ良好に分散させられる構造をもった排気 浄化装置の提供を目的とするものである。 Accordingly, an object of the present invention is to provide an exhaust purification device having a structure in which a liquid reducing agent can be well dispersed in exhaust gas.
課題を解決するための手段 Means for solving the problem
[0004] 本発明による排気浄化装置は、排気系に配設され、液体還元剤により排気中の窒 素酸化物を還元浄化する還元触媒と、この還元触媒の排気上流に液体還元剤を噴 射するノズルと、該ノズルから噴射される液体還元剤の噴射量を調整する噴射量制
御弁と、貯蔵用のタンクから送られてきた液体還元剤を、大気圧よりも高い圧力の高 圧気体中に晒した後に、噴射量制御弁へ送る加圧装置と、を含んで構成されること を特徴とする。 [0004] An exhaust emission control device according to the present invention is provided in an exhaust system, and reduces and purifies nitrogen oxides in exhaust gas with a liquid reducing agent, and injects the liquid reducing agent upstream of the exhaust of the reducing catalyst. And an injection amount control for adjusting the injection amount of the liquid reducing agent injected from the nozzle. And a pressurizing device that sends the liquid reducing agent sent from the storage tank to the injection amount control valve after being exposed to a high-pressure gas having a pressure higher than atmospheric pressure. It is characterized by that.
[0005] 通常、液体還元剤を貯蔵するタンク内の気圧はブリーザにより大気圧に維持される ので、この貯蔵用のタンク力 噴射量制御弁へ送られる液体還元剤には、大気圧下 で気体が溶解している。本発明ではこの点に着目し、より高い圧力下でより多くの気 体を液体還元剤に溶解させれば、当該液体還元剤が排気中に噴射された際には、 圧力低下と温度上昇による溶解気体の急速な析出が発生し、その膨張力により液体 還元剤の微粒ィ匕が促進されて排気中へ均等に分散させることができることを着想した 。そこで、加圧装置を設けて、大気圧よりも高い圧力の高圧気体中に液体還元剤を 晒すようにし、より多くの気体を溶解させて噴射量制御弁へ送るものである。高い圧 力をかけると液体還元剤中により多くの気体が溶け込むことは、ヘンリーの法則(定 温では、一定量の溶媒に溶ける気体の質量は圧力に比例、気体の体積は圧力に関 係なく一定、混合気体の成分はその分圧に比例して溶ける)に基づいている。 [0005] Normally, the atmospheric pressure in the tank for storing the liquid reducing agent is maintained at atmospheric pressure by a breather. Therefore, the liquid reducing agent sent to the storage tank force injection amount control valve is a gas under atmospheric pressure. Is dissolved. In the present invention, focusing on this point, if more gas is dissolved in the liquid reducing agent at a higher pressure, when the liquid reducing agent is injected into the exhaust gas, the pressure decreases and the temperature increases. The idea was that rapid precipitation of the dissolved gas occurred and the expansion force promoted the fine particles of the liquid reducing agent and allowed it to be evenly dispersed in the exhaust. Therefore, a pressurizing device is provided so that the liquid reducing agent is exposed to a high-pressure gas having a pressure higher than the atmospheric pressure, so that more gas is dissolved and sent to the injection amount control valve. When high pressure is applied, more gas dissolves in the liquid reducing agent. Henry's law (at constant temperature, the mass of a gas dissolved in a certain amount of solvent is proportional to the pressure, and the volume of the gas is independent of the pressure. The component of the gas mixture is dissolved in proportion to the partial pressure).
[0006] 高圧気体は、空気を取り込んで圧縮することで生成しても良いが、さらに一歩進め て本発明では、高圧気体として、液体への溶解度が良好な二酸ィヒ炭素を多く含んだ 排気を利用することも想起している。すなわち、加圧装置は、浄化後の排気を加圧し て高圧気体とするものとすることができる。 [0006] The high-pressure gas may be generated by taking in air and compressing it. However, in the present invention, the high-pressure gas contains a large amount of carbon dioxide having good solubility in a liquid as the high-pressure gas. Recalling the use of exhaust. In other words, the pressurizing device can pressurize the exhaust gas after purification into a high-pressure gas.
