JP3638638B2 - Denitration equipment using solid reducing agent - Google Patents

Denitration equipment using solid reducing agent Download PDF

Info

Publication number
JP3638638B2
JP3638638B2 JP19955194A JP19955194A JP3638638B2 JP 3638638 B2 JP3638638 B2 JP 3638638B2 JP 19955194 A JP19955194 A JP 19955194A JP 19955194 A JP19955194 A JP 19955194A JP 3638638 B2 JP3638638 B2 JP 3638638B2
Authority
JP
Japan
Prior art keywords
reducing agent
aqueous solution
gas
denitration
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19955194A
Other languages
Japanese (ja)
Other versions
JPH0857258A (en
Inventor
良憲 永井
富久 石川
正人 向井
喜通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19955194A priority Critical patent/JP3638638B2/en
Publication of JPH0857258A publication Critical patent/JPH0857258A/en
Application granted granted Critical
Publication of JP3638638B2 publication Critical patent/JP3638638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、選択的接触還元法による脱硝技術に係わり、取り扱いが容易な固体還元剤を用いて好適に脱硝反応を行わせる脱硝装置に関する。
【0002】
【従来の技術】
石炭・石油またはガスなどの化石燃料を使用したボイラまたは内燃機関から排出される排ガス中には有害な窒素酸化物が含まれており、大気汚染の主因の一つとなっている。
これらの窒素酸化物の発生源の内、大容量の排ガスを大気中に放出する大型の事業用ボイラについては、国および地域の窒素酸化物の排出規制の強化により、その排出量の低減が強いられ、燃焼技術の適用および/または液化アンモニアを還元剤として用いる選択的接触還元法による脱硝装置が使用されている。
一方、これまでは脱硝装置の設置が稀であった小型発電設備においても、排出規制の強化などにより大型プラントと同様に脱硝装置の設置が必要となってきている。
従来の脱硝装置において還元剤として使用されるNH3は、高圧ガス容器から供給されるため、高圧ガス取締法の適用を受け、輸送および貯蔵に際して十分な注意が必要であり、また、NH3のリークなどによる二次公害の危険性があった。
【0003】
近年では、上記の液化NH3の使用に替えて取り扱いが容易な還元剤の水溶液(安水および尿素など含窒素化合物の水溶液)を電気ヒータまたは排ガスなどの熱を利用して蒸発させる方法、または触媒の加水分解反応を利用する方法などが提案されている。
ここで安水を使用した場合には工業用として市販されている安水が高々30wt%程度の濃度であることから特に輸送コストに関して不経済であり、かつ貯蔵においても大型のタンクが必要となり十分な設置スペースが必要であった。
これに比べ尿素などの含窒素化合物の水溶液を使用する場合には、サイトにて必要に応じて水溶液を調製できるため、経済的に優れており、これらの還元剤を有効に利用する方法の開発が期待されている。
尿素水溶液は、80℃以上の温度で加水分解反応が起こり、さらに適当な分解触媒の存在下では反応が促進されていることは公知である。特に触媒を使用した場合には比較的低温(80〜350℃)で反応が進行するため、有利な方法とされている。
【0004】
図3に従来の尿素を用いる脱硝プロセスを示す。尿素dの水溶液aは、貯蔵タンク1からポンプ2により送液され、触媒3を充填した加水分解反応器4に導かれる。この加水分解反応器4には当該反応器4内部の尿素dを80〜100℃に加熱するためのヒータ5が設けられている。加水分解された気体bを含む水溶液cは、そのままライン8を通り注入ノズル9を経て排ガス発生源10から排出される被処理ガスである排ガスの煙道11に注入され、NOxとNH3を反応させNOxを無害化する脱硝触媒12上で脱硝反応の還元剤として使用される。
