JP2004270609A - Emission control device - Google Patents

Emission control device Download PDF

Info

Publication number
JP2004270609A
JP2004270609A JP2003064679A JP2003064679A JP2004270609A JP 2004270609 A JP2004270609 A JP 2004270609A JP 2003064679 A JP2003064679 A JP 2003064679A JP 2003064679 A JP2003064679 A JP 2003064679A JP 2004270609 A JP2004270609 A JP 2004270609A
Authority
JP
Japan
Prior art keywords
aqueous solution
urea aqueous
exhaust
control device
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003064679A
Other languages
Japanese (ja)
Other versions
JP3883974B2 (en
Inventor
Masanobu Hirata
公信 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003064679A priority Critical patent/JP3883974B2/en
Publication of JP2004270609A publication Critical patent/JP2004270609A/en
Application granted granted Critical
Publication of JP3883974B2 publication Critical patent/JP3883974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise efficiency of hydrolytic decomposition wherein ammonia is produced from an aqueous solution of urea by controlling temperature drop of the solution adhering on an inner wall to form liquid droplets. <P>SOLUTION: An emission control device for an engine 1 comprises a nitrogen oxide reducing catalyst 3 interposed in an exhaust pipe 2 for reducing and removing nitrogen oxide in an exhaust gas, an inner tube 20 installed on the upstream side of the catalyst 3 with a gap in relation to the inner wall of the pipe 2 along the flow of the exhaust gas and having two open ends, an aqueous urea solution tank 4 for storing the solution, and an injection nozzle 10 for adding the solution stored in the tank 4 into the interior of the tube 20 along the flow of the exhaust gas. Thus, tube 20 is quickly heated by the exhaust gas so that the temperature of the solution added to the interior of the tube 20 is not lowered even if the solution adheres on the inner wall of the tube 20 to form liquid droplets. Therefore, the efficiency of hydrolytic decomposition is raised. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン等の排気浄化装置において、窒素酸化物還元触媒の上流に噴射添加される尿素水溶液の加水分解効率を向上させる技術に関する。
【0002】
【従来の技術】
エンジンから排出される排気中に含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、特開2000−27627号公報(特許文献1)に開示されるような排気浄化装置が提案されている。かかる排気浄化装置は、酸素過剰雰囲気で窒素酸化物を無害な窒素(N)、酸素(O)等に転化すべく、エンジンの排気通路に窒素酸化物還元触媒が介装されている。また、窒素酸化物還元触媒における窒素酸化物浄化効率を高めるべく、尿素((NHCO)水溶液を搭載し、窒素酸化物還元触媒の上流の排気管内に噴射添加する構成が採用されている。このような排気浄化装置では、尿素水溶液は、エンジンの排気により加熱され、加水分解し、アンモニアを発生する。そして、窒素酸化物還元触媒において、このアンモニアが還元剤となって、排気中の窒素酸化物が還元、除去される。
【0003】
【特許文献1】
特開2000−27627号公報
【0004】
【発明が解決しようとする課題】
このような構成の排気浄化装置において、排気管内に噴射添加された尿素水溶液の一部は、排気管に付着し液滴になってしまう。ところが、エンジンの排気管は、その外壁が外気と接触しており、排気と比較して低温になっているため、液滴になった尿素水溶液は充分に加熱されず、アンモニアに加水分解しにくくなる恐れがある。こうなると、窒素酸化物還元触媒において、アンモニアが不足し、排気中の窒素酸化物の浄化効率が低下する恐れがある。また、アンモニアを増加させるために、尿素水溶液の添加量を増加させると、尿素水溶液の使用量が増加し、経済性が低下するとともに、アンモニアに加水分解されなかった尿素水溶液が、排気管中に析出したり、大気中に排出したりしてしまう恐れがあるという問題点があった。
【0005】
そこで、本発明は以上のような従来の問題点に鑑み、内壁に付着して液滴となった尿素水溶液の温度低下を抑制することで、尿素水溶液からアンモニアを発生させる加水分解効率を向上させる排気浄化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1記載の発明は、排気管に介装され、排気中の窒素酸化物を還元除去する窒素酸化物還元触媒と、前記窒素酸化物還元触媒の上流に、排気の流れに沿って、前記排気管の内壁との間に間隙を有するように設けられた、両端が開口した内筒と、尿素水溶液を貯蔵する尿素水溶液貯蔵手段と、前記尿素水溶液貯蔵手段に貯蔵された尿素水溶液を、排気の流れに沿って、前記内筒の内部に噴射添加する噴射手段と、を含んで排気浄化装置が構成されることを特徴とする。
