JP2007231862A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2007231862A
JP2007231862A JP2006055673A JP2006055673A JP2007231862A JP 2007231862 A JP2007231862 A JP 2007231862A JP 2006055673 A JP2006055673 A JP 2006055673A JP 2006055673 A JP2006055673 A JP 2006055673A JP 2007231862 A JP2007231862 A JP 2007231862A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
water
exhaust gas
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006055673A
Other languages
Japanese (ja)
Inventor
Takashi Shitamachi
孝 下町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006055673A priority Critical patent/JP2007231862A/en
Publication of JP2007231862A publication Critical patent/JP2007231862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more quickly raise temperature of an exhaust emission control catalyst to activation temperature and inhibit deterioration of exhaust emission in an exhaust control device for an internal combustion engine provided with an exhaust emission control catalyst provided in an exhaust gas passage of the internal combustion engine. <P>SOLUTION: When temperature of the exhaust emission control catalyst 3 is lower than activation temperature, steam in exhaust gas is removed by a steam removing means 4 provided in an exhaust gas passage 2 on an upstream side of the exhaust emission control catalyst 3, and the removed steam is stored in a condensed water storing means 5 provided separately from the exhaust gas passage 2 as condensed water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気通路に設けられた排気浄化触媒を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine provided with an exhaust gas purification catalyst provided in an exhaust passage of the internal combustion engine.

内燃機関の排気通路に設けられた排気浄化触媒を備えた内燃機関の排気浄化装置において、排気浄化触媒より上流側の排気通路に排気が衝突する衝突板を設置すると共に、排気通路の衝突板の下方に位置する部分に凹部を設ける技術が知られている(例えば、特許文献1参照。)。このような構成によれば、衝突板によって排気中の水分が捕捉され、この捕捉された水分が凹部に溜まる。これにより、排気浄化触媒への水分の供給が抑制される。従って、排気浄化触媒をより速やかに昇温させることが可能となる。   An exhaust gas purification apparatus for an internal combustion engine having an exhaust gas purification catalyst provided in an exhaust gas passage of the internal combustion engine is provided with a collision plate for collision of exhaust gas with an exhaust gas passage upstream of the exhaust gas purification catalyst, A technique is known in which a recess is provided in a portion located below (see, for example, Patent Document 1). According to such a configuration, moisture in the exhaust is captured by the collision plate, and the captured moisture is accumulated in the recess. Thereby, the supply of moisture to the exhaust purification catalyst is suppressed. Therefore, it is possible to raise the temperature of the exhaust purification catalyst more quickly.

しかしながら、上記のような構成の場合、排気温度が上昇してくると、凹部に溜まった水分が蒸発し再度水蒸気となって排気浄化触媒に流入することになる。水蒸気が排気浄化触媒に流入すると、該排気浄化触媒において排気中のHCの水蒸気改質反応が起こるために該排気浄化触媒の昇温が妨げられる虞がある。また、排気浄化触媒の温度が十分に上昇していない状態でHCの水蒸気改質反応が起こると排気エミッションの悪化を招いたりする虞がある。
特開平5−65819号公報 特開平10−311215号公報 特開2001−259415号公報
However, in the case of the configuration as described above, when the exhaust gas temperature rises, the water accumulated in the recesses evaporates and becomes steam again and flows into the exhaust purification catalyst. When the steam flows into the exhaust purification catalyst, a steam reforming reaction of HC in the exhaust occurs in the exhaust purification catalyst, so that there is a possibility that the temperature rise of the exhaust purification catalyst is hindered. Further, if the steam reforming reaction of HC occurs in a state where the temperature of the exhaust purification catalyst is not sufficiently increased, there is a risk of deteriorating exhaust emission.
JP-A-5-65819 Japanese Patent Laid-Open No. 10-311215 JP 2001-259415 A

本発明は、内燃機関の排気通路に設けられた排気浄化触媒を備えた内燃機関の排気浄化装置において、排気浄化触媒を活性温度にまでより速やかに昇温することが出来ると共に排気エミッションの悪化を抑制することが出来る技術を提供することを課題とする。   The present invention provides an internal combustion engine exhaust gas purification apparatus provided with an exhaust gas purification catalyst provided in an exhaust passage of an internal combustion engine, which can quickly raise the temperature of the exhaust gas purification catalyst to the activation temperature and reduce exhaust emission. It is an object to provide a technique that can be suppressed.

本発明は、排気浄化触媒の温度が活性温度より低いときに該排気浄化触媒より上流側の排気通路において排気中の水蒸気を除去し、除去された水蒸気を排気通路とは別に設けられた凝縮水貯留手段に凝縮水として貯留するものである。   The present invention removes water vapor in the exhaust in the exhaust passage upstream of the exhaust purification catalyst when the temperature of the exhaust purification catalyst is lower than the activation temperature, and the removed water vapor is condensed water provided separately from the exhaust passage. It is stored as condensed water in the storage means.

より詳しくは、本発明に係る内燃機関の排気浄化装置は、
内燃機関の排気通路に設けられた排気浄化触媒と、
該排気浄化触媒より上流側の前記排気通路に設けられ排気中の水蒸気を除去する水蒸気除去手段と、
前記排気通路とは別に設けられ前記水蒸気除去手段によって除去された水蒸気を凝縮水として貯留する凝縮水貯留手段と、
前記排気浄化触媒の温度を検出する温度検出手段と、を備え、
前記水蒸気除去手段は、前記温度検出手段によって検出される前記排気浄化触媒の温度が活性温度より低いときに排気中の水蒸気を除去することを特徴とする。
More specifically, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
Water vapor removal means for removing water vapor in the exhaust gas provided in the exhaust passage upstream of the exhaust purification catalyst;
Condensate water storage means that is provided separately from the exhaust passage and stores the water vapor removed by the water vapor removal means as condensed water;
Temperature detecting means for detecting the temperature of the exhaust purification catalyst,
The water vapor removing means removes water vapor in the exhaust when the temperature of the exhaust purification catalyst detected by the temperature detecting means is lower than the activation temperature.