このような加圧装置は、気体を取り込んで圧縮する圧縮器と、該圧縮器から送り出さ れた気体を溜める高圧タンクと、該高圧タンク内へ液体還元剤を送り込む圧送ポンプ と、を備えた構成とすると良い。より好ましくは、気体の溶解度は一般に高温になるほ ど小さくなることから、高圧タンク内での温度をできるだけ低下させるために、圧縮器 による圧縮後の気体を冷却する高圧気体冷却器を設けても良ぐ気体として排気を 利用する場合は、排気を圧縮器に取り込む前に、排気冷却器により排気を冷却する ようにしても良い。また、清浄度を保っため圧縮器はフィルタを通して気体を取り込む ようにしておくのも好ましい。 Such a pressurizing apparatus includes a compressor that takes in and compresses gas, a high-pressure tank that stores the gas sent out from the compressor, and a pressure-feed pump that sends a liquid reducing agent into the high-pressure tank. And good. More preferably, since the solubility of gas generally becomes smaller as the temperature becomes higher, in order to reduce the temperature in the high-pressure tank as much as possible, a high-pressure gas cooler that cools the gas compressed by the compressor may be provided. When exhaust is used as a good gas, the exhaust may be cooled by an exhaust cooler before the exhaust is taken into the compressor. In order to maintain cleanliness, it is also preferable that the compressor take in gas through a filter.
[0007] さらに、加圧装置は、高圧タンク内の気圧を検出する圧力センサと、該圧力センサ の出力に従い圧縮器を制御して高圧タンク内の気圧を一定に保つ圧力制御器と、を
備えたものとすることもできる。これに加えて、高圧タンク内の液体還元剤の液面を検 出するレベルセンサと、該レベルセンサの出力に従 、圧送ポンプを制御して高圧タ ンク内の液体還元剤量を一定に保つ液面制御器と、を備えることもできる。これらによ り、高圧タンク内において気体の圧力、液体還元剤量を一定に保つことで、気体の溶 解量を安定させることができる。 [0007] Further, the pressurizing device includes a pressure sensor that detects the atmospheric pressure in the high-pressure tank, and a pressure controller that controls the compressor according to the output of the pressure sensor to keep the atmospheric pressure in the high-pressure tank constant. It can also be provided. In addition to this, a level sensor that detects the liquid level of the liquid reducing agent in the high-pressure tank, and according to the output of the level sensor, controls the pressure feed pump to keep the amount of liquid reducing agent in the high-pressure tank constant. A liquid level controller. As a result, the amount of dissolved gas can be stabilized by keeping the gas pressure and the amount of liquid reducing agent constant in the high-pressure tank.
発明の効果 The invention's effect
[0008] 本発明の加圧装置を設けた排気浄化装置によれば、加圧により多くの気体を溶解 させた液体還元剤をノズルから噴射させるので、ノズルから排気中へ噴射された液体 還元剤において圧力低下と温度上昇力 溶解気体の急速な析出が生じ、その膨張 力により液体還元剤の微粒化が促進される。これにより、排気中に液体還元剤を均 等に分散させることができ、還元触媒における還元剤利用効率と NOx還元効率をさ らに向上させられるようになる。 [0008] According to the exhaust gas purification apparatus provided with the pressurizing device of the present invention, the liquid reducing agent in which a large amount of gas is dissolved by pressurization is injected from the nozzle, so the liquid reducing agent injected from the nozzle into the exhaust gas The pressure drop and the temperature rise force cause rapid precipitation of dissolved gas, and the expansion force promotes atomization of the liquid reducing agent. As a result, the liquid reducing agent can be evenly dispersed in the exhaust gas, and the reducing agent utilization efficiency and NOx reduction efficiency in the reduction catalyst can be further improved.
図面の簡単な説明 Brief Description of Drawings
[0009] [図 1]図 1は、本発明に係る排気浄化装置の第 1実施形態を示した概略図である。 FIG. 1 is a schematic view showing a first embodiment of an exhaust emission control device according to the present invention.
[図 2]図 2は、圧力制御器の制御フローチャートである。 FIG. 2 is a control flowchart of the pressure controller.
[図 3]図 3は、液面制御器の制御フローチャートである。 FIG. 3 is a control flowchart of the liquid level controller.
