JP2013124642A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2013124642A
JP2013124642A JP2011275421A JP2011275421A JP2013124642A JP 2013124642 A JP2013124642 A JP 2013124642A JP 2011275421 A JP2011275421 A JP 2011275421A JP 2011275421 A JP2011275421 A JP 2011275421A JP 2013124642 A JP2013124642 A JP 2013124642A
Authority
JP
Japan
Prior art keywords
exhaust
condensed water
water vapor
reducing agent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275421A
Other languages
Japanese (ja)
Inventor
Kiyoka Tsunekawa
希代香 恒川
Kojiro Okada
公二郎 岡田
Hiroyuki Kimura
洋之 木村
Seiji Matsuda
征二 松田
Yusuke Isobe
雄輔 磯部
Kenji Morimoto
健児 守本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011275421A priority Critical patent/JP2013124642A/en
Publication of JP2013124642A publication Critical patent/JP2013124642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To enable an exhaust gas temperature on an upstream side of an SCR catalyst to rise to an ammonia production temperature, without the need for a large number of accessary facilities.SOLUTION: An urea aqueous solution spray nozzle 58 is provided in an upstream-side exhaust pipe 18 of a catalyst converter 34 with a built-in SCR catalyst 36. Condensed water c accumulated in a bend 18c of an exhaust pipe 18 is taken out from a condensed water take-out pipe 42, and stored in a condensed water storage tank 46. An electric heater 48 is provided in the condensed water storage tank 46. When an exhaust gas temperature on the upstream side of the catalyst converter 34 does not reach the ammonia production temperature, the condensed water c is heated by the electric heater 48 and turned into water vapor s, and the water vapor s is supplied to the exhaust pipe 18 near an urea aqueous solution supply unit from a water vapor spray nozzle 60 via a water vapor supply pipe 50. This makes the exhaust air temperature near the urea aqueous solution supply unit rise to the ammonia production temperature.

Description

本発明は、内燃機関の排気通路に設けられ、排気中に存在するNOを浄化する内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that is provided in an exhaust passage of the internal combustion engine and purifies NO X present in the exhaust gas.

ディーゼルエンジンの排気ガス浄化方法として、尿素水溶液を用いたSCR(Selective Catalytic Reduction)システムが実用化されている。SCRシステムは、排気に還元剤として尿素水溶液を噴射し、尿素水溶液中の尿素を排気の保有熱でアンモニアに分解する。尿素水溶液噴射部の下流側にSCR触媒が配設され、排気中のNOをSCR触媒に吸着し、アンモニアと反応させ、窒素と水に分解することで、NOxの排出濃度を低減している。 As a diesel engine exhaust gas purification method, an SCR (Selective Catalytic Reduction) system using an aqueous urea solution has been put into practical use. The SCR system injects a urea aqueous solution as a reducing agent into exhaust gas, and decomposes urea in the urea aqueous solution into ammonia by the retained heat of the exhaust gas. SCR catalyst is disposed downstream of the urea aqueous solution injection unit, the NO X in the exhaust gas adsorbed by the SCR catalyst, it is reacted with ammonia, to decompose to nitrogen and water, thereby reducing the emission concentration of NOx .

この反応過程は、次の3段階からなる。各ステップの反応に必要な温度は、排気の保有熱を利用する。
第1ステップ:CO(NHaq(尿素水溶液)→CO(NH(固体尿素)
<水の蒸発による固体尿素の生成;反応必要温度100℃以上>
第2ステップ:CO(NH(固体尿素)→HNCO(イソシアン酸)+NH
<固体尿素の熱分解;反応必要温度130〜200℃>
第3ステップ:HNCO+HO→NH+CO
<イソシアン酸の加水分解;反応必要温度200℃以上>
This reaction process consists of the following three stages. The temperature required for the reaction in each step uses the retained heat of the exhaust.
First step: CO (NH 2 ) 2 aq (urea aqueous solution) → CO (NH 2 ) 2 (solid urea)
<Production of solid urea by evaporation of water; reaction required temperature of 100 ° C. or higher>
Second step: CO (NH 2 ) 2 (solid urea) → HNCO (isocyanic acid) + NH 3
<Thermal decomposition of solid urea; reaction required temperature 130-200 ° C.>
Third step: HNCO + H 2 O → NH 3 + CO 2
<Hydrolysis of isocyanic acid; reaction required temperature of 200 ° C. or higher>

ディーゼルエンジン搭載車には排気中の粒子状物質を除去するDPFフィルタ装置(Diesel Particulate Filter)が設けられる。SCR浄化装置は、車両の排気通路に設ける場合、触媒の耐熱性や配置スペースの観点から、一般的に、DPFフィルタ装置の下流側で、車両の床下に設けられている。そのため、触媒に到達する排気温度は低温となる。一方、前記反応を行うためには、一定温度以上のアンモニア生成温度(好ましくは200℃以上)や触媒活性温度(例えば150℃以上)が必要であり、これらの温度は排気の保有熱を利用している。従って、特に、始動時や低速・低負荷走行時等のように、アンモニア生成温度以下の排気温度下では、噴射した尿素水溶液の分解反応が進み難く、尿素水溶液のまま触媒の下流側に排出されてしまう。   A diesel engine-equipped vehicle is provided with a DPF filter device (Diesel Particulate Filter) that removes particulate matter in the exhaust. When provided in the exhaust passage of the vehicle, the SCR purification device is generally provided under the floor of the vehicle on the downstream side of the DPF filter device from the viewpoint of the heat resistance of the catalyst and the arrangement space. For this reason, the exhaust temperature reaching the catalyst is low. On the other hand, in order to carry out the above reaction, an ammonia generation temperature (preferably 200 ° C. or higher) or a catalyst activation temperature (eg 150 ° C. or higher) that is higher than a certain temperature is required. ing. Therefore, the decomposition reaction of the injected urea aqueous solution is difficult to proceed particularly at the exhaust temperature below the ammonia generation temperature, such as during start-up and low speed / low load driving, and the urea aqueous solution is discharged downstream of the catalyst. End up.

排気温度を上昇させるために、ポスト噴射のような早期昇温運転を行うことも知られているが、燃費と排気性状の悪化要因となる。前述のように、SCR触媒の配置位置はエンジンから遠く、排気温度は大きく低下するため、SCR触媒上流側の排気温度を上昇させることは容易ではない。   In order to raise the exhaust gas temperature, it is also known to perform an early temperature raising operation such as post-injection, which causes deterioration of fuel consumption and exhaust properties. As described above, the disposition position of the SCR catalyst is far from the engine, and the exhaust temperature greatly decreases. Therefore, it is not easy to raise the exhaust temperature upstream of the SCR catalyst.