【0007】
かかる構成によれば、尿素水溶液貯蔵手段に貯蔵された尿素水溶液が、噴射手段により内筒の内部に噴射添加される。内筒は、両端が開口し、排気の流れに沿って外壁と前記排気管の内壁との間に間隙を有するように設けられているので、内部に排気通路を形成するとともに、外壁と排気管の内壁との間に排気通路を形成する。したがって、内筒は、排気管を流通する排気により外側及び内側から加熱され、すぐに排気と略同じ温度になる。これにより、内筒の内部に噴射添加された尿素水溶液は、内筒の内壁に付着して液滴になっても、温度低下することが抑制される。
【0008】
請求項2記載の発明は、前記内筒の内部に噴射添加される尿素水溶液を加熱する加熱手段を有することを特徴とする。
かかる構成によれば、尿素水溶液は、あらかじめ加熱されてから内筒の内部に噴射添加されるので、低温の尿素水溶液が噴射添加されることによる排気の温度低下が抑制される。
【0009】
請求項3記載の発明は、前記加熱手段は、前記尿素水溶液貯蔵手段に貯蔵された尿素水溶液を加熱することを特徴とする。
かかる構成によれば、尿素水溶液貯蔵手段に貯蔵された尿素水溶液が加熱されるので、内筒の内部に噴射添加される尿素水溶液の温度が安定する。
【0010】
請求項4記載の発明は、前記加熱手段は、前記尿素水溶液貯蔵手段と噴射手段との間の配管内を流通する尿素水溶液を加熱することを特徴とする。
かかる構成によれば、尿素水溶液貯蔵手段と噴射手段との間の配管内を流通する尿素水溶液が加熱されるので、内筒の内部に噴射添加される必要最小限の尿素水溶液のみ加熱される。
【0011】
請求項5記載の発明は、前記加熱手段は、電気ヒータであることを特徴とする。
かかる構成によれば、加熱手段が電気ヒータであるので、簡単な構造で容易に、内筒の内部に噴射添加される尿素水溶液を加熱できる。
【0012】
請求項6記載の発明は、前記排気管を流通する排気は、エンジンの排気であり、前記加熱手段は、前記エンジンを冷却する冷却液により尿素水溶液を加熱することを特徴とする。
【0013】
かかる構成によれば、エンジンを冷却する冷却液により、内筒の内部に噴射添加される尿素水溶液が加熱されるので、廃熱を利用して尿素水溶液が加熱される。
【0014】
請求項7記載の発明は、前記加熱手段は、前記窒素酸化物還元触媒を通過した排気により尿素水溶液を加熱することを特徴とする。
かかる構成によれば、窒素酸化物還元触媒を通過した排気により、内筒の内部に噴射添加される尿素水溶液が加熱されるので、廃熱を利用して尿素水溶液が加熱される。また、窒素酸化物還元触媒へ供給される排気の温度を低下させることがない。
【0015】
請求項8記載の発明は、前記加熱手段から外気への放熱を抑制する断熱手段が設けられたことを特徴とする。
かかる構成によれば、加熱手段により発生した熱量が外気へ極力漏れることなく尿素水溶液を加熱し、加熱された尿素水溶液が保温される。
【0016】
請求項9記載の発明は、前記排気管を流通する排気は、エンジンの排気であり、前記エンジンの運転状態を検出する運転状態検出手段と、前記運転状態検出手段により検出された運転状態に基づいて、前記噴射手段により噴射添加される尿素水溶液の添加流量を制御する添加制御手段と、を有することを特徴とする。
【0017】
かかる構成によれば、エンジンの運転状態に基づいて、尿素水溶液の添加流量が制御されるので、窒素酸化物還元触媒においてエンジンの排気中の窒素酸化物を還元除去する際に必要な量の尿素水溶液が過不足なく噴射添加される。
【0018】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図1は、本発明をエンジンに適用した排気浄化装置の第1実施例の構成図である。
【0019】
エンジン1の排気通路である排気管2には、窒素酸化物を還元浄化する窒素酸化物還元触媒3が介装されている。
窒素酸化物還元触媒3は、セラミックのコーディライトやFe−Cr−Al系の耐熱鋼からなるハニカム形状の横断面を有するモノリスタイプの触媒担体に、例えば、ゼオライト系の活性成分が担持された構成をなす。そして、触媒担体に担持された活性成分は、還元剤としてのアンモニア(NH)の供給を受けて活性化し、窒素酸化物を効果的に無害物質に転化させる。
【0020】
排気浄化装置には、尿素水溶液が貯蔵される尿素水溶液タンク4(尿素水溶液貯蔵手段)が設けられている。そして、この尿素水溶液タンク4は、配管5を介して、尿素水溶液添加装置6と接続されている。
【0021】
一方、尿素水溶液添加装置6は、配管7を介してポンプ8と接続されている。ポンプ8は、尿素水溶液添加装置6に空気を加圧供給する。また、尿素水溶液添加装置6は、配管9を介して、窒素酸化物還元触媒3の上流側の排気管2内に設けられた噴射ノズル10(噴射手段)に接続されており、加圧供給された空気に尿素水溶液を混合して噴射ノズル10に供給する。
【0022】
配管9の周囲には、電気ヒータ11(加熱手段)が設けられ、更にその周囲には、断熱材12(断熱手段)が設けられている。
また、マイクロコンピュータを内蔵した尿素水溶液添加コントローラ13(添加制御手段)が設けられている。尿素水溶液添加コントローラ13は、エンジン1の作動を制御するエンジンコントローラ14(運転状態検出手段)からCAN(Controller Area Network)通信によりエンジン1の運転情報の受信が可能になっているとともに、ポンプ8、尿素水溶液添加装置6及び電気ヒータ11を作動制御する。
【0023】
ここで、図2を合わせて用いて、噴射ノズル10近辺の詳細構造について説明する。
窒素酸化物還元触媒3の上流側の排気管2内には、排気の流れに沿って、両端が開放された円筒状の内筒20が設けられている。内筒20は、排気管2内に設けられた2枚の円環板状の支持板21により、排気管2と略同心に支持されており、排気管2の内壁との間に間隙を有するように設けられている。
【0024】
支持板21は、多数の穴が開いている。これにより、排気管2内を流通する排気は、内筒20の内側及び外側を流通できるようになっている。
そして、配管9の先端に接続された噴射ノズル10は、内筒20内に、配管9を通して供給された尿素水溶液を、排気の流れに沿って噴射添加できるように設けられている。
【0025】
次に、このようなエンジンの排気浄化装置の動作について説明する。
エンジン1が作動することにより、その排気は排気管2に排出される。このとき、尿素水溶液添加コントローラ13は、エンジンコントローラ1からエンジン1の回転速度、吸気流量、負荷等のエンジン1の運転状態を受信する。そして、排気中の窒素酸化物を還元するために必要な尿素水溶液の添加流量を演算し、ポンプ8、尿素水溶液添加装置6及び電気ヒータ11を作動制御する。これにより、尿素水溶液は、ポンプ8により取り込まれた空気と混合するとともに、配管9を通過することによって電気ヒータ11により加熱されて、噴射ノズル10から内筒20内に噴射添加される。
【0026】
噴射ノズル10から噴射添加された尿素水溶液は、排気と混合し加熱され、加水分解し、アンモニアを発生させる。そして、このアンモニアとともにエンジン1からの排気が窒素酸化物還元触媒3に供給される。そして、窒素酸化物還元触媒3において、このアンモニアを還元剤として、排気中の窒素酸化物が還元除去される。
【0027】
なお、尿素水溶液は、排気中に噴射添加される前に、あらかじめ電気ヒータ11により加熱されるので、昇温した状態で排気中に噴射添加される。これにより、低温の尿素水溶液の噴射添加による排気の温度低下が抑えられるので、窒素酸化物還元触媒3における触媒反応の活性が維持され、排気中の窒素酸化物の還元除去が効率よく行われる。また、排気中に噴射添加される尿素水溶液のみ加熱されるので、尿素水溶液を加熱するための消費エネルギーが抑制される。
【0028】
更に、内筒20は、その外側も排気が流通するので、すぐに排気と略同じ温度になる。したがって、噴射ノズル10から噴射した尿素水溶液は、内筒20の内壁に付着しても、すぐに加熱される。これにより、尿素水溶液は、内筒20の内壁に付着して液滴になっても、温度低下することなく、加水分解が効率よく行われるので、窒素酸化物還元触媒3において、アンモニアが不足することなく、排気中の窒素酸化物の還元除去が効率よく行われる。
【0029】
次に、図3を用いて、本発明をエンジンに適用した排気浄化装置の第2実施例を説明する。
本実施例では、第1実施例において、尿素水溶液添加装置6と噴射ノズル10との間の配管9の周囲に設けられた電気ヒータ11及び断熱材12が、尿素水溶液タンク4の周囲に設けられている。これにより、尿素水溶液タンク4内に貯蔵されている尿素水溶液が加熱される。したがって、本実施例は、第1実施例と同様に、尿素水溶液が昇温した状態で排気中に噴射添加される。これにより、排気の温度低下が抑えられ、排気中の窒素酸化物の還元除去が効率よく行われる。なお、尿素水溶液タンク4内に貯蔵されている尿素水溶液が加熱されるので、尿素水溶液の添加流量が変動しても、略一定の温度の尿素水溶液が排気中に添加されるので、尿素水溶液の加水分解効率が安定する。
【0030】
次に、図4を用いて、本発明をエンジンに適用した排気浄化装置の第3実施例を説明する。
本実施例では、エンジン1の冷却液の配管22を尿素水溶液タンク4内に通過させることによって、エンジン1の冷却液により尿素水溶液を加熱する。これにより、電気ヒータ11を必要とせずに、尿素水溶液タンク4内に貯蔵されている尿素水溶液が昇温するので、電気ヒータ11による電力消費が抑制される。なお、本実施例の場合、配管22が加熱手段に該当する。
【0031】
次に、図5を用いて、本発明をエンジンに適用した排気浄化装置の第4実施例を説明する。
本実施例では、尿素水溶液タンク4と尿素水溶液添加装置6との間の配管5の中間部を、窒素酸化物還元触媒3の下流の排気管2に巻き回すことで、排気管2内を流通する排気から受熱し、配管5内の尿素水溶液を加熱する。これにより、電気ヒータ11を必要とせずに、尿素水溶液タンク4から尿素水溶液添加装置6に供給される尿素水溶液が昇温するので、電気ヒータ11による電力消費が抑制される。なお、配管5の中間部を窒素酸化物還元触媒3の下流の排気管2に巻き回すので、窒素酸化物還元触媒3に供給される排気の温度を低下させることがなく、窒素酸化物還元触媒3における排気中の窒素酸化物の還元除去の効率を低下させることがない。なお、本実施例の場合、窒素酸化物還元触媒3の下流の排気管2が加熱手段に該当する。
【0032】
なお、第1〜第4の実施例は、単独で実施しても、いずれを複数組み合わせて実施してもよい。
また、第1〜第4の実施例のいずれにおいても、尿素水溶液は、尿素水溶液添加装置6にてポンプ8により供給された空気に混合されてから、排気管2内に噴射添加されるようにしたが、噴射ノズル10から尿素水溶液を直接排気管2内に噴射添加するようにしてもよい。このとき、尿素水溶液添加装置6の代わりに尿素水溶液を加圧するポンプを設ければ、空気を加圧するポンプ8は不要となる。そして、このポンプを尿素水溶液添加コントローラ13により作動制御することによって、尿素水溶液の添加流量を制御すればよい。
【0033】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、内筒の内部に噴射添加された尿素水溶液は、内筒の内壁に付着して液滴になっても、温度低下することがなく、尿素水溶液の加水分解効率が向上する。これにより、窒素酸化物還元触媒においてアンモニアが不足することがなくなり、排気中から窒素酸化物を還元除去する効率が向上する。また、アンモニアの不足を補うために尿素水溶液の添加流量を増加させる必要がなく、アンモニアに加水分解されなかった尿素水溶液が、排気管中に析出したり、大気中に排出したりすることがない。
【0034】
請求項2記載の発明によれば、低温の尿素水溶液が噴射添加されることによる排気の温度低下が抑制されるので、尿素水溶液の加水分解効率が向上するとともに、窒素酸化物還元触媒における触媒反応の活性が維持され、排気中から窒素酸化物を還元除去する効率が向上する。
【0035】
請求項3記載の発明によれば、内筒の内部に噴射添加される尿素水溶液の温度が安定するので、尿素水溶液の加水分解効率が安定する。
請求項4記載の発明によれば、内筒の内部に噴射添加される必要最小限の尿素水溶液のみ加熱されるので、尿素水溶液を加熱するための消費エネルギーが抑制される。
【0036】
請求項5記載の発明によれば、簡単な構造で容易に、内筒の内部に噴射添加される尿素水溶液を加熱できるので、効率のよい排気浄化装置を簡単な構造で容易に実施することができる。
【0037】
請求項6記載の発明によれば、エンジンを冷却する冷却液により、廃熱を利用して尿素水溶液が加熱されるので、尿素水溶液を加熱するための消費エネルギーが抑制される。
【0038】
請求項7記載の発明によれば、窒素酸化物還元触媒を通過した排気により、廃熱を利用して尿素水溶液が加熱されるので、尿素水溶液を加熱するための消費エネルギーが抑制される。また、窒素酸化物還元触媒へ供給される排気の温度を低下させることがなく、窒素酸化物の還元除去の効率低下を防止する。
【0039】
請求項8記載の発明によれば、加熱手段により効率よく尿素水溶液を加熱できるので、加熱手段の消費エネルギーが極力抑制される。
請求項9記載の発明によれば、窒素酸化物還元触媒においてエンジンの排気中の窒素酸化物を還元除去する際に必要な量の尿素水溶液が過不足なく噴射添加されるので、尿素水溶液の不足による窒素酸化物の還元除去の効率低下を防止するとともに、尿素水溶液の消費量が極力抑制される。
【図面の簡単な説明】
【図1】本発明の第1実施例における排気浄化装置の構成図
【図2】本発明の排気浄化装置の噴射ノズル近辺の詳細構造図
【図3】本発明の第2実施例における排気浄化装置の構成図
【図4】本発明の第3実施例における排気浄化装置の構成図
【図5】本発明の第4実施例における排気浄化装置の構成図
【符号の説明】
1 エンジン
3 窒素酸化物還元触媒
4 尿素水溶液タンク
10 噴射ノズル
11 電気ヒータ
12 断熱材
13 尿素水溶液添加コントローラ
14 エンジンコントローラ
20 内筒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for improving the hydrolysis efficiency of an aqueous urea solution injected and added upstream of a nitrogen oxide reduction catalyst in an exhaust purification device such as an engine.
[0002]
[Prior art]
As an exhaust gas purification device for purifying nitrogen oxide (NOx) contained in exhaust gas exhausted from an engine, an exhaust gas purification device as disclosed in Japanese Patent Laid-Open No. 2000-27627 (Patent Document 1) has been proposed. . In such an exhaust purification device, a nitrogen oxide reduction catalyst is interposed in the exhaust passage of the engine in order to convert nitrogen oxides into harmless nitrogen (N 2 ), oxygen (O 2 ), etc. in an oxygen-excess atmosphere. In addition, in order to increase the nitrogen oxide purification efficiency in the nitrogen oxide reduction catalyst, a configuration in which an aqueous urea ((NH 2 ) 2 CO) solution is mounted and injected into the exhaust pipe upstream of the nitrogen oxide reduction catalyst is adopted. Yes. In such an exhaust purification device, the urea aqueous solution is heated by the exhaust of the engine, hydrolyzed, and ammonia is generated. In the nitrogen oxide reduction catalyst, this ammonia serves as a reducing agent, and nitrogen oxide in the exhaust is reduced and removed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-27627
[Problems to be solved by the invention]
In the exhaust emission control device having such a configuration, part of the urea aqueous solution injected and added into the exhaust pipe adheres to the exhaust pipe and becomes droplets. However, the exhaust pipe of the engine has an outer wall that is in contact with the outside air and is at a lower temperature than the exhaust, so the urea aqueous solution that has become droplets is not heated sufficiently and is difficult to hydrolyze into ammonia. There is a fear. If this happens, the nitrogen oxide reduction catalyst will run short of ammonia, which may reduce the purification efficiency of nitrogen oxides in the exhaust. In addition, if the amount of urea aqueous solution added is increased in order to increase ammonia, the amount of urea aqueous solution used increases, economic efficiency decreases, and urea aqueous solution that has not been hydrolyzed to ammonia is introduced into the exhaust pipe. There was a problem that it might be deposited or discharged into the atmosphere.
[0005]
Therefore, in view of the conventional problems as described above, the present invention improves the hydrolysis efficiency for generating ammonia from the urea aqueous solution by suppressing the temperature drop of the urea aqueous solution attached to the inner wall to form droplets. An object is to provide an exhaust emission control device.
[0006]
[Means for Solving the Problems]
For this reason, the invention according to claim 1 is provided along the flow of exhaust gas, which is interposed in the exhaust pipe and which reduces and removes nitrogen oxides in the exhaust gas, and upstream of the nitrogen oxide reduction catalyst. And an inner cylinder having both ends opened, a urea aqueous solution storage means for storing a urea aqueous solution, and a urea aqueous solution stored in the urea aqueous solution storage means. And an injection means for injecting and adding to the inside of the inner cylinder along the flow of exhaust gas.
[0007]
According to such a configuration, the urea aqueous solution stored in the urea aqueous solution storage means is injected and added into the inner cylinder by the injection means. The inner cylinder is open at both ends, and is provided so as to have a gap between the outer wall and the inner wall of the exhaust pipe along the flow of exhaust, so that an exhaust passage is formed inside, and the outer wall and the exhaust pipe An exhaust passage is formed with the inner wall. Therefore, the inner cylinder is heated from the outside and inside by the exhaust gas flowing through the exhaust pipe, and immediately becomes substantially the same temperature as the exhaust gas. Thereby, even if the urea aqueous solution injected and added to the inside of an inner cylinder adheres to the inner wall of an inner cylinder and becomes a droplet, it is suppressed that a temperature fall is carried out.
[0008]
The invention according to claim 2 is characterized in that it has heating means for heating the urea aqueous solution injected and added to the inside of the inner cylinder.
According to such a configuration, since the urea aqueous solution is heated in advance and then injected and added to the inside of the inner cylinder, a decrease in the exhaust gas temperature due to the injection and addition of the low-temperature urea aqueous solution is suppressed.
[0009]
The invention according to claim 3 is characterized in that the heating means heats the urea aqueous solution stored in the urea aqueous solution storage means.
According to such a configuration, since the urea aqueous solution stored in the urea aqueous solution storage means is heated, the temperature of the urea aqueous solution injected and added to the inside of the inner cylinder is stabilized.
[0010]
The invention according to claim 4 is characterized in that the heating means heats the urea aqueous solution flowing in the pipe between the urea aqueous solution storage means and the injection means.
According to such a configuration, since the urea aqueous solution flowing in the pipe between the urea aqueous solution storage means and the injection means is heated, only the minimum necessary urea aqueous solution injected and added to the inside of the inner cylinder is heated.
[0011]
The invention according to claim 5 is characterized in that the heating means is an electric heater.
According to this configuration, since the heating means is an electric heater, the urea aqueous solution injected and added to the inside of the inner cylinder can be easily heated with a simple structure.
[0012]
The invention according to claim 6 is characterized in that the exhaust gas flowing through the exhaust pipe is an exhaust gas of the engine, and the heating means heats the urea aqueous solution with a coolant for cooling the engine.
[0013]
According to this configuration, the urea aqueous solution that is injected and added to the inside of the inner cylinder is heated by the coolant that cools the engine, so that the urea aqueous solution is heated using waste heat.
[0014]
The invention according to claim 7 is characterized in that the heating means heats the urea aqueous solution by the exhaust gas that has passed through the nitrogen oxide reduction catalyst.
According to this configuration, the urea aqueous solution that is injected and added to the inside of the inner cylinder is heated by the exhaust gas that has passed through the nitrogen oxide reduction catalyst, so that the urea aqueous solution is heated using waste heat. Further, the temperature of the exhaust gas supplied to the nitrogen oxide reduction catalyst is not lowered.
[0015]
The invention described in claim 8 is characterized in that a heat insulating means for suppressing heat radiation from the heating means to the outside air is provided.
According to such a configuration, the urea aqueous solution is heated without the amount of heat generated by the heating means leaking to the outside as much as possible, and the heated urea aqueous solution is kept warm.
[0016]
According to a ninth aspect of the present invention, the exhaust flowing through the exhaust pipe is exhaust of an engine, and is based on an operating state detecting means for detecting an operating state of the engine and an operating state detected by the operating state detecting means. And an addition control means for controlling the addition flow rate of the urea aqueous solution injected and added by the injection means.
[0017]
According to such a configuration, since the addition flow rate of the urea aqueous solution is controlled based on the operating state of the engine, an amount of urea necessary for reducing and removing nitrogen oxides in the exhaust of the engine in the nitrogen oxide reduction catalyst. Aqueous solution is added without excess or deficiency.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of a first embodiment of an exhaust emission control device in which the present invention is applied to an engine.
[0019]
A nitrogen oxide reduction catalyst 3 for reducing and purifying nitrogen oxide is interposed in an exhaust pipe 2 that is an exhaust passage of the engine 1.
The nitrogen oxide reduction catalyst 3 has a configuration in which, for example, a zeolite-based active component is supported on a monolith type catalyst carrier having a honeycomb-shaped cross section made of ceramic cordierite or Fe-Cr-Al heat-resistant steel. Make. Then, the active component supported on the catalyst carrier is activated by the supply of ammonia (NH 3 ) as a reducing agent, and effectively converts nitrogen oxides into harmless substances.
[0020]
The exhaust purification device is provided with a urea aqueous solution tank 4 (urea aqueous solution storage means) in which a urea aqueous solution is stored. The urea aqueous solution tank 4 is connected to a urea aqueous solution addition device 6 via a pipe 5.
[0021]
On the other hand, the urea aqueous solution addition device 6 is connected to a pump 8 via a pipe 7. The pump 8 pressurizes and supplies air to the urea aqueous solution adding device 6. The urea aqueous solution addition device 6 is connected to an injection nozzle 10 (injection means) provided in the exhaust pipe 2 on the upstream side of the nitrogen oxide reduction catalyst 3 via a pipe 9 and is pressurized and supplied. Aqueous urea is mixed with the aqueous urea solution and supplied to the injection nozzle 10.
[0022]
An electric heater 11 (heating means) is provided around the pipe 9, and a heat insulating material 12 (heat insulating means) is provided around the pipe 9.
Further, a urea aqueous solution addition controller 13 (addition control means) incorporating a microcomputer is provided. The urea aqueous solution addition controller 13 is capable of receiving operation information of the engine 1 through CAN (Controller Area Network) communication from an engine controller 14 (operation state detection means) that controls the operation of the engine 1, and the pump 8, The operation of the urea aqueous solution adding device 6 and the electric heater 11 is controlled.
[0023]
Here, the detailed structure near the injection nozzle 10 will be described with reference to FIG.
In the exhaust pipe 2 on the upstream side of the nitrogen oxide reduction catalyst 3, a cylindrical inner cylinder 20 having both ends opened is provided along the exhaust flow. The inner cylinder 20 is supported substantially concentrically with the exhaust pipe 2 by two annular plate-like support plates 21 provided in the exhaust pipe 2, and has a gap with the inner wall of the exhaust pipe 2. It is provided as follows.
[0024]
The support plate 21 has a large number of holes. As a result, the exhaust gas flowing through the exhaust pipe 2 can flow inside and outside the inner cylinder 20.
The injection nozzle 10 connected to the tip of the pipe 9 is provided in the inner cylinder 20 so that the urea aqueous solution supplied through the pipe 9 can be injected and added along the flow of exhaust gas.
[0025]
Next, the operation of the engine exhaust gas purification apparatus will be described.
When the engine 1 is operated, the exhaust gas is discharged to the exhaust pipe 2. At this time, the urea aqueous solution addition controller 13 receives the operation state of the engine 1 such as the rotational speed of the engine 1, the intake air flow rate, and the load from the engine controller 1. Then, the addition flow rate of the urea aqueous solution necessary for reducing the nitrogen oxide in the exhaust gas is calculated, and the pump 8, the urea aqueous solution addition device 6, and the electric heater 11 are controlled. As a result, the urea aqueous solution is mixed with the air taken in by the pump 8 and is heated by the electric heater 11 by passing through the pipe 9 and is injected and added from the injection nozzle 10 into the inner cylinder 20.
[0026]
The urea aqueous solution injected and added from the injection nozzle 10 is mixed with exhaust gas, heated, hydrolyzed, and ammonia is generated. Then, exhaust gas from the engine 1 is supplied to the nitrogen oxide reduction catalyst 3 together with the ammonia. In the nitrogen oxide reduction catalyst 3, the nitrogen oxide in the exhaust gas is reduced and removed using this ammonia as a reducing agent.
[0027]
The urea aqueous solution is heated in advance by the electric heater 11 before being injected and added into the exhaust gas. As a result, the temperature drop of the exhaust due to the injection addition of the low-temperature urea aqueous solution is suppressed, so that the catalytic reaction activity in the nitrogen oxide reduction catalyst 3 is maintained, and the reduction and removal of nitrogen oxide in the exhaust is performed efficiently. In addition, since only the urea aqueous solution injected and added into the exhaust gas is heated, energy consumption for heating the urea aqueous solution is suppressed.
[0028]
Further, since the exhaust gas flows through the outer side of the inner cylinder 20, the temperature immediately becomes substantially the same as that of the exhaust gas. Therefore, even if the urea aqueous solution injected from the injection nozzle 10 adheres to the inner wall of the inner cylinder 20, it is immediately heated. Thus, even if the urea aqueous solution adheres to the inner wall of the inner cylinder 20 and becomes droplets, the hydrolysis is efficiently performed without lowering the temperature. Therefore, the nitrogen oxide reduction catalyst 3 is short of ammonia. Without reduction, nitrogen oxides in the exhaust gas can be reduced and removed efficiently.
[0029]
Next, a second embodiment of an exhaust emission control device in which the present invention is applied to an engine will be described with reference to FIG.
In the present embodiment, in the first embodiment, the electric heater 11 and the heat insulating material 12 provided around the pipe 9 between the urea aqueous solution adding device 6 and the injection nozzle 10 are provided around the urea aqueous solution tank 4. ing. Thereby, the urea aqueous solution stored in the urea aqueous solution tank 4 is heated. Therefore, in this embodiment, as in the first embodiment, the urea aqueous solution is injected and added into the exhaust gas in a state where the temperature of the urea aqueous solution is raised. As a result, the temperature drop of the exhaust is suppressed, and the reduction and removal of nitrogen oxides in the exhaust is performed efficiently. In addition, since the urea aqueous solution stored in the urea aqueous solution tank 4 is heated, even if the addition flow rate of the urea aqueous solution fluctuates, the urea aqueous solution having a substantially constant temperature is added to the exhaust gas. Hydrolysis efficiency is stable.
[0030]
Next, a third embodiment of an exhaust emission control device in which the present invention is applied to an engine will be described with reference to FIG.
In this embodiment, the urea aqueous solution is heated by the coolant of the engine 1 by passing the piping 22 of the coolant of the engine 1 into the urea aqueous solution tank 4. As a result, the temperature of the urea aqueous solution stored in the urea aqueous solution tank 4 is raised without the need for the electric heater 11, so that power consumption by the electric heater 11 is suppressed. In this embodiment, the pipe 22 corresponds to the heating means.
[0031]
Next, a fourth embodiment of an exhaust emission control device in which the present invention is applied to an engine will be described with reference to FIG.
In this embodiment, the intermediate part of the pipe 5 between the urea aqueous solution tank 4 and the urea aqueous solution addition device 6 is wound around the exhaust pipe 2 downstream of the nitrogen oxide reduction catalyst 3, thereby circulating in the exhaust pipe 2. Heat is received from the exhaust gas, and the urea aqueous solution in the pipe 5 is heated. As a result, the temperature of the urea aqueous solution supplied from the urea aqueous solution tank 4 to the urea aqueous solution adding device 6 is raised without the need for the electric heater 11, so that power consumption by the electric heater 11 is suppressed. Since the intermediate part of the pipe 5 is wound around the exhaust pipe 2 downstream of the nitrogen oxide reduction catalyst 3, the temperature of the exhaust gas supplied to the nitrogen oxide reduction catalyst 3 is not lowered, and the nitrogen oxide reduction catalyst The efficiency of reduction and removal of nitrogen oxides in the exhaust gas in 3 is not reduced. In this embodiment, the exhaust pipe 2 downstream of the nitrogen oxide reduction catalyst 3 corresponds to the heating means.
[0032]
In addition, the 1st-4th Example may be implemented independently or may be implemented combining any two or more.
In any of the first to fourth embodiments, the urea aqueous solution is mixed with the air supplied by the pump 8 in the urea aqueous solution addition device 6 and then injected and added into the exhaust pipe 2. However, the urea aqueous solution may be directly injected into the exhaust pipe 2 from the injection nozzle 10. At this time, if a pump for pressurizing the urea aqueous solution is provided instead of the urea aqueous solution addition device 6, the pump 8 for pressurizing the air becomes unnecessary. Then, the flow rate of the urea aqueous solution may be controlled by controlling the operation of this pump by the urea aqueous solution addition controller 13.
[0033]
【The invention's effect】
As described above, according to the first aspect of the present invention, even if the urea aqueous solution injected and added to the inside of the inner cylinder adheres to the inner wall of the inner cylinder and becomes droplets, the temperature does not decrease. The hydrolysis efficiency of the urea aqueous solution is improved. Thereby, there is no shortage of ammonia in the nitrogen oxide reduction catalyst, and the efficiency of reducing and removing nitrogen oxides from the exhaust is improved. Also, it is not necessary to increase the flow rate of the urea aqueous solution to make up for the shortage of ammonia, and the urea aqueous solution that has not been hydrolyzed to ammonia does not precipitate in the exhaust pipe or be discharged into the atmosphere. .
[0034]
According to the invention described in claim 2, since the temperature drop of the exhaust gas due to the injection and addition of the low temperature urea aqueous solution is suppressed, the hydrolysis efficiency of the urea aqueous solution is improved and the catalytic reaction in the nitrogen oxide reduction catalyst The efficiency of reducing and removing nitrogen oxides from the exhaust gas is improved.
[0035]
According to the third aspect of the invention, the temperature of the urea aqueous solution injected and added to the inside of the inner cylinder is stabilized, so that the hydrolysis efficiency of the urea aqueous solution is stabilized.
According to the invention described in claim 4, since only the minimum necessary urea aqueous solution injected and added to the inside of the inner cylinder is heated, energy consumption for heating the urea aqueous solution is suppressed.
[0036]
According to the fifth aspect of the present invention, since the urea aqueous solution injected and added to the inside of the inner cylinder can be easily heated with a simple structure, an efficient exhaust purification device can be easily implemented with a simple structure. it can.
[0037]
According to the sixth aspect of the invention, since the urea aqueous solution is heated using the waste heat by the coolant that cools the engine, the energy consumption for heating the urea aqueous solution is suppressed.
[0038]
According to the seventh aspect of the present invention, since the urea aqueous solution is heated using waste heat by the exhaust gas that has passed through the nitrogen oxide reduction catalyst, energy consumption for heating the urea aqueous solution is suppressed. In addition, the temperature of the exhaust gas supplied to the nitrogen oxide reduction catalyst is not lowered, and the efficiency of reduction and removal of nitrogen oxides is prevented.
[0039]
According to the eighth aspect of the invention, since the urea aqueous solution can be efficiently heated by the heating means, the energy consumption of the heating means is suppressed as much as possible.
According to the ninth aspect of the present invention, since the urea aqueous solution in an amount necessary for reducing and removing nitrogen oxide in the exhaust gas of the engine in the nitrogen oxide reduction catalyst is injected without being excessive or insufficient, the urea aqueous solution is insufficient. This prevents a reduction in the efficiency of reduction and removal of nitrogen oxides due to, and suppresses consumption of the aqueous urea solution as much as possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an exhaust purification device according to a first embodiment of the present invention. FIG. 2 is a detailed structural view near an injection nozzle of the exhaust purification device of the present invention. FIG. 4 is a block diagram of an exhaust emission control device according to a third embodiment of the present invention. FIG. 5 is a block diagram of an exhaust emission control device according to a fourth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Engine 3 Nitrogen oxide reduction catalyst 4 Urea aqueous solution tank 10 Injection nozzle 11 Electric heater 12 Heat insulating material 13 Urea aqueous solution addition controller 14 Engine controller 20 Inner cylinder

Claims (9)

排気管に介装され、排気中の窒素酸化物を還元除去する窒素酸化物還元触媒と、
前記窒素酸化物還元触媒の上流に、排気の流れに沿って、前記排気管の内壁との間に間隙を有するように設けられた、両端が開口した内筒と、
尿素水溶液を貯蔵する尿素水溶液貯蔵手段と、
前記尿素水溶液貯蔵手段に貯蔵された尿素水溶液を、排気の流れに沿って、前記内筒の内部に噴射添加する噴射手段と、
を含んで構成されることを特徴とする排気浄化装置。
A nitrogen oxide reduction catalyst interposed in the exhaust pipe and reducing and removing nitrogen oxides in the exhaust;
An inner cylinder having both ends opened upstream of the nitrogen oxide reduction catalyst and provided with a gap between the exhaust pipe and the inner wall along the flow of exhaust;
Urea aqueous solution storage means for storing urea aqueous solution;
Injection means for injecting and adding urea aqueous solution stored in the urea aqueous solution storage means to the inside of the inner cylinder along the flow of exhaust;
An exhaust emission control device comprising:
前記内筒の内部に噴射添加される尿素水溶液を加熱する加熱手段を有することを特徴とする請求項1に記載の排気浄化装置。The exhaust emission control device according to claim 1, further comprising a heating unit that heats the urea aqueous solution injected and added to the inside of the inner cylinder. 前記加熱手段は、前記尿素水溶液貯蔵手段に貯蔵された尿素水溶液を加熱することを特徴とする請求項2に記載の排気浄化装置。The exhaust emission control device according to claim 2, wherein the heating means heats the urea aqueous solution stored in the urea aqueous solution storage means. 前記加熱手段は、前記尿素水溶液貯蔵手段と噴射手段との間の配管内を流通する尿素水溶液を加熱することを特徴とする請求項2又は3に記載の排気浄化装置。The exhaust emission control device according to claim 2 or 3, wherein the heating means heats the urea aqueous solution flowing in a pipe between the urea aqueous solution storage means and the injection means. 前記加熱手段は、電気ヒータであることを特徴とする請求項2乃至4のいずれか1つに記載の排気浄化装置。The exhaust emission control device according to any one of claims 2 to 4, wherein the heating means is an electric heater. 前記排気管を流通する排気は、エンジンの排気であり、
前記加熱手段は、前記エンジンを冷却する冷却液により尿素水溶液を加熱することを特徴とする請求項2乃至5のいずれか1つに記載の排気浄化装置。
The exhaust gas flowing through the exhaust pipe is engine exhaust gas,
The exhaust emission control device according to any one of claims 2 to 5, wherein the heating unit heats the urea aqueous solution with a coolant that cools the engine.
前記加熱手段は、前記窒素酸化物還元触媒を通過した排気により尿素水溶液を加熱することを特徴とする請求項2乃至6のいずれか1つに記載の排気浄化装置。The exhaust emission control device according to any one of claims 2 to 6, wherein the heating means heats the urea aqueous solution by exhaust gas that has passed through the nitrogen oxide reduction catalyst. 前記加熱手段から外気への放熱を抑制する断熱手段が設けられたことを特徴とする請求項2乃至7のいずれか1つに記載の排気浄化装置。The exhaust emission control device according to any one of claims 2 to 7, further comprising heat insulating means for suppressing heat radiation from the heating means to the outside air. 前記排気管を流通する排気は、エンジンの排気であり、
前記エンジンの運転状態を検出する運転状態検出手段と、
前記運転状態検出手段により検出された運転状態に基づいて、前記噴射手段により噴射添加される尿素水溶液の添加流量を制御する添加制御手段と、
を有することを特徴とする請求項1乃至8のいずれか1つに記載の排気浄化装置。
The exhaust gas flowing through the exhaust pipe is engine exhaust gas,
An operating state detecting means for detecting an operating state of the engine;
An addition control means for controlling the addition flow rate of the urea aqueous solution injected and added by the injection means based on the operation state detected by the operation state detection means;
The exhaust emission control device according to any one of claims 1 to 8, wherein the exhaust purification device is provided.
JP2003064679A 2003-03-11 2003-03-11 Exhaust purification device Expired - Lifetime JP3883974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064679A JP3883974B2 (en) 2003-03-11 2003-03-11 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064679A JP3883974B2 (en) 2003-03-11 2003-03-11 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2004270609A true JP2004270609A (en) 2004-09-30
JP3883974B2 JP3883974B2 (en) 2007-02-21

Family

ID=33125911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064679A Expired - Lifetime JP3883974B2 (en) 2003-03-11 2003-03-11 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP3883974B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732050B1 (en) 2005-12-28 2007-06-27 한국생산기술연구원 Apparatus for introducing a liquid agent to reduce harmful object in exhaust gas
JP2008019868A (en) * 2006-07-12 2008-01-31 Delphi Technologies Inc Insulated reagent dosing device
JP2008514860A (en) * 2004-10-02 2008-05-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A metering system for the reduction of hazardous substances in automotive exhaust.
KR100859443B1 (en) 2007-04-16 2008-09-22 (주)모토닉 Dosing system
JP2009103013A (en) * 2007-10-22 2009-05-14 Denso Corp Exhaust emission control device
JP2009115051A (en) * 2007-11-09 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
CN102155277A (en) * 2011-03-22 2011-08-17 杭州银轮科技有限公司 SCR (Selective Catalytic Reduction) post treatment system for preventing urea in exhaust pipeline from crystallizing
WO2013099312A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Mixing device for reducing agent aqueous solution and exhaust gas post-processing device
WO2013099313A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
WO2013099314A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
CN103437868A (en) * 2013-08-30 2013-12-11 东风商用车有限公司 Ammonia gas preparation and quantitative injection system for SCR reaction
CN103511040A (en) * 2013-10-17 2014-01-15 刘观柏 System for preparing ammonia through ammonium bicarbonate according to dry method and conducting injection in measured mode and for engine SCR
US8893481B2 (en) 2013-01-17 2014-11-25 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US8916100B2 (en) 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
US8932530B2 (en) 2011-12-27 2015-01-13 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP2015010508A (en) * 2013-06-27 2015-01-19 株式会社日本自動車部品総合研究所 Exhaust purification device for internal combustion engine
US8955312B2 (en) 2013-01-17 2015-02-17 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US8991160B2 (en) 2013-01-17 2015-03-31 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US9062589B2 (en) 2013-01-17 2015-06-23 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
CN106492634A (en) * 2016-11-30 2017-03-15 南京右转信息科技有限公司 A kind of flue gas desulfurization and denitrification system
CN111108269A (en) * 2017-09-29 2020-05-05 大陆汽车有限公司 Method for selective catalytic reduction by desorption of ammonia from a cartridge in an exhaust line
US11286888B2 (en) * 2019-10-11 2022-03-29 Marelli Europe S.P.A. Internal combustion engine provided with a water-based operating liquid feeding system having a heating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605577A (en) * 2017-11-03 2018-01-19 大连大学 A kind of urea for vehicle hydrolysis SCR system and its control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511807A (en) * 1994-09-13 1997-11-25 シーメンス アクチエンゲゼルシヤフト Method and device for supplying liquid to an exhaust gas purification device
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2001157822A (en) * 1999-12-03 2001-06-12 Mitsui Chemicals Inc Method for removing nitrogen oxide in combustion exhaust gas
JP2002522703A (en) * 1998-08-11 2002-07-23 シーメンス アクチエンゲゼルシヤフト Catalytic exhaust gas purification device
JP2003010644A (en) * 2001-07-03 2003-01-14 Meidensha Corp Urea water evaporator of nitrogen oxide removal apparatus
JP2003505638A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Device for mixing active substances into exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511807A (en) * 1994-09-13 1997-11-25 シーメンス アクチエンゲゼルシヤフト Method and device for supplying liquid to an exhaust gas purification device
JP2000027627A (en) * 1998-07-13 2000-01-25 Hino Motors Ltd Reducing agent thermal insulating device for exhaust gas cleaning catalyst, and exhaust emission control device provided with this thermal insulating device
JP2002522703A (en) * 1998-08-11 2002-07-23 シーメンス アクチエンゲゼルシヤフト Catalytic exhaust gas purification device
JP2003505638A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Device for mixing active substances into exhaust gas
JP2001157822A (en) * 1999-12-03 2001-06-12 Mitsui Chemicals Inc Method for removing nitrogen oxide in combustion exhaust gas
JP2003010644A (en) * 2001-07-03 2003-01-14 Meidensha Corp Urea water evaporator of nitrogen oxide removal apparatus

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514860A (en) * 2004-10-02 2008-05-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング A metering system for the reduction of hazardous substances in automotive exhaust.
KR100732050B1 (en) 2005-12-28 2007-06-27 한국생산기술연구원 Apparatus for introducing a liquid agent to reduce harmful object in exhaust gas
JP2008019868A (en) * 2006-07-12 2008-01-31 Delphi Technologies Inc Insulated reagent dosing device
KR100859443B1 (en) 2007-04-16 2008-09-22 (주)모토닉 Dosing system
JP2009103013A (en) * 2007-10-22 2009-05-14 Denso Corp Exhaust emission control device
JP4706686B2 (en) * 2007-10-22 2011-06-22 株式会社デンソー Exhaust purification device
JP2009115051A (en) * 2007-11-09 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
CN102155277A (en) * 2011-03-22 2011-08-17 杭州银轮科技有限公司 SCR (Selective Catalytic Reduction) post treatment system for preventing urea in exhaust pipeline from crystallizing
CN103282616A (en) * 2011-12-27 2013-09-04 株式会社小松制作所 Reducing agent aqueous solution mixing device and exhaust gas after-reatment device
US8916101B2 (en) 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
WO2013099314A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
JP2013133775A (en) * 2011-12-27 2013-07-08 Komatsu Ltd Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP2013133774A (en) * 2011-12-27 2013-07-08 Komatsu Ltd Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP2013133773A (en) * 2011-12-27 2013-07-08 Komatsu Ltd Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
WO2013099312A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Mixing device for reducing agent aqueous solution and exhaust gas post-processing device
US8932530B2 (en) 2011-12-27 2015-01-13 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
CN103282616B (en) * 2011-12-27 2014-12-24 株式会社小松制作所 Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
WO2013099313A1 (en) * 2011-12-27 2013-07-04 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas after-treatment device
US8916100B2 (en) 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
US8893481B2 (en) 2013-01-17 2014-11-25 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US8955312B2 (en) 2013-01-17 2015-02-17 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US8991160B2 (en) 2013-01-17 2015-03-31 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
US9062589B2 (en) 2013-01-17 2015-06-23 Komatsu Ltd. Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
JP2015010508A (en) * 2013-06-27 2015-01-19 株式会社日本自動車部品総合研究所 Exhaust purification device for internal combustion engine
CN103437868A (en) * 2013-08-30 2013-12-11 东风商用车有限公司 Ammonia gas preparation and quantitative injection system for SCR reaction
CN103511040A (en) * 2013-10-17 2014-01-15 刘观柏 System for preparing ammonia through ammonium bicarbonate according to dry method and conducting injection in measured mode and for engine SCR
CN106492634A (en) * 2016-11-30 2017-03-15 南京右转信息科技有限公司 A kind of flue gas desulfurization and denitrification system
CN111108269A (en) * 2017-09-29 2020-05-05 大陆汽车有限公司 Method for selective catalytic reduction by desorption of ammonia from a cartridge in an exhaust line
US11149608B2 (en) 2017-09-29 2021-10-19 Continental Automotive France Method for selective catalytic reduction with desorption of ammonia from a cartridge in an exhaust line
CN111108269B (en) * 2017-09-29 2022-03-01 大陆汽车有限公司 Method for selective catalytic reduction by desorption of ammonia from a cartridge in an exhaust line
US11286888B2 (en) * 2019-10-11 2022-03-29 Marelli Europe S.P.A. Internal combustion engine provided with a water-based operating liquid feeding system having a heating device

Also Published As

Publication number Publication date
JP3883974B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP3883974B2 (en) Exhaust purification device
EP1785606B1 (en) Exhaust gas purifier
US9656210B2 (en) Internal combustion engine
JP6114305B2 (en) Exhaust aftertreatment system and method for operating the system
US8365517B2 (en) Apparatus and method for regenerating an exhaust filter
US20110030343A1 (en) Scr reductant deposit removal
JP4646934B2 (en) Engine exhaust treatment apparatus and engine exhaust treatment method using the same
WO2005073527A1 (en) Device for purifying exhaust gas of internal combustion engine
JP2010265862A (en) Exhaust emission control device
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
CN101680332A (en) NOX purification system, and method for control of nox purification system
JP2009168013A (en) Heating system for chemical used in exhaust purification system
JP3718208B2 (en) Engine exhaust purification system
KR20010090826A (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
JP4137831B2 (en) Engine exhaust purification system
JP5316266B2 (en) Reducing agent supply device for urea SCR catalyst
JP2013124642A (en) Exhaust emission control device of internal combustion engine
JP2016217301A (en) Ammonia generator and ammonia generation control device
JP3839764B2 (en) Diesel engine exhaust purification system
US11022014B1 (en) Exhaust aftertreatment system with heated flash-boiling doser
JP2007198315A (en) Exhaust emission control device for internal combustion engine and exhaust emission control method
JP5915927B2 (en) Exhaust gas purification device for internal combustion engine
JP2019002362A (en) Injection device
CN105074155A (en) Exhaust purification device for internal combustion engine
JP2005214172A (en) Engine exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Ref document number: 3883974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151124

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term