しかしながら、図3に示す脱硝技術におけるこれらの固体還元剤(尿素d)水溶液の加水分解法については、未分解化合物を含む水溶液cが加水分解反応器4から当該水溶液c(または気体b)の搬送手段を経て注入ノズル9から被処理ガス中に注入されるため、搬送手段もしくは被処理ガス煙道11中に重合化合物を形成するおそれがあった。
さらに100%分解反応が進行したとしても、多量の水分が含まれているため、多量の熱量を与えてもなお十分な気化が難しく、煙道11中にドレンが形成されたり、後流に位置する脱硝触媒12に悪影響を与えるなどの問題点があった。
【0005】
【発明が解決しようとする課題】
上記固体還元剤水溶液の加水分解反応を利用する従来の脱硝技術は、未分解化合物による固形物の煙道への付着または、完全気化の点について十分な配慮がされておらず、液化NH3を使用した脱硝技術と比べた場合、長期安定運転という点で問題があった。
本発明の目的は、脱硝反応の還元剤として液化NH3に比べ取り扱いが容易な固体還元剤を用い、煙道へのスケールの付着をなくし、液化NH3法と同様な脱硝反応を行うことが可能な脱硝装置を提供することである。
【0006】
【課題を解決するための手段】
本発明の上記目的は、次の構成によって達成される。すなわち、窒素酸化物を含有する被処理ガス中に、常温常圧で固体である含窒素化合物からなる還元剤を注入し、次いで遷移金属を含む触媒と接触させて脱硝反応を行う固体還元剤を用いた脱硝装置において、固体還元剤と水とを混合する混合容器と、該混合容器から排出した混合溶液中の還元剤を加水分解する加水分解反応器と、該加水分解反応器から排出した還元剤水溶液を加熱する手段を有する加熱型気液分離容器と、該加熱型気液分離容器から排出された水又は水溶液を前記混合容器に戻す手段と、得られたガス状の還元剤を前記被処理ガス中に注入するノズルを設けた固体還元剤を用いた脱硝装置である。加水分解された還元剤水溶液を加熱する手段として被処理ガスを用いても良い。
【0007】
【作用】
上記本発明の固体還元剤を用いる脱硝装置の作用を尿素を例にとって説明する。貯蔵タンクから供給される尿素の水溶液を加水分解反応器中に導き、80〜100℃の低温度域で触媒層を通過させ、固−液接触加水分解反応を進行させることにより当該水溶液の一部を加水分解してNH3水を得る。ここでNH3水の水に対する溶解度は、図4に示すように液温の上昇と共に減少し、100℃ではほぼゼロになる。そのため、上記尿素の加水分解反応で得られた水溶液(NH3水含む)を加熱ヒータまたは排ガスなどの熱を利用した加熱型気液分離容器内に導き、90〜100℃に加熱するだけで、当該水溶液中の溶存NH3をガス状として取り出すことができる。得られたNH3ガスは搬送手段を経てノズルから煙道中に注入される。
【0008】
この方法によれば、ノズルから注入される還元剤は、従来技術で使用されているNH3ガスと同一であり、多量の水分を含まないので煙道内で気化・蒸発させる場合と比べて少量の熱量、即ち加水分解触媒を使用することにより、NH3水が形成されるため、NH3溶解度特性からわずか100℃まで上昇させるのに必要な熱量で十分であり、水の蒸発潜熱が不要である。そのため、煙道内での完全気化・蒸発を考慮する必要がなく、未分解化合物の煙道内への付着および後流に設置される脱硝触媒に悪影響を及ぼすおそれもない。一方、還元剤水溶液加熱手段から排出される温水は、再び尿素水溶液の貯蔵タンクに戻され、尿素水溶液の調製に利用される。したがって、水溶液調製用の水は最小限に抑えることが可能となる。さらに、温水がタンクに戻されるため、タンク内の溶液の温度が上昇し、溶質である尿素の溶解度が高くなり(図5参照)、高濃度の尿素水溶液を調製できることになり、より経済性に優れた装置となる。
【0009】
【実施例】
以下に本発明の実施例を図面を用いて説明する。
実施例1
図1は、本発明に基づく固体還元剤を用いた脱硝プロセスの一例を示す。
固体還元剤である尿素dの水溶液aは、貯蔵タンク1からポンプ2により送液され、加水分解触媒3(アルカリ金属、アルカリ土類金属もしくは希土類元素の中の一種以上の炭酸塩および/または水酸化物もしくは鉱酸のアンモニウム塩)を充填した加水分解反応器4に導かれる。この加水分解反応器4には当該反応器4内部の尿素dを80〜100℃に加熱するためのヒータ5が設けられている。加水分解された水溶液はヒータ6を内蔵した加熱型気液分離容器7により気体bと液体cに分離され、得られた気体bは供給ライン8を経て注入ノズル9を経て排ガス発生源10から排出される排ガスの煙道11に注入され、NOxとNH3を反応させNOxを無害化する脱硝触媒12上で脱硝反応の還元剤として使用される。