特許文献1には、SCR触媒を用いた排気浄化装置において、排気中に含まれる凝縮水を集め、固体還元剤(例えば固体尿素)の貯蔵タンクに供給して還元剤水溶液をつくり、この還元剤水溶液を排気通路に注入する技術が開示されている。また、特許文献2にも、SCR触媒を用いた排気浄化装置において、排気中に含まれる凝縮水を回収し、この回収水を高濃度尿素水溶液の希釈水として用い、高濃度尿素水溶液を凝縮水で希釈した尿素水溶液を排気通路に供給する技術が開示されている。   In Patent Document 1, in an exhaust gas purification apparatus using an SCR catalyst, condensed water contained in exhaust gas is collected and supplied to a storage tank of a solid reducing agent (for example, solid urea) to form a reducing agent aqueous solution. A technique for injecting an aqueous solution into an exhaust passage is disclosed. Also in Patent Document 2, in an exhaust purification apparatus using an SCR catalyst, condensed water contained in the exhaust gas is recovered, and this recovered water is used as dilution water for the high-concentration urea aqueous solution. A technique for supplying a urea aqueous solution diluted with the above to an exhaust passage is disclosed.

特許文献3では、排気温度やSCR触媒の温度が低いとき、尿素水溶液から適切にアンモニアを生成することが困難である理由が、尿素水溶液が排気通路に噴射されたとき、尿素水溶液は排気通路に微細な液滴となって飛散するので、尿素の周りに反応に十分な量の水が存在できなくなることがその一因であることを見い出している。そのため、特許文献3では、SCR触媒の上流側排気通路に補給用の水を噴射するか、あるいは水量を多く含有した尿素水溶液を排気通路に噴射し、これによって、尿素の周りに十分な水量を確保し、アンモニア生成環境を整えることで、前記問題を解消するようにしている。   In Patent Document 3, when the exhaust gas temperature or the temperature of the SCR catalyst is low, it is difficult to appropriately generate ammonia from the urea aqueous solution. When the urea aqueous solution is injected into the exhaust passage, the urea aqueous solution enters the exhaust passage. It has been found that one of the causes is that a sufficient amount of water cannot be present around the urea because it is scattered as fine droplets. For this reason, in Patent Document 3, replenishment water is injected into the upstream exhaust passage of the SCR catalyst, or a urea aqueous solution containing a large amount of water is injected into the exhaust passage, thereby providing a sufficient amount of water around the urea. The problem is solved by securing and preparing an ammonia generation environment.

特表2002−510006号公報Special Table 2002-510006 特開2008−280856号公報JP 2008-280856 A 特開2010−159693号公報JP 2010-159893 A

特許文献1及び特許文献2に開示された技術は、排気から生じた凝縮水を還元剤の希釈水として利用する利用方法に係るものである。そのため、SCR触媒上流側の排気温度がアンモニア生成温度以下である場合の前記問題を解決するものではない。また、特許文献3に開示された技術も、排気温度をアンモニア生成温度に高める手段を提案するものではなく、外部から補給用の水を供給するものであり、そのため、水タンク等の余分な設備を必要とする。   The technology disclosed in Patent Literature 1 and Patent Literature 2 relates to a method of using condensed water generated from exhaust as dilution water for a reducing agent. Therefore, it does not solve the above problem when the exhaust temperature on the upstream side of the SCR catalyst is equal to or lower than the ammonia generation temperature. Further, the technique disclosed in Patent Document 3 does not propose a means for raising the exhaust gas temperature to the ammonia generation temperature, but supplies replenishment water from the outside. Therefore, an extra facility such as a water tank is provided. Need.

本発明は、かかる従来技術の課題に鑑み、SCR触媒の上流側排気温度がアンモニア生成温度に達しない時、大掛かりな付帯設備を要することなく、排気温度をアンモニア生成温度まで昇温可能な手段を実現することを目的とする。   In view of the problems of the prior art, the present invention provides means for raising the exhaust temperature to the ammonia production temperature without requiring a large incidental facility when the upstream exhaust temperature of the SCR catalyst does not reach the ammonia production temperature. It aims to be realized.

かかる目的を達成するため、本発明の内燃機関の排ガス浄化装置は、排気通路に設けられたNO選択還元触媒と、該NO選択還元触媒の上流側排気通路に還元剤溶液を供給する還元剤供給装置とを備え、還元剤を加水分解してNHを生成させ、NO選択還元触媒の触媒作用の元で排気中のNOをNHと反応させて無害化する内燃機関の排ガス浄化装置において、排気通路の凝縮水貯留部に開口する凝縮水取出路と、凝縮水取出路に接続された凝縮水貯留タンクと、入口側が凝縮水貯留タンクに接続され、出口端がSCR触媒より上流側の排気通路に接続された水蒸気供給路と、凝縮水貯留タンクに貯留された凝縮水又は凝縮水供給路を流れる凝縮水を加熱して水蒸気にする加熱装置と、水蒸気供給路に設けられ、水蒸気を排気通路に向けて圧送するポンプとを備えている。 In order to achieve this object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a NO X selective reduction catalyst provided in an exhaust passage and a reduction agent supplying a reducing agent solution to an upstream exhaust passage of the NO X selective reduction catalyst. agent and a supply device, a reducing agent is hydrolyzed to produce a NH 3, the internal combustion engine to harmless is reacted with NH 3 to NO X in the exhaust gas under the catalytic action of the NO X selective reducing catalyst exhaust gas In the purifier, the condensed water outlet passage that opens to the condensed water storage portion of the exhaust passage, the condensed water storage tank connected to the condensed water outlet passage, the inlet side is connected to the condensed water storage tank, and the outlet end is from the SCR catalyst. Provided in the steam supply path connected to the upstream exhaust passage, the heating device for condensate stored in the condensate storage tank or the condensed water flowing in the condensate supply path to heat the steam, and the steam supply path , Drain water vapor And a pump for pumping toward the passageway.

本発明では、内燃機関の停止時などに排気通路に溜まった凝縮水を凝縮水取出管から取り出し、凝縮水貯留タンクに貯留しておく。そして、内燃機関の運転中に、例えば、始動直後又は低速・低負荷走行時など、SCR触媒上流側の排気温度がアンモニア生成温度に達しない時、凝縮水貯留タンクに溜まった凝縮水を加熱装置で加熱し水蒸気とする。この水蒸気を水蒸気供給路から水ポンプでSCR触媒上流側の排気通路に圧送する。これによって、該排気通路の排気をアンモニア生成温度以上、好ましくは、200℃以上とし、排気通路に供給された還元剤溶液からアンモニアを生成させ、SCR触媒でのNO還元反応を可能にする。 In the present invention, the condensed water accumulated in the exhaust passage when the internal combustion engine is stopped is taken out from the condensed water outlet pipe and stored in the condensed water storage tank. During operation of the internal combustion engine, when the exhaust temperature on the upstream side of the SCR catalyst does not reach the ammonia generation temperature, for example, immediately after starting or during low speed / low load traveling, the condensate stored in the condensate storage tank is heated. To make water vapor. This water vapor is pumped from the water vapor supply passage to the exhaust passage upstream of the SCR catalyst by a water pump. As a result, the exhaust gas in the exhaust passage is set to an ammonia generation temperature or higher, preferably 200 ° C. or higher, and ammonia is generated from the reducing agent solution supplied to the exhaust passage, thereby enabling NO X reduction reaction with the SCR catalyst.