本発明においては、凝縮水貯留手段は排気通路とは別に設けられている。そのため、一旦凝縮水貯留手段に貯留された凝縮水が排気温度の上昇に伴って蒸発し再度水蒸気となって排気浄化触媒に流入するのを抑制することが出来る。   In the present invention, the condensed water storage means is provided separately from the exhaust passage. Therefore, it is possible to prevent the condensed water once stored in the condensed water storage means from evaporating as the exhaust gas temperature rises and flowing again into the exhaust purification catalyst as water vapor.

そのため、本発明によれば、排気浄化触媒の温度が活性温度より低いときは該排気浄化触媒への水蒸気の流入をより抑制することが出来る。その結果、排気浄化触媒の温度が活性温度にまで上昇していない状態で該排気浄化触媒において排気中のHCの水蒸気改質反応が起こるのを抑制することが出来る。従って、排気浄化触媒を活性温度にまでより速やかに昇温することが出来、また、排気エミッションが悪化するのを抑制することが出来る。   Therefore, according to the present invention, when the temperature of the exhaust purification catalyst is lower than the activation temperature, it is possible to further suppress the inflow of water vapor into the exhaust purification catalyst. As a result, it is possible to suppress the occurrence of the steam reforming reaction of HC in the exhaust in the exhaust purification catalyst in a state where the temperature of the exhaust purification catalyst has not risen to the activation temperature. Therefore, the temperature of the exhaust purification catalyst can be raised more quickly to the activation temperature, and deterioration of exhaust emission can be suppressed.

本発明においては、排気浄化触媒を経由して冷却水が流れる冷却水通路をさらに備えても良い。このような場合、排気浄化触媒の温度が活性温度の下限値より高い第一の所定温度以上のときに、凝縮水貯留手段に貯留された凝縮水を冷却水通路に冷却水として流しても良い。   In the present invention, a cooling water passage through which cooling water flows via the exhaust purification catalyst may be further provided. In such a case, when the temperature of the exhaust purification catalyst is equal to or higher than a first predetermined temperature that is higher than the lower limit value of the activation temperature, the condensed water stored in the condensed water storage means may flow as cooling water in the cooling water passage. .

ここで、第一の所定温度は、排気浄化触媒が過昇温する虞があると判断出来る閾値となる温度である。   Here, the first predetermined temperature is a temperature that becomes a threshold at which it can be determined that the exhaust purification catalyst may overheat.

上記によれば、排気浄化触媒の温度が第一の所定温度以上のときは凝縮水貯留手段に貯留された凝縮水によって排気浄化触媒が冷却される。従って、排気浄化触媒の過昇温を抑制することが出来、以って、排気浄化触媒が過剰に劣化するのを抑制することが出来る。   According to the above, when the temperature of the exhaust purification catalyst is equal to or higher than the first predetermined temperature, the exhaust purification catalyst is cooled by the condensed water stored in the condensed water storage means. Accordingly, it is possible to suppress an excessive temperature rise of the exhaust purification catalyst, and thus it is possible to suppress the exhaust purification catalyst from being excessively deteriorated.

本発明においては、排気浄化触媒より上流側且つ水蒸気除去手段より下流側の排気通路に排気中に水を添加する水添加手段をさらに備えても良い。また、排気浄化触媒に流入する排気の空燃比を検出する空燃比検出手段をさらに備えても良い。これらを備えると共に排気浄化触媒が酸化機能を有する触媒である場合、排気浄化触媒の温度が活性温度の下限値より高い第二の所定温度以上であり且つ排気浄化触媒に流入する排気の空燃比が所定空燃比以下のときに、凝縮水貯留手段に貯留された凝縮水を水添加手段によって排気中に添加しても良い。   In the present invention, water addition means for adding water into the exhaust gas may further be provided in the exhaust passage upstream from the exhaust purification catalyst and downstream from the water vapor removal means. Further, an air-fuel ratio detecting means for detecting the air-fuel ratio of the exhaust flowing into the exhaust purification catalyst may be further provided. When the exhaust purification catalyst is a catalyst having an oxidation function, the exhaust purification catalyst temperature is equal to or higher than a second predetermined temperature higher than the lower limit value of the activation temperature, and the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is When the air / fuel ratio is equal to or lower than the predetermined air / fuel ratio, the condensed water stored in the condensed water storage means may be added to the exhaust gas by the water addition means.

ここで、第二の所定温度とは、排気浄化触媒が十分に活性していると判断出来る閾値となる温度である。該第二の所定温度は排気浄化触媒が過昇温する虞があると判断出来る閾値よりも低い温度である。また、所定空燃比とは、排気浄化触媒においてHCを酸化するための排気中の酸素が不足していると判断出来る閾値となる空燃比である。   Here, the second predetermined temperature is a temperature that becomes a threshold at which it can be determined that the exhaust purification catalyst is sufficiently active. The second predetermined temperature is a temperature lower than a threshold at which it can be determined that the exhaust purification catalyst may overheat. Further, the predetermined air-fuel ratio is an air-fuel ratio that becomes a threshold at which it can be determined that oxygen in exhaust gas for oxidizing HC in the exhaust purification catalyst is insufficient.

本発明では、排気浄化触媒の温度が第二の所定温度以上であり且つ排気浄化触媒に流入する排気の空燃比が所定空燃比以下のときは、凝縮水貯留手段に貯留された凝縮水が水添加手段によって排気中に添加される。添加された凝縮水は水蒸気となって排気と共に排気浄化触媒に流入する。   In the present invention, when the temperature of the exhaust purification catalyst is equal to or higher than the second predetermined temperature and the air-fuel ratio of the exhaust flowing into the exhaust purification catalyst is equal to or lower than the predetermined air-fuel ratio, the condensed water stored in the condensed water storage means is water. It is added to the exhaust by an adding means. The added condensed water becomes steam and flows into the exhaust purification catalyst together with the exhaust gas.

排気浄化触媒の温度が第二の所定温度以上である場合、該排気浄化触媒においてHCの水蒸気改質反応が起きても該排気浄化触媒の温度が過剰に低下する可能性は低い。また、排気浄化触媒の温度が第二の所定温度以上である場合は、排気浄化触媒においてHCの水蒸気改質反応が起きると該HCの酸化が促進される。その結果、排気浄化触媒より下流へのHCの排出量が低減される。   When the temperature of the exhaust purification catalyst is equal to or higher than the second predetermined temperature, even if the steam purification reaction of HC occurs in the exhaust purification catalyst, the possibility that the temperature of the exhaust purification catalyst decreases excessively is low. Further, when the temperature of the exhaust purification catalyst is equal to or higher than the second predetermined temperature, oxidation of the HC is promoted when a steam reforming reaction of HC occurs in the exhaust purification catalyst. As a result, the amount of HC discharged downstream from the exhaust purification catalyst is reduced.

従って、上記によれば、排気浄化触媒に流入する排気の空燃比が所定空燃比以下の場合であっても排気エミッションの悪化を抑制することが出来る。   Therefore, according to the above, it is possible to suppress the deterioration of exhaust emission even when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is equal to or lower than the predetermined air-fuel ratio.

本発明に係る内燃機関の排気浄化装置によれば、排気浄化触媒を活性温度にまでより速やかに昇温することが出来ると共に排気エミッションの悪化を抑制することが出来る。   According to the exhaust gas purification apparatus for an internal combustion engine according to the present invention, it is possible to raise the temperature of the exhaust gas purification catalyst to the activation temperature more quickly and to suppress the deterioration of exhaust emission.

以下、本発明に係る内燃機関の排気浄化装置の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of an exhaust emission control device for an internal combustion engine according to the present invention will be described with reference to the drawings.

<内燃機関の排気系の概略構成>
ここでは、本発明を車両駆動用のディーゼルエンジンに適用した場合を例に挙げて説明する。図1は、本実施例に係る内燃機関の排気系の概略構成を示す図である。
<Schematic configuration of exhaust system of internal combustion engine>
Here, a case where the present invention is applied to a diesel engine for driving a vehicle will be described as an example. FIG. 1 is a diagram showing a schematic configuration of an exhaust system of an internal combustion engine according to the present embodiment.

内燃機関1は車両駆動用のディーゼルエンジンである。この内燃機関1には排気通路2が接続されている。排気通路2には三元触媒3が設けられている。該三元触媒3にはその温度を検出する温度センサ8が設けられている。   The internal combustion engine 1 is a diesel engine for driving a vehicle. An exhaust passage 2 is connected to the internal combustion engine 1. A three-way catalyst 3 is provided in the exhaust passage 2. The three-way catalyst 3 is provided with a temperature sensor 8 for detecting the temperature.

また、排気通路2における三元触媒3より上流側には該排気通路2を中心軸として回転する遠心分離機4が設けられている。該遠心分離機4には凝縮水回収通路6の一端が接続されており、該凝縮水回収通路6の他端は水タンク5に接続されている。   A centrifuge 4 that rotates around the exhaust passage 2 as a central axis is provided upstream of the three-way catalyst 3 in the exhaust passage 2. One end of a condensed water recovery passage 6 is connected to the centrifugal separator 4, and the other end of the condensed water recovery passage 6 is connected to a water tank 5.

遠心分離機4が作動すると排気通路2を流れる排気中から水蒸気が除去される。そして、この除去された水蒸気が凝縮水となり、凝縮水回収通路6を介して水タンク5に貯留される。尚、凝縮水回収通路6には、遠心分離機4側から水タンク5側の方向にのみ凝縮水が流れるよう逆止弁7が設置されている。   When the centrifuge 4 is operated, water vapor is removed from the exhaust gas flowing through the exhaust passage 2. The removed water vapor becomes condensed water and is stored in the water tank 5 through the condensed water recovery passage 6. A check valve 7 is installed in the condensed water recovery passage 6 so that the condensed water flows only in the direction from the centrifuge 4 side to the water tank 5 side.

本実施例においては、三元触媒3が本発明に係る排気浄化触媒に相当し、温度センサ8が本発明に係る温度検出手段に相当する。また、遠心分離機4が本発明に係る水蒸気除去手段に相当し、水タンク5が本発明に係る凝縮水貯留手段に相当する。   In this embodiment, the three-way catalyst 3 corresponds to the exhaust purification catalyst according to the present invention, and the temperature sensor 8 corresponds to the temperature detecting means according to the present invention. The centrifuge 4 corresponds to the water vapor removing means according to the present invention, and the water tank 5 corresponds to the condensed water storage means according to the present invention.

さらに、本実施例では、水タンク5に貯留された凝縮水が三元触媒3を経由して循環する水循環通路11が設けられている。該水循環通路11には該水循環通路11を遮断または開通させる循環制御弁12、および、ポンプ13が設けられている。循環制御弁12が開弁すると共にポンプ13が作動すると凝縮水が三元触媒3を経由して循環する。そして、凝縮水が冷却水として作用し三元触媒3を冷却することになる。   Further, in this embodiment, a water circulation passage 11 is provided through which condensed water stored in the water tank 5 circulates via the three-way catalyst 3. The water circulation passage 11 is provided with a circulation control valve 12 for blocking or opening the water circulation passage 11 and a pump 13. When the circulation control valve 12 is opened and the pump 13 is operated, condensed water is circulated through the three-way catalyst 3. The condensed water acts as cooling water to cool the three-way catalyst 3.

尚、本実施例においては、水循環通路11が本発明に係る冷却水通路に相当する。   In this embodiment, the water circulation passage 11 corresponds to the cooling water passage according to the present invention.

また、排気通路2における遠心分離機4より下流側且つ三元触媒3より上流側には水噴射弁15および空燃比センサ14が設置されている。水噴射弁15は水タンク5に貯留された凝縮水を排気中に噴射する。空燃比センサ14は三元触媒3に流入する排気の空燃比を検出する。   A water injection valve 15 and an air-fuel ratio sensor 14 are installed in the exhaust passage 2 downstream of the centrifugal separator 4 and upstream of the three-way catalyst 3. The water injection valve 15 injects the condensed water stored in the water tank 5 into the exhaust gas. The air-fuel ratio sensor 14 detects the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 3.

尚、本実施例においては、水噴射弁15が本発明に係る水添加手段に相当し、空燃比センサ14が本発明に係る空燃比検出手段に相当する。   In this embodiment, the water injection valve 15 corresponds to the water addition means according to the present invention, and the air-fuel ratio sensor 14 corresponds to the air-fuel ratio detection means according to the present invention.

内燃機関1には電子制御ユニット(ECU)10が併設されている。このECU10には温度センサ8および空燃比センサ14が電気的に接続されている。それらの出力信号がECU10に入力される。また、ECU10には遠心分離機4、および、循環制御弁12、ポンプ13、水噴射弁15が電気的に接続されている。ECU10によってこれらが制御される。   The internal combustion engine 1 is provided with an electronic control unit (ECU) 10. A temperature sensor 8 and an air-fuel ratio sensor 14 are electrically connected to the ECU 10. Those output signals are input to the ECU 10. In addition, the centrifugal separator 4, the circulation control valve 12, the pump 13, and the water injection valve 15 are electrically connected to the ECU 10. These are controlled by the ECU 10.

<HCの水蒸気改質反応>
内燃機関1から排出される排気には水蒸気が含まれている。該水蒸気が三元触媒3に流
入すると排気中のHCの水蒸気改質反応が起こる。ここで、HCの水蒸気改質反応による生成物の組成について図2に示すグラフに基づいて説明する。図2は、三元触媒3においてHCの水蒸気改質反応が起きたときの生成物の組成と三元触媒3の温度との関係を示す図である。図2において、縦軸はHCの水蒸気改質反応による生成物の組成を表し、横軸は三元触媒3の温度を表している。
<HC steam reforming reaction>
The exhaust gas discharged from the internal combustion engine 1 contains water vapor. When the steam flows into the three-way catalyst 3, a steam reforming reaction of HC in the exhaust occurs. Here, the composition of the product resulting from the steam reforming reaction of HC will be described based on the graph shown in FIG. FIG. 2 is a diagram showing the relationship between the composition of the product and the temperature of the three-way catalyst 3 when the HC steam reforming reaction occurs in the three-way catalyst 3. In FIG. 2, the vertical axis represents the composition of the product resulting from the steam reforming reaction of HC, and the horizontal axis represents the temperature of the three-way catalyst 3.

三元触媒3の温度が比較的低く該三元触媒3の活性化が不十分である状態のときに(即ち、図2にTaで示す温度以下のとき)、該三元触媒3においてHCの水蒸気改質反応が起こると、図2に示すように、CH4やCO2が比較的多く生成される。これらの物質が過剰に生成されると排気エミッションの悪化を招く虞がある。 When the temperature of the three-way catalyst 3 is relatively low and the activation of the three-way catalyst 3 is insufficient (that is, when the temperature is equal to or lower than the temperature indicated by Ta in FIG. 2), When the steam reforming reaction occurs, as shown in FIG. 2, a relatively large amount of CH 4 or CO 2 is generated. If these substances are produced excessively, exhaust emission may be deteriorated.

一方、三元触媒3の温度が比較的高く該三元触媒3が十分に活性している状態のときに(即ち、図2にTbで示す温度以上のとき)、該三元触媒3においてHCの水蒸気改質反応が起こると、図2に示すように、H2やCOが比較的多く生成される。これらの物質が
生成されると三元触媒3におけるHCの酸化が促進される。
On the other hand, when the temperature of the three-way catalyst 3 is relatively high and the three-way catalyst 3 is sufficiently active (that is, when the temperature is equal to or higher than Tb in FIG. 2), the three-way catalyst 3 has HC. When the steam reforming reaction occurs, a relatively large amount of H 2 or CO is generated as shown in FIG. When these substances are generated, the oxidation of HC in the three-way catalyst 3 is promoted.

また、水蒸気改質反応は吸熱反応であるため、三元触媒3に水蒸気が流入することで該水蒸気改質反応が起こると該三元触媒3の温度上昇が抑制される。   Further, since the steam reforming reaction is an endothermic reaction, when the steam reforming reaction occurs due to the flow of steam into the three-way catalyst 3, the temperature increase of the three-way catalyst 3 is suppressed.

そこで、本実施例においては、三元触媒3の温度や排気の空燃比に応じて水蒸気除去制御や触媒冷却制御、水噴射制御が行われる。以下、本実施例に係る各制御について説明する。   Therefore, in this embodiment, water vapor removal control, catalyst cooling control, and water injection control are performed according to the temperature of the three-way catalyst 3 and the air-fuel ratio of the exhaust. Hereinafter, each control according to the present embodiment will be described.

<水蒸気除去制御>
本実施例では、内燃機関1の冷間始動時のように三元触媒3の温度が活性温度の下限値よりも低いときは、該三元触媒3に流入する排気中から水蒸気を除去すべく水蒸気除去制御が実行される。ここで、本実施例に係る水蒸気除去制御の制御ルーチンについて図3に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、内燃機関1の運転中、所定の間隔で繰り返し実行されるルーチンである。
<Water vapor removal control>
In the present embodiment, when the temperature of the three-way catalyst 3 is lower than the lower limit value of the activation temperature as in the cold start of the internal combustion engine 1, water vapor should be removed from the exhaust gas flowing into the three-way catalyst 3. Water vapor removal control is executed. Here, the control routine of the water vapor removal control according to the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 10 and is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

本ルーチンでは、ECU10は、先ずS101において、三元触媒3の温度が活性温度の下限値T0より低いか否かを判別する。このS101において、肯定判定された場合、ECU10はS102に進み、否定判定された場合、ECU10は本ルーチンの実行を終了する。   In this routine, the ECU 10 first determines in S101 whether or not the temperature of the three-way catalyst 3 is lower than the lower limit value T0 of the activation temperature. If an affirmative determination is made in S101, the ECU 10 proceeds to S102, and if a negative determination is made, the ECU 10 ends the execution of this routine.

S101において、ECU10は遠心分離機4を作動させる。遠心分離機4が作動することにより排気中の水蒸気が除去される。そして、除去された水蒸気が凝縮水として水タンク5に貯留される。   In S <b> 101, the ECU 10 operates the centrifuge 4. When the centrifuge 4 is operated, water vapor in the exhaust gas is removed. The removed water vapor is stored in the water tank 5 as condensed water.

次に、ECU10は、S103に進み、三元触媒3の温度が活性温度の下限値T0以上となったか否かを判別する。このS103において、肯定判定された場合、ECU10はS104に進み、否定判定された場合、ECU10はS102に戻り遠心分離機4の作動を継続する。   Next, the ECU 10 proceeds to S103 and determines whether or not the temperature of the three-way catalyst 3 is equal to or higher than the lower limit value T0 of the activation temperature. If an affirmative determination is made in S103, the ECU 10 proceeds to S104. If a negative determination is made, the ECU 10 returns to S102 and continues the operation of the centrifuge 4.

S104において、ECU10は遠心分離機4の作動を停止させる。その後、ECU10は本ルーチンの実行を終了する。   In S <b> 104, the ECU 10 stops the operation of the centrifuge 4. Thereafter, the ECU 10 ends the execution of this routine.

上記水蒸気除去制御によれば、三元触媒3の温度が活性温度より低いときは該三元触媒3への水蒸気の流入をより抑制することが出来る。その結果、三元触媒3の温度が活性温度にまで上昇していない状態で該三元触媒3において排気中のHCの水蒸気改質反応が起
こるのを抑制することが出来る。従って、三元触媒3を活性温度にまでより速やかに昇温することが出来る。また、CH4やCO2が生成されるのを抑制することが可能となるため排気エミッションが悪化するのを抑制することが出来る。
According to the water vapor removal control, when the temperature of the three-way catalyst 3 is lower than the activation temperature, the inflow of water vapor into the three-way catalyst 3 can be further suppressed. As a result, it is possible to suppress the occurrence of the steam reforming reaction of HC in the exhaust gas in the three-way catalyst 3 in a state where the temperature of the three-way catalyst 3 does not rise to the activation temperature. Therefore, the temperature of the three-way catalyst 3 can be raised more quickly to the activation temperature. Further, CH 4 and CO 2 exhaust emission since it is possible to suppress the generated can be prevented from deteriorating.

<触媒冷却制御>
本実施例では、三元触媒3が過昇温する虞があると判断されたときは、該三元触媒3を冷却すべく触媒冷却制御が実行される。ここで、本実施例に係る触媒冷却制御の制御ルーチンについて図4に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、内燃機関1の運転中、所定の間隔で繰り返し実行されるルーチンである。
<Catalyst cooling control>
In this embodiment, when it is determined that the three-way catalyst 3 may be overheated, catalyst cooling control is executed to cool the three-way catalyst 3. Here, the control routine of the catalyst cooling control according to the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 10 and is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

本ルーチンでは、ECU10は、先ずS201において、三元触媒3の温度が第一所定温度T1以上であるか否かを判別する。ここで、第一所定温度T1は、三元触媒3が過昇温する虞があると判断出来る閾値となる温度である。該第一所定温度T1は実験等によって予め定められている。S201において、肯定判定された場合、ECU10はS202に進み、否定判定された場合、ECU10は本ルーチンの実行を終了する。   In this routine, first, in S201, the ECU 10 determines whether or not the temperature of the three-way catalyst 3 is equal to or higher than a first predetermined temperature T1. Here, the first predetermined temperature T1 is a temperature that becomes a threshold at which it can be determined that the three-way catalyst 3 may overheat. The first predetermined temperature T1 is determined in advance by experiments or the like. If an affirmative determination is made in S201, the ECU 10 proceeds to S202, and if a negative determination is made, the ECU 10 ends the execution of this routine.

S202において、ECU10は、循環制御弁12を開弁すると共にポンプ13を作動させる。これにより、水タンク5に貯留された凝縮水が三元触媒3を経由して水循環通路11を循環することになる。その結果、凝縮水によって三元触媒3が冷却される。   In S202, the ECU 10 opens the circulation control valve 12 and activates the pump 13. As a result, the condensed water stored in the water tank 5 circulates through the water circulation passage 11 via the three-way catalyst 3. As a result, the three-way catalyst 3 is cooled by the condensed water.

次に、ECU10は、S203に進み、三元触媒3の温度が第二所定温度T2より低くなったか否かを判別する。ここで、第二所定温度T2は、三元触媒3が十分に活性していると判断出来る閾値となる温度である。該第二所定温度T2は第一所定温度T1よりも低い温度である。尚、第二所定温度T2は図2における温度Tbと同様の温度である。該第二所定温度T2は実験等によって予め定められている。S203において、肯定判定された場合、ECU10はS204に進み、否定判定された場合、ECU10はS202に戻り水循環通路11における凝縮水の循環を継続する。   Next, the ECU 10 proceeds to S203 and determines whether or not the temperature of the three-way catalyst 3 has become lower than the second predetermined temperature T2. Here, the second predetermined temperature T2 is a temperature that becomes a threshold at which it can be determined that the three-way catalyst 3 is sufficiently active. The second predetermined temperature T2 is a temperature lower than the first predetermined temperature T1. The second predetermined temperature T2 is the same temperature as the temperature Tb in FIG. The second predetermined temperature T2 is determined in advance by experiments or the like. If an affirmative determination is made in S203, the ECU 10 proceeds to S204, and if a negative determination is made, the ECU 10 returns to S202 and continues to circulate condensed water in the water circulation passage 11.

S204において、ECU10は、循環制御弁12を閉弁すると共にポンプ13の作動を停止させる。これにより、水循環通路11における凝縮水の循環が停止する。その後、ECU10は本ルーチンの実行を終了する。   In S204, the ECU 10 closes the circulation control valve 12 and stops the operation of the pump 13. Thereby, the circulation of the condensed water in the water circulation passage 11 is stopped. Thereafter, the ECU 10 ends the execution of this routine.

上記触媒冷却制御によれば、三元触媒3の温度が第一所定温度T1以上のときは、水タンク5に貯留された凝縮水によって該三元触媒3が冷却される。従って、三元触媒3の過昇温を抑制することが出来、以って、三元触媒3が過剰に劣化するのを抑制することが出来る。   According to the catalyst cooling control, the three-way catalyst 3 is cooled by the condensed water stored in the water tank 5 when the temperature of the three-way catalyst 3 is equal to or higher than the first predetermined temperature T1. Therefore, the excessive temperature rise of the three-way catalyst 3 can be suppressed, and thus the three-way catalyst 3 can be prevented from being excessively deteriorated.

<水噴射制御>
本実施例では、三元触媒3が十分に活性しており且つ三元触媒3においてHCを酸化するための排気中の酸素が不足していると判断されたときは、三元触媒3でのHCの酸化を促進すべく水噴射制御が実行される。ここで、本実施例に係る水噴射制御の制御ルーチンについて図5に示すフローチャートに基づいて説明する。本ルーチンは、ECU10に予め記憶されており、内燃機関1の運転中、所定の間隔で繰り返し実行されるルーチンである。
<Water injection control>
In this embodiment, when it is determined that the three-way catalyst 3 is sufficiently active and oxygen in the exhaust gas for oxidizing HC in the three-way catalyst 3 is insufficient, the three-way catalyst 3 Water injection control is executed to promote the oxidation of HC. Here, the control routine of the water injection control according to the present embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the ECU 10 and is repeatedly executed at predetermined intervals during the operation of the internal combustion engine 1.

本ルーチンでは、ECU10は、先ずS301において、三元触媒3の温度が第二所定温度T2以上であるか否かを判別する。S202において、肯定判定された場合、ECU10は三元触媒3が十分に活性していると判断し302に進み、否定判定された場合、ECU10は本ルーチンの実行を終了する。   In this routine, the ECU 10 first determines in S301 whether or not the temperature of the three-way catalyst 3 is equal to or higher than a second predetermined temperature T2. If an affirmative determination is made in S202, the ECU 10 determines that the three-way catalyst 3 is sufficiently active and proceeds to 302. If a negative determination is made, the ECU 10 ends the execution of this routine.

S302において、ECU10は、三元触媒3に流入する排気の空燃比が所定空燃比R0以下であるか否かを判別する。ここで、所定空燃比R0は、三元触媒3においてHCを酸化するための排気中の酸素が不足していると判断出来る閾値となる空燃比である。該所定空燃比R0は実験等によって予め定められている。例えば、所定空燃比R0を理論空燃比としても良い。S302において、肯定判定された場合、ECU10は303に進み、否定判定された場合、ECU10は本ルーチンの実行を終了する。   In S302, the ECU 10 determines whether or not the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 3 is equal to or less than a predetermined air-fuel ratio R0. Here, the predetermined air-fuel ratio R0 is an air-fuel ratio that becomes a threshold at which it can be determined that oxygen in the exhaust gas for oxidizing HC in the three-way catalyst 3 is insufficient. The predetermined air-fuel ratio R0 is determined in advance by experiments or the like. For example, the predetermined air-fuel ratio R0 may be the theoretical air-fuel ratio. If an affirmative determination is made in S302, the ECU 10 proceeds to 303, and if a negative determination is made, the ECU 10 ends the execution of this routine.

S303において、ECU10は、水タンク5に貯留されていた凝縮水を水噴射弁15から排気中に噴射する。噴射された凝縮水は水蒸気となって排気と共に三元触媒3に流入する。その後、ECU10は本ルーチンの実行を終了する。   In step S <b> 303, the ECU 10 injects the condensed water stored in the water tank 5 from the water injection valve 15 into the exhaust gas. The injected condensed water becomes steam and flows into the three-way catalyst 3 together with the exhaust gas. Thereafter, the ECU 10 ends the execution of this routine.

上記水噴射制御によれば、三元触媒3の温度が第二所定温度T2以上であり且つ排気の空燃比が所定空燃比R0以下のときは三元触媒3に水蒸気が供給され、該三元触媒3におけるHCの水蒸気改質反応が促進される。三元触媒3の温度が第二所定温度T2以上である場合、該三元触媒3においてHCの水蒸気改質反応が起きても該三元触媒3の温度が過剰に低下する可能性は低い。また、上述したように、三元触媒3が十分に活性しているときにHCの水蒸気改質反応が起きると、該三元触媒3の活性化が不十分のときと異なりHCの酸化が促進されることになる。その結果、三元触媒3より下流へのHCの排出量が低減される。   According to the water injection control, when the temperature of the three-way catalyst 3 is equal to or higher than the second predetermined temperature T2 and the air-fuel ratio of the exhaust gas is equal to or lower than the predetermined air-fuel ratio R0, steam is supplied to the three-way catalyst 3, The steam reforming reaction of HC in the catalyst 3 is promoted. When the temperature of the three-way catalyst 3 is equal to or higher than the second predetermined temperature T2, even if the steam reforming reaction of HC occurs in the three-way catalyst 3, it is unlikely that the temperature of the three-way catalyst 3 is excessively lowered. Further, as described above, when the steam reforming reaction of HC occurs when the three-way catalyst 3 is sufficiently active, the oxidation of HC is accelerated unlike the case where the activation of the three-way catalyst 3 is insufficient. Will be. As a result, the amount of HC discharged downstream from the three-way catalyst 3 is reduced.

従って、本実施例によれば、三元触媒3に流入する排気の空燃比が所定空燃比R0以下の場合であっても排気エミッションの悪化を抑制することが出来る。   Therefore, according to the present embodiment, it is possible to suppress the deterioration of the exhaust emission even when the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 3 is not more than the predetermined air-fuel ratio R0.

尚、本実施例においては、排気浄化触媒を三元触媒としたが、これは三元触媒に限られるものではなく、酸化触媒や吸蔵還元型NOx触媒等のように酸化機能を有する触媒であれば良い。また、温度センサ8に代えて三元触媒3より下流側に排気温度センサを設け、該排気温度センサの検出値に基づいて三元触媒3の温度を推定しても良い。   In this embodiment, the exhaust purification catalyst is a three-way catalyst. However, this is not limited to a three-way catalyst, and any catalyst having an oxidation function such as an oxidation catalyst or a NOx storage reduction catalyst may be used. It ’s fine. Further, instead of the temperature sensor 8, an exhaust temperature sensor may be provided on the downstream side of the three-way catalyst 3, and the temperature of the three-way catalyst 3 may be estimated based on a detection value of the exhaust temperature sensor.

実施例に係る内燃機関の排気系の概略構成を示す図。The figure which shows schematic structure of the exhaust system of the internal combustion engine which concerns on an Example. 三元触媒においてHCの水蒸気改質反応が起きたときの生成物の組成と三元触媒の温度との関係を示す図。The figure which shows the relationship between the composition of a product when the steam reforming reaction of HC occurs in a three-way catalyst, and the temperature of a three-way catalyst. 実施例に係る水蒸気除去制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of the water vapor removal control which concerns on an Example. 実施例に係る触媒冷却制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of the catalyst cooling control which concerns on an Example. 実施例に係る水噴射制御の制御ルーチンを示すフローチャート。The flowchart which shows the control routine of the water-injection control which concerns on an Example.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・排気通路
3・・・三元触媒
4・・・遠心分離機
5・・・水タンク
8・・・温度センサ
10・・ECU
11・・水循環通路
14・・空燃比センサ
15・・水噴射弁
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Exhaust passage 3 ... Three-way catalyst 4 ... Centrifuge 5 ... Water tank 8 ... Temperature sensor 10 ... ECU
11..Water circulation passage 14..Air-fuel ratio sensor 15..Water injection valve

Claims (3)

内燃機関の排気通路に設けられた排気浄化触媒と、
該排気浄化触媒より上流側の前記排気通路に設けられ排気中の水蒸気を除去する水蒸気除去手段と、
前記排気通路とは別に設けられ前記水蒸気除去手段によって除去された水蒸気を凝縮水として貯留する凝縮水貯留手段と、
前記排気浄化触媒の温度を検出する温度検出手段と、を備え、
前記水蒸気除去手段は、前記温度検出手段によって検出される前記排気浄化触媒の温度が活性温度より低いときに排気中の水蒸気を除去することを特徴とする内燃機関の排気浄化装置。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
Water vapor removal means for removing water vapor in the exhaust gas provided in the exhaust passage upstream of the exhaust purification catalyst;
Condensate water storage means that is provided separately from the exhaust passage and stores the water vapor removed by the water vapor removal means as condensed water;
Temperature detecting means for detecting the temperature of the exhaust purification catalyst,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the water vapor removing means removes water vapor in the exhaust gas when the temperature of the exhaust purification catalyst detected by the temperature detecting means is lower than an activation temperature.
前記排気浄化触媒を経由して冷却水が流れる冷却水通路をさらに備え、
前記温度検出手段によって検出される前記排気浄化触媒の温度が活性温度の下限値より高い第一の所定温度以上のときに、前記凝縮水貯留手段に貯留された凝縮水を前記冷却水通路に冷却水として流すことを特徴とする請求項1記載の内燃機関の排気浄化装置。
A cooling water passage through which cooling water flows via the exhaust purification catalyst;
When the temperature of the exhaust purification catalyst detected by the temperature detection means is equal to or higher than a first predetermined temperature that is higher than the lower limit value of the activation temperature, the condensed water stored in the condensed water storage means is cooled to the cooling water passage. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification apparatus flows as water.
前記排気浄化触媒が酸化機能を有する触媒であって、
前記排気浄化触媒より上流側且つ前記水蒸気除去手段より下流側の前記排気通路に設けられ排気中に水を添加する水添加手段と、
前記排気浄化触媒に流入する排気の空燃比を検出する空燃比検出手段と、をさらに備え、
前記温度検出手段によって検出される前記排気浄化触媒の温度が活性温度の下限値より高い第二の所定温度以上であり且つ前記空燃比検出手段によって検出される排気の空燃比が所定空燃比以下のときに、前記凝縮水貯留手段に貯留された凝縮水を前記水添加手段によって排気中に添加することを特徴とする請求項1または2記載の内燃機関の排気浄化装置。
The exhaust purification catalyst is a catalyst having an oxidation function,
Water addition means for adding water to the exhaust gas, provided in the exhaust passage upstream from the exhaust purification catalyst and downstream from the water vapor removal means;
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst,
The temperature of the exhaust purification catalyst detected by the temperature detection means is equal to or higher than a second predetermined temperature higher than the lower limit value of the activation temperature, and the air-fuel ratio of the exhaust detected by the air-fuel ratio detection means is less than a predetermined air-fuel ratio. 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the condensed water stored in the condensed water storage means is added to the exhaust gas by the water addition means.
JP2006055673A 2006-03-02 2006-03-02 Exhaust emission control device for internal combustion engine Pending JP2007231862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055673A JP2007231862A (en) 2006-03-02 2006-03-02 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055673A JP2007231862A (en) 2006-03-02 2006-03-02 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007231862A true JP2007231862A (en) 2007-09-13

Family

ID=38552699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055673A Pending JP2007231862A (en) 2006-03-02 2006-03-02 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007231862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096331A (en) * 2011-11-02 2013-05-20 Denso Corp Exhaust emission control device for internal combustion engine
JP2013124642A (en) * 2011-12-16 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699004U (en) * 1979-12-28 1981-08-05
JPH0565819A (en) * 1991-09-06 1993-03-19 Hitachi Ltd Engine exhaust emission control system
JP2001329833A (en) * 2000-05-18 2001-11-30 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2002510006A (en) * 1998-03-27 2002-04-02 シーメンス アクチエンゲゼルシヤフト Exhaust system for internal combustion engine and method for reducing toxic substances in exhaust gas
JP2005169357A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Exhaust gas cleaning system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699004U (en) * 1979-12-28 1981-08-05
JPH0565819A (en) * 1991-09-06 1993-03-19 Hitachi Ltd Engine exhaust emission control system
JP2002510006A (en) * 1998-03-27 2002-04-02 シーメンス アクチエンゲゼルシヤフト Exhaust system for internal combustion engine and method for reducing toxic substances in exhaust gas
JP2001329833A (en) * 2000-05-18 2001-11-30 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2005169357A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Exhaust gas cleaning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096331A (en) * 2011-11-02 2013-05-20 Denso Corp Exhaust emission control device for internal combustion engine
JP2013124642A (en) * 2011-12-16 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP6508229B2 (en) Abnormality diagnosis device for exhaust gas purification device for internal combustion engine
US6763659B2 (en) Exhaust emission control device for internal combustion engine
JP4193801B2 (en) Exhaust gas purification system for internal combustion engine
JP4290027B2 (en) Exhaust purification equipment
JP2005098130A (en) Filter excessive temperature rise restraining method of internal combustion engine
JP2007056741A (en) Exhaust emission control device for engine
JP2006125323A (en) Exhaust emission control device
JP2008267237A (en) Secondary air supply device for internal combustion engine
JP2009138615A (en) Control device for internal combustion engine
JP2004293494A (en) Exhaust emission control device of internal-combustion engine
JP2008231927A (en) Exhaust emission control system for internal combustion engine
JP5146547B2 (en) Exhaust gas purification device for internal combustion engine
US8371111B2 (en) Exhaust gas purification system for internal combustion engine
JP5194590B2 (en) Engine exhaust purification system
JP2007231862A (en) Exhaust emission control device for internal combustion engine
JP2007040130A (en) Exhaust emission control device of internal combustion engine
JP2010019092A (en) Exhaust emission control device for internal combustion engine
JP2007154795A (en) Egr device for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP2010071135A (en) Exhaust gas recirculation device for internal combustion engine
JP4507697B2 (en) Exhaust gas purification system for internal combustion engine
JP2008309134A (en) Water leakage detector for egr cooler
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP2007162468A (en) Deterioration determination method and deterioration determination system for storage reduction type nox catalyst
JP2008232090A (en) Exhaust emission control system for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301