一方、気液分離容器7から排出された水(または水溶液)cは送液配管13により、尿素dの水溶液の貯蔵タンク1に戻され、尿素水調製用に使用される。
【0010】
【発明の効果】
本発明により、以下の効果が得られる。
1)固体還元剤の気化・分解の過程で生ずる重合化合物の煙道内への付着を防止できる。
2)従来の液化NH3法と同等に取り扱うことができ、ドレン対策を講ずる必要がなく、さらに、脱硝触媒への悪影響がない。
3)一定濃度の水溶液を使用するため、ボイラ、ガスタービンまたはディーゼル内燃機関などの排ガス発生源の負荷に応じてポンプの流量を変化させることにより制御できる。
4)完全気化・蒸発を考慮した水溶液の煙道への直接噴霧に比べ水の蒸発潜熱を必要としないため、経済的である。
5)還元剤水溶液加熱手段から排出される温水は、再び尿素水溶液の貯蔵タンクなどの混合容器に戻され、尿素水溶液の調製に利用され、水溶液調製用の水は最小限に抑えることが可能となる。また尿素水溶液の貯蔵タンクなどの混合容器内の溶液の温度が上昇し、溶質である尿素の溶解度が高くなり、高濃度の尿素水溶液を調製できることになり、より経済性に優れた装置となる。
【0011】
【発明の効果】
本発明により、以下の効果が得られる。
1)固体還元剤の気化・分解の過程で生ずる重合化合物の煙道内への付着を防止できる。
2)従来の液化NH3法と同等に取り扱うことができ、ドレン対策を講ずる必要がなく、さらに、脱硝触媒への悪影響がない。
3)一定濃度の水溶液を使用するため、ボイラ、ガスタービンまたはディーゼル内燃機関などの排ガス発生源の負荷に応じてポンプの流量を変化させることにより制御できる。
4)完全気化・蒸発を考慮した水溶液の煙道への直接噴霧に比べ水の蒸発潜熱を必要としないため、経済的である。
【図面の簡単な説明】
【図1】 本発明の実施例1の固体還元剤を用いた脱硝プロセスを示す図である。
【図2】 本発明の実施例2の固体還元剤を用いた脱硝プロセスを示す図である。
【図3】 固体還元剤を用いた従来の脱硝装置の構造図を示す図である。
【図4】 NH3の水に対する溶解度を示す図である。
【図5】 尿素の水に対する溶解度を示す図である。
【符号の説明】
1…貯蔵タンク、2…ポンプ、3…触媒、4…加水分解反応器、
5、6…ヒータ、7…加熱型気液分離容器、9…注入ノズル、
10…排ガス発生源、11…排ガス煙道、12…脱硝触媒
a…固体還元剤(尿素)水溶液、b…気体、c…液体、
d…固体還元剤(尿素)
[0001]
[Industrial application fields]
The present invention relates to a denitration technique using a selective catalytic reduction method, and relates to a denitration apparatus that suitably performs a denitration reaction using a solid reducing agent that is easy to handle.
[0002]
[Prior art]
Hazardous nitrogen oxides are contained in exhaust gas discharged from boilers or internal combustion engines using fossil fuels such as coal, oil or gas, which is one of the main causes of air pollution.
Of these sources of nitrogen oxides, large-scale boilers that release large volumes of exhaust gas into the atmosphere have a strong reduction in emissions due to stricter regulations on nitrogen oxides in the country and region. In addition, a denitration apparatus using a selective catalytic reduction method using combustion technology and / or liquefied ammonia as a reducing agent is used.