加熱装置は、凝縮水貯留タンクに設け、凝縮水貯留タンクに貯留された凝縮水を加熱して水蒸気にしてもよいし、あるいは水蒸気供給路に設け、水蒸気供給路で圧送中の凝縮水を加熱して水蒸気にしてもよい。   The heating device may be provided in the condensed water storage tank, and the condensed water stored in the condensed water storage tank may be heated into steam, or provided in the steam supply path, and the condensed water being pumped in the steam supply path is heated. And may be water vapor.

このように、排気に含まれる凝縮水を取り出し、凝縮水を排気通路に供給するようにしているので、外部から水を供給する必要がなく、外部水供給用の付帯設備を要しない。また、凝縮水を水蒸気としてポンプで圧送し、排気通路に噴射しているので、排気と凝縮水との混合撹拌を促進でき、排気の昇温を容易にする。さらに、ポスト噴射のような早期昇温運転に頼ることなく、排気温度を上昇できるので、燃費や排気性状が悪化しない。   Thus, the condensed water contained in the exhaust is taken out and the condensed water is supplied to the exhaust passage, so that it is not necessary to supply water from the outside, and no auxiliary equipment for supplying external water is required. Further, since condensed water is pumped as water vapor by a pump and injected into the exhaust passage, mixing and stirring of the exhaust gas and condensed water can be promoted, and the temperature of the exhaust gas can be easily raised. Furthermore, since the exhaust temperature can be raised without relying on an early temperature raising operation such as post injection, fuel consumption and exhaust properties are not deteriorated.

本発明において、還元剤溶液の供給領域に流入する排気の温度を検出する温度センサーと、凝縮水供給路に設けられた流量調整弁と、温度センサーの検出値が入力され、該検出値に基づいて加熱装置の加熱量又は流量調整弁の開度を調整し、還元剤溶液の供給領域に流入する水蒸気の温度又は流量を調整して該領域の排気の温度を設定温度に制御する制御装置とを備えているとよい。これによって、還元剤溶液の供給領域の排気温度をアンモニア生成温度以上の設定温度に精度良く制御できる。そのため、凝縮水を過不足なく加熱できるので、省エネを達成できる。   In the present invention, a temperature sensor for detecting the temperature of the exhaust gas flowing into the supply region of the reducing agent solution, a flow rate adjustment valve provided in the condensed water supply path, and a detection value of the temperature sensor are input, and based on the detection value A control device that adjusts the heating amount of the heating device or the opening of the flow rate adjustment valve, adjusts the temperature or flow rate of water vapor flowing into the supply region of the reducing agent solution, and controls the temperature of the exhaust gas in the region to a set temperature; It is good to have. As a result, the exhaust temperature of the reducing agent solution supply region can be accurately controlled to a set temperature equal to or higher than the ammonia generation temperature. Therefore, the condensed water can be heated without excess or deficiency, and energy saving can be achieved.

本発明において、凝縮水取出路に凝縮水の逆流を防止する逆止弁を設けるとよい。凝縮水貯留タンク内の凝縮水又は水蒸気供給路を流れる凝縮水を加熱して水蒸気とすると、凝縮水貯留タンク内の圧力が上昇する。そのため、水蒸気が凝縮水取出管を経て排気通路に逆流するおそれがあり、凝縮水取出管に逆止弁を設けることで、これを防止できる。   In this invention, it is good to provide the check valve which prevents the reverse flow of condensed water in a condensed water extraction path. When the condensed water in the condensed water storage tank or the condensed water flowing through the water vapor supply path is heated to become steam, the pressure in the condensed water storage tank increases. Therefore, there is a possibility that water vapor flows back to the exhaust passage through the condensed water take-out pipe, and this can be prevented by providing a check valve in the condensed water take-out pipe.

本発明において、還元剤供給装置を構成し、排気通路の壁面から還元剤溶液を排気通路に噴霧する還元剤噴霧ノズルと、水蒸気を排気通路に噴霧すると共に、還元剤噴霧ノズルに対して対向する壁面に配置され、ノズル開口が還元剤噴霧ノズルのノズル開口に対面するように配置された水蒸気噴霧ノズルとを備えているとよい。これによって、還元剤溶液と水蒸気とが排気流を挟んで両側からぶつかり合うので、還元剤溶液と水蒸気とによって排気流が乱され、排気、還元剤溶液及び水蒸気の三相流の混合撹拌が促進する。そのため、三相流の混合撹拌効果と水蒸気の昇温効果との相乗効果で、アンモニアの生成が容易になる。なお、還元剤噴霧ノズルと水蒸気噴霧ノズルとを排気通路の壁面に設け、排気通路に突出しないようにすれば、排気流の流れを妨害せず、排気流の圧力損失を抑制できる。   In the present invention, a reducing agent supply device is configured, and a reducing agent spray nozzle that sprays a reducing agent solution from the wall surface of the exhaust passage to the exhaust passage, and water vapor is sprayed to the exhaust passage and is opposed to the reducing agent spray nozzle. It is good to provide the water vapor | steam spray nozzle arrange | positioned so that it may be arrange | positioned on a wall surface and a nozzle opening may face the nozzle opening of a reducing agent spray nozzle. As a result, the reducing agent solution and the water vapor collide with each other across the exhaust flow, so that the exhaust flow is disturbed by the reducing agent solution and the water vapor, and the mixing and stirring of the three-phase flow of the exhaust gas, the reducing agent solution and the water vapor is promoted. To do. Therefore, the generation of ammonia is facilitated by the synergistic effect of the mixing and stirring effect of the three-phase flow and the temperature rising effect of water vapor. If the reducing agent spray nozzle and the water vapor spray nozzle are provided on the wall surface of the exhaust passage so as not to protrude into the exhaust passage, the exhaust flow pressure loss can be suppressed without obstructing the exhaust flow.

なお、還元剤噴霧ノズルが水蒸気噴霧ノズルに対して排気流れ方向上流側に配置され、還元剤噴霧ノズル及び水蒸気噴霧ノズルのノズル開口の噴霧方向が互いに対面するように、かつ両ノズルが排気流に対して斜めに配置されているとよい。還元剤溶液及び水蒸気を排気流に対して斜めに噴霧することで、排気通路の横断面方向の噴霧領域を広げることができる。また、水蒸気噴霧ノズルを排気流の上流側へ向けることで、三相流の混合撹拌をさらに促進できる。   The reducing agent spray nozzle is disposed upstream of the steam spray nozzle in the exhaust flow direction, the spray directions of the nozzle openings of the reducing agent spray nozzle and the steam spray nozzle face each other, and both nozzles are in the exhaust flow. It is good to arrange diagonally to it. By spraying the reducing agent solution and water vapor obliquely with respect to the exhaust flow, the spray region in the cross-sectional direction of the exhaust passage can be expanded. Moreover, the mixing and stirring of the three-phase flow can be further promoted by directing the water vapor spray nozzle toward the upstream side of the exhaust flow.