[図 4]図 4は、本発明に係る排気浄ィ匕装置の第 2実施形態を示した概略図である。 符号の説明 FIG. 4 is a schematic view showing a second embodiment of the exhaust gas purification apparatus according to the present invention. Explanation of symbols
[0010] 20 加圧装置 [0010] 20 Pressurizing device
21 圧縮器 21 Compressor
22 高圧タンク 22 High pressure tank
23 圧送ポンプ 23 Pressure pump
24 フイノレタ 24 Huinoleta
25 高圧気体冷却器 25 High pressure gas cooler
26 圧力センサ 26 Pressure sensor
27 レベルセンサ 27 Level sensor
28 圧力制御器 28 Pressure controller
29 液面制御器
30 排気冷却器 29 Liquid level controller 30 Exhaust cooler
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 図 1に、本発明に係る排気浄ィ匕装置の第 1実施形態を示している。図示の排気浄 化装置は、排気系に介装された酸化触媒 1、 NOx還元触媒 2及び NHスリップ触媒 [0011] FIG. 1 shows a first embodiment of an exhaust purification apparatus according to the present invention. The illustrated exhaust purification system is composed of an oxidation catalyst 1, a NOx reduction catalyst 2 and an NH slip catalyst interposed in the exhaust system.
3 Three
3を備えて 、る。 NOx還元触媒 2は排気中の NOxを液体還元剤と触媒還元反応さ せるもので、この NOx還元触媒 2の排気上流にノズル 4から液体還元剤を噴射して 添加する構成となっている。そして、ノズル 4へ適量の液体還元剤を供給するための 噴射量制御弁 5が備えられ、この噴射量制御弁 5は、排気温センサ 6, 7による排気 温やエンジンの ECU8から得られるエンジン回転速度等に応じて ECU9により制御 される。 It has three. The NOx reduction catalyst 2 causes the NOx in the exhaust gas to undergo a catalytic reduction reaction with the liquid reducing agent, and the liquid reducing agent is injected from the nozzle 4 and added to the upstream side of the NOx reduction catalyst 2 exhaust. An injection amount control valve 5 for supplying an appropriate amount of liquid reducing agent to the nozzle 4 is provided. The injection amount control valve 5 is provided with an exhaust temperature detected by the exhaust temperature sensors 6 and 7, and an engine rotation obtained from the ECU 8 of the engine. It is controlled by ECU9 according to the speed.
[0012] 尿素水溶液等の上述したような各種の液体還元剤は、タンク 10に貯蔵されており、 当該タンク 10内は、ブリーザ 11により大気圧に維持されて 、る。 Various liquid reducing agents as described above, such as urea aqueous solution, are stored in a tank 10, and the inside of the tank 10 is maintained at atmospheric pressure by a breather 11.
この第 1実施形態の加圧装置 20は、圧縮器 21と、高圧タンク 22と、圧送ポンプ 23 と、を備えている。さらに、圧縮器 21の気体取入口にフィルタ 24が、圧縮器 21と高圧 タンク 22との間に高圧気体冷却器 25が、それぞれ介装されている。 The pressurizing device 20 of the first embodiment includes a compressor 21, a high-pressure tank 22, and a pumping pump 23. Further, a filter 24 is interposed at the gas inlet of the compressor 21, and a high-pressure gas cooler 25 is interposed between the compressor 21 and the high-pressure tank 22.
[0013] 本実施形態の圧縮器 21は、気体としての空気をフィルタ 24を介し取り入れて圧縮 し、所定の圧力とした圧縮空気を送り出す。圧縮器 21から送り出された圧縮空気は、 温度上昇を抑えるために高圧気体冷却器 25により冷却されてから高圧タンク 22へ送 り込まれる。一方、圧送ポンプ 23は、タンク 10に貯蔵されている液体還元剤を吸い出 して高圧タンク 22内へ送り出す。高圧タンク 10内は大気圧よりも高圧に維持されてい るので、圧送ポンプ 23により圧力をかけて液体還元剤を注入するものである。 [0013] The compressor 21 of the present embodiment takes in air as gas through the filter 24, compresses it, and sends out compressed air at a predetermined pressure. The compressed air sent out from the compressor 21 is cooled by the high-pressure gas cooler 25 and then sent to the high-pressure tank 22 in order to suppress the temperature rise. On the other hand, the pressure pump 23 sucks out the liquid reducing agent stored in the tank 10 and sends it out into the high-pressure tank 22. Since the inside of the high-pressure tank 10 is maintained at a pressure higher than the atmospheric pressure, the liquid reducing agent is injected by applying pressure by the pressure feed pump 23.