On the other hand, even in a small power generation facility where the installation of a denitration device has been rare so far, it is necessary to install a denitration device in the same manner as a large plant due to stricter emission regulations.
The NH 3 in a conventional denitration apparatus is used as a reducing agent, since it is supplied from the high-pressure gas container, subject to the Pressurized Gas Control Law requires great care during transport and storage and the NH 3 There was a risk of secondary pollution due to leaks.
[0003]
In recent years, a method of evaporating an aqueous solution of a reducing agent (an aqueous solution of a nitrogen-containing compound such as water and urea) that is easy to handle instead of using the above-described liquefied NH 3 using heat of an electric heater or exhaust gas, or A method using a hydrolysis reaction of a catalyst has been proposed.
In this case, when the water is used, it is uneconomical especially in terms of transportation cost because the commercially available water for industrial use has a concentration of about 30 wt% at the most, and a large tank is necessary for storage. Installation space was required.
Compared to this, when using an aqueous solution of nitrogen-containing compounds such as urea, the aqueous solution can be prepared as needed at the site, so it is economically superior, and the development of a method that effectively uses these reducing agents Is expected.
It is known that the aqueous urea solution undergoes a hydrolysis reaction at a temperature of 80 ° C. or higher, and the reaction is promoted in the presence of an appropriate decomposition catalyst. In particular, when a catalyst is used, the reaction proceeds at a relatively low temperature (80 to 350 ° C.), which is an advantageous method.
[0004]
FIG. 3 shows a conventional denitration process using urea. An aqueous solution a of urea d is fed from the storage tank 1 by the pump 2 and led to the hydrolysis reactor 4 filled with the catalyst 3. The hydrolysis reactor 4 is provided with a heater 5 for heating urea d inside the reactor 4 to 80 to 100 ° C. The aqueous solution c containing the hydrolyzed gas b passes through the line 8 as it is and is injected into the flue gas flue 11 which is the gas to be treated discharged from the exhaust gas generation source 10 through the injection nozzle 9 to react NOx and NH 3 . It is used as a reducing agent for the denitration reaction on the denitration catalyst 12 for detoxifying NOx.
However, regarding the hydrolysis method of these solid reducing agent (urea d) aqueous solutions in the denitration technique shown in FIG. 3, the aqueous solution c containing undecomposed compounds is transported from the hydrolysis reactor 4 to the aqueous solution c (or gas b). Since it is injected into the gas to be processed from the injection nozzle 9 through the means, there is a possibility that a polymer compound is formed in the conveying means or the gas flue 11 to be processed.
Even if the 100% decomposition reaction proceeds, a large amount of moisture is contained, so that even if a large amount of heat is applied, it is still difficult to vaporize, so that drainage is formed in the flue 11 or is located downstream. The denitration catalyst 12 has a problem such as having an adverse effect.
[0005]
[Problems to be solved by the invention]
Conventional denitrification techniques that utilize hydrolysis reaction of the solid reductant aqueous solution is undecomposed compounds due to adhering to the flue solid or not been sufficient consideration to the point of complete vaporization of liquefied NH 3 When compared with the denitration technology used, there was a problem in terms of long-term stable operation.
The object of the present invention is to use a solid reducing agent that is easier to handle than liquefied NH 3 as the reducing agent for the denitration reaction, eliminate scale adhesion to the flue, and perform the same denitration reaction as the liquefied NH 3 method. It is to provide a possible denitration device.
[0006]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following configuration. That is, a solid reducing agent that performs a denitration reaction by injecting a reducing agent composed of a nitrogen-containing compound that is solid at normal temperature and pressure into a gas to be treated containing nitrogen oxides, and then contacting with a catalyst containing a transition metal. in denitration apparatus using a mixing vessel for mixing the water solid reductant was discharged the reducing agent in the mixed solution discharged from the mixing vessel and hydrolyzing the hydrolysis reactor, the hydrolysis reactor reduction A heating type gas-liquid separation container having means for heating the aqueous solution of the agent; means for returning the water or aqueous solution discharged from the heating type gas-liquid separation container to the mixing container; This is a denitration apparatus using a solid reducing agent provided with a nozzle for injecting it into a processing gas . May be used treated gas as a means for heating the pressurized water decomposed reducing agent aqueous solution.
[0007]
[Action]
The operation of the denitration apparatus using the solid reducing agent of the present invention will be described with urea as an example. A part of the aqueous solution is obtained by introducing an aqueous solution of urea supplied from the storage tank into the hydrolysis reactor, passing the catalyst layer in a low temperature range of 80 to 100 ° C., and proceeding the solid-liquid contact hydrolysis reaction. Is hydrolyzed to obtain NH 3 water. Here, the solubility of NH 3 in water decreases as the liquid temperature increases as shown in FIG. 4, and becomes almost zero at 100 ° C. Therefore, the aqueous solution (including NH 3 water) obtained by the hydrolysis reaction of urea is introduced into a heating type gas-liquid separation container using heat such as a heater or exhaust gas, and is heated to 90 to 100 ° C. Dissolved NH 3 in the aqueous solution can be taken out as a gas. The obtained NH 3 gas is injected into the flue from the nozzle through the conveying means.
[0008]
According to this method, the reducing agent injected from the nozzle is the same as the NH 3 gas used in the prior art, and does not contain a large amount of moisture, so that it is a small amount compared with the case of vaporizing and evaporating in the flue. The amount of heat, ie, the use of a hydrolysis catalyst, forms NH 3 water, so the amount of heat required to raise the NH 3 solubility characteristics to only 100 ° C. is sufficient, and no latent heat of vaporization of water is required. . Therefore, it is not necessary to consider complete vaporization / evaporation in the flue, and there is no possibility that undecomposed compounds adhere to the flue and adversely affect the denitration catalyst installed downstream. Meanwhile, the hot water discharged from the reducing agent solution the heating means is returned to the storage tank again aqueous urea solution, is used in the preparation of the urea aqueous solution. Therefore, the water for preparing the aqueous solution can be minimized. Furthermore, since warm water is returned to the tank, the temperature of the solution in the tank rises, the solubility of urea as a solute increases (see FIG. 5), and a high-concentration urea aqueous solution can be prepared. An excellent device.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 shows an example of a denitration process using a solid reducing agent according to the present invention.
An aqueous solution a of urea d, which is a solid reducing agent, is fed from the storage tank 1 by a pump 2 and is subjected to hydrolysis catalyst 3 (one or more carbonates and / or water in alkali metals, alkaline earth metals or rare earth elements). It is led to a hydrolysis reactor 4 filled with an oxide or an ammonium salt of a mineral acid. The hydrolysis reactor 4 is provided with a heater 5 for heating urea d inside the reactor 4 to 80 to 100 ° C. The hydrolyzed aqueous solution is separated into a gas b and a liquid c by a heating type gas-liquid separation container 7 having a built-in heater 6, and the obtained gas b is discharged from an exhaust gas generation source 10 through a supply line 8 and through an injection nozzle 9. is injected into the flue 11 of the exhaust gas, it is used as a reducing agent for denitration reaction on the denitration catalyst 12 to detoxify the NOx by reacting NOx with NH 3.
On the other hand, the water (or aqueous solution) c discharged from the gas-liquid separation container 7 is returned to the storage tank 1 for the aqueous solution of urea d by the liquid feeding pipe 13 and used for urea water preparation.
[0010]
【The invention's effect】
According to the present invention, the following effects can be obtained.
1) It is possible to prevent adhesion of a polymer compound generated in the process of vaporizing and decomposing the solid reducing agent into the flue.
2) It can be handled in the same way as the conventional liquefied NH 3 method, there is no need to take measures against drainage, and there is no adverse effect on the denitration catalyst.
3) Since an aqueous solution with a constant concentration is used, it can be controlled by changing the flow rate of the pump according to the load of an exhaust gas generation source such as a boiler, a gas turbine, or a diesel internal combustion engine.