還元剤噴霧ノズルから噴霧される還元剤溶液の量は、水蒸気噴霧ノズルから噴霧される水蒸気の量より多い。そのため、還元剤噴霧ノズルのノズル開口を排気流上流側に向けると、排気の流れを妨害し、排気流の圧力損失が増加し、内燃機関の性能低下につながる。従って、還元剤噴霧ノズルを水蒸気噴霧ノズルより上流側に配置し、還元剤噴霧ノズルのノズル開口を下流側に向けることで、排気流の圧力損失を抑制し、内燃機関の性能低下をなくすことができる。   The amount of reducing agent solution sprayed from the reducing agent spray nozzle is greater than the amount of steam sprayed from the steam spray nozzle. Therefore, if the nozzle opening of the reducing agent spray nozzle is directed upstream of the exhaust flow, the flow of the exhaust is obstructed, the pressure loss of the exhaust flow increases, and the performance of the internal combustion engine is degraded. Therefore, by arranging the reducing agent spray nozzle upstream from the water vapor spray nozzle and directing the nozzle opening of the reducing agent spray nozzle to the downstream side, it is possible to suppress the pressure loss of the exhaust flow and eliminate the deterioration of the performance of the internal combustion engine. it can.

さらに、還元剤噴霧ノズル及び水蒸気噴霧ノズルのノズル開口の軸線が同一線上にあるように配置するとよい。これによって、還元剤溶液と水蒸気とが排気流の両側から排気流を挟んで正面から衝突するので、三相流の混合撹拌がさらに促進される。   Furthermore, it is good to arrange | position so that the axis line of the nozzle opening of a reducing agent spray nozzle and a water vapor spray nozzle may exist on the same line. As a result, the reducing agent solution and the water vapor collide from both sides of the exhaust flow with the exhaust flow sandwiched from the front, thereby further promoting the mixing and stirring of the three-phase flow.

本発明によれば、排気通路に溜まった凝縮水を凝縮水取出管を介して凝縮水貯留タンクに貯留させ、SCR触媒上流側の排気温度がアンモニア生成温度に達していないとき、凝縮水貯留タンクに溜まった凝縮水を加熱し、水蒸気にして排気通路に供給するようにしているので、外部から水を供給する必要がなく、簡易かつ低コストな手段で、アンモニアを生成させ、排気中のNOを浄化できる。また、水蒸気をポンプで圧送し、排気通路に噴射しているので、排気と水蒸気との混合を促進でき、さらに、ポスト噴射のような早期昇温運転に頼ることなく、排気温度を上昇できるので、燃費や排気性状が悪化しない。 According to the present invention, the condensed water stored in the exhaust passage is stored in the condensed water storage tank via the condensed water discharge pipe, and when the exhaust temperature upstream of the SCR catalyst does not reach the ammonia generation temperature, the condensed water storage tank Since the condensed water accumulated in the water is heated and supplied to the exhaust passage as water vapor, there is no need to supply water from the outside, ammonia is generated by a simple and low-cost means, and NO in the exhaust is exhausted. X can be purified. In addition, since water vapor is pumped by pump and injected into the exhaust passage, mixing of exhaust gas and water vapor can be promoted, and furthermore, the exhaust temperature can be raised without resorting to an early heating operation such as post injection. Fuel consumption and exhaust properties will not deteriorate.

本発明装置の一実施形態を示す全体構成図である。It is a whole block diagram which shows one Embodiment of this invention apparatus. 前記実施形態の尿素水溶液噴霧領域の排気通路を示す断面図である。It is sectional drawing which shows the exhaust passage of the urea aqueous solution spray area | region of the said embodiment.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明装置を車載用ディーゼルエンジン10に適用した一実施形態を図1及び図2に基づいて説明する。図1において、車載用ディーゼルエンジン10のシリンダブロック12の上部にシリンダヘッド14が設けられ、シリンダヘッド14に吸気管16及び排気管18が接続されている。排気管18は、過給機20の排気タービン20aに接続されている。排気タービン20aより下流側の排気管18には、酸素濃度センサー22が設けられている。酸素濃度センサー22の下流側には、酸化触媒24が設けられ、酸化触媒24の下流側にDPFフィルタ装置26が設けられている。   An embodiment in which the device of the present invention is applied to an in-vehicle diesel engine 10 will be described with reference to FIGS. 1 and 2. In FIG. 1, a cylinder head 14 is provided on an upper part of a cylinder block 12 of an in-vehicle diesel engine 10, and an intake pipe 16 and an exhaust pipe 18 are connected to the cylinder head 14. The exhaust pipe 18 is connected to the exhaust turbine 20 a of the supercharger 20. An oxygen concentration sensor 22 is provided in the exhaust pipe 18 on the downstream side of the exhaust turbine 20a. An oxidation catalyst 24 is provided on the downstream side of the oxygen concentration sensor 22, and a DPF filter device 26 is provided on the downstream side of the oxidation catalyst 24.

排気タービン20aからDPFフィルタ装置26が設けられた排気管18の領域は上下方向に配置され、垂直部18aの下流側では、曲折部18cを経てほぼ水平方向に配置されている。曲折部18c付近の水平部18bに、凝縮水が溜まりやすく、曲折部18c付近の水平部18bの底面に凝縮水取出管42の開口42aが開口している。開口42a付近の凝縮水取出管42に逆止弁44が設けられ、曲折部18cから凝縮水取出管42に取り出した凝縮水cが、排気管18側へ逆流するのを防止している。   The region of the exhaust pipe 18 where the DPF filter device 26 is provided from the exhaust turbine 20a is disposed in the vertical direction, and is disposed substantially in the horizontal direction via the bent portion 18c on the downstream side of the vertical portion 18a. Condensed water tends to accumulate in the horizontal portion 18b near the bent portion 18c, and an opening 42a of the condensed water discharge pipe 42 opens on the bottom surface of the horizontal portion 18b in the vicinity of the bent portion 18c. A check valve 44 is provided in the condensed water outlet pipe 42 in the vicinity of the opening 42a to prevent the condensed water c taken out from the bent portion 18c to the condensed water outlet pipe 42 from flowing back to the exhaust pipe 18 side.

水平部18bには、排気流れ方向上流側から順に、排気温度を検出する温度センサー28、排気中のNO濃度を検出するNOセンサー30、尿素水溶液を排気管18に供給する尿素水供給装置32、及び触媒コンバータ34が設けられている。触媒コンバータ34には、SCR触媒36が内蔵されている。尿素水供給装置32により、排気中に尿素水溶液が噴霧され、噴霧された尿素水溶液の尿素は、排気がアンモニア生成温度以上である場合、排気温度によってアンモニアに分解する。ここで生成したアンモニアは、下流側のSCR触媒36に吸着されたNOと反応し、窒素と水に分解する。 In the horizontal portion 18b, a temperature sensor 28 for detecting the exhaust temperature, a NO X sensor 30 for detecting the NO X concentration in the exhaust, and a urea water supply device for supplying an aqueous urea solution to the exhaust pipe 18 in order from the upstream side in the exhaust flow direction. 32 and a catalytic converter 34 are provided. An SCR catalyst 36 is built in the catalytic converter 34. The urea aqueous solution is sprayed into the exhaust gas by the urea water supply device 32, and the urea in the sprayed urea aqueous solution is decomposed into ammonia depending on the exhaust gas temperature when the exhaust gas is equal to or higher than the ammonia generation temperature. Ammonia formed here reacts with NO X adsorbed in the SCR catalyst 36 on the downstream side, is decomposed into nitrogen and water.