[0014] 高圧タンク 22に入った液体還元剤は、その内部の高圧気体に晒されることで、より 多くの空気が溶解し、そして配管 Pを通って噴射量制御弁 5へ送られ、ノズル 4力 排 気中へ噴射される。液体還元剤が排気中に噴射されると、圧力低下と温度上昇によ り、溶解していた空気が急激に析出し、その膨張力で液体還元剤の微粒化が促進さ れること〖こなる。 [0014] The liquid reducing agent that has entered the high-pressure tank 22 is exposed to the high-pressure gas inside it, so that more air is dissolved, and is sent to the injection amount control valve 5 through the pipe P. Injected into force exhaust. When the liquid reducing agent is injected into the exhaust gas, the dissolved air abruptly precipitates due to the pressure drop and temperature rise, and the expansion force promotes atomization of the liquid reducing agent. .
本実施形態の球形耐圧容器の高圧タンク 22には、圧力センサ 26とレベルセンサ 2 7が設置されており、その各出力は圧力制御器 28と液面制御器 29にそれぞれ入力
されている。そしてこれら圧力制御器 28及び液面制御器 29により、高圧タンク 22内 の気圧と液体還元剤量が一定に維持され、液体還元剤に溶解する空気の溶解量が 制御される。 A pressure sensor 26 and a level sensor 27 are installed in the high pressure tank 22 of the spherical pressure vessel of this embodiment, and each output thereof is input to the pressure controller 28 and the liquid level controller 29, respectively. Has been. The pressure controller 28 and the liquid level controller 29 maintain the atmospheric pressure and the amount of liquid reducing agent in the high-pressure tank 22 at a constant level, and control the amount of air dissolved in the liquid reducing agent.
[0015] 圧力制御器 28は、図 2に示す制御フローを実行することにより、高圧タンク 22内の 気圧を一定に維持する役割を担う。すなわち、イダ-ッシヨンスィッチのオンで初期化 スタート後、ステップ S1で圧縮器 21をオフにしておいて、ステップ S2によりエンジン が運転されるかどうかを確認する。これにより未だエンジンが運転されて 、なければス テツプ S1へ戻り、過程を繰り返す。一方、エンジンが運転されれば、ステップ S3へ進 んで圧力センサ 26の出力値から、高圧タンク 22内の気圧が規定値に達しているかど うかをチェックする。その結果、気圧が規定値を上回っていればステップ S1へ戻って 圧縮器 21をオフにし、タンク内気圧が必要以上に高くならないようにする。逆に、気 圧が規定値以下であれば、ステップ S4へ進んで圧縮器 21を動作させ、ステップ S3 へ戻って気圧が規定値に達するまでオンを維持する。 [0015] The pressure controller 28 plays a role of maintaining the atmospheric pressure in the high-pressure tank 22 constant by executing the control flow shown in FIG. In other words, after the initialization is started when the idling switch is turned on, the compressor 21 is turned off at step S1, and it is confirmed whether the engine is operated at step S2. As a result, if the engine is not yet operated, the process returns to step S1 and the process is repeated. On the other hand, if the engine is operated, the process proceeds to step S3, and it is checked from the output value of the pressure sensor 26 whether the atmospheric pressure in the high pressure tank 22 has reached the specified value. As a result, if the atmospheric pressure exceeds the specified value, the process returns to step S1 to turn off the compressor 21 so that the tank atmospheric pressure does not become higher than necessary. On the other hand, if the air pressure is not more than the specified value, the process proceeds to step S4 to operate the compressor 21, and the process returns to step S3 and remains ON until the atmospheric pressure reaches the specified value.
[0016] 液面制御器 29は、図 3に示す制御フローを実行することにより、高圧タンク 22内の 液体還元剤液面を一定レベルに制御し、これによりタンク内液体還元剤量を一定に 維持する。すなわち、イダ-ッシヨンスィッチのオンで初期ィ匕スタート後、ステップ S 10 で圧送ポンプ 23をオフにしておいて、ステップ S 11によりエンジンが運転されるかどう かを確認する。これにより未だエンジンが運転されていなければステップ S 10へ戻り、 過程を繰り返す。一方、エンジンが運転されれば、ステップ S 12へ進んでレベルセン サ 27の出力値から、高圧タンク 22内の液体還元剤の液面がレベルセンサ 27に感知 されているかどう力、つまりレベルセンサ 27の設置位置に液面が達しているかどうか をチェックする。その結果、感知されていればステップ S 10へ戻って圧送ポンプ 23を オフにし、タンク内還元剤量が必要以上に多くならないようにする。逆に、液面が感 知されていなければ、ステップ S 13へ進んで圧送ポンプ 23を動作させ、ステップ S 12 へ戻って液面が感知されるまでオンを維持する。 [0016] The liquid level controller 29 controls the liquid reducing agent liquid level in the high-pressure tank 22 to a constant level by executing the control flow shown in FIG. 3, thereby keeping the amount of liquid reducing agent in the tank constant. maintain. That is, after the initial switch is started when the idling switch is turned on, the pumping pump 23 is turned off at step S10, and it is confirmed whether the engine is operated at step S11. As a result, if the engine is not yet operated, the process returns to step S10 and the process is repeated. On the other hand, if the engine is operated, the process proceeds to step S12, and the level sensor 27 detects whether the level of the liquid reducing agent in the high-pressure tank 22 is detected by the level sensor 27 from the output value of the level sensor 27. Check if the liquid level has reached the 27 position. As a result, if it is detected, the process returns to step S10 to turn off the pressure pump 23 so that the amount of reducing agent in the tank does not increase more than necessary. On the contrary, if the liquid level is not sensed, the process proceeds to step S13 to operate the pressure feed pump 23, and the process returns to step S12 to keep it on until the liquid level is detected.
[0017] 以上の第 1実施形態は、高圧気体として空気を圧縮して利用しているが、液体に溶 解しやすい二酸ィ匕炭素をより多く含む排気を気体として利用することも可能である。こ の排気を利用した第 2実施形態を図 4に示す。
図 4に示す第 2実施形態は、加圧装置 20において、フィルタ 24を介して圧縮器 21 へ排気が送り込まれている点を除いては、上記の第 1実施形態と同じ構成を有する。 [0017] In the first embodiment described above, air is compressed and used as a high-pressure gas, but it is also possible to use, as a gas, exhaust gas that contains a larger amount of carbon dioxide that is easily dissolved in a liquid. is there. A second embodiment using this exhaust is shown in FIG. The second embodiment shown in FIG. 4 has the same configuration as that of the first embodiment, except that in the pressurizing device 20, the exhaust gas is sent to the compressor 21 via the filter 24.
[0018] 第 2実施形態の加圧装置 20は、 NHスリップ触媒 3を通過した排気を取り込んで冷 The pressurizing device 20 of the second embodiment takes in the exhaust gas that has passed through the NH slip catalyst 3 and cools it.
3 Three
却する排気冷却器 30を備えている。そして、排気冷却器 30による冷却後の排気が、 フィルタ 24を通し圧縮器 21へ送り込まれる。排気はそのままでは高温なので、排気 冷却器 30により冷却して力も圧縮器 21へ送り込むようにするのが好ましいが、高圧 気体冷却器 25を備えて 、るので、排気を冷却せずにフィルタ 24を通して取り込む構 成も可能である。 An exhaust cooler 30 is provided. Then, the exhaust gas after being cooled by the exhaust cooler 30 is sent to the compressor 21 through the filter 24. Since the exhaust gas is hot as it is, it is preferable to cool it with the exhaust cooler 30 and send the power to the compressor 21 as well, but since it has a high-pressure gas cooler 25, it does not cool the exhaust gas through the filter 24. A configuration to capture is also possible.
[0019] その他の構成は第 1実施形態と同様なので、その説明は省略する。
Since other configurations are the same as those of the first embodiment, description thereof is omitted.