4) It is economical because it does not require the latent heat of water evaporation compared to direct spraying of an aqueous solution into the flue in consideration of complete vaporization and evaporation.
5) The warm water discharged from the reducing agent aqueous solution heating means is returned to the mixing container such as the urea aqueous solution storage tank and used for the preparation of the urea aqueous solution, and the aqueous solution preparation water can be minimized. Become. Moreover, the temperature of the solution in the mixing container such as a storage tank for urea aqueous solution rises, the solubility of urea as a solute increases, and a high concentration urea aqueous solution can be prepared, resulting in a more economical device.
[0011]
【The invention's effect】
According to the present invention, the following effects can be obtained.
1) It is possible to prevent adhesion of a polymer compound generated in the process of vaporizing and decomposing the solid reducing agent into the flue.
2) It can be handled in the same way as the conventional liquefied NH 3 method, there is no need to take measures against drainage, and there is no adverse effect on the denitration catalyst.
3) Since an aqueous solution with a constant concentration is used, it can be controlled by changing the flow rate of the pump according to the load of an exhaust gas generation source such as a boiler, a gas turbine, or a diesel internal combustion engine.
4) It is economical because it does not require the latent heat of water evaporation compared to direct spraying of an aqueous solution into the flue in consideration of complete vaporization and evaporation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a denitration process using a solid reducing agent of Example 1 of the present invention.
FIG. 2 is a diagram showing a denitration process using a solid reducing agent of Example 2 of the present invention.
FIG. 3 is a diagram showing a structural diagram of a conventional denitration apparatus using a solid reducing agent.
FIG. 4 is a graph showing the solubility of NH 3 in water.
FIG. 5 is a graph showing the solubility of urea in water.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Storage tank, 2 ... Pump, 3 ... Catalyst, 4 ... Hydrolysis reactor,
5, 6 ... heater, 7 ... heated gas-liquid separation container, 9 ... injection nozzle,
DESCRIPTION OF SYMBOLS 10 ... Exhaust gas generation source, 11 ... Exhaust gas flue, 12 ... Denitration catalyst a ... Solid reducing agent (urea) aqueous solution, b ... Gas, c ... Liquid,
d: Solid reducing agent (urea)

Claims (2)

窒素酸化物を含有する被処理ガス中に、常温常圧で固体である含窒素化合物からなる還元剤を注入し、次いで遷移金属を含む触媒と接触させて脱硝反応を行う固体還元剤を用いた脱硝装置において、
固体還元剤と水とを混合する混合容器と、
該混合容器から排出した混合溶液中の還元剤を加水分解する加水分解反応器と、
該加水分解反応器から排出した還元剤水溶液を加熱する手段を有する加熱型気液分離容器と
該加熱型気液分離容器から排出された水又は水溶液を前記混合容器に戻す手段と、
得られたガス状の還元剤を前記被処理ガス中に注入するノズルを設けたことを特徴とする固体還元剤を用いた脱硝装置。
A solid reducing agent that performs a denitration reaction by injecting a reducing agent comprising a nitrogen-containing compound that is solid at normal temperature and pressure into a gas to be treated containing nitrogen oxides, and then contacting with a catalyst containing a transition metal was used. In denitration equipment,
A mixing vessel for mixing the solid reducing agent and water;
A hydrolysis reactor for hydrolyzing the reducing agent in the mixed solution discharged from the mixing vessel;
A heating type gas-liquid separation container having means for heating the reducing agent aqueous solution discharged from the hydrolysis reactor;
Means for returning water or an aqueous solution discharged from the heated gas-liquid separation container to the mixing container;
A denitration apparatus using a solid reducing agent, comprising a nozzle for injecting the obtained gaseous reducing agent into the gas to be treated.
加水分解された還元剤水溶液を加熱する手段が被処理ガスであることを特徴とする請求項1記載の固体還元剤を用いた脱硝装置。2. The denitration apparatus using a solid reducing agent according to claim 1, wherein the means for heating the hydrolyzed reducing agent aqueous solution is a gas to be treated.
JP19955194A 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent Expired - Fee Related JP3638638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19955194A JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19955194A JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Publications (2)

Publication Number Publication Date
JPH0857258A JPH0857258A (en) 1996-03-05
JP3638638B2 true JP3638638B2 (en) 2005-04-13

Family

ID=16409714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19955194A Expired - Fee Related JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Country Status (1)

Country Link
JP (1) JP3638638B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077491A (en) * 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
US6399034B1 (en) 1997-05-14 2002-06-04 Hjs Fahrzeugtechnik Gmbh & Co. Process for reducing nitrogen oxides on SCR catalyst
KR20010034711A (en) * 1998-03-27 2001-04-25 칼 하인쯔 호르닝어 Internal combustion engine exhaust system and method for reducing contaminants in exhaust gases
ITMI981155A1 (en) * 1998-05-25 1999-11-25 Siirtec Nigi S P A PROCESS FOR THE PRODUCTION OF AMMONIA BY HYDROLYSIS OF THE UREA
DE19827678B4 (en) * 1998-06-22 2010-05-20 Hjs Fahrzeugtechnik Gmbh & Co Emission control system for removing exhaust gases from combustion units
US6511644B1 (en) 2000-08-28 2003-01-28 The Chemithon Corporation Method for removing contaminants in reactors
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
US6887449B2 (en) 2002-11-21 2005-05-03 The Chemithon Corporation Method of quantitatively producing ammonia from urea
DE102006023147A1 (en) * 2006-05-16 2008-01-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006023146A1 (en) * 2006-05-16 2007-11-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006047018A1 (en) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for providing reducing agent precursor, involves heating quasi-closed evaporator volume, delimited by wall, which is partially filled with solution of reducing agent precursor to lead temperature of solution
US20090148370A1 (en) 2007-12-06 2009-06-11 Spencer Iii Herbert W Process to produce ammonia from urea
JP5496026B2 (en) * 2010-09-08 2014-05-21 バブコック日立株式会社 Denitration equipment
JP5865074B2 (en) * 2011-12-28 2016-02-17 日野自動車株式会社 Exhaust gas purification device
JP2013136995A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd System for supplying ammonia to scr converter
US9586831B2 (en) 2014-06-09 2017-03-07 Wahlco, Inc. Urea to ammonia process

Also Published As

Publication number Publication date
JPH0857258A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3638638B2 (en) Denitration equipment using solid reducing agent
KR102172147B1 (en) Low Pressure Selective Catalytic Reduction System and Urea Storage Tank Heating Control Method Thereof
CA2284292C (en) Methods for the production of ammonia from urea and uses thereof
US6616901B1 (en) Apparatus for pollution control in exhaust gas streams from fossil fuel burning facilities
US6361754B1 (en) Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
KR101807996B1 (en) Combined De-NOx System using Heterogeneous Reducing agent for Reducing Yellow Plume and NOx
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
TW200407189A (en) Selective catalytic reduction of NOx enabled by side stream urea decomposition
US9068489B2 (en) Process for the reduction of nitrogen oxides and sulphur oxides in the exhaust gas from internal combustion engine
KR20190091480A (en) Preparation of Ammonium Carbamate and Reduction of Nitrogen Oxide
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
KR101821096B1 (en) NOx reduction system based on urea solution
JP4309167B2 (en) Exhaust gas denitration method using urea
JP2001157822A (en) Method for removing nitrogen oxide in combustion exhaust gas
JPH0871372A (en) Denitration apparatus and method using urea
KR100437875B1 (en) NOx reduction system by selective catalytic reduction available for urea as reducing agent
JPH08281074A (en) Denitrification equipment using urea
JPH0286813A (en) Stack gas denitration apparatus
JP2007301524A (en) Method and apparatus for denitrification
KR100876161B1 (en) Total nox control process
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
CN110013752A (en) A kind of heater for rolling steel flue gas denitrification system and technique
CN107206315B (en) Low temperature urea-SCR operation in the presence of high sulfur flue gas
JP3276158B2 (en) Denitration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees