JPH0857258A - Denitrification apparatus using solid reducing agent - Google Patents

Denitrification apparatus using solid reducing agent

Info

Publication number
JPH0857258A
JPH0857258A JP6199551A JP19955194A JPH0857258A JP H0857258 A JPH0857258 A JP H0857258A JP 6199551 A JP6199551 A JP 6199551A JP 19955194 A JP19955194 A JP 19955194A JP H0857258 A JPH0857258 A JP H0857258A
Authority
JP
Japan
Prior art keywords
reducing agent
gas
aqueous solution
denitration
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6199551A
Other languages
Japanese (ja)
Other versions
JP3638638B2 (en
Inventor
Yoshinori Nagai
良憲 永井
Tomihisa Ishikawa
富久 石川
Masato Mukai
正人 向井
Yoshimichi Mori
喜通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19955194A priority Critical patent/JP3638638B2/en
Publication of JPH0857258A publication Critical patent/JPH0857258A/en
Application granted granted Critical
Publication of JP3638638B2 publication Critical patent/JP3638638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a denitrification apparatus eliminating the adhesion of scale to a flue and capable of performing the same denitrification reaction as a liquefied NH3 method by using a solid reducing agent easy to handle as compared with liquefied NH3 as a reducing agent for denitrification reaction. CONSTITUTION: A nitrogen-containing compd. [e.g., urea (d)] easy to handle and solid at the normal temp. under atmospheric pressure is used as a reducing agent and an aq. soln. (a) of this reducing agent is guided to a hydrolytic reactor 4 having a decomposition catalyst to be hydrolized at 80-100 deg.C, pref., 80-90 deg.C and the gas (b) obtained through the hydrolytic reactor 4 or the gas-liquid separation container provided immediately after the reactor 4 is injected into an exhaust gas flue 11 to be brought into contact with a denitrification catalyst 12 to perform denitrification reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、選択的接触還元法によ
る脱硝技術に係わり、取り扱いが容易な固体還元剤を用
いて好適に脱硝反応を行わせる脱硝装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitrification technology by a selective catalytic reduction method, and relates to a denitrification apparatus for suitably performing a denitrification reaction by using a solid reducing agent which is easy to handle.

【0002】[0002]

【従来の技術】石炭・石油またはガスなどの化石燃料を
使用したボイラまたは内燃機関から排出される排ガス中
には有害な窒素酸化物が含まれており、大気汚染の主因
の一つとなっている。これらの窒素酸化物の発生源の
内、大容量の排ガスを大気中に放出する大型の事業用ボ
イラについては、国および地域の窒素酸化物の排出規制
の強化により、その排出量の低減が強いられ、燃焼技術
の適用および/または液化アンモニアを還元剤として用
いる選択的接触還元法による脱硝装置が使用されてい
る。一方、これまでは脱硝装置の設置が稀であった小型
発電設備においても、排出規制の強化などにより大型プ
ラントと同様に脱硝装置の設置が必要となってきてい
る。従来の脱硝装置において還元剤として使用されるN
3は、高圧ガス容器から供給されるため、高圧ガス取
締法の適用を受け、輸送および貯蔵に際して十分な注意
が必要であり、また、NH3のリークなどによる二次公
害の危険性があった。
Exhaust gas discharged from a boiler or an internal combustion engine that uses fossil fuels such as coal, oil or gas contains harmful nitrogen oxides, which is one of the main causes of air pollution. . Among the sources of these nitrogen oxides, for large-scale business boilers that emit a large amount of exhaust gas into the atmosphere, the reduction of their emissions is strong due to the strengthening of national and regional emission regulations for nitrogen oxides. Therefore, a denitration device by the application of combustion technology and / or a selective catalytic reduction method using liquefied ammonia as a reducing agent is used. On the other hand, even in small-scale power generation equipment where installation of a denitration device was rare in the past, installation of a denitration device is required as in large plants due to stricter emission regulations. N used as a reducing agent in conventional denitration equipment
Since H 3 is supplied from a high-pressure gas container, it is subject to the High-Pressure Gas Control Law, so it is necessary to be careful when transporting and storing it, and there is a risk of secondary pollution due to NH 3 leakage. It was