触媒コンバータ34の下流側排気管18には、触媒コンバータ通過後の排気中のNO濃度を検出するNOセンサー38が設けられ、NOセンサー38の下流側に、排気圧力を制御する圧力制御弁40が設けられている。圧力制御弁40は、その開閉度を調整することで排気圧力を高め、排気中に含まれる水蒸気の凝縮を促進する機能をもつ。 A downstream exhaust pipe 18 of the catalytic converter 34, NO X sensor 38 for detecting the concentration of NO X in the exhaust gas after the catalytic converter passing is provided on the downstream side of the NO X sensor 38, the pressure control for controlling the exhaust pressure A valve 40 is provided. The pressure control valve 40 has a function of increasing the exhaust pressure by adjusting the degree of opening and closing thereof and promoting the condensation of water vapor contained in the exhaust.

逆止弁44の下流側凝縮水取出管42に、凝縮水貯留タンク46が設けられている。凝縮水貯留タンク46の内周面には、凝縮水貯留タンク46に貯留された凝縮水を加熱する電熱ヒータ48が設けられ、また、加熱された凝縮水の温度を検出する温度センサー49が設けられている。また、凝縮水貯留タンク46には、水蒸気供給管50が接続され、水蒸気供給管50の他端は、尿素水溶液供給部の直ぐ下流側であって、かつ触媒コンバータ34の上流側排気管18に接続されている。水蒸気供給管50には、凝縮水貯留タンク46内の凝縮水を排気管18に圧送するポンプ52が設けられ、ポンプ52の下流側に流量調整弁54が設けられている。   A condensed water storage tank 46 is provided in the condensed water outlet pipe 42 on the downstream side of the check valve 44. On the inner peripheral surface of the condensed water storage tank 46, an electric heater 48 for heating the condensed water stored in the condensed water storage tank 46 is provided, and a temperature sensor 49 for detecting the temperature of the heated condensed water is provided. It has been. In addition, a steam supply pipe 50 is connected to the condensed water storage tank 46, and the other end of the steam supply pipe 50 is immediately downstream of the urea aqueous solution supply unit and is connected to the upstream exhaust pipe 18 of the catalytic converter 34. It is connected. The steam supply pipe 50 is provided with a pump 52 that pumps the condensed water in the condensed water storage tank 46 to the exhaust pipe 18, and a flow rate adjusting valve 54 is provided downstream of the pump 52.

前記各センサーの検出値は制御装置56に入力される。制御装置56は、これらの検出値に基づいて、電熱ヒータ48の電源装置48aを制御し、電熱ヒータ48の加熱量を調整したり、ポンプ52の流量を制御したり、あるいは流量調整弁54又は圧力制御弁40の開度を調整する。   The detection value of each sensor is input to the control device 56. Based on these detected values, the control device 56 controls the power supply device 48a of the electric heater 48, adjusts the heating amount of the electric heater 48, controls the flow rate of the pump 52, or controls the flow rate adjusting valve 54 or The opening degree of the pressure control valve 40 is adjusted.

かかる構成において、車載用ディーゼルエンジン10の運転によって、シリンダヘッド14から排気eが排出され、排気管18に排気された排気eは、過給機20の排気タービン20aによって排気管18の下流側に送られる。排気中のNOは酸化触媒24でNOに転換され、DPFフィルタ装置26に捕獲された粒子状物質は、NOの酸化作用で燃焼除去される。DPFフィルタ装置26の下流側に設けられた触媒コンバータ34では、アンモニアによってSCR触媒36に吸着されたNOが還元され、無害化される。 In this configuration, the exhaust e is discharged from the cylinder head 14 by the operation of the on-board diesel engine 10, and the exhaust e exhausted to the exhaust pipe 18 is downstream of the exhaust pipe 18 by the exhaust turbine 20 a of the supercharger 20. Sent. NO in the exhaust gas is converted into NO 2 by the oxidation catalyst 24, and the particulate matter captured by the DPF filter device 26 is burned and removed by the oxidation action of NO 2 . In the catalytic converter 34 provided on the downstream side of the DPF filter device 26, NO X adsorbed on the SCR catalyst 36 is reduced by ammonia and rendered harmless.

車載用ディーゼルエンジン10の停止中、排気管18の垂直部位18aから流下して曲折部18cに貯留した凝縮水cは、曲折部18cの下面に開口した開口42aから凝縮水取出管42に取り出される。凝縮水取出管42は、上下方向に配置されているので、凝縮水cは、重力の作用で凝縮水取出管42を落下し、凝縮水貯留タンク46に貯留される。車載用ディーゼルエンジン10の始動時又は低速・低負荷走行時等に、触媒コンバータ34の上流側排気がアンモニア生成温度に達しない場合がある。   While the vehicle-mounted diesel engine 10 is stopped, the condensed water c flowing down from the vertical portion 18a of the exhaust pipe 18 and stored in the bent portion 18c is taken out from the opening 42a opened on the lower surface of the bent portion 18c to the condensed water outlet pipe 42. . Since the condensed water outlet pipe 42 is arranged in the vertical direction, the condensed water c falls on the condensed water outlet pipe 42 by the action of gravity and is stored in the condensed water storage tank 46. When the in-vehicle diesel engine 10 is started or when running at a low speed / low load, the exhaust gas upstream of the catalytic converter 34 may not reach the ammonia generation temperature.

そこで、温度センサー28で排気温度を検出し、この検出値がアンモニア生成温度に達していない時、制御装置56によって、電熱ヒータ48をオンにし、凝縮水貯留タンク46に貯留された凝縮水cを加熱し水蒸気にする。次に、制御装置56によって流量調整弁54を開動作させると共に、凝縮水ポンプ52を稼働させる。これによって、水蒸気を水蒸気供給管50から触媒コンバータ34の上流側排気管18に供給する。   Therefore, the exhaust gas temperature is detected by the temperature sensor 28, and when the detected value does not reach the ammonia generation temperature, the electric heater 48 is turned on by the controller 56, and the condensed water c stored in the condensed water storage tank 46 is removed. Heat to steam. Next, the flow control valve 54 is opened by the control device 56 and the condensed water pump 52 is operated. As a result, steam is supplied from the steam supply pipe 50 to the upstream exhaust pipe 18 of the catalytic converter 34.

図2により、尿素水供給装置32付近の排気管18の構成を説明する。尿素水供給装置32は、排気管18に設けられた尿素水噴霧ノズル58を備え、尿素水噴霧ノズル58によって排気中に尿素水溶液が噴霧される。尿素水噴霧ノズル58のやや下流側排気管18の壁部に、水蒸気噴霧ノズル60が設けられ、水蒸気噴霧ノズル60に水蒸気供給管50が接続されている。水蒸気噴霧ノズル60から水蒸気sが排気中に噴霧される。尿素水噴霧ノズル58は、水平部18bの上壁に装着され、排気下流側に向けて斜めに配置されている。一方、水蒸気噴霧ノズル60は、水平部18bの底壁に装着され、排気上流側に向けて斜めに配置されている。   The configuration of the exhaust pipe 18 in the vicinity of the urea water supply device 32 will be described with reference to FIG. The urea water supply device 32 includes a urea water spray nozzle 58 provided in the exhaust pipe 18, and the urea aqueous solution is sprayed into the exhaust gas by the urea water spray nozzle 58. A steam spray nozzle 60 is provided on the wall portion of the exhaust pipe 18 slightly downstream of the urea water spray nozzle 58, and the steam supply pipe 50 is connected to the steam spray nozzle 60. Water vapor s is sprayed into the exhaust gas from the water vapor spray nozzle 60. The urea water spray nozzle 58 is mounted on the upper wall of the horizontal portion 18b and is disposed obliquely toward the exhaust downstream side. On the other hand, the water vapor spray nozzle 60 is mounted on the bottom wall of the horizontal portion 18b and is disposed obliquely toward the exhaust upstream side.

即ち、尿素水噴霧ノズル58と水蒸気噴霧ノズル60とは、水平部18bの上壁と底壁とに排気通路を挟んで、互いに対面している。また、両ノズルのノズル開口の軸線xが一致するように、両ノズル開口の位置及び方向が設定されている。そのため、排気中に噴霧された尿素水溶液と水蒸気とは、互いに両側から排気流を巻き込みながら正面衝突する。従って、排気、尿素水溶液及び水蒸気の三相流の混合撹拌が促進される。これによって、尿素水噴霧ノズル58付近及びその下流側の排気は、急速昇温し、アンモニア生成温度に達する。   That is, the urea water spray nozzle 58 and the water vapor spray nozzle 60 face each other with the exhaust passage between the upper wall and the bottom wall of the horizontal portion 18b. Further, the positions and directions of the nozzle openings are set so that the axes x of the nozzle openings of both nozzles coincide. For this reason, the urea aqueous solution and the water vapor sprayed in the exhaust gas collide with each other while entraining the exhaust gas flow from both sides. Accordingly, mixing and stirring of the exhaust gas, the urea aqueous solution, and the three-phase flow of water vapor are promoted. As a result, the temperature of the exhaust near the urea water spray nozzle 58 and the downstream thereof rapidly rises to reach the ammonia generation temperature.

制御装置56には、温度センサー28及び温度センサー49の検出値が入力される。制御装置56は、温度センサー28の検出値が200℃以上の設定値となるように、凝縮水貯留タンク46内の凝縮水の加熱量又は流量調整弁54の開度を調整し、排気管18に噴霧される水蒸気の温度又は流量を調整する。これによって、尿素水溶液供給部付近の排気温度が設定値に維持されるので、尿素からアンモニアが確実に生成される。そのため、触媒コンバータ50でのNOの還元反応を促進して、NOを無害化できる。 Detection values of the temperature sensor 28 and the temperature sensor 49 are input to the control device 56. The control device 56 adjusts the heating amount of the condensed water in the condensed water storage tank 46 or the opening degree of the flow rate adjusting valve 54 so that the detected value of the temperature sensor 28 becomes a set value of 200 ° C. or more, and the exhaust pipe 18. Adjust the temperature or flow rate of water vapor sprayed on As a result, the exhaust temperature in the vicinity of the urea aqueous solution supply unit is maintained at the set value, so that ammonia is reliably generated from urea. Therefore, the NO X reduction reaction in the catalytic converter 50 can be promoted to make NO X harmless.

本実施形態によれば、排気に含まれる凝縮水を取り出し、この凝縮水を排気管18に供給するようにしているので、外部から水を供給する必要がなく、外部水の供給設備を不要にできる。また、この凝縮水を加熱し水蒸気として、尿素水溶液供給部付近の排気管18に供給しているので、排気をアンモニア生成温度に昇温できる。そのため、排気温度がアンモニア生成温度に達していない時でも、排気温度を上昇させてアンモニアを生成できる。これによって、車載用ディーゼルエンジン10に運転中、アンモニアの生成を常に確実に行うことができる。さらに、ポスト噴射のような早期昇温運転に頼ることなく、排気温度を上昇できるので、燃費や排気性状が悪化しない。   According to the present embodiment, the condensed water contained in the exhaust is taken out, and this condensed water is supplied to the exhaust pipe 18, so there is no need to supply water from the outside, and no external water supply facility is required. it can. Further, since this condensed water is heated and supplied as water vapor to the exhaust pipe 18 in the vicinity of the urea aqueous solution supply section, the exhaust can be heated to the ammonia production temperature. Therefore, even when the exhaust temperature does not reach the ammonia generation temperature, ammonia can be generated by raising the exhaust temperature. As a result, ammonia can always be reliably generated during operation of the in-vehicle diesel engine 10. Furthermore, since the exhaust temperature can be raised without relying on an early temperature raising operation such as post injection, fuel consumption and exhaust properties are not deteriorated.

また、温度センサー28及び49の検出値から、制御装置56によって、排気管18に噴霧される水蒸気の温度又は流量を調整し、尿素水溶液供給部付近の排気温度が200℃以上の設定値となるように制御しているので、凝縮水を過不足なく加熱でき、省エネを達成できる。また、凝縮水貯留タンク46の上流側で、凝縮水取出管42に逆止弁44を設けているので、水蒸気となった凝縮水が水平部18bに逆流するおそれがなくなる。   Further, the temperature or flow rate of water vapor sprayed on the exhaust pipe 18 is adjusted by the control device 56 based on the detected values of the temperature sensors 28 and 49, and the exhaust temperature near the urea aqueous solution supply unit becomes a set value of 200 ° C. or more. Therefore, it is possible to heat the condensed water without excess and deficiency and achieve energy saving. Further, since the check valve 44 is provided in the condensed water take-out pipe 42 on the upstream side of the condensed water storage tank 46, there is no possibility that the condensed water that has become water vapor flows back to the horizontal portion 18b.

また、凝縮水の水蒸気をポンプ52で水蒸気噴霧ノズル60に圧送しているので、水蒸気噴霧ノズル60から高圧で水蒸気を噴霧でき、排気e及び尿素水溶液との混合撹拌を促進できる。また、尿素水噴霧ノズル58のノズル開口と水蒸気噴霧ノズル60のノズル開口とは、排気流を挟んで互いに対面するように配置され、かつ両ノズル開口の軸線xが一致しているので、尿素水溶液と水蒸気とは排気流を挟んで正面衝突する。これによって、排気、尿素水溶液及び水蒸気の三相流の混合撹拌が促進される。   Further, since the water vapor of the condensed water is pumped to the water vapor spray nozzle 60 by the pump 52, the water vapor can be sprayed from the water vapor spray nozzle 60 at a high pressure, and mixing and stirring with the exhaust e and the urea aqueous solution can be promoted. In addition, the nozzle opening of the urea water spray nozzle 58 and the nozzle opening of the water vapor spray nozzle 60 are arranged so as to face each other across the exhaust flow, and the axes x of both nozzle openings coincide with each other. And steam collide head-on across the exhaust stream. This facilitates mixing and stirring of the exhaust gas, the urea aqueous solution, and the three-phase flow of water vapor.

また、尿素水噴霧ノズル58及び水蒸気噴霧ノズル60が排気通路の壁面に配置されて排気通路に突出せず、かつ噴霧量が多い尿素水溶液を排気流の下流側に向かって噴霧しているので、排気の流れを大きく乱さなくて済む。これによって、排気流の圧力損失を抑制できる。また、尿素水溶液及び水蒸気sを排気流に対して斜め方向に噴霧しているので、これらの排気中での噴霧領域を広げることができ、さらに水蒸気噴霧ノズル60を排気流の上流側に向けているので、三相の混合撹拌効果を向上できる。この混合撹拌効果と水蒸気の噴霧による排気の昇温との相乗効果によって、尿素水溶液噴霧域及びその下流側の排気を急速に200℃以上に昇温できる。従って、アンモニアの生成とSCR触媒36でのNO浄化を確実に行うことができる。 Further, since the urea water spray nozzle 58 and the water vapor spray nozzle 60 are disposed on the wall surface of the exhaust passage and do not protrude into the exhaust passage, and spray a urea aqueous solution having a large spray amount toward the downstream side of the exhaust flow, It is not necessary to greatly disturb the exhaust flow. Thereby, the pressure loss of the exhaust flow can be suppressed. Further, since the urea aqueous solution and the water vapor s are sprayed in an oblique direction with respect to the exhaust flow, the spray region in the exhaust can be expanded, and the water vapor spray nozzle 60 is directed toward the upstream side of the exhaust flow. Therefore, the three-phase mixing and stirring effect can be improved. Due to the synergistic effect of the mixed stirring effect and the temperature rise of the exhaust gas by spraying water vapor, the urea aqueous solution spray area and the exhaust gas downstream thereof can be rapidly heated to 200 ° C. or higher. Therefore, it is possible to reliably perform NO X purification in the generation of ammonia and the SCR catalyst 36.

さらに、触媒コンバータ34の下流側排気管18に圧力制御弁40を設けているので、曲折部18cに溜まった凝縮水が少量のとき、圧力制御弁40の開度を調整して排気管18ないの圧力を高めることで、排気中水蒸気の凝縮を促進し、凝縮水を増加できる。これによって、排気管18に送る凝縮水量を確保できる。   Further, since the pressure control valve 40 is provided in the exhaust pipe 18 on the downstream side of the catalytic converter 34, when the amount of condensed water accumulated in the bent portion 18c is small, the opening degree of the pressure control valve 40 is adjusted and the exhaust pipe 18 is not provided. By increasing the pressure, the condensation of water vapor in the exhaust can be promoted and the condensed water can be increased. Thereby, the amount of condensed water sent to the exhaust pipe 18 can be secured.

なお、本実施形態において、凝縮水貯留タンク46に電熱ヒータ48を設ける代わりに、水蒸気供給管50に電熱ヒータ48、あるいは他の加熱装置を設け、水蒸気供給管50を流れる凝縮水を加熱して水蒸気にするようにしてもよい。   In this embodiment, instead of providing the electric heater 48 in the condensed water storage tank 46, the electric heater 48 or other heating device is provided in the steam supply pipe 50 to heat the condensed water flowing through the steam supply pipe 50. Steam may be used.

本発明によれば、SCR浄化装置を備えた内燃機関において、SCR触媒上流側の排気温度が低いときでも、余分な付帯設備を不要として、排気温度をアンモニア生成温度まで上昇でき、SCR触媒によるNO浄化反応を維持できる。 According to the present invention, in an internal combustion engine equipped with an SCR purifying device, even when the exhaust temperature upstream of the SCR catalyst is low, no extra incidental equipment is required, and the exhaust temperature can be increased to the ammonia generation temperature. X purification reaction can be maintained.

10 車載用ディーゼルエンジン
12 シリンダブロック
14 シリンダヘッド
16 吸気管
18 排気管
20 過給機
20a 排気タービン
22 酸素濃度センサー
24 酸化触媒
26 DPF装置
28、49 温度センサー
30,38 NOセンサー
32 尿素水供給装置
34 触媒コンバータ
36 SCR触媒
40 圧力制御弁
42 凝縮水取出管
42a 開口
44 逆止弁
46 凝縮水貯留タンク
48 電熱ヒータ
48a 電源装置
50 水蒸気供給管
52 ポンプ
54 流量調整弁
56 制御装置
58 尿素水噴霧ノズル
60 水蒸気噴霧ノズル
c 凝縮水
e 排気
DESCRIPTION OF SYMBOLS 10 Vehicle-mounted diesel engine 12 Cylinder block 14 Cylinder head 16 Intake pipe 18 Exhaust pipe 20 Supercharger 20a Exhaust turbine 22 Oxygen concentration sensor 24 Oxidation catalyst 26 DPF device 28, 49 Temperature sensor 30, 38 NO X sensor 32 Urea water supply device 34 Catalytic Converter 36 SCR Catalyst 40 Pressure Control Valve 42 Condensed Water Extraction Pipe 42a Opening 44 Check Valve 46 Condensed Water Storage Tank 48 Electric Heater 48a Power Supply Device 50 Steam Supply Pipe 52 Pump 54 Flow Control Valve 56 Control Device 58 Urea Water Spray Nozzle 60 Steam spray nozzle c Condensate e Exhaust

Claims (4)

排気通路に設けられたNO選択還元触媒と、該NO選択還元触媒の上流側排気通路に還元剤溶液を供給する還元剤供給装置とを備え、還元剤を加水分解してNHを生成させ、NO選択還元触媒の触媒作用の元で排気中のNOをNHと反応させて無害化する内燃機関の排ガス浄化装置において、
排気通路の凝縮水貯留部に開口する凝縮水取出路と、
該凝縮水取出路に接続された凝縮水貯留タンクと、
入口側が該凝縮水貯留タンクに接続され、出口端が前記NO選択還元触媒より上流側の排気通路に接続された水蒸気供給路と、
前記凝縮水貯留タンクに貯留された凝縮水又は前記水蒸気供給路を流れる凝縮水を加熱して水蒸気にする加熱装置と、
該水蒸気供給路に設けられ、水蒸気を排気通路に向けて圧送するポンプとを備え、
前記水蒸気を前記NO選択還元触媒の上流側排気通路に供給するようにしたことを特徴とする内燃機関の排気浄化装置。
A NO X selective reduction catalyst provided in the exhaust passage, and a reducing agent supply device that supplies a reducing agent solution to the upstream exhaust passage of the NO X selective reduction catalyst, hydrolyzing the reducing agent to generate NH 3 An exhaust gas purifying apparatus for an internal combustion engine that renders NO X in exhaust gas to be harmless by reacting with NH 3 under the catalytic action of a NO X selective reduction catalyst,
A condensate outlet that opens to the condensate reservoir in the exhaust passage;
A condensate storage tank connected to the condensate outlet,
A water vapor supply path having an inlet side connected to the condensed water storage tank and an outlet end connected to an exhaust passage upstream of the NO X selective reduction catalyst;
A heating device that heats the condensed water stored in the condensed water storage tank or the condensed water flowing through the water vapor supply path into water vapor; and
A pump provided in the water vapor supply path, for pumping the water vapor toward the exhaust passage,
An exhaust gas purification apparatus for an internal combustion engine, characterized in that the steam is supplied to an upstream exhaust passage of the NO X selective reduction catalyst.
還元剤溶液の供給領域に流入する排気の温度を検出する温度センサーと、
前記水蒸気供給路に設けられた流量調整弁と、
前記温度センサーの検出値が入力され、該検出値に基づいて前記加熱装置の加熱量又は前記流量調整弁の開度を調整し、還元剤溶液の供給領域に流入する水蒸気の温度又は流量を調整して該領域の排気の温度を設定温度に制御する制御装置とを備えていることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
A temperature sensor for detecting the temperature of the exhaust gas flowing into the supply region of the reducing agent solution;
A flow rate adjusting valve provided in the water vapor supply path;
The detection value of the temperature sensor is input, and based on the detection value, the heating amount of the heating device or the opening of the flow rate adjustment valve is adjusted to adjust the temperature or flow rate of water vapor flowing into the supply region of the reducing agent solution. The exhaust emission control device for an internal combustion engine according to claim 1, further comprising a control device that controls the temperature of the exhaust gas in the region to a set temperature.
前記凝縮水取出路に凝縮水の逆流を防止する逆止弁を設けたことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein a check valve for preventing a reverse flow of the condensed water is provided in the condensed water outlet passage. 前記還元剤供給装置を構成し、排気通路の壁面から還元剤溶液を排気通路に噴霧する還元剤噴霧ノズルと、
水蒸気を排気通路に噴霧すると共に、前記還元剤噴霧ノズルに対して対向する壁面に配置され、ノズル開口が前記還元剤噴霧ノズルのノズル開口に対面するように配置された水蒸気噴霧ノズルとを備えていることを特徴とする請求項1〜3の何れか1項に記載の内燃機関の排気浄化装置。
Constituting the reducing agent supply device, reducing agent spray nozzle for spraying the reducing agent solution from the wall surface of the exhaust passage to the exhaust passage;
A water vapor spray nozzle that sprays water vapor on the exhaust passage and is disposed on the wall surface facing the reducing agent spray nozzle, and the nozzle opening is disposed so as to face the nozzle opening of the reducing agent spray nozzle. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust gas purification apparatus is an internal combustion engine.
JP2011275421A 2011-12-16 2011-12-16 Exhaust emission control device of internal combustion engine Pending JP2013124642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011275421A JP2013124642A (en) 2011-12-16 2011-12-16 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275421A JP2013124642A (en) 2011-12-16 2011-12-16 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2013124642A true JP2013124642A (en) 2013-06-24

Family

ID=48776056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275421A Pending JP2013124642A (en) 2011-12-16 2011-12-16 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2013124642A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172338A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control system
JP2015172337A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control system
JP2015172336A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control device of internal combustion engine
KR20170045994A (en) * 2015-10-20 2017-04-28 현대중공업 주식회사 Apparatus for Energy Saving Ammonia Generation in SCR System
KR101877641B1 (en) * 2016-11-29 2018-07-11 재단법인 자동차융합기술원 Degrading apparatus of catalyst using oxidation catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514828A (en) * 2000-12-01 2004-05-20 フューエル テック インコーポレーテッド Selective catalytic reduction of NOx enabled by side-stream urea decomposition
JP2007231862A (en) * 2006-03-02 2007-09-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010043585A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010053847A (en) * 2008-03-19 2010-03-11 Denso Corp Exhaust emission control system for internal combustion engine
JP2010144632A (en) * 2008-12-19 2010-07-01 Ud Trucks Corp Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514828A (en) * 2000-12-01 2004-05-20 フューエル テック インコーポレーテッド Selective catalytic reduction of NOx enabled by side-stream urea decomposition
JP2007231862A (en) * 2006-03-02 2007-09-13 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010053847A (en) * 2008-03-19 2010-03-11 Denso Corp Exhaust emission control system for internal combustion engine
JP2010043585A (en) * 2008-08-11 2010-02-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2010144632A (en) * 2008-12-19 2010-07-01 Ud Trucks Corp Exhaust emission control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015172338A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control system
JP2015172337A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control system
JP2015172336A (en) * 2014-03-11 2015-10-01 三菱自動車工業株式会社 Exhaust emission control device of internal combustion engine
KR20170045994A (en) * 2015-10-20 2017-04-28 현대중공업 주식회사 Apparatus for Energy Saving Ammonia Generation in SCR System
KR102234783B1 (en) 2015-10-20 2021-03-31 한국조선해양 주식회사 Apparatus for Energy Saving Ammonia Generation in SCR System
KR101877641B1 (en) * 2016-11-29 2018-07-11 재단법인 자동차융합기술원 Degrading apparatus of catalyst using oxidation catalyst

Similar Documents

Publication Publication Date Title
JP5804376B2 (en) Exhaust gas purification device for internal combustion engine
US10060319B2 (en) Internal combustion engine
JP4470987B2 (en) Reducing agent injection control device
EP2826974B1 (en) Exhaust gas purification device
JP3718208B2 (en) Engine exhaust purification system
JP2013124642A (en) Exhaust emission control device of internal combustion engine
JP5861920B2 (en) Exhaust gas purification device for internal combustion engine
JP5975320B2 (en) Exhaust gas purification device for internal combustion engine
JP2004270609A (en) Emission control device
JP2009114910A (en) Exhaust gas cleaning apparatus
JP4728124B2 (en) Exhaust purification device
JP2010144632A (en) Exhaust emission control device
JP2007182804A (en) Exhaust emission control device
JP5915927B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264222A (en) Exhaust emission control device
JP2007182803A (en) Exhaust emission control device
CN107109990B (en) Selective catalytic reduction system and power plant comprising same
JP4581753B2 (en) Exhaust gas purification device for internal combustion engine
JP2005061362A (en) Exhaust emission control device
JP2008232089A (en) Exhaust emission control system
CN102926847B (en) Selective catalytic reduction urea spouting correction method, device and system
JP2005214172A (en) Engine exhaust emission control device
JP2004156471A (en) Denitrator
WO2011067966A1 (en) Engine exhaust-air purifying apparatus
CN114382581A (en) High-efficient low back pressure aftertreatment device of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150904