JP2001157822A - Method for removing nitrogen oxide in combustion exhaust gas - Google Patents

Method for removing nitrogen oxide in combustion exhaust gas

Info

Publication number
JP2001157822A
JP2001157822A JP34433499A JP34433499A JP2001157822A JP 2001157822 A JP2001157822 A JP 2001157822A JP 34433499 A JP34433499 A JP 34433499A JP 34433499 A JP34433499 A JP 34433499A JP 2001157822 A JP2001157822 A JP 2001157822A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
gas
combustion exhaust
removing nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34433499A
Other languages
Japanese (ja)
Inventor
Kenta Takahashi
堅太 高橋
Masasane Inomata
将実 猪俣
Koji Fujita
耕士 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP34433499A priority Critical patent/JP2001157822A/en
Publication of JP2001157822A publication Critical patent/JP2001157822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing nitrogen oxide which is suitable for purifying exhaust gas of an automobile at a relatively low temperature wherein in a method for removing nitrogen oxides in combustion exhaust gas by a catalytic reduction process by means of ammonia gas, a high pressure ammonia storage tank is not used, and as the generation of decomposed ammo nia gas due to decomposition of urea, high temperature heating or hydrolytic catalysts are not used to vaporize urea and a relatively low temperature can be used. SOLUTION: As an ammonia generating reducing agent, at least any one of the group consisting of ammonium carbamate, ammonium carbonate, and ammonium hydrogencarbonate is heated and decomposed to generate a mixed gas of ammonia and carbon dioxide, which are mixed with a combustion exhaust gas to remove nitrogen oxides by a catalytic reduction reaction, following which a part of the exhaust gas is used as a heating source for generation of decomposed ammonia of a reducing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排気ガス中の窒
素酸化物(以下NOxと記す)の除去方法に関する。さ
らに詳細には燃焼排ガス中の窒素酸化物をアンモニアガ
スにより還元し、分解除去する方法に関する。
The present invention relates to a method for removing nitrogen oxides (hereinafter referred to as NOx) in combustion exhaust gas. More particularly, the present invention relates to a method for reducing and decomposing and removing nitrogen oxides in combustion exhaust gas with ammonia gas.

【0002】[0002]

【従来の技術】従来、燃焼排ガス中に含まれるNOxの
処理技術は種々の分野で必要とされている。例えば、ボ
イラー、自動車等の排ガス中に存在するNOxは人体に
有害な光化学スモッグの原因となり、また酸性雨の発生
原因ともなるので排気ガス中のNOxを効果的に除去処
理することが要望され、全ての自動車には排ガス規制が
なされている。例えば大型トラック、バスなどの商用車
において、排ガス中のNOx規制値は日本では現行5g
/kwhであるが、2003年には3.38/kwhに
引き下げられる方向である。これに対応するために、さ
らに効率のよい脱ONxシステムを開発する必要が生じ
てきた。
2. Description of the Related Art Conventionally, techniques for treating NOx contained in combustion exhaust gas have been required in various fields. For example, NOx present in exhaust gas from boilers and automobiles causes photochemical smog which is harmful to the human body, and also causes acid rain.Therefore, it has been demanded to effectively remove NOx in exhaust gas, All vehicles are subject to emission regulations. For example, in commercial vehicles such as heavy trucks and buses, the NOx regulation value in exhaust gas is currently 5 g in Japan.
/ Kwh, but it will be reduced to 3.38 / kwh in 2003. To cope with this, it has become necessary to develop a more efficient ONx-free system.

【0003】このようなNOxの除去方法としてアンモ
ニアを用いる選択的接触還元法が実用化されている。こ
の方法では燃焼排ガスにアンモニアガスを混合し、脱硝
触媒層を通すことによりNOxを除去する。このときに
必要なアンモニアはNO1モルに対して1モルであり、
効率的である。しかし、この方法においては通常アンモ
ニア貯蔵容器より直接アンモニアガスを供給するため、
高圧の液化アンモニアを取り扱うことになり装置に充分
な耐圧性が要求され、毒性ガスであるアンモニアのリー
ク対策等、装置の安全性が問題になり高コストになりが
ちである。
As a method for removing NOx, a selective catalytic reduction method using ammonia has been put to practical use. In this method, ammonia gas is mixed with combustion exhaust gas, and NOx is removed by passing the mixture through a denitration catalyst layer. At this time, the necessary ammonia is 1 mol per 1 mol of NO,
It is efficient. However, this method usually supplies ammonia gas directly from the ammonia storage container,
Since high-pressure liquefied ammonia is handled, the device must have sufficient pressure resistance, and the safety of the device, such as measures against leakage of ammonia, which is a toxic gas, tends to be problematic, resulting in high costs.

【0004】このようなアンモニアに代わる脱NOx 用
還元剤として最も一般的なものは尿素水溶液である。尿
素水溶液は無臭であり、リークしたとしても有害性は無
く、例えば特開平11−171535の方法では、尿素
水溶液を加水分解触媒層でアンモニア−二酸化炭素ガス
とし、このアンモニア−二酸化炭素ガスをN0x 含有燃
焼排ガスと混合して脱硝触媒上で接触還元している。ま
た、特開平6−280546の方法では燃焼用シリンダ
直後に尿素水溶液を噴霧し、排気通路ごとに設置された
脱硝触媒層で接触還元される。この場合には排ガスが5
00℃以上の高温なため加水分解触媒は用いられていな
い。いずれの場合にも水溶液を用いるため尿素濃度は3
0パーセント前後が最大であり、容積効率が悪い。ま
た、冷却された際の配管中に残った尿素水溶液から尿素
固体が析出するので配管の詰まり等のトラブルが予想さ
れる。
The most common reducing agent for NOx removal instead of ammonia is an aqueous urea solution. The aqueous urea solution is odorless and harmless even if it leaks. For example, in the method of JP-A-11-171535, the aqueous urea solution is converted to ammonia-carbon dioxide gas in the hydrolysis catalyst layer, and the ammonia-carbon dioxide gas contains NOx. It is mixed with flue gas and catalytically reduced on a denitration catalyst. In the method of JP-A-6-280546, an aqueous urea solution is sprayed immediately after the combustion cylinder, and is catalytically reduced by a denitration catalyst layer provided for each exhaust passage. In this case, the exhaust gas is 5
Since the temperature is as high as 00 ° C. or higher, no hydrolysis catalyst is used. In each case, since the aqueous solution is used, the urea concentration is 3
The maximum is around 0%, and the volume efficiency is poor. In addition, since urea solids precipitate from the aqueous urea solution remaining in the pipe at the time of cooling, troubles such as clogging of the pipe are expected.

【0005】また、容積効率の改善方法として、尿素固
体を還元剤としてそのまま用いる方法もある。特開平2
−261519では、尿素固体をスクリューフィーダー
によりフィードし、これを排ガスと直接接触させること
により気化させて尿素ガスとしたのち、加水分解触媒層
にてアンモニア−二酸化炭素ガスを発生させ用いてい
る。発生したアンモニア−二酸化炭素ガスは脱硝触媒層
でNOxを還元している。この方法では尿素濃度として
100%を使用出来るので容積効率としては最大であ
る。しかし、この方法では固体をフィードするので流量
制御が困難であるし固体を気化させるための熱エネルギ
ー消費も大きい。また、尿素は潮解性があるので湿度に
より潮解し付着固結による詰まりの発生も起きやすい。
[0005] As a method for improving the volumetric efficiency, there is a method in which urea solid is used as it is as a reducing agent. JP 2
In -261519, a urea solid is fed by a screw feeder, and the urea gas is vaporized by being brought into direct contact with exhaust gas to produce urea gas. Then, an ammonia-carbon dioxide gas is generated and used in a hydrolysis catalyst layer. The generated ammonia-carbon dioxide gas reduces NOx in the denitration catalyst layer. In this method, 100% can be used as the urea concentration, so that the volume efficiency is the maximum. However, in this method, since the solid is fed, it is difficult to control the flow rate and heat energy consumption for vaporizing the solid is large. In addition, since urea is deliquescent, it is likely to deliquesce due to humidity and cause clogging due to solidification.

【0006】[0006]

【発明が解決しようとする課題】上述で明らかな如く、
従来アンモニアガスによる接触還元法によるNOxの還
元除去において、高圧のアンモニア貯槽より直接アンモ
ニアガスを使用する方法、及び尿素の加水分解触媒によ
る分解アンモニアガスによる方法においてそれぞれに問
題点がある。したがって、本願発明の目的は詰まり等の
機械的なトラブルがなく、加水分解触媒の必要もなく、
アンモニアガスの発生が比較的低温でエネルギーが小さ
くてすみ、制御が容易であり車両等の小規模な内燃機関
の排ガスにも適用できる脱NOxシステムを提供するこ
とにある。
As is apparent from the above description,
Conventionally, in the reduction and removal of NOx by the catalytic reduction method using ammonia gas, there are problems in the method of directly using ammonia gas from a high-pressure ammonia storage tank and the method of using ammonia gas decomposed by a urea hydrolysis catalyst. Therefore, the object of the present invention is no mechanical trouble such as clogging, no need for a hydrolysis catalyst,
It is an object of the present invention to provide a NOx removal system that can generate ammonia gas at a relatively low temperature, requires less energy, is easy to control, and can be applied to exhaust gas from a small-scale internal combustion engine such as a vehicle.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の燃焼
排ガス中の窒素酸化物の除去方法は、窒素酸化物を含む
燃焼排ガスにアンモニアガスを混合して、触媒の存在下
窒素酸化物を接触還元し除去する方法において、アンモ
ニアガス源としてカルバミン酸アンモニウム、炭酸アン
モニウム、および重炭酸アンモニウムのうちの少なくと
も一種類を、加熱分解し、発生したアンモニアガスを燃
焼排ガスに混合することを特徴とするものである。
That is, according to the method of the present invention for removing nitrogen oxides from flue gas, ammonia gas is mixed with flue gas containing nitrogen oxides and the nitrogen oxides are contacted in the presence of a catalyst. A method for reducing and removing, characterized in that at least one of ammonium carbamate, ammonium carbonate, and ammonium bicarbonate is heated and decomposed as an ammonia gas source, and the generated ammonia gas is mixed with combustion exhaust gas. It is.

【0008】[0008]

【発明の実施の形態】本発明において還元剤のアンモニ
ア発生源として用いる低温分解性化合物の分解温度はカ
ルバミン酸アンモニウムで59℃、炭酸アンモニウムで
58℃、重炭酸アンモニウムで35〜60℃である。尿
素の沸点が192℃であることに比べて加熱エネルギー
は大幅に削減できる。これらの化合物は常温では固体な
ので、容積効率は100%である。また、加熱により分
解してアンモニアと二酸化炭素を発生するので、加水分
解触媒が必要ない。また完全にガス化するので詰まりの
恐れもなく、流量制御も容易である。これらのことによ
り上記の目的を完全に満たすことになる。さらにこのア
ンモニア発生源の加熱分解熱源には接触還元反応後の1
00〜200℃の排ガスの熱を利用することにより別途
の加熱エネルギーは不必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the decomposition temperature of a low-temperature decomposable compound used as an ammonia generating source of a reducing agent is 59 ° C. for ammonium carbamate, 58 ° C. for ammonium carbonate, and 35 to 60 ° C. for ammonium bicarbonate. The heating energy can be greatly reduced as compared with the case where the boiling point of urea is 192 ° C. Since these compounds are solid at room temperature, the volumetric efficiency is 100%. In addition, since it is decomposed by heating to generate ammonia and carbon dioxide, a hydrolysis catalyst is not required. Further, since the gas is completely gasified, there is no risk of clogging, and the flow rate can be easily controlled. These will fully satisfy the above objectives. Further, the heat decomposition heat source of the ammonia generation source includes 1 after the catalytic reduction reaction.
No additional heating energy is required by utilizing the heat of the exhaust gas at 00 to 200 ° C.

【0009】以下、図により本発明の実施の一例を説明
する。図1において燃焼室より出た燃焼排ガス1はアン
モニア発生器8よりのアンモニアガスを混合して脱硝反
応器2に入り触媒層において選択的還元反応を行い脱N
Oxされる。還元反応は300〜400℃で行われる。
脱硝反応後の燃焼排ガスはNOx濃度計7により未反応
NOxが測定され、これにより必要なアンモニアガス量
が演算機6およびアンモニア流量制御弁5により演算制
御される。さらに、脱硝反応後の燃焼排ガスは一部が排
ガス分岐装置3において分割制御されてアンモニア発生
器内のアンモニア発生物質の加熱に使用され、必要量の
アンモニアの発生を行う。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a flue gas 1 discharged from a combustion chamber is mixed with ammonia gas from an ammonia generator 8, enters a denitration reactor 2, and performs a selective reduction reaction in a catalyst layer to remove N.
Oxed. The reduction reaction is performed at 300 to 400 ° C.
The unreacted NOx of the combustion exhaust gas after the denitration reaction is measured by the NOx concentration meter 7, whereby the required amount of ammonia gas is calculated and controlled by the calculator 6 and the ammonia flow control valve 5. Further, a part of the combustion exhaust gas after the denitration reaction is divided and controlled in the exhaust gas branching device 3 and used for heating the ammonia generating substance in the ammonia generator to generate a necessary amount of ammonia.

【0010】[0010]

【実施例】以下実施例によりさらに具体的に説明する。The present invention will be described more specifically with reference to the following examples.

【0011】実施例1 30リットルのジャケット付き加圧型容器にカルバミン
酸アンモニウムを20kg充填した。ジャケットには加
熱用の模擬排ガスとして窒素を150℃で流通し、加圧
型容器内温を70℃にコントロールして、カルバミン酸
アンモニウムを熱分解してアンモニアと二酸化炭素を発
生させた。一方燃焼排ガスとしてはNO:1800pp
m、O2 :5%、H2 O:1.3%、N2 :バランス量
の組成の模擬排ガスを使用した。排ガスの温度は300
℃とした。排ガス流量は500Nm3 /hとし、脱硝触
媒としてバナジウム−タングステン系触媒20リットル
を充填した。この排ガスに先に発生させたアンモニア−
二酸化炭素混合ガスを混合して脱硝触媒層に連続的に供
給した。なお、アンモニア−二酸化炭素混合ガスの量
は、排ガス中のNO量とアンモニア量のモル比NH3
NOが1.0となるようにコントロールした。脱硝触媒
層の温度は350℃とした。脱硝後の排ガス中のNO濃
度は450ppmとなり、NOx除去率は75%であり
10時間安定した運転が出来た。
Example 1 A 30 liter jacketed pressurized container was filled with 20 kg of ammonium carbamate. Nitrogen was passed through the jacket at 150 ° C. as a simulated exhaust gas for heating, and the internal temperature of the pressurized container was controlled at 70 ° C. to thermally decompose ammonium carbamate to generate ammonia and carbon dioxide. On the other hand, NO: 1800 pp
A simulated exhaust gas having a composition of m, O 2 : 5%, H 2 O: 1.3%, N 2 : balance amount was used. Exhaust gas temperature is 300
° C. The exhaust gas flow rate was 500 Nm 3 / h, and 20 liters of a vanadium-tungsten-based catalyst was filled as a denitration catalyst. The ammonia generated earlier in this exhaust gas
The mixed gas of carbon dioxide was continuously supplied to the denitration catalyst layer. The amount of the ammonia-carbon dioxide mixed gas is determined by the molar ratio NH 3 / NO between the NO amount and the ammonia amount in the exhaust gas.
It controlled so that NO might be set to 1.0. The temperature of the denitration catalyst layer was 350 ° C. The NO concentration in the exhaust gas after denitration was 450 ppm, the NOx removal rate was 75%, and stable operation was possible for 10 hours.

【0012】実施例2 アンモニア発生物質を炭酸アンモニウムとした以外は実
施例1と同様にして試験を行った。NOx除去率は73
%であり10時間安定した運転を行うことが出来た。
Example 2 A test was conducted in the same manner as in Example 1 except that the ammonia generating substance was ammonium carbonate. NOx removal rate is 73
%, And stable operation could be performed for 10 hours.

【0013】実施例3 アンモニア発生物質を重炭酸アンモニウムとした以外は
実施例1と同様にして試験を行った。NOx除去率は7
2%であり10時間安定した運転を行うことが出来た。
Example 3 A test was conducted in the same manner as in Example 1 except that the ammonia generating substance was ammonium bicarbonate. NOx removal rate is 7
It was 2%, and stable operation could be performed for 10 hours.

【0014】[0014]

【発明の効果】本発明の方法によれば、還元剤としての
アンモニア発生源の容積効率が良く、また還元剤の詰ま
りの恐れもなく、加水分解触媒の必要がなく低エネルギ
ーでアンモニアを発生することが出来て流量の制御も容
易であり、特に車両等の内燃機関に好適なシステムを提
供することができる。
According to the method of the present invention, the volumetric efficiency of the ammonia generating source as the reducing agent is good, there is no risk of clogging of the reducing agent, and there is no need for a hydrolysis catalyst and ammonia is generated with low energy. Thus, the flow rate can be easily controlled, and a system suitable for an internal combustion engine such as a vehicle can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃焼排ガス中の窒素酸化物の除去
方法の一実施例を示すフロー図である。
FIG. 1 is a flow chart showing one embodiment of a method for removing nitrogen oxides from combustion exhaust gas according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・燃焼排ガス 2・・・・・脱硝反応器 3・・・・・排ガス分岐装置 4・・・・・脱NOx 排ガス 5・・・・・アンモニア流量制御弁 6・・・・・演算機 7・・・・・NOx 計 8・・・・・アンモニア発生器 1 ···· Combustion exhaust gas 2 ···· Denitration reactor 3 ···· Exhaust gas branch device 4 ···· DeNOx exhaust gas 5 ····· Ammonia flow rate control valve 6・ Calculator 7 ・ ・ ・ ・ ・ ・ ・ NOx total 8 ・ ・ ・ ・ ・ ・ ・ Ammonia generator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G091 AA02 AB04 AB05 BA14 BA36 CA08 CA17 DA01 DA02 DB10 DB11 GB01W 4D048 AA06 AB02 AC03 AC09 BA23X BA27X CC53 4G069 AA02 AA04 BC54B BC60B CA03 CA08 CA13 CD04  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3G091 AA02 AB04 AB05 BA14 BA36 CA08 CA17 DA01 DA02 DB10 DB11 GB01W 4D048 AA06 AB02 AC03 AC09 BA23X BA27X CC53 4G069 AA02 AA04 BC54B BC60B CA03 CA08 CA13 CD04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒素酸化物を含む燃焼排ガスにアンモニア
ガスを混合して、触媒の存在下窒素酸化物を接触還元し
除去する方法において、カルバミン酸アンモニウム、炭
酸アンモニウム、および重炭酸アンモニウムのうちの少
なくとも一種類を加熱分解し、発生したアンモニアガス
を燃焼排ガスに混合することを特徴とする燃焼排ガス中
の窒素酸化物の除去方法。
1. A method for removing nitrogen oxides by catalytically reducing and removing nitrogen oxides in the presence of a catalyst by mixing ammonia gas with a combustion exhaust gas containing nitrogen oxides. A method for removing nitrogen oxides from combustion exhaust gas, comprising subjecting at least one type to thermal decomposition and mixing the generated ammonia gas with the combustion exhaust gas.
【請求項2】接触還元反応を行ったあとの燃焼排ガス
を、カルバミン酸アンモニウム、炭酸アンモニウム、お
よび重炭酸アンモニウムの加熱分解用の熱源として使用
する請求項1記載の燃焼排ガス中の窒素酸化物の除去方
法。
2. The method according to claim 1, wherein the flue gas after the catalytic reduction reaction is used as a heat source for thermal decomposition of ammonium carbamate, ammonium carbonate and ammonium bicarbonate. Removal method.
JP34433499A 1999-12-03 1999-12-03 Method for removing nitrogen oxide in combustion exhaust gas Pending JP2001157822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34433499A JP2001157822A (en) 1999-12-03 1999-12-03 Method for removing nitrogen oxide in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34433499A JP2001157822A (en) 1999-12-03 1999-12-03 Method for removing nitrogen oxide in combustion exhaust gas

Publications (1)

Publication Number Publication Date
JP2001157822A true JP2001157822A (en) 2001-06-12

Family

ID=18368448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34433499A Pending JP2001157822A (en) 1999-12-03 1999-12-03 Method for removing nitrogen oxide in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JP2001157822A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269141A (en) * 2002-03-11 2003-09-25 Mitsui & Co Ltd Reducer composition for flue gas denitrification
WO2004073840A1 (en) * 2003-02-18 2004-09-02 Hjs Fahrzeugtechnik Gmbh & Co Kg Device for supplying ammonia to a reduction catalyst arranged in an exhaust gas evacuation system got an internal combustion engine
JP2004270609A (en) * 2003-03-11 2004-09-30 Nissan Diesel Motor Co Ltd Emission control device
JP2008530446A (en) * 2005-02-16 2008-08-07 アイエムアイ・ビジョン・リミテッド Exhaust gas treatment
EP2077378A1 (en) * 2008-01-07 2009-07-08 Ford Global Technologies, LLC Method and device for treating an exhaust gas of a combustion device
CN101829486A (en) * 2010-06-08 2010-09-15 叶力平 Process and system for preparing ammonia from ammonium bicarbonate by using wet process for flue gas denitration
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
JP2013026484A (en) * 2011-07-22 2013-02-04 Gunma Univ Method for producing carbon material for electrical double layer capacitor
CN104147926A (en) * 2014-08-03 2014-11-19 长春市永畅实业有限责任公司 Reducing agent mixture capable of releasing ammonia at low temperature
CN104265422A (en) * 2014-08-03 2015-01-07 长春市永畅实业有限责任公司 Low-temperature condition release ammonia reducing agent composition and preparation method thereof
CN104496101A (en) * 2014-12-02 2015-04-08 成都华西堂投资有限公司 Heat pump evaporation process for recycling flue gas cleaning byproducts
WO2018110126A1 (en) * 2016-12-12 2018-06-21 三菱ケミカル株式会社 METHOD FOR PRODUCING CATALYST PRECURSOR FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING CATALYST FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID ESTER
KR102452927B1 (en) * 2021-12-22 2022-10-12 주식회사 카프로 Nitrogen oxide emission reduction system using ammonium carbonate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269141A (en) * 2002-03-11 2003-09-25 Mitsui & Co Ltd Reducer composition for flue gas denitrification
WO2004073840A1 (en) * 2003-02-18 2004-09-02 Hjs Fahrzeugtechnik Gmbh & Co Kg Device for supplying ammonia to a reduction catalyst arranged in an exhaust gas evacuation system got an internal combustion engine
JP2004270609A (en) * 2003-03-11 2004-09-30 Nissan Diesel Motor Co Ltd Emission control device
JP2008530446A (en) * 2005-02-16 2008-08-07 アイエムアイ・ビジョン・リミテッド Exhaust gas treatment
EP2077378A1 (en) * 2008-01-07 2009-07-08 Ford Global Technologies, LLC Method and device for treating an exhaust gas of a combustion device
CN101829486A (en) * 2010-06-08 2010-09-15 叶力平 Process and system for preparing ammonia from ammonium bicarbonate by using wet process for flue gas denitration
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
JP2013026484A (en) * 2011-07-22 2013-02-04 Gunma Univ Method for producing carbon material for electrical double layer capacitor
CN104147926A (en) * 2014-08-03 2014-11-19 长春市永畅实业有限责任公司 Reducing agent mixture capable of releasing ammonia at low temperature
CN104265422A (en) * 2014-08-03 2015-01-07 长春市永畅实业有限责任公司 Low-temperature condition release ammonia reducing agent composition and preparation method thereof
CN104496101A (en) * 2014-12-02 2015-04-08 成都华西堂投资有限公司 Heat pump evaporation process for recycling flue gas cleaning byproducts
CN104496101B (en) * 2014-12-02 2016-06-08 成都华西堂投资有限公司 A kind of thermo-compression evaporation technique recycling gas cleaning by-product
WO2018110126A1 (en) * 2016-12-12 2018-06-21 三菱ケミカル株式会社 METHOD FOR PRODUCING CATALYST PRECURSOR FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING CATALYST FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α, β-UNSATURATED CARBOXYLIC ACID ESTER
JPWO2018110126A1 (en) * 2016-12-12 2019-10-24 三菱ケミカル株式会社 Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid, and α, β-unsaturated Method for producing carboxylic acid ester
KR102452927B1 (en) * 2021-12-22 2022-10-12 주식회사 카프로 Nitrogen oxide emission reduction system using ammonium carbonate

Similar Documents

Publication Publication Date Title
JP4873580B2 (en) Method and apparatus for selectively reducing NOx with catalyst
KR102309224B1 (en) Method for purifying diesel engine exhaust gases
US10695719B2 (en) Producing ammonium carbamate and reducing nitrogen oxides
EP1901831B1 (en) Method and device for safe and controlled delivery of ammonia from a solid ammonia storage medium
JP2001157822A (en) Method for removing nitrogen oxide in combustion exhaust gas
US20040115110A1 (en) Method and device for reducing nitrogen oxides present in exhaust gas
JP3638638B2 (en) Denitration equipment using solid reducing agent
EP2051798B1 (en) Method and device for storing and delivering ammonia from a solid ammonia storage medium
JP4309167B2 (en) Exhaust gas denitration method using urea
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
EP2704817A1 (en) Process and apparatus for reducing the content of nitrogen oxides
JP2007301524A (en) Method and apparatus for denitrification
JPH0871372A (en) Denitration apparatus and method using urea
JPH08281074A (en) Denitrification equipment using urea
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
KR101449244B1 (en) The De-NOx system for combined LNG gas turbine exhaust gas
Peitz et al. Ammonia storage and release in SCR systems for mobile applications
JP7319653B2 (en) Exhaust gas treatment method, exhaust gas treatment system and ship equipped with exhaust gas treatment system
JP2003343241A (en) Exhaust gas denitration method
EP2077378A1 (en) Method and device for treating an exhaust gas of a combustion device
Raval et al. NOX REDUCTION FOR UREA-SCR SYSTEM
JP2003260331A (en) Reducing agent composition for denitrification of flue gas
JP2007229544A (en) Denitrification process and denitrification facility
KR20180075040A (en) Reductant supply system