【0003】近年では、上記の液化NH3の使用に替え
て取り扱いが容易な還元剤の水溶液(安水および尿素な
ど含窒素化合物の水溶液)を電気ヒータまたは排ガスな
どの熱を利用して蒸発させる方法、または触媒の加水分
解反応を利用する方法などが提案されている。ここで安
水を使用した場合には工業用として市販されている安水
が高々30wt%程度の濃度であることから特に輸送コ
ストに関して不経済であり、かつ貯蔵においても大型の
タンクが必要となり十分な設置スペースが必要であっ
た。これに比べ尿素などの含窒素化合物の水溶液を使用
する場合には、サイトにて必要に応じて水溶液を調製で
きるため、経済的に優れており、これらの還元剤を有効
に利用する方法の開発が期待されている。尿素水溶液
は、80℃以上の温度で加水分解反応が起こり、さらに
適当な分解触媒の存在下では反応が促進されていること
は公知である。特に触媒を使用した場合には比較的低温
(80〜350℃)で反応が進行するため、有利な方法
とされている。
In recent years, instead of using the liquefied NH 3 as described above, an aqueous solution of a reducing agent (ammonium water and an aqueous solution of a nitrogen-containing compound such as urea) which is easy to handle is vaporized by using the heat of an electric heater or exhaust gas. A method or a method utilizing a hydrolysis reaction of a catalyst has been proposed. When the cheap water is used here, it is uneconomical especially regarding the transportation cost because the commercially available cheap water has a concentration of about 30 wt% at the most, and a large tank is necessary for the storage. Needed a large installation space. In contrast, when using an aqueous solution of a nitrogen-containing compound such as urea, the aqueous solution can be prepared as needed at the site, which is economically superior, and the development of a method for effectively utilizing these reducing agents. Is expected. It is known that the urea aqueous solution undergoes a hydrolysis reaction at a temperature of 80 ° C. or higher, and the reaction is accelerated in the presence of a suitable decomposition catalyst. In particular, when a catalyst is used, the reaction proceeds at a relatively low temperature (80 to 350 ° C.), which is an advantageous method.

【0004】図3に従来の尿素を用いる脱硝プロセスを
示す。尿素dの水溶液aは、貯蔵タンク1からポンプ2
により送液され、触媒3を充填した加水分解反応器4に
導かれる。この加水分解反応器4には当該反応器4内部
の尿素dを80〜100℃に加熱するためのヒータ5が
設けられている。加水分解された気体bを含む水溶液c
は、そのままライン8を通り注入ノズル9を経て排ガス
発生源10から排出される被処理ガスである排ガスの煙
道11に注入され、NOxとNH3を反応させNOxを無
害化する脱硝触媒12上で脱硝反応の還元剤として使用
される。しかしながら、図3に示す脱硝技術におけるこ
れらの固体還元剤(尿素d)水溶液の加水分解法につい
ては、未分解化合物を含む水溶液cが加水分解反応器4
から当該水溶液c(または気体b)の搬送手段を経て注
入ノズル9から被処理ガス中に注入されるため、搬送手
段もしくは被処理ガス煙道11中に重合化合物を形成す
るおそれがあった。さらに100%分解反応が進行した
としても、多量の水分が含まれているため、多量の熱量
を与えてもなお十分な気化が難しく、煙道11中にドレ
ンが形成されたり、後流に位置する脱硝触媒12に悪影
響を与えるなどの問題点があった。
FIG. 3 shows a conventional denitration process using urea. The aqueous solution a of urea d is supplied from the storage tank 1 to the pump 2
Is sent to the hydrolysis reactor 4 filled with the catalyst 3. The hydrolysis reactor 4 is provided with a heater 5 for heating the urea d inside the reactor 4 to 80 to 100 ° C. Aqueous solution c containing hydrolyzed gas b
Is injected into the flue 11 of the exhaust gas, which is the gas to be treated, which is discharged from the exhaust gas source 10 through the injection nozzle 9 through the line 8 as it is, and on the denitration catalyst 12 that reacts NOx and NH 3 to detoxify NOx. Used as a reducing agent in the denitration reaction. However, regarding the hydrolysis method of these solid reducing agent (urea d) aqueous solutions in the denitration technology shown in FIG. 3, the aqueous solution c containing the undecomposed compound is the hydrolysis reactor 4
Since the aqueous solution c (or the gas b) is injected into the gas to be treated from the injection nozzle 9 through the conveying means, there is a possibility that a polymerized compound is formed in the conveying means or the gas to be treated flue 11. Even if the 100% decomposition reaction proceeds, since a large amount of water is contained, it is still difficult to vaporize sufficiently even if a large amount of heat is applied, and drain is formed in the flue 11 or it is located in the wake. However, there is a problem that the denitration catalyst 12 is adversely affected.

【0005】[0005]

【発明が解決しようとする課題】上記固体還元剤水溶液
の加水分解反応を利用する従来の脱硝技術は、未分解化
合物による固形物の煙道への付着または、完全気化の点
について十分な配慮がされておらず、液化NH3を使用
した脱硝技術と比べた場合、長期安定運転という点で問
題があった。本発明の目的は、脱硝反応の還元剤として
液化NH3に比べ取り扱いが容易な固体還元剤を用い、
煙道へのスケールの付着をなくし、液化NH3法と同様
な脱硝反応を行うことが可能な脱硝装置を提供すること
である。
The conventional denitration technology utilizing the hydrolysis reaction of the above-mentioned aqueous solution of solid reducing agent requires sufficient consideration for the attachment of solids to the flue or the complete vaporization of undecomposed compounds. However, when compared with the denitration technology that uses liquefied NH 3 , there was a problem in that the operation was stable for a long period of time. An object of the present invention is to use a solid reducing agent that is easier to handle than liquefied NH 3 as a reducing agent for the denitration reaction,
It is an object of the present invention to provide a denitration device capable of eliminating the scale adhesion to the flue and performing the denitration reaction similar to the liquefied NH 3 method.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、窒素酸化物を含
有する被処理ガス中に、常温常圧で固体である含窒素化
合物からなる還元剤を注入し、次いで遷移金属を含む触
媒と接触させて脱硝反応を行う固体還元剤を用いた脱硝
装置において、固体還元剤と水とを混合して還元剤を加
水分解する加水分解反応器と、加水分解された還元剤水
溶液を加熱する手段と、得られたガス状の還元剤を前記
被処理ガス中に注入するノズルを設けた固体還元剤を用
いた脱硝装置である。本発明の固体還元剤を用いた脱硝
装置において、還元剤水溶液を加熱する手段は気液分離
機能を備えることができる。加水分解された還元剤水溶
液を加熱する手段として被処理ガスを用いても良い。
The above object of the present invention can be achieved by the following constitutions. That is, a solid reducing agent for injecting a reducing agent consisting of a nitrogen-containing compound that is solid at room temperature and atmospheric pressure into a gas to be treated containing nitrogen oxides and then contacting with a catalyst containing a transition metal to perform a denitration reaction is used. In the used denitration apparatus, a hydrolysis reactor that mixes a solid reducing agent and water to hydrolyze the reducing agent, a means for heating the hydrolyzed reducing agent aqueous solution, and the obtained gaseous reducing agent A denitration device using a solid reducing agent provided with a nozzle for injecting into the gas to be treated. In the denitration apparatus using the solid reducing agent of the present invention, the means for heating the reducing agent aqueous solution may have a gas-liquid separation function. The gas to be treated may be used as a means for heating the hydrolyzed reducing agent aqueous solution.

【0007】[0007]

【作用】上記本発明の固体還元剤を用いる脱硝装置の作
用を尿素を例にとって説明する。貯蔵タンクから供給さ
れる尿素の水溶液を加水分解反応器中に導き、80〜1
00℃の低温度域で触媒層を通過させ、固−液接触加水
分解反応を進行させることにより当該水溶液の一部を加
水分解してNH3水を得る。ここでNH3水の水に対する
溶解度は、図4に示すように液温の上昇と共に減少し、
100℃ではほぼゼロになる。そのため、上記尿素の加
水分解反応で得られた水溶液(NH3水含む)を加熱ヒ
ータまたは排ガスなどの熱を利用した加熱型気液分離容
器内に導き、90〜100℃に加熱するだけで、当該水
溶液中の溶存NH3をガス状として取り出すことができ
る。得られたNH3ガスは搬送手段を経てノズルから煙
道中に注入される。
The operation of the denitration device using the solid reducing agent of the present invention will be described by taking urea as an example. The aqueous solution of urea supplied from the storage tank is introduced into the hydrolysis reactor,
A portion of the aqueous solution is hydrolyzed by passing through the catalyst layer in the low temperature range of 00 ° C. and advancing the solid-liquid contact hydrolysis reaction to obtain NH 3 water. Here, the solubility of NH 3 water in water decreases as the liquid temperature increases, as shown in FIG.
It becomes almost zero at 100 ° C. Therefore, the aqueous solution (including NH 3 water) obtained by the hydrolysis reaction of the above urea is introduced into a heating type gas-liquid separation container that uses heat such as a heater or exhaust gas and heated to 90 to 100 ° C. Dissolved NH 3 in the aqueous solution can be taken out as a gas. The obtained NH 3 gas is injected into the flue from the nozzle via the conveying means.

【0008】この方法によれば、ノズルから注入される
還元剤は、従来技術で使用されているNH3ガスと同一
であり、多量の水分を含まないので煙道内で気化・蒸発
させる場合と比べて少量の熱量、即ち加水分解触媒を使
用することにより、NH3水が形成されるため、NH3
溶解度特性からわずか100℃まで上昇させるのに必要
な熱量で十分であり、水の蒸発潜熱が不要である。その
ため、煙道内での完全気化・蒸発を考慮する必要がな
く、未分解化合物の煙道内への付着および後流に設置さ
れる脱硝触媒に悪影響を及ぼすおそれもない。一方、還
元剤水溶液加熱手段から排出される温水は、例えば再び
尿素水溶液の貯蔵タンクに戻され、尿素水溶液の調製に
利用される。したがって、水溶液調製用の水は最小限に
抑えることが可能となる。さらに、温水がタンクに戻さ
れるため、タンク内の溶液の温度が上昇し、溶質である
尿素の溶解度が高くなり(図5参照)、高濃度の尿素水
溶液を調製できることになり、より経済性に優れた装置
となる。
According to this method, the reducing agent injected from the nozzle is the same as the NH 3 gas used in the prior art, and since it does not contain a large amount of water, compared with the case of vaporizing and evaporating in the flue. Since a small amount of heat is generated, that is, NH 3 water is formed by using a hydrolysis catalyst, the amount of heat required to raise the solubility characteristic of NH 3 to only 100 ° C. is sufficient. Is unnecessary. Therefore, it is not necessary to consider the complete vaporization and evaporation in the flue, and there is no possibility that the undecomposed compound adheres to the flue and adversely affects the denitration catalyst installed downstream. On the other hand, the warm water discharged from the reducing agent aqueous solution heating means is returned to, for example, the urea aqueous solution storage tank again, and is used to prepare the urea aqueous solution. Therefore, the amount of water for preparing the aqueous solution can be minimized. Further, since the hot water is returned to the tank, the temperature of the solution in the tank rises, the solubility of urea as a solute becomes high (see FIG. 5), and a highly concentrated urea aqueous solution can be prepared, which is more economical. It becomes an excellent device.

【0009】[0009]

【実施例】以下に本発明の実施例を図面を用いて説明す
る。 実施例1 図1は、本発明に基づく固体還元剤を用いた脱硝プロセ
スの一例を示す。固体還元剤である尿素dの水溶液a
は、貯蔵タンク1からポンプ2により送液され、加水分
解触媒3(アルカリ金属、アルカリ土類金属もしくは希
土類元素の中の一種以上の炭酸塩および/または水酸化
物もしくは鉱酸のアンモニウム塩)を充填した加水分解
反応器4に導かれる。この加水分解反応器4には当該反
応器4内部の尿素dを80〜100℃に加熱するための
ヒータ5が設けられている。加水分解された水溶液はヒ
ータ6を内蔵した加熱型気液分離容器7により気体bと
液体cに分離され、得られた気体bは供給ライン8を経
て注入ノズル9を経て排ガス発生源10から排出される
排ガスの煙道11に注入され、NOxとNH3を反応させ
NOxを無害化する脱硝触媒12上で脱硝反応の還元剤
として使用される。一方、気液分離容器7から排出され
た水(または水溶液)cは送液配管13により、尿素d
の水溶液の貯蔵タンク1に戻され、尿素水調製用に使用
される。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 shows an example of a denitration process using a solid reducing agent according to the present invention. Aqueous solution a of urea d, which is a solid reducing agent
Is pumped from the storage tank 1 by the pump 2 and contains the hydrolysis catalyst 3 (one or more carbonates and / or hydroxides or ammonium salts of mineral acids among alkali metals, alkaline earth metals or rare earth elements). It is led to the filled hydrolysis reactor 4. The hydrolysis reactor 4 is provided with a heater 5 for heating the urea d inside the reactor 4 to 80 to 100 ° C. The hydrolyzed aqueous solution is separated into a gas b and a liquid c by a heating type gas-liquid separation container 7 having a heater 6 built in, and the obtained gas b is discharged from an exhaust gas generation source 10 via a supply line 8 and an injection nozzle 9. The exhaust gas is injected into the exhaust gas flue 11 and used as a reducing agent for the denitration reaction on the denitration catalyst 12 that reacts NOx and NH 3 to make NOx harmless. On the other hand, the water (or the aqueous solution) c discharged from the gas-liquid separation container 7 is supplied to the urea d
It is returned to the storage tank 1 for the aqueous solution of and is used for preparing urea water.

【0010】実施例2 図2には、本発明に基づく固体還元剤(尿素d)を用い
た脱硝プロセスの他の一例を示す。尿素dの水溶液a
は、貯蔵タンク1からポンプ2により送液され、触媒3
を充填した加水分解反応器4に導かれる。本実施例は加
水分解反応器4が排ガス発生源10から排出される排ガ
スの煙道11内にあることが特徴であり、実施例1のよ
うにヒータ5等の触媒反応の加熱源を新たに設置する必
要がない。また、加水分解された水溶液は煙道11内の
排ガスの熱で加熱されている加熱型気液分離容器7によ
り容易に気体bと液体cに分離される。得られた気体b
は供給ライン8から注入ノズル9を経て煙道11内の排
ガスに注入され、NOxとNH3を反応させNOxを無害
化する脱硝触媒12上で脱硝反応の還元剤として使用さ
れる。また、気液分離容器7から排出された水(または
水溶液)cは送液配管13により、尿素dの水溶液の貯
蔵タンク1に戻され、尿素水調製用に使用される。
Example 2 FIG. 2 shows another example of the denitration process using the solid reducing agent (urea d) according to the present invention. Aqueous solution of urea d
Is pumped from the storage tank 1 by the pump 2, and the catalyst 3
Is introduced into the hydrolysis reactor 4. The present embodiment is characterized in that the hydrolysis reactor 4 is located inside the exhaust gas flue 11 discharged from the exhaust gas generation source 10, and as in the first embodiment, a heating source for catalytic reaction such as the heater 5 is newly added. No need to install. The hydrolyzed aqueous solution is easily separated into the gas b and the liquid c by the heating type gas-liquid separation container 7 which is heated by the heat of the exhaust gas in the flue 11. The obtained gas b
Is injected from the supply line 8 through the injection nozzle 9 into the exhaust gas in the flue 11 and is used as a reducing agent for the denitration reaction on the denitration catalyst 12 that reacts NOx and NH 3 to render NOx harmless. Further, the water (or the aqueous solution) c discharged from the gas-liquid separation container 7 is returned to the storage tank 1 of the aqueous solution of urea d by the liquid sending pipe 13 and used for preparing the urea water.

【0011】[0011]

【発明の効果】本発明により、以下の効果が得られる。 1)固体還元剤の気化・分解の過程で生ずる重合化合物
の煙道内への付着を防止できる。 2)従来の液化NH3法と同等に取り扱うことができ、
ドレン対策を講ずる必要がなく、さらに、脱硝触媒への
悪影響がない。 3)一定濃度の水溶液を使用するため、ボイラ、ガスタ
ービンまたはディーゼル内燃機関などの排ガス発生源の
負荷に応じてポンプの流量を変化させることにより制御
できる。 4)完全気化・蒸発を考慮した水溶液の煙道への直接噴
霧に比べ水の蒸発潜熱を必要としないため、経済的であ
る。
According to the present invention, the following effects can be obtained. 1) It is possible to prevent the adhesion of the polymer compound generated in the process of vaporization and decomposition of the solid reducing agent into the flue. 2) It can be handled in the same way as the conventional liquefied NH 3 method,
There is no need to take measures against drainage, and there is no adverse effect on the denitration catalyst. 3) Since an aqueous solution having a constant concentration is used, it can be controlled by changing the flow rate of the pump according to the load of the exhaust gas generation source such as the boiler, gas turbine or diesel internal combustion engine. 4) It is economical because it does not require latent heat of vaporization of water as compared with direct spraying of an aqueous solution into the flue in consideration of complete vaporization and evaporation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の固体還元剤を用いた脱硝
プロセスを示す図である。
FIG. 1 is a diagram showing a denitration process using a solid reducing agent of Example 1 of the present invention.

【図2】 本発明の実施例2の固体還元剤を用いた脱硝
プロセスを示す図である。
FIG. 2 is a diagram showing a denitration process using a solid reducing agent of Example 2 of the present invention.

【図3】 固体還元剤を用いた従来の脱硝装置の構造図
を示す図である。
FIG. 3 is a view showing a structural diagram of a conventional denitration device using a solid reducing agent.

【図4】 NH3の水に対する溶解度を示す図である。FIG. 4 is a diagram showing the solubility of NH 3 in water.

【図5】 尿素の水に対する溶解度を示す図である。FIG. 5 is a diagram showing the solubility of urea in water.

【符号の説明】[Explanation of symbols]

1…貯蔵タンク、2…ポンプ、3…触媒、4…加水分解
反応器、5、6…ヒータ、7…加熱型気液分離容器、9
…注入ノズル、10…排ガス発生源、11…排ガス煙
道、12…脱硝触媒 a…固体還元剤(尿素)水溶液、b…気体、c…液体、
d…固体還元剤(尿素)
DESCRIPTION OF SYMBOLS 1 ... Storage tank, 2 ... Pump, 3 ... Catalyst, 4 ... Hydrolysis reactor, 5, 6 ... Heater, 7 ... Heating type gas-liquid separation container, 9
... injection nozzle, 10 ... exhaust gas source, 11 ... exhaust gas flue, 12 ... denitration catalyst a ... solid reducing agent (urea) aqueous solution, b ... gas, c ... liquid,
d ... Solid reducing agent (urea)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 喜通 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michiru Mori 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物を含有する被処理ガス中に、
常温常圧で固体である含窒素化合物からなる還元剤を注
入し、次いで遷移金属を含む触媒と接触させて脱硝反応
を行う固体還元剤を用いた脱硝装置において、 固体還元剤と水とを混合して還元剤を加水分解する加水
分解反応器と、加水分解された還元剤水溶液を加熱する
手段と、得られたガス状の還元剤を前記被処理ガス中に
注入するノズルを設けたことを特徴とする固体還元剤を
用いた脱硝装置。
1. A gas to be treated containing nitrogen oxides,
Injecting a reducing agent consisting of a nitrogen-containing compound that is a solid at room temperature and normal pressure, and then contacting it with a catalyst containing a transition metal to perform a denitration reaction. A hydrolysis reactor for hydrolyzing the reducing agent, means for heating the hydrolyzed reducing agent aqueous solution, and a nozzle for injecting the obtained gaseous reducing agent into the gas to be treated. A denitration device using a characteristic solid reducing agent.
【請求項2】 還元剤水溶液を加熱する手段は気液分離
機能を備えていることを特徴とする請求項1記載の固体
還元剤を用いた脱硝装置。
2. The denitration apparatus using a solid reducing agent according to claim 1, wherein the means for heating the reducing agent aqueous solution has a gas-liquid separation function.
【請求項3】 加水分解された還元剤水溶液を加熱する
手段が被処理ガスであることを特徴とする請求項1記載
の固体還元剤を用いた脱硝装置。
3. The denitration apparatus using a solid reducing agent according to claim 1, wherein the means for heating the hydrolyzed reducing agent aqueous solution is a gas to be treated.
JP19955194A 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent Expired - Fee Related JP3638638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19955194A JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19955194A JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Publications (2)

Publication Number Publication Date
JPH0857258A true JPH0857258A (en) 1996-03-05
JP3638638B2 JP3638638B2 (en) 2005-04-13

Family

ID=16409714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19955194A Expired - Fee Related JP3638638B2 (en) 1994-08-24 1994-08-24 Denitration equipment using solid reducing agent

Country Status (1)

Country Link
JP (1) JP3638638B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051402A1 (en) * 1997-05-14 1998-11-19 Hjs Fahrzeugtechnik Gmbh & Co. Method and device for reducing nitrogen oxides in an scr catalyst
WO1999049958A1 (en) * 1998-03-27 1999-10-07 Siemens Aktiengesellschaft Internal combustion engine exhaust system and method for reducing contaminants in exhaust gases
WO1999067512A1 (en) * 1998-06-22 1999-12-29 Hjs Fahrzeugtechnik Gmbh & Co. Exhaust emission control system for denoxing exhaust gases from combustion units and method therefor
US6077491A (en) * 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
JP2002516169A (en) * 1998-05-25 2002-06-04 シイルテック−ニジ ソシエタ ペル アチオニ How to treat flue gas
US6511644B1 (en) 2000-08-28 2003-01-28 The Chemithon Corporation Method for removing contaminants in reactors
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
US6887449B2 (en) 2002-11-21 2005-05-03 The Chemithon Corporation Method of quantitatively producing ammonia from urea
DE102006023146A1 (en) * 2006-05-16 2007-11-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006023147A1 (en) * 2006-05-16 2008-01-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
JP2010506079A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for providing a reducing agent precursor
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
US8313722B2 (en) 2007-12-06 2012-11-20 Ec&C Technologies, Inc. Process to produce ammonia from urea
JP2013136995A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd System for supplying ammonia to scr converter
JP2013136968A (en) * 2011-12-28 2013-07-11 Hino Motors Ltd Exhaust emission control device
US9586831B2 (en) 2014-06-09 2017-03-07 Wahlco, Inc. Urea to ammonia process

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506350B2 (en) 1997-03-21 2003-01-14 Ec&C Technologies, Inc. Method using on site generated ammonia to reduce particulates in combustion gas streams
US6077491A (en) * 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
US6322762B1 (en) 1997-03-21 2001-11-27 Ec & C Technologies Method using on site generated ammonia to reduce particulates
US7220395B2 (en) 1997-03-21 2007-05-22 Ec&C Technologies, Inc. Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
US6730280B2 (en) 1997-03-21 2004-05-04 Ec&C Technologies, Inc. Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
US6399034B1 (en) 1997-05-14 2002-06-04 Hjs Fahrzeugtechnik Gmbh & Co. Process for reducing nitrogen oxides on SCR catalyst
WO1998051402A1 (en) * 1997-05-14 1998-11-19 Hjs Fahrzeugtechnik Gmbh & Co. Method and device for reducing nitrogen oxides in an scr catalyst
WO1999049958A1 (en) * 1998-03-27 1999-10-07 Siemens Aktiengesellschaft Internal combustion engine exhaust system and method for reducing contaminants in exhaust gases
US6357227B1 (en) 1998-03-27 2002-03-19 Siemens Aktiengesellschaft System and method for reducing pollutants in the exhaust gas of an internal combustion engine
JP2002516169A (en) * 1998-05-25 2002-06-04 シイルテック−ニジ ソシエタ ペル アチオニ How to treat flue gas
WO1999067512A1 (en) * 1998-06-22 1999-12-29 Hjs Fahrzeugtechnik Gmbh & Co. Exhaust emission control system for denoxing exhaust gases from combustion units and method therefor
US6301879B1 (en) 1998-06-22 2001-10-16 Hjs Fahrzeugtechnik Gmbh & Co. Exhaust gas purification system for denoxing exhaust gases from combustion units
US6511644B1 (en) 2000-08-28 2003-01-28 The Chemithon Corporation Method for removing contaminants in reactors
US6761868B2 (en) 2001-05-16 2004-07-13 The Chemithon Corporation Process for quantitatively converting urea to ammonia on demand
US7008603B2 (en) 2001-05-16 2006-03-07 The Chemithon Corporation Process and apparatus for quantitatively converting urea to ammonia on demand
US6887449B2 (en) 2002-11-21 2005-05-03 The Chemithon Corporation Method of quantitatively producing ammonia from urea
US7986870B2 (en) 2006-05-16 2011-07-26 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
DE102006023147A1 (en) * 2006-05-16 2008-01-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
JP2009537723A (en) * 2006-05-16 2009-10-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for supplying air-fuel mixture
DE102006023146A1 (en) * 2006-05-16 2007-11-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
US8155509B2 (en) 2006-05-16 2012-04-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method and device for providing a gaseous substance mixture
JP2010506079A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for providing a reducing agent precursor
US8313722B2 (en) 2007-12-06 2012-11-20 Ec&C Technologies, Inc. Process to produce ammonia from urea
JP2012055823A (en) * 2010-09-08 2012-03-22 Babcock Hitachi Kk Denitration device
JP2013136995A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd System for supplying ammonia to scr converter
JP2013136968A (en) * 2011-12-28 2013-07-11 Hino Motors Ltd Exhaust emission control device
US9586831B2 (en) 2014-06-09 2017-03-07 Wahlco, Inc. Urea to ammonia process

Also Published As

Publication number Publication date
JP3638638B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JPH0857258A (en) Denitrification apparatus using solid reducing agent
KR102172147B1 (en) Low Pressure Selective Catalytic Reduction System and Urea Storage Tank Heating Control Method Thereof
JP3100191B2 (en) Flue gas denitration equipment
EP0975417B1 (en) REDUCING NOx EMISSIONS FROM AN ENGINE BY TEMPERATURE-CONTROLLED UREA INJECTION
JP4646063B2 (en) Exhaust gas denitration method and apparatus using urea decomposition catalyst
JP3727668B2 (en) Exhaust gas boiler
AU8297991A (en) Process for the in-line hydrolysis of urea
KR20170013687A (en) Scr system
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
KR101821096B1 (en) NOx reduction system based on urea solution
JP4309167B2 (en) Exhaust gas denitration method using urea
JPH0716431A (en) Flue gas denitrification apparatus
JPH08281074A (en) Denitrification equipment using urea
JPH0871372A (en) Denitration apparatus and method using urea
JP2001157822A (en) Method for removing nitrogen oxide in combustion exhaust gas
EP0363684A1 (en) Exhaust gas denitrification apparatus
KR100437875B1 (en) NOx reduction system by selective catalytic reduction available for urea as reducing agent
CN209828701U (en) Preparation facilities of mixed denitrifier based on aqueous ammonia + hydrazine
US20160361686A1 (en) Selective catalytic reduction (scr) de-nox equipment for removing visible emission
KR20090084055A (en) The reduction agent injection system for increasing nh3 evolution in sncr process
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
JPH0386212A (en) Method for denitrating waste gas
JP3354756B2 (en) Reducing agent injection device for denitration equipment
JP2003269141A (en) Reducer composition for flue gas denitrification
US11027237B2 (en) Direct injection of aqueous urea

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees