JP2013136968A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2013136968A
JP2013136968A JP2011287957A JP2011287957A JP2013136968A JP 2013136968 A JP2013136968 A JP 2013136968A JP 2011287957 A JP2011287957 A JP 2011287957A JP 2011287957 A JP2011287957 A JP 2011287957A JP 2013136968 A JP2013136968 A JP 2013136968A
Authority
JP
Japan
Prior art keywords
urea water
exhaust gas
reformer
heater
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287957A
Other languages
Japanese (ja)
Other versions
JP5865074B2 (en
JP2013136968A5 (en
Inventor
Yoshihiro Kawada
吉弘 川田
Shinya Sato
信也 佐藤
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011287957A priority Critical patent/JP5865074B2/en
Priority to PCT/JP2012/056543 priority patent/WO2012128145A1/en
Priority to CN201280005447.7A priority patent/CN103348104B/en
Priority to EP12760036.9A priority patent/EP2687695B1/en
Priority to US14/005,096 priority patent/US8875499B2/en
Publication of JP2013136968A publication Critical patent/JP2013136968A/en
Publication of JP2013136968A5 publication Critical patent/JP2013136968A5/ja
Application granted granted Critical
Publication of JP5865074B2 publication Critical patent/JP5865074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/24

Abstract

PROBLEM TO BE SOLVED: To make supply quantity of aqueous ammonia to an exhaust pipe simply controllable by reforming urea water to the aqueous ammonia without evaporating it with a urea water reformer, and to efficiently reduce NOx in exhaust gas even when exhaust gas temperature is comparatively low.SOLUTION: A selective reduction catalyst 12 provided in the exhaust pipe 15 of an engine 11 reduces NOx in the exhaust gas to N, and the urea water reformer 14 heats the urea water 13 with a heater 14b to reform it to the aqueous ammonia. A urea water supply means 16 supplies the urea water to the urea water reformer, and an injection nozzle 17 facing the exhaust pipe at an exhaust gas upstream side from the selective reduction catalyst jets the ammonia water or the urea water. A controller 38 controls the heater and the urea water supply means based on detection output by a catalyst temperature sensor 33 detecting the exhaust gas temperature relating to the selective reduction catalyst and detection output by a pressure sensor 34 detecting inlet pressure of the urea water reformer.

Description

本発明は、尿素水改質器で尿素水から改質されたアンモニア水を還元剤としてエンジンの排気管に噴射することにより排ガス中のNOxを浄化する装置に関するものである。   The present invention relates to an apparatus for purifying NOx in exhaust gas by injecting ammonia water reformed from urea water by a urea water reformer into an exhaust pipe of an engine as a reducing agent.

従来、少なくとも1種類の還元剤先駆物質を含む水溶液(例えば、尿素水溶液)の貯蔵槽を有し、この貯蔵槽が蒸発室に接続され、この蒸発室に上記水溶液が供給手段により供給され、少なくとも1種類の還元剤又は少なくとも1種類の還元剤先駆物質の少なくともいずれか1つの物質を含む混合気の供給装置が開示されている(例えば、特許文献1参照。)。この混合気の供給装置では、蒸発室に配置された加熱手段が蒸発室に接触する発熱線により形成され、この加熱手段によって蒸発室内の尿素水溶液が少なくとも部分的に蒸発する臨界温度以上の温度に加熱される。具体的には、蒸発装置は、実質的に密閉された容積を有する上記蒸発室を有し、この蒸発室は、尿素水溶液を搬送する搬送管を接続するための第1開口と、混合気を排出する供給管を接続するための第2開口とを有する。第1開口には、蒸発室の中に尿素水溶液を噴射供給する手段としてノズルが配置され、このノズルによって、尿素水溶液が蒸発室の中に噴射注入される。また蒸発室は、第2開口の部位に、第2開口への液滴の侵入を防止する手段、特に液滴と蒸発室の壁との間に位置する気体膜を壊す手段(壁における突起など)を有するとともに、内部に、尿素水溶液の蒸発のために大きな表面を発生させる1つ或いは複数の構造物を有する。この構造物は、蒸発室の内側表面上への被覆の設置によって得られる構造化された表面でもよい。更に蒸発室は第2開口を介して加水分解触媒コンバータに接続され、この加水分解触媒コンバータは排気管に直結される。この加水分解触媒コンバータは、この加水分解触媒コンバータに巻き付けられた発熱線からなる調温手段を有する。   Conventionally, it has a storage tank of an aqueous solution (for example, urea aqueous solution) containing at least one reducing agent precursor, the storage tank is connected to the evaporation chamber, and the aqueous solution is supplied to the evaporation chamber by a supply means. An apparatus for supplying an air-fuel mixture containing at least one substance of one kind of reducing agent or at least one kind of reducing agent precursor is disclosed (for example, see Patent Document 1). In this air-fuel mixture supply device, the heating means disposed in the evaporation chamber is formed by a heating wire in contact with the evaporation chamber, and the heating means raises the urea aqueous solution in the evaporation chamber to a temperature equal to or higher than the critical temperature at least partially evaporating. Heated. Specifically, the evaporation apparatus has the evaporation chamber having a substantially sealed volume, and the evaporation chamber has a first opening for connecting a transfer pipe for transferring the urea aqueous solution, and an air-fuel mixture. And a second opening for connecting a supply pipe to be discharged. In the first opening, a nozzle is disposed as means for injecting and supplying the urea aqueous solution into the evaporation chamber, and the urea aqueous solution is injected and injected into the evaporation chamber by this nozzle. The evaporation chamber also has a means for preventing liquid droplets from entering the second opening, particularly a means for breaking a gas film located between the liquid droplet and the wall of the evaporation chamber (such as a protrusion on the wall). And one or more structures that generate a large surface for evaporation of the aqueous urea solution. This structure may be a structured surface obtained by placing a coating on the inner surface of the evaporation chamber. Further, the evaporation chamber is connected to the hydrolysis catalytic converter through the second opening, and this hydrolysis catalytic converter is directly connected to the exhaust pipe. This hydrolysis catalytic converter has temperature control means comprising heating lines wound around this hydrolysis catalytic converter.

このように構成された混合気の供給装置では、蒸発装置によって尿素水溶液から混合気が発生し、この混合気は少なくとも尿素を含み、場合によっては、その尿素の熱分解で生じたアンモニアも既に含む。この混合気は第2開口を通って加水分解触媒コンバータに導入され、この加水分解触媒コンバータにおいて、アンモニアへの尿素のほぼ完全な加水分解が行われ、アンモニアを含む還元剤混合気が生ずる。   In the air-fuel mixture supply apparatus configured as described above, the air-fuel mixture is generated from the urea aqueous solution by the evaporator, and this air-fuel mixture contains at least urea, and in some cases, already contains ammonia generated by thermal decomposition of the urea. . This air-fuel mixture is introduced into the hydrolysis catalytic converter through the second opening. In this hydrolysis catalytic converter, urea is almost completely hydrolyzed to ammonia, and a reducing agent gas mixture containing ammonia is generated.

一方、尿素を含む水溶液を供給するための少なくとも1つの供給路に加水分解触媒が接続され、SCR触媒に排ガスが貫流し、供給路の少なくとも一部と加水分解触媒との少なくとも一方の部品を加熱する棒状加熱要素が配置された内燃機関の排ガス処理装置が開示されている(例えば、特許文献2参照。)。この排ガス処理装置では、棒状加熱要素の周りに、供給路の少なくとも一部と加水分解触媒との少なくとも一方の部品が配置される。また棒状加熱要素が外被管で取り囲まれ、この外被管が棒状加熱要素と一体に形成されるか、棒状加熱要素と材料結合される。そして外被管内に通路が設けられる。ここで、通路は、棒状加熱要素の周りにほぼスパイラル状に形成され、内側が外被管により境界づけられかつ外側がブシュによる境界づけられた環状隙間横断面を持った1つ或いは複数の通路である。尿素水溶液は、通路の第1部位において棒状加熱要素により蒸発され、通路の第2部位に混合気が貫流する。通路の第2部位には、尿素からアンモニアへの加水分解を促進する被覆が設けられ、通路の第2部位は加水分解路及び加水分解触媒として用いられる。上記尿素がアンモニアに加水分解した後、アンモニアを含む蒸気流が還元剤として通路から排気管に供給される。更に外被管の上にブシュが被せられる。このブシュは、例えばそれ自体が発熱線を利用し、これによって、ブシュも加熱され、従って、通路はその内外から加熱される。   On the other hand, a hydrolysis catalyst is connected to at least one supply path for supplying an aqueous solution containing urea, exhaust gas flows through the SCR catalyst, and heats at least one part of the supply path and at least one part of the hydrolysis catalyst. An exhaust gas treatment device for an internal combustion engine in which a rod-shaped heating element is arranged is disclosed (for example, see Patent Document 2). In this exhaust gas treatment apparatus, at least one part of at least a part of the supply path and the hydrolysis catalyst is disposed around the rod-shaped heating element. Further, the rod-shaped heating element is surrounded by a jacket tube, and the jacket tube is formed integrally with the rod-shaped heating element or is material-bonded to the rod-shaped heating element. A passage is provided in the jacket tube. Here, the passage is formed in a substantially spiral shape around the rod-shaped heating element, and has one or more passages having an annular gap cross section bounded by the jacket tube on the inside and bounded by the bush on the outside It is. The urea aqueous solution is evaporated by the rod-shaped heating element at the first portion of the passage, and the air-fuel mixture flows through the second portion of the passage. The second part of the passage is provided with a coating that promotes hydrolysis of urea to ammonia, and the second part of the passage is used as a hydrolysis path and a hydrolysis catalyst. After the urea is hydrolyzed to ammonia, a vapor stream containing ammonia is supplied as a reducing agent from the passage to the exhaust pipe. Further, a bush is placed on the jacket tube. This bushing itself uses, for example, a heating wire, whereby the bushing is also heated, so that the passage is heated from inside and outside.

特表2009−537723号公報(請求項1、段落[0060]〜[0065]、図5、図6)JP-T-2009-537723 (Claim 1, paragraphs [0060] to [0065], FIGS. 5 and 6) 特表2009−537725号公報(請求項1、段落[0027]、[0047]、[0048]、図1、図4)JP-T-2009-537725 (Claim 1, paragraphs [0027], [0047], [0048], FIGS. 1 and 4)

しかし、上記従来の特許文献1に示された混合気の供給装置及び上記従来の特許文献2に示された排ガス処理装置では、いずれも液体である尿素水溶液を蒸発させた後に加水分解することにより、アンモニアを含む混合気又は蒸気流からなる還元剤を生成しているため、圧力の変化により還元剤の排気管への供給量が大きく変化してしまい、還元剤の排気管への供給量を制御することが難しい不具合があった。また上記従来の特許文献1に示された混合気の供給装置では、尿素水溶液が蒸発室に流入すると、この尿素水溶液が蒸発して尿素及びアンモニアを含む混合気が発生し、この混合気が加水分解触媒コンバータに流入すると、混合気中の尿素がほぼ完全に加水分解されて排気管に流入するため、蒸発室内で尿素水溶液中の尿素が蒸発せずに水のみが蒸発して尿素が結晶化する場合があり、この場合、結晶化した尿素が蒸発室内面に堆積するおそれがあった。更に、上記従来の特許文献1に示された混合気の供給装置では、尿素水溶液からアンモニアを含む還元剤混合気を生成するのに、蒸発室と加水分解触媒コンバータとをそれぞれ別個に設けているため、部品点数が増大するとともに、蒸発室及び加水分解触媒コンバータの設置スペースを広く確保しなければならない問題点もあった。   However, both of the air-fuel mixture supply apparatus disclosed in the above-mentioned conventional patent document 1 and the exhaust gas treatment apparatus disclosed in the above-mentioned conventional patent document 2 are obtained by hydrolyzing the urea aqueous solution, which is a liquid, after evaporating. Since the reducing agent comprising a mixture or vapor stream containing ammonia is generated, the supply amount of the reducing agent to the exhaust pipe greatly changes due to a change in pressure, and the supply amount of the reducing agent to the exhaust pipe is reduced. There was a problem that was difficult to control. Further, in the air-fuel mixture supply apparatus disclosed in the above-mentioned conventional patent document 1, when the urea aqueous solution flows into the evaporation chamber, the urea aqueous solution evaporates to generate a gas mixture containing urea and ammonia. When it flows into the cracking catalytic converter, urea in the mixture is almost completely hydrolyzed and flows into the exhaust pipe, so that the urea in the aqueous urea solution does not evaporate in the evaporation chamber, but only water evaporates and the urea crystallizes. In this case, crystallized urea may be deposited on the inner surface of the evaporation chamber. Furthermore, in the conventional gas mixture supply apparatus disclosed in Patent Document 1, an evaporation chamber and a hydrolysis catalytic converter are separately provided to generate a reducing agent gas mixture containing ammonia from an aqueous urea solution. For this reason, the number of parts increases, and there is a problem that a large installation space for the evaporation chamber and the hydrolysis catalytic converter must be secured.

一方、上記従来の特許文献2に示された排ガス処理装置では、尿素水溶液が加水分解触媒の通路に流入すると、この尿素水溶液は通路の第1部位で蒸発した後、通路の第2部位で加水分解し、アンモニアを含む蒸気流となって排気管に流入するため、通路の第1部位で尿素水溶液中の尿素が蒸発せずに水のみが蒸発して尿素が結晶化する場合があり、この場合、結晶化した尿素が通路内に堆積し、この堆積物により通路が詰まるおそれがあった。また、上記従来の特許文献2に示された排ガス処理装置では、加水分解触媒の通路が、棒状加熱要素の周りにほぼスパイラル状に形成され、内側が外被管により境界づけられかつ外側がブシュによる境界づけられた環状隙間横断面を持った1つ或いは複数の通路であるため、外被管及びブシュを精度良く加工する必要があり、これらの部品の加工工数が増大する問題点もあった。   On the other hand, in the above-described conventional exhaust gas treatment apparatus, when the urea aqueous solution flows into the passage of the hydrolysis catalyst, the urea aqueous solution evaporates at the first portion of the passage and then is hydrolyzed at the second portion of the passage. Since it decomposes and flows into the exhaust pipe as a vapor stream containing ammonia, urea in the urea aqueous solution does not evaporate at the first part of the passage, and only water evaporates and urea may crystallize. In some cases, crystallized urea accumulates in the passage and the deposit may clog the passage. Further, in the conventional exhaust gas treatment apparatus disclosed in Patent Document 2, the passage of the hydrolysis catalyst is formed in a substantially spiral shape around the rod-shaped heating element, the inside is bounded by the jacket tube, and the outside is the bush. Because it is one or more passages with an annular gap cross section bounded by, it is necessary to machine the jacket tube and bushing with high precision, and there is also a problem that the man-hours for machining these parts increase. .

本発明の第1の目的は、尿素水改質器で尿素水を蒸発させずにアンモニア水に改質することにより、排気管へのアンモニア水の供給量を容易に制御できるとともに、排ガス温度が比較的低いときであっても排ガス中のNOxを効率良く低減できる、排ガス浄化装置を提供することにある。本発明の第2の目的は、尿素水改質器で尿素水を蒸発させずにアンモニア水に改質することにより、水のみが蒸発して尿素が結晶化することを防止できる、排ガス浄化装置を提供することにある。本発明の第3の目的は、尿素水改質器で液体の尿素水を液体のアンモニア水に改質することにより、尿素水改質器の部品点数を増大させずに、尿素水改質器の小型化を図ることができる、排ガス浄化装置を提供することにある。本発明の第4の目的は、棒状のヒータの外周面に還元剤流通管を螺旋状に巻回することにより、還元剤流通管を比較的低い精度で加工工数を増大せずに比較的容易に作製できる、排ガス浄化装置を提供することにある。   The first object of the present invention is to easily control the supply amount of ammonia water to the exhaust pipe by reforming it to ammonia water without evaporating the urea water with a urea water reformer, and the exhaust gas temperature is reduced. An object of the present invention is to provide an exhaust gas purification device that can efficiently reduce NOx in exhaust gas even when the temperature is relatively low. A second object of the present invention is to provide an exhaust gas purifying apparatus capable of preventing only water from evaporating and crystallization of urea by reforming it into ammonia water without evaporating urea water with a urea water reformer. Is to provide. A third object of the present invention is to reform liquid urea water to liquid ammonia water with a urea water reformer, thereby increasing the urea water reformer without increasing the number of parts of the urea water reformer. It is in providing the exhaust gas purification apparatus which can achieve size reduction. The fourth object of the present invention is to relatively easily reduce the reducing agent circulation pipe with relatively low accuracy without increasing the number of processing steps by winding the reducing agent circulation pipe spirally around the outer peripheral surface of the rod-shaped heater. An object is to provide an exhaust gas purifying apparatus that can be manufactured easily.

本発明の第1の観点は、図1及び図2に示すように、エンジン11の排ガスを浄化する排ガス浄化装置において、エンジン11の排気管15に設けられ排ガス中のNOxをN2に還元可能な選択還元型触媒12と、尿素水13をヒータ14bにより加熱してアンモニア水に改質する尿素水改質器14と、尿素水改質器14に尿素水13を供給する尿素水供給手段16と、選択還元型触媒12より排ガス上流側の排気管15に臨み尿素水改質器14で改質されたアンモニア水又は尿素水改質器14で改質されずにそのまま通過した尿素水のいずれか一方又は双方を噴射可能な噴射ノズル17と、選択還元型触媒12に関係する排ガス温度を検出する触媒温度センサ33と、尿素水改質器14の入口圧力を検出する圧力センサ34と、触媒温度センサ33及び圧力センサ34の各検出出力に基づいてヒータ14b及び尿素水供給手段16を制御するコントローラ38とを備えたことを特徴とする。 As shown in FIGS. 1 and 2, the first aspect of the present invention is an exhaust gas purification device that purifies exhaust gas of the engine 11. NOx in the exhaust gas provided in the exhaust pipe 15 of the engine 11 can be reduced to N 2. A selective catalytic reduction catalyst 12, a urea water reformer 14 for heating urea water 13 by a heater 14 b to reform it into ammonia water, and urea water supply means 16 for supplying urea water 13 to the urea water reformer 14. Either the ammonia water reformed by the urea water reformer 14 facing the exhaust pipe 15 upstream of the selective catalytic reduction catalyst 12 or the urea water passed through without being reformed by the urea water reformer 14. An injection nozzle 17 capable of injecting either or both, a catalyst temperature sensor 33 for detecting an exhaust gas temperature related to the selective catalytic reduction catalyst 12, a pressure sensor 34 for detecting an inlet pressure of the urea water reformer 14, and a catalyst Temperature sensor Characterized by comprising a controller 38 which controls the heater 14b and the urea water supply device 16 based on the detection outputs of the sub 33 and the pressure sensor 34.

本発明の第2の観点は、第1の観点に基づく発明であって、更に図2に示すように、尿素水改質器14が、筒状の改質ケース14aと、この改質ケース14aの外周面に螺旋状に巻回されたヒータ14bと、この改質ケース14aに充填されヒータ14bの熱を改質ケース14aの内部に伝達する複数の無機質多孔質体14cとを有することを特徴とする。   The second aspect of the present invention is an invention based on the first aspect. As shown in FIG. 2, the urea water reformer 14 includes a cylindrical reforming case 14a and the reforming case 14a. And a plurality of inorganic porous bodies 14c filled in the reforming case 14a and transmitting heat of the heater 14b to the inside of the reforming case 14a. And

本発明の第3の観点は、第2の観点に基づく発明であって、更に図5に示すように、改質ケース64a内にこのケースの長手方向に所定の間隔をあけて仕切板64fが設けられ、仕切板64fにより改質ケース64a内が互いに連通する複数の空間に区画され、複数の空間に複数の無機質多孔質体64cが充填され、更に改質ケース64aに流入した尿素水が複数の空間を蛇行しながら通過してアンモニア水に改質されるように構成されたことを特徴とする。   The third aspect of the present invention is an invention based on the second aspect, and as shown in FIG. 5, a partition plate 64f is provided in the reforming case 64a with a predetermined interval in the longitudinal direction of the case. Provided, the reforming case 64a is partitioned into a plurality of spaces communicating with each other by the partition plate 64f, the plurality of spaces are filled with a plurality of inorganic porous bodies 64c, and a plurality of urea waters flowing into the reforming case 64a are provided. This is characterized in that it is configured to pass through the space while being reformed into ammonia water.

本発明の第4の観点は、第2又は第3の観点に基づく発明であって、更に図2に示すように、無機質多孔質体14cに尿素水13の加水分解を促進する触媒が担持されたことを特徴とする。   A fourth aspect of the present invention is an invention based on the second or third aspect, and further, as shown in FIG. 2, a catalyst that promotes hydrolysis of urea water 13 is supported on the inorganic porous body 14c. It is characterized by that.

本発明の第5の観点は、第1の観点に基づく発明であって、更に図7及び図10に示すように、尿素水改質器84が、棒状のヒータ84aと、ヒータ84aの外周面に螺旋状に巻回され尿素水が流通しかつヒータ84aの熱を内面に伝達する還元剤流通管84bと、還元剤流通管84bの内周面にコーティングされ尿素水を吸着する吸着剤層84cとを有することを特徴とする。   A fifth aspect of the present invention is an invention based on the first aspect, and as shown in FIGS. 7 and 10, the urea water reformer 84 includes a rod-shaped heater 84a and an outer peripheral surface of the heater 84a. And a reducing agent circulation pipe 84b through which urea water flows and transfers the heat of the heater 84a to the inner surface, and an adsorbent layer 84c that is coated on the inner peripheral surface of the reducing agent circulation pipe 84b and adsorbs urea water. It is characterized by having.

本発明の第6の観点は、第5の観点に基づく発明であって、更に図10に示すように、吸着剤層84cに尿素水の加水分解を促進する触媒が担持されたことを特徴とする。   A sixth aspect of the present invention is an invention based on the fifth aspect, and further, as shown in FIG. 10, is characterized in that a catalyst for promoting hydrolysis of urea water is supported on the adsorbent layer 84c. To do.

本発明の第1の観点の排ガス浄化装置では、尿素水改質器で尿素水を蒸発させずにアンモニア水に改質し、この圧力が変化しても容積が殆ど変化しないアンモニア水又は尿素水のいずれか一方又は双方を噴射ノズルから排気管内に噴射するので、排気管へのアンモニア水又は尿素水の供給量を容易に制御できる。また噴射ノズルから排気管内に噴射されたアンモニア水は排ガス温度が比較的低温であっても速やかに気化してアンモニアガスになるとともに、このアンモニアガスは選択還元型触媒上で排ガス中のNOxをN2に還元する還元剤として機能するので、排ガス温度が比較的低いときであっても排ガス中のNOxを効率良く低減できる。なお、排ガス温度が比較的高いときには、尿素水を尿素水改質器で改質せずにそのまま通過させて噴射ノズルから排気管に噴射する。この噴射された尿素水は比較的高温の排ガスによりアンモニアガスに改質されるので、このアンモニアガスは選択還元型触媒上で排ガス中のNOxをN2に還元する還元剤として機能する。 In the exhaust gas purifying apparatus according to the first aspect of the present invention, the urea water reformer reforms ammonia water without evaporating it, and the volume of the ammonia water or urea water hardly changes even when this pressure changes. Since either or both of these are injected into the exhaust pipe from the injection nozzle, the amount of ammonia water or urea water supplied to the exhaust pipe can be easily controlled. Further, the ammonia water injected from the injection nozzle into the exhaust pipe is quickly vaporized into ammonia gas even when the exhaust gas temperature is relatively low, and this ammonia gas converts NOx in the exhaust gas to N on the selective catalytic reduction catalyst. Since it functions as a reducing agent that reduces to 2 , NOx in the exhaust gas can be efficiently reduced even when the exhaust gas temperature is relatively low. When the exhaust gas temperature is relatively high, the urea water is passed through the urea water reformer without being reformed by the urea water reformer and is ejected from the ejection nozzle to the exhaust pipe. Since the injected urea water is reformed into ammonia gas by the relatively high temperature exhaust gas, the ammonia gas functions as a reducing agent that reduces NOx in the exhaust gas to N 2 on the selective catalytic reduction catalyst.

また尿素水改質器で尿素水を蒸発させずにアンモニア水に改質するので、水のみが蒸発して尿素が結晶化することを防止できる。この結果、尿素水改質器内に結晶化した尿素が堆積するのを防止できる。更に尿素水溶液からアンモニアを含む還元剤混合気を生成するのに、蒸発室と加水分解触媒コンバータとをそれぞれ別個に設けているため、部品点数が増大するとともに、蒸発室及び加水分解触媒コンバータの設置スペースを広く確保しなければならない従来の混合気の供給装置と比較して、本発明では、単一の尿素水改質器で液体の尿素水を液体のアンモニア水に改質するので、尿素水改質器の部品点数を増大させずに、尿素水改質器の小型化を図ることができる。この結果、尿素水改質器を比較的狭いスペースに設置できる。   Further, since the urea water reformer reforms the ammonia water without evaporating it, it is possible to prevent only water from evaporating and urea from crystallizing. As a result, it is possible to prevent the crystallized urea from accumulating in the urea water reformer. Furthermore, since the evaporation chamber and hydrolysis catalyst converter are provided separately to generate the reducing agent mixture containing ammonia from the urea aqueous solution, the number of parts increases, and the evaporation chamber and hydrolysis catalyst converter are installed. Compared with a conventional air-fuel mixture supply device that requires a large space, the present invention reforms liquid urea water into liquid ammonia water with a single urea water reformer. The urea water reformer can be reduced in size without increasing the number of parts of the reformer. As a result, the urea water reformer can be installed in a relatively narrow space.

本発明の第2の観点の排ガス浄化装置では、改質ケースに充填された無機質多孔質体が、ヒータの熱を改質ケースの内部に伝達する熱媒体としての機能と、尿素水を染み込むように吸着する吸着剤としての機能とを有するので、尿素水を効率良くアンモニア水に改質できる。   In the exhaust gas purifying apparatus according to the second aspect of the present invention, the inorganic porous body filled in the reforming case functions as a heat medium for transferring the heat of the heater to the inside of the reforming case, and soaks urea water. Therefore, urea water can be efficiently reformed into ammonia water.

本発明の第3の観点の排ガス浄化装置では、改質ケースに流入した尿素水が複数の空間を蛇行しながら通過するので、尿素水の無機質多孔質体との接触率が高くなり、尿素水をより効率良くアンモニア水に改質できる。   In the exhaust gas purifying apparatus according to the third aspect of the present invention, the urea water that has flowed into the reforming case passes through a plurality of spaces while meandering, so that the contact rate with the inorganic porous body of urea water increases, and the urea water Can be more efficiently modified to ammonia water.

本発明の第4の観点の排ガス浄化装置では、無機質多孔質体に担持された触媒により尿素水の加水分解が促進されるので、尿素水を更に効率良くアンモニア水に改質できる。   In the exhaust gas purifying apparatus of the fourth aspect of the present invention, the hydrolysis of urea water is promoted by the catalyst supported on the inorganic porous body, so that the urea water can be more efficiently reformed to ammonia water.

本発明の第5の観点の排ガス浄化装置では、還元剤流通管がヒータの熱を還元剤流通管の内面に伝達し、吸着剤層が尿素水を染み込むように吸着するので、尿素水が還元剤流通管内を通過することにより、効率良くアンモニア水に改質できる。また外被管及びブシュを精度良く加工する必要があり、これらの部品の加工工数が増大する従来の排ガス処理装置と比較して、本発明では、棒状のヒータの外周面に還元剤流通管を螺旋状に巻回するだけで済むので、還元剤流通管を比較的低い精度で加工工数を増大せずに比較的容易に作製できる。   In the exhaust gas purifying apparatus according to the fifth aspect of the present invention, the reducing agent circulation pipe transfers the heat of the heater to the inner surface of the reducing agent circulation pipe, and the adsorbent layer adsorbs so as to soak in urea water. By passing through the agent flow pipe, it can be efficiently reformed into ammonia water. In addition, in the present invention, the reducing agent flow pipe is provided on the outer peripheral surface of the rod-shaped heater as compared with the conventional exhaust gas treatment apparatus that requires processing of the outer tube and the bush with high accuracy and increases the number of processing steps of these parts. Since only the spiral winding is required, the reducing agent flow pipe can be manufactured relatively easily with relatively low accuracy without increasing the number of processing steps.

本発明の第6の観点の排ガス浄化装置では、吸着剤層に担持された触媒により尿素水の加水分解が促進されるので、尿素水を更に効率良くアンモニア水に改質できる。   In the exhaust gas purifying apparatus according to the sixth aspect of the present invention, the hydrolysis of urea water is promoted by the catalyst supported on the adsorbent layer, so that the urea water can be more efficiently reformed to ammonia water.

本発明第1実施形態の排ガス浄化装置を示す構成図である。It is a block diagram which shows the exhaust gas purification apparatus of 1st Embodiment of this invention. その排ガス浄化装置の尿素水改質器を示す図3のA−A線断面図である。It is the sectional view on the AA line of FIG. 3 which shows the urea water reformer of the exhaust gas purification apparatus. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. 尿素水改質器の温度変化及び尿素水改質器の入口圧力の変化に対する尿素水改質器でのアンモニア水発生率の変化を示す図である。It is a figure which shows the change of the ammonia water generation rate in a urea water reformer with respect to the temperature change of a urea water reformer, and the change of the inlet pressure of a urea water reformer. 本発明第2実施形態の尿素水改質器を示す図6のC−C線断面図である。It is CC sectional view taken on the line of FIG. 6 which shows the urea water reformer of 2nd Embodiment of this invention. 図5のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 本発明第3実施形態の尿素水改質器を示す図8のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 8 which shows the urea water reformer of 3rd Embodiment of this invention. 図7のF−F線断面図である。It is the FF sectional view taken on the line of FIG. 尿素水改質器の断熱ケース及び断熱材を取外した状態を示す尿素水改質器の側面図である。It is a side view of the urea water reformer which shows the state which removed the heat insulation case and heat insulating material of the urea water reformer. 図9のG−G線断面図である。It is the GG sectional view taken on the line of FIG.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

<第1の実施の形態>
図1に示すように、排ガス浄化装置は、ディーゼルエンジン11から排出された排ガス中のNOxをN2に還元可能な選択還元型触媒12と、尿素水13をアンモニア水に改質する尿素水改質器14と、尿素水改質器14に尿素水13を供給する尿素水供給手段16と、選択還元型触媒12より排ガス上流側の排気管15に臨みアンモニア水又は尿素水のいずれか一方又は双方を噴射可能な噴射ノズル17とを備える。ディーゼルエンジン11の吸気ポートには吸気マニホルド18を介して吸気管19が接続され、排気ポートには排気マニホルド21を介して排気管15が接続される。吸気管19には、ターボ過給機23のコンプレッサハウジング23aと、ターボ過給機23により圧縮された吸気を冷却するインタクーラ24とがそれぞれ設けられ、排気管15にはターボ過給機23のタービンハウジング23bが設けられる。コンプレッサハウジング23aにはコンプレッサ回転翼(図示せず)が回転可能に収容され、タービンハウジング23bにはタービン回転翼(図示せず)が回転可能に収容される。コンプレッサ回転翼とタービン回転翼とはシャフト(図示せず)により連結され、エンジン11から排出される排ガスのエネルギによりタービン回転翼及びシャフトを介してコンプレッサ回転翼が回転し、このコンプレッサ回転翼の回転により吸気管内の吸入空気が圧縮されるように構成される。
<First Embodiment>
As shown in FIG. 1, the exhaust gas purification apparatus includes a selective reduction catalyst 12 that can reduce NOx in exhaust gas discharged from a diesel engine 11 to N 2 , and urea water reforming that reforms urea water 13 into ammonia water. And the urea water supply means 16 for supplying urea water 13 to the urea water reformer 14 and the exhaust pipe 15 on the exhaust gas upstream side of the selective catalytic reduction catalyst 12, either ammonia water or urea water or And an injection nozzle 17 capable of injecting both. An intake pipe 19 is connected to the intake port of the diesel engine 11 via an intake manifold 18, and an exhaust pipe 15 is connected to the exhaust port via an exhaust manifold 21. The intake pipe 19 is provided with a compressor housing 23a of the turbocharger 23 and an intercooler 24 for cooling the intake air compressed by the turbocharger 23, and the exhaust pipe 15 is provided with a turbine of the turbocharger 23. A housing 23b is provided. A compressor rotor blade (not shown) is rotatably accommodated in the compressor housing 23a, and a turbine rotor blade (not shown) is rotatably accommodated in the turbine housing 23b. The compressor rotor blades and the turbine rotor blades are connected by a shaft (not shown), and the compressor rotor blades are rotated via the turbine rotor blades and the shaft by the energy of the exhaust gas discharged from the engine 11, and the compressor rotor blades are rotated. Thus, the intake air in the intake pipe is compressed.

選択還元型触媒12は排気管15に設けられる。具体的には、排気管15の途中に排気管15より大径の触媒ケース26が設けられ、この触媒ケース26に選択還元型触媒12が収容される。選択還元型触媒12はモノリス触媒であって、コージェライト製のハニカム担体に、ゼオライト又はジルコニアをコーティングして構成される。ゼオライトとしては、銅ゼオライト、鉄ゼオライト、亜鉛ゼオライト、銀ゼオライト等が挙げられる。銅ゼオライトからなる選択還元型触媒12は、銅をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。また鉄ゼオライト、亜鉛ゼオライト又は銀ゼオライトからなる選択還元型触媒12は、鉄、亜鉛又は銀をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にそれぞれコーティングして構成される。更にジルコニアからなる選択還元型触媒12は、ジルコニアを担持させたγ−アルミナ粉末又はθ−アルミナ粉末を含むスラリーをハニカム担体にコーティングして構成される。この選択還元型触媒12にアンモニアガスが供給されると、アンモニアガスが選択還元型触媒12上でNOxをN2に還元する還元剤として機能するようになっている。 The selective catalytic reduction catalyst 12 is provided in the exhaust pipe 15. Specifically, a catalyst case 26 having a larger diameter than the exhaust pipe 15 is provided in the middle of the exhaust pipe 15, and the selective catalytic reduction catalyst 12 is accommodated in the catalyst case 26. The selective catalytic reduction catalyst 12 is a monolith catalyst, and is configured by coating a honeycomb carrier made of cordierite with zeolite or zirconia. Examples of zeolite include copper zeolite, iron zeolite, zinc zeolite, and silver zeolite. The selective catalytic reduction catalyst 12 made of copper zeolite is configured by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of copper. The selective reduction catalyst 12 made of iron zeolite, zinc zeolite or silver zeolite is configured by coating a honeycomb carrier with a slurry containing zeolite powder obtained by ion exchange of iron, zinc or silver. Furthermore, the selective reduction catalyst 12 made of zirconia is configured by coating a honeycomb carrier with a slurry containing γ-alumina powder or θ-alumina powder supporting zirconia. When ammonia gas is supplied to the selective catalytic reduction catalyst 12, the ammonia gas functions as a reducing agent that reduces NOx to N 2 on the selective catalytic reduction catalyst 12.

一方、図2及び図3に示すように、尿素水改質器14は、筒状の改質ケース14aと、この改質ケース14aの外周面に螺旋状に巻回されたヒータ14bと、この改質ケース14aに充填された複数の無機質多孔質体14cとを有する。改質ケース14aは、一端が開放されかつ他端が閉止された円筒状のケース本体14dと、ケース本体14dの開放端に取外し可能に取付けられケース本体14dの開放端を開放可能に閉止するフランジ14eとからなる。フランジ14eの中央には改質ケース14a内に尿素水13を供給するための供給用短管14fが接続され、ケース本体14dの閉止端の中央には改質ケース14a内からアンモニア水又は尿素水を排出するための排出用短管14gが接続される。上記改質ケース14aは、SUS316、SUS304、インコネル(ハンティントン アロイズ カナダ リミテッド社製の登録商標)等の熱伝導率が15〜17W/(m・K)と比較的高い金属により形成される。またヒータ14bとしては、金属シース(金属製極細管)の中にニクロム線等の発熱体を遊挿し、金属シースと発熱体との隙間に、高純度の無機絶縁物の粉末を充填して構成された、いわゆるシーズヒータを用いることが好ましい。   On the other hand, as shown in FIGS. 2 and 3, the urea water reformer 14 includes a cylindrical reforming case 14a, a heater 14b spirally wound around the outer peripheral surface of the reforming case 14a, A plurality of inorganic porous bodies 14c filled in the modified case 14a. The reforming case 14a has a cylindrical case main body 14d having one end opened and the other end closed, and a flange that is detachably attached to the open end of the case main body 14d and closes the open end of the case main body 14d to be openable. 14e. A short supply pipe 14f for supplying urea water 13 into the reforming case 14a is connected to the center of the flange 14e. Ammonia water or urea water from the reforming case 14a is connected to the center of the closed end of the case body 14d. A discharge short tube 14g for discharging the gas is connected. The reforming case 14a is formed of a metal having a relatively high thermal conductivity of 15 to 17 W / (m · K) such as SUS316, SUS304, Inconel (registered trademark manufactured by Huntington Alloys Canada Limited). Further, the heater 14b is configured by inserting a heating element such as a nichrome wire into a metal sheath (metal ultra-thin tube) and filling a gap between the metal sheath and the heating element with high-purity inorganic insulating powder. It is preferable to use a so-called sheathed heater.

更に無機質多孔質体14cは、粒径0.2〜10mmの多孔質のゼオライト粒子やモレキュラーシーブ(ユニオン・カーバイト社の開発した合成ゼオライトの商品名)粒子等を用いることが好ましい。この無機質多孔質体14cは、ヒータ14bの熱を改質ケース14aの内部に伝達する熱媒体としての機能と、尿素水13を染み込むように吸着する吸着剤としての機能とを有する。なお、無機質多孔質体14cには、チタニアやジルコニア等の触媒を担持することができる。無機質多孔質体14cに触媒を担持することにより、尿素水13の加水分解を促進できる。また無機質多孔質体14cの形態は、この実施の形態では、球状であるが、楕円体、円柱状、円板状等でもよい。   Furthermore, it is preferable to use porous zeolite particles having a particle diameter of 0.2 to 10 mm, molecular sieve (trade name of synthetic zeolite developed by Union Carbite), etc., as the inorganic porous body 14c. The inorganic porous body 14c has a function as a heat medium for transmitting the heat of the heater 14b to the inside of the reforming case 14a, and a function as an adsorbent that adsorbs the urea water 13 soaking. The inorganic porous body 14c can carry a catalyst such as titania or zirconia. By supporting the catalyst on the inorganic porous body 14c, the hydrolysis of the urea water 13 can be promoted. The form of the inorganic porous body 14c is spherical in this embodiment, but may be an ellipsoid, a cylinder, a disk, or the like.

尿素水改質器14は断熱材14hが充填された断熱ケース14iにより覆われる。これによりヒータ14bの発生した熱の放散を抑制できる。また図2中の符号14j,14jは無機質多孔質体14cが改質ケース14a内から供給用短管14f内や排出用短管14g内に転がり出るのを阻止する網体である。更にヒータ14bをオンした状態で尿素水改質器14に尿素水13を供給すると、尿素水改質器14で全ての尿素水13がアンモニア水に改質されて、このアンモニア水が噴射ノズル17に供給されるか、或いは尿素水改質器14で一部の尿素水13がアンモニア水に改質され、残部の尿素水13が改質されずにそのまま尿素水改質器14を通過して、アンモニア水及び尿素水の混合液が噴射ノズル17に供給されるように構成される。一方、ヒータ14bをオフした状態で尿素水改質器14に尿素水13を供給すると、尿素水改質器14で尿素水13が全く改質されず、尿素水13がそのまま尿素水改質器14を通過して噴射ノズル17に供給されるようになっている。   The urea water reformer 14 is covered with a heat insulating case 14i filled with a heat insulating material 14h. Thereby, dissipation of the heat which heater 14b generated can be controlled. Reference numerals 14j and 14j in FIG. 2 are nets that prevent the inorganic porous body 14c from rolling out of the reforming case 14a into the supply short tube 14f or the discharge short tube 14g. When the urea water 13 is supplied to the urea water reformer 14 with the heater 14b turned on, all the urea water 13 is reformed into ammonia water by the urea water reformer 14, and this ammonia water is injected into the injection nozzle 17. Or a part of the urea water 13 is reformed to ammonia water by the urea water reformer 14 and the remaining urea water 13 passes through the urea water reformer 14 as it is without being reformed. The mixture of ammonia water and urea water is configured to be supplied to the injection nozzle 17. On the other hand, when the urea water 13 is supplied to the urea water reformer 14 with the heater 14b turned off, the urea water 13 is not reformed at all by the urea water reformer 14, and the urea water 13 remains as it is. 14 and supplied to the injection nozzle 17.

図1に戻って、尿素水供給手段16は、尿素水13が貯留された尿素水タンク16aと、この尿素水タンク16aを上記尿素水改質器14の供給用短管14fに接続する第1供給管16bと、第1供給管16bに設けられ尿素水タンク16a内の尿素水13を尿素水改質器14に圧送するポンプ16cとを有する。上記ポンプ16cは、図示しないポンプ駆動モータにより駆動される。このポンプ駆動モータの速度を連続的又は段階的に変化させることによりポンプ16cから吐出される尿素水13の圧力を調整できるように構成される。また尿素水改質器14の排出用短管14gは第2供給管32を介して噴射ノズル17に接続され、第2供給管32には、この第2供給管32を開閉することにより噴射ノズル17から噴射されるアンモニア水又は尿素水の流量を調整する流量調整弁31が設けられる。この流量調整弁31は、単位時間当たりの開閉回数、開時間、閉時間を制御することにより、噴射ノズル17から噴射されるアンモニア水又は尿素水の流量を調整できるようになっている。   Returning to FIG. 1, the urea water supply means 16 includes a urea water tank 16 a in which the urea water 13 is stored, and a first short pipe 14 f for supplying the urea water reformer 14 to the urea water tank 16 a. A supply pipe 16b and a pump 16c provided in the first supply pipe 16b and pumping the urea water 13 in the urea water tank 16a to the urea water reformer 14 are provided. The pump 16c is driven by a pump drive motor (not shown). The pressure of the urea water 13 discharged from the pump 16c can be adjusted by changing the speed of the pump drive motor continuously or stepwise. Further, the discharge short pipe 14g of the urea water reformer 14 is connected to the injection nozzle 17 via the second supply pipe 32, and the second supply pipe 32 is opened and closed by opening and closing the second supply pipe 32. A flow rate adjusting valve 31 that adjusts the flow rate of ammonia water or urea water injected from 17 is provided. The flow rate adjustment valve 31 can adjust the flow rate of ammonia water or urea water injected from the injection nozzle 17 by controlling the number of times of opening / closing per unit time, opening time, and closing time.

一方、触媒ケース26のうち選択還元型触媒12より排ガス入口側には、選択還元型触媒12に関係する排ガス温度を検出する触媒温度センサ33が設けられる。また尿素水改質器14の供給用短管14fには、尿素水改質器14の入口圧力を検出する圧力センサ34が設けられる。また尿素水改質器14の改質ケース14aの入口側には、改質ケース14aの入口側の尿素水13の温度を検出する第1温度センサ41が設けられ、尿素水改質器14の改質ケース14aの出口側には、改質ケース14aの出口側のアンモニア水又は尿素水の温度を検出する第2温度センサ42が設けられる。更にエンジン11には、エンジン11の回転速度を検出する回転センサ36と、エンジン11の負荷を検出する負荷センサ37とが設けられる。触媒温度センサ33、圧力センサ34、第1温度センサ41、第2温度センサ42、回転センサ36及び負荷センサ37の各検出出力はコントローラ38の制御入力に接続され、コントローラ38の制御出力はヒータ14b、ポンプ駆動モータ及び流量調整弁31にそれぞれ接続される。   On the other hand, a catalyst temperature sensor 33 for detecting an exhaust gas temperature related to the selective reduction catalyst 12 is provided in the catalyst case 26 on the exhaust gas inlet side of the selective reduction catalyst 12. Further, a pressure sensor 34 for detecting the inlet pressure of the urea water reformer 14 is provided in the supply short pipe 14 f of the urea water reformer 14. A first temperature sensor 41 that detects the temperature of the urea water 13 on the inlet side of the reforming case 14 a is provided on the inlet side of the reforming case 14 a of the urea water reformer 14. On the outlet side of the reforming case 14a, a second temperature sensor 42 that detects the temperature of the ammonia water or urea water on the outlet side of the reforming case 14a is provided. Further, the engine 11 is provided with a rotation sensor 36 that detects the rotation speed of the engine 11 and a load sensor 37 that detects the load of the engine 11. The detection outputs of the catalyst temperature sensor 33, the pressure sensor 34, the first temperature sensor 41, the second temperature sensor 42, the rotation sensor 36, and the load sensor 37 are connected to the control input of the controller 38, and the control output of the controller 38 is the heater 14b. The pump drive motor and the flow rate adjustment valve 31 are connected to each other.

コントローラ38にはメモリ39が設けられる。このメモリ39には、エンジン回転速度、エンジン負荷、選択還元型触媒12の入口側の排ガス温度に応じた、ポンプ駆動モータの速度、流量調整弁31の単位時間当たりの開閉回数、開時間及び閉時間が予め記憶される。またメモリ39には、エンジン回転速度及びエンジン負荷の変化に応じた、排ガス中のNOx流量の変化がマップとして記憶される。更にメモリ39には、尿素水改質器14の入口圧力、尿素水改質器14内の温度、尿素水改質器14から排出されるアンモニア水又は尿素水の流量に応じた、アンモニア生成率の変化が例えば図4に示すようなマップとして記憶される。尿素水改質器14で尿素水13をアンモニア水に改質するときの尿素水改質器14の運転領域は、尿素水改質器14の形状やアンモニア水等の流量により変化するけれども、尿素水改質器14内の温度(第1及び第2温度センサ41,42の各検出出力の平均温度)をヒータ14bにより100℃以上120℃未満の範囲内に制御することが好ましい。このときの尿素水改質器14の入口圧力は比較的高いため、尿素水改質器14は耐圧性を有するように作製される。また第1及び第2温度センサ41,42の各検出出力の温度差により、ヒータ14bによる尿素水13の加熱効率を検出できる。   The controller 38 is provided with a memory 39. The memory 39 stores the speed of the pump drive motor, the number of opening / closing operations per unit time of the flow rate adjustment valve 31, the opening time and the closing time according to the engine speed, the engine load, and the exhaust gas temperature on the inlet side of the selective catalytic reduction catalyst 12. Time is stored in advance. Further, the memory 39 stores a change in the NOx flow rate in the exhaust gas in accordance with changes in the engine speed and engine load as a map. Further, the memory 39 stores an ammonia production rate according to the inlet pressure of the urea water reformer 14, the temperature in the urea water reformer 14, the ammonia water discharged from the urea water reformer 14, or the flow rate of the urea water. For example, is stored as a map as shown in FIG. Although the operation region of the urea water reformer 14 when the urea water 13 is reformed into ammonia water by the urea water reformer 14 varies depending on the shape of the urea water reformer 14 and the flow rate of the ammonia water, It is preferable to control the temperature in the water reformer 14 (the average temperature of the detection outputs of the first and second temperature sensors 41 and 42) within a range of 100 ° C. or more and less than 120 ° C. by the heater 14b. Since the inlet pressure of the urea water reformer 14 at this time is relatively high, the urea water reformer 14 is manufactured to have pressure resistance. Further, the heating efficiency of the urea water 13 by the heater 14b can be detected by the temperature difference between the detection outputs of the first and second temperature sensors 41 and 42.

なお、図1中の符号43は、排気マニホルド21及び吸気管15をエンジン11をバイパスして連通接続するEGR管である。このEGR管43は排気マニホルド21の枝管部から分岐し、インタクーラ24より吸気下流側の吸気管19に合流する。また、図1中の符号44は、EGR管43に設けられこのEGR管43から吸気管19に還流される排ガス(EGRガス)の流量を調整するEGRバルブである。更に、図1中の符号46は、EGR管43を通る排ガス(EGRガス)を冷却するEGRクーラである。   Reference numeral 43 in FIG. 1 denotes an EGR pipe that connects the exhaust manifold 21 and the intake pipe 15 to bypass the engine 11. The EGR pipe 43 branches from the branch pipe portion of the exhaust manifold 21 and joins to the intake pipe 19 on the intake downstream side of the intercooler 24. 1 is an EGR valve that is provided in the EGR pipe 43 and adjusts the flow rate of exhaust gas (EGR gas) recirculated from the EGR pipe 43 to the intake pipe 19. Further, reference numeral 46 in FIG. 1 is an EGR cooler that cools the exhaust gas (EGR gas) passing through the EGR pipe 43.

このように構成された排ガス浄化装置の動作を説明する。エンジン11の始動直後やエンジン11の軽負荷運転時には、排ガス温度が100〜180℃と低い。この温度範囲の排ガス温度を触媒温度センサ33が検出し、回転センサ36及び負荷センサ37がエンジンの無負荷運転又は軽負荷運転を検出すると、コントローラ38は触媒温度センサ33、回転センサ36及び負荷センサ37の各検出出力に基づいて、ヒータ14bをオンするとともに、ポンプ駆動モータの速度を徐々に上昇させる。そして圧力センサ34が尿素水改質器14の入口圧力が所定の圧力になったことを検出すると、このときの速度でポンプ駆動モータを作動させる。この状態で第1及び第2温度センサ41,42が尿素水改質器14内の尿素水13の温度が所定の温度(例えば、平均温度110℃)になったことを検出すると、コントローラ38は流量調整弁31を所定の単位時間当たりの開閉回数、所定の開時間及び所定の閉時間で開閉する。   The operation of the exhaust gas purification apparatus configured as described above will be described. The exhaust gas temperature is as low as 100 to 180 ° C. immediately after the engine 11 is started or during a light load operation of the engine 11. When the exhaust gas temperature in this temperature range is detected by the catalyst temperature sensor 33 and the rotation sensor 36 and the load sensor 37 detect no-load operation or light load operation of the engine, the controller 38 detects the catalyst temperature sensor 33, the rotation sensor 36 and the load sensor. On the basis of the detection outputs 37, the heater 14b is turned on and the speed of the pump drive motor is gradually increased. When the pressure sensor 34 detects that the inlet pressure of the urea water reformer 14 has reached a predetermined pressure, the pump drive motor is operated at this speed. In this state, when the first and second temperature sensors 41 and 42 detect that the temperature of the urea water 13 in the urea water reformer 14 has reached a predetermined temperature (for example, average temperature 110 ° C.), the controller 38 The flow regulating valve 31 is opened and closed at a predetermined number of opening / closing times per unit time, a predetermined opening time and a predetermined closing time.

これにより尿素水改質器14に供給された尿素水13は蒸発せずに全てアンモニア水に改質された後に、噴射ノズル17から排気管15に噴射される。このときの尿素水改質器14において次の式(1)及び式(2)のように反応して尿素水13がアンモニア水に改質される。   As a result, the urea water 13 supplied to the urea water reformer 14 is completely evaporated to ammonia water without evaporating and then injected from the injection nozzle 17 into the exhaust pipe 15. The urea water reformer 14 at this time reacts as shown in the following equations (1) and (2) to reform the urea water 13 into ammonia water.

NH2-CO-NH2 + H2O → NH3 + HNCO + H2O ……(1)
HNCO + H2O → NH3 + CO2 ……(2)
上記式(1)は尿素水13の熱分解式であり、この反応に水は寄与しない。また式(2)はイソシアン酸(HNCO)からアンモニア(NH3)への加水分解式である。この加水分解により生成されたアンモニア(NH3)は水に溶け易いため、アンモニア水(飽和水蒸気圧以上)になり、二酸化炭素(CO2)は水に溶け難く、一部が加熱によりアンモニア水に溶け込み、大部分がアンモニア水に分散した状態になる。
NH 2 —CO—NH 2 + H 2 O → NH 3 + HNCO + H 2 O (1)
HNCO + H 2 O → NH 3 + CO 2 (2)
The above formula (1) is a thermal decomposition formula of urea water 13, and water does not contribute to this reaction. Formula (2) is a hydrolysis formula from isocyanic acid (HNCO) to ammonia (NH 3 ). Ammonia (NH 3 ) produced by this hydrolysis is easily soluble in water, so it becomes ammonia water (saturated water vapor pressure or higher), carbon dioxide (CO 2 ) is difficult to dissolve in water, and part of it is heated into ammonia water by heating. It melts and becomes mostly dispersed in aqueous ammonia.

このように尿素水改質器14で尿素水13を蒸発させずにアンモニア水に改質するので、水のみが蒸発して尿素が結晶化することを防止できる。この結果、尿素水改質器14内に結晶化した尿素が堆積するのを防止できる。また尿素水改質器14で改質されたアンモニア水は、ガス状の二酸化炭素を含むけれども、大部分が液体であり、圧力が変化しても容積があまり変化しないため、排気管15へのアンモニア水の供給量は最適な流量に容易に制御できる。この噴射ノズル17から排気管15内に噴射されたアンモニア水は排ガス温度が比較的低温であっても速やかに気化してアンモニアガスになり、このアンモニアガスは排ガスとともに選択還元型触媒12に流入する。この排ガスとともに選択還元型触媒12に流入したアンモニアガスは排ガス中のNOx(NO、NO2)を還元するための還元剤として機能する。即ち、選択還元型触媒12で、次の式(3)で示すように、排ガス中のNOxが速やかにN2に還元される。 As described above, the urea water reformer 14 reforms the ammonia water 13 without evaporating it, so that it is possible to prevent only water from evaporating and urea from crystallizing. As a result, it is possible to prevent the crystallized urea from accumulating in the urea water reformer 14. Although the ammonia water reformed by the urea water reformer 14 contains gaseous carbon dioxide, most of the ammonia water is liquid and the volume does not change much even if the pressure changes. The supply amount of ammonia water can be easily controlled to an optimum flow rate. The ammonia water injected from the injection nozzle 17 into the exhaust pipe 15 is quickly vaporized into ammonia gas even when the exhaust gas temperature is relatively low, and this ammonia gas flows into the selective catalytic reduction catalyst 12 together with the exhaust gas. . Ammonia gas flowing into the selective catalytic reduction catalyst 12 together with the exhaust gas functions as a reducing agent for reducing NOx (NO, NO 2 ) in the exhaust gas. That is, the selective reduction catalyst 12 quickly reduces NOx in the exhaust gas to N 2 as shown by the following formula (3).

NO+NO2+2NH3 → 2N2+3H2O ……(2)
上記式(3)は、排ガス中のNO及びNO2が選択還元型触媒12でアンモニアガスと反応して、NO及びNO2がN2に還元される化学反応式を示す。この結果、排ガス温度が比較的低いときであっても排ガス中のNOxを効率良く低減できる。
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (2)
The above formula (3) represents a chemical reaction formula in which NO and NO 2 in the exhaust gas react with ammonia gas in the selective reduction catalyst 12 and NO and NO 2 are reduced to N 2 . As a result, even when the exhaust gas temperature is relatively low, NOx in the exhaust gas can be efficiently reduced.

一方、排ガス温度が180℃を越えると、コントローラ38は、触媒温度センサ33の検出出力に基づいて、ヒータ14bをオフする。但し、コントローラ38は、ポンプ駆動モータを所定の速度で作動させ、流量調整弁31を所定の開閉回数(単位時間当たり)、所定の開時間及び所定の閉時間で開閉する。これにより尿素水13は尿素水改質器14でアンモニア水に改質されずに、そのまま尿素水改質器14を通過して、噴射ノズル17から排気管15に噴射される。この噴射された尿素水は比較的高温の排ガスによりアンモニアガスに改質されるので、このアンモニアガスは選択還元型触媒12上で排ガス中のNOxをN2に還元する還元剤として機能し、排ガス中のNOxが効率良く低減される。 On the other hand, when the exhaust gas temperature exceeds 180 ° C., the controller 38 turns off the heater 14 b based on the detection output of the catalyst temperature sensor 33. However, the controller 38 operates the pump drive motor at a predetermined speed, and opens and closes the flow rate adjustment valve 31 with a predetermined number of times of opening / closing (per unit time), a predetermined opening time, and a predetermined closing time. As a result, the urea water 13 is not reformed into ammonia water by the urea water reformer 14 but passes through the urea water reformer 14 as it is and is injected from the injection nozzle 17 into the exhaust pipe 15. Since the injected urea water is reformed into ammonia gas by a relatively high temperature exhaust gas, the ammonia gas functions as a reducing agent for reducing NOx in the exhaust gas to N 2 on the selective catalytic reduction catalyst 12, and the exhaust gas NOx inside is efficiently reduced.

<第2の実施の形態>
図5及び図6は本発明の第2の実施の形態を示す。図5及び図6において図2及び図3と同一符号は同一部品を示す。この実施の形態では、尿素水改質器64は、筒状の改質ケース64aと、この改質ケース64aの外周面に螺旋状に巻回されたヒータ64bと、この改質ケース64aに充填された複数の無機質多孔質体64cとを有する。改質ケース64aは、両端が開放された四角筒状のケース本体64dと、ケース本体64dの両端面に取外し可能に取付けられケース本体64dの両端面をそれぞれ開放可能に閉止する一対の四角板状のフランジ64e,64eと、ケース本体64d内にこのケース本体64dの長手方向に所定の間隔をあけて設けられた複数の仕切板64fとからなる。これらの仕切板64fによりケース本体64d内が互いに連通する複数の空間に区画され、これらの空間に複数の無機質多孔質体64cが充填される。上記改質ケース64aは、第1の実施の形態の改質ケースと同一の材料により形成され、無機質多孔質体64cは、第1の実施の形態の無機質多孔質体と同一材料により同一形状に形成される。
<Second Embodiment>
5 and 6 show a second embodiment of the present invention. 5 and 6, the same reference numerals as those in FIGS. 2 and 3 denote the same components. In this embodiment, the urea water reformer 64 includes a cylindrical reforming case 64a, a heater 64b spirally wound around the outer peripheral surface of the reforming case 64a, and the reforming case 64a filled. A plurality of inorganic porous bodies 64c. The reforming case 64a has a square cylindrical case main body 64d with both ends open, and a pair of square plates that are detachably attached to both end faces of the case main body 64d and close both open ends of the case main body 64d. Flanges 64e, 64e, and a plurality of partition plates 64f provided in the case body 64d at predetermined intervals in the longitudinal direction of the case body 64d. The inside of the case main body 64d is partitioned into a plurality of spaces communicating with each other by these partition plates 64f, and these spaces are filled with a plurality of inorganic porous bodies 64c. The modified case 64a is formed of the same material as the modified case of the first embodiment, and the inorganic porous body 64c has the same shape as the inorganic porous body of the first embodiment. It is formed.

一方、ケース本体64dの入口側端面を閉止するフランジ64eの下部には改質ケース64a内に尿素水を供給するための供給用短管64gが接続され、ケース本体64dの出口側端面を閉止するフランジ64eの上部には改質ケース64a内からアンモニア水又は尿素水を排出するための排出用短管64hが接続される。また尿素水改質器64は断熱材64iが充填された断熱ケース64jにより覆われる。これによりヒータ64bの発生した熱の放散を抑制できる。更に図5中の符号64k,64kは無機質多孔質体64cが改質ケース64a内から供給用短管64g内や排出用短管64h内に転がり出るのを阻止する網体である。上記以外は第1の実施の形態と同一に構成される。   On the other hand, a supply short pipe 64g for supplying urea water into the reforming case 64a is connected to the lower part of the flange 64e that closes the inlet side end face of the case main body 64d, and closes the outlet side end face of the case main body 64d. A discharge short pipe 64h for discharging ammonia water or urea water from the reforming case 64a is connected to the upper part of the flange 64e. The urea water reformer 64 is covered with a heat insulating case 64j filled with a heat insulating material 64i. Thereby, dissipation of the heat which heater 64b generated can be controlled. Further, reference numerals 64k and 64k in FIG. 5 denote nets that prevent the inorganic porous body 64c from rolling out of the reforming case 64a into the supply short pipe 64g or the discharge short pipe 64h. The configuration other than the above is the same as that of the first embodiment.

このように構成された排ガス浄化装置では、改質ケース64aに流入した尿素水が複数の空間を蛇行しながら通過するので、尿素水の無機質多孔質体64cとの接触率が高くなり、尿素水をより効率良くアンモニア水に改質できる。上記以外の動作は第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。   In the exhaust gas purification apparatus configured as described above, the urea water that has flowed into the reforming case 64a passes through a plurality of spaces while meandering, so that the contact rate with the inorganic porous body 64c of the urea water increases, and the urea water Can be more efficiently modified to ammonia water. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

<第3の実施の形態>
図7〜図10は本発明の第3の実施の形態を示す。図7〜図9において図2及び図3と同一符号は同一部品を示す。この実施の形態では、尿素水改質器84は、棒状のヒータ84aと、ヒータ84aの外周面に螺旋状に巻回され尿素水が流通する還元剤流通管84bと、還元剤流通管84bの内周面にコーティングされ尿素水を吸着する吸着剤層84c(図10)とを有する。ヒータ84aとしては、金属シース(金属製極細管)の中にニクロム線等の発熱体84dを遊挿し、金属シースと発熱体84dとの隙間に、高純度の無機絶縁物の粉末を充填して構成された、いわゆるシーズヒータを用いることが好ましい。また還元剤流通管84bは、SUS316、SUS304、インコネル(ハンティントン アロイズ カナダ リミテッド社製の登録商標)等の熱伝導率が15〜17W/(m・K)と比較的高い金属により形成される。これによりヒータ84aの熱が還元剤流通管84bの内面に効率良く伝達される。
<Third Embodiment>
7 to 10 show a third embodiment of the present invention. 7-9, the same code | symbol as FIG.2 and FIG.3 shows the same component. In this embodiment, the urea water reformer 84 includes a rod-shaped heater 84a, a reducing agent circulation pipe 84b that is spirally wound around the outer peripheral surface of the heater 84a and through which urea water flows, and a reducing agent circulation pipe 84b. It has an adsorbent layer 84c (FIG. 10) coated on the inner peripheral surface and adsorbing urea water. As the heater 84a, a heating element 84d such as a nichrome wire is loosely inserted in a metal sheath (metal microtubule), and a high-purity inorganic insulating powder is filled in the gap between the metal sheath and the heating element 84d. It is preferable to use a so-called sheathed heater. The reducing agent distribution pipe 84b is made of a metal having a relatively high thermal conductivity of 15 to 17 W / (m · K) such as SUS316, SUS304, Inconel (registered trademark manufactured by Huntington Alloys Canada Limited). Thereby, the heat of the heater 84a is efficiently transmitted to the inner surface of the reducing agent circulation pipe 84b.

一方、吸着剤層84cは、多孔質のゼオライトやモレキュラーシーブ(ユニオン・カーバイト社の開発した合成ゼオライトの商品名)等を用いて、厚さ0.01〜0.1mmに形成されることが好ましい(図10)。また吸着剤層84cは、還元剤流通管84bに伝わったヒータ84aの熱を還元剤流通管84bの内方に伝達する熱媒体としての機能と、尿素水を染み込むように吸着する吸着剤としての機能とを有する。なお、吸着剤層84cには、チタニアやジルコニア等の触媒を担持することができる。吸着剤層84cに触媒を担持することにより、尿素水の加水分解を促進できる。また尿素水改質器84は断熱材84eが充填された断熱ケース84fにより覆われる(図7及び図8)。これによりヒータ84aの発生した熱の放散を抑制できる。   On the other hand, the adsorbent layer 84c may be formed to a thickness of 0.01 to 0.1 mm by using porous zeolite, molecular sieve (trade name of synthetic zeolite developed by Union Carbide), or the like. Preferred (FIG. 10). The adsorbent layer 84c functions as a heat medium that transfers the heat of the heater 84a transmitted to the reducing agent circulation pipe 84b to the inside of the reducing agent circulation pipe 84b, and as an adsorbent that adsorbs so as to soak urea water. With functions. The adsorbent layer 84c can carry a catalyst such as titania or zirconia. By supporting the catalyst on the adsorbent layer 84c, hydrolysis of urea water can be promoted. The urea water reformer 84 is covered with a heat insulating case 84f filled with a heat insulating material 84e (FIGS. 7 and 8). Thereby, dissipation of the heat which heater 84a generated can be controlled.

一方、尿素水改質器84の入口圧力を検出する圧力センサ86は、ヒータ84aに巻回される直前の還元剤流通管84bに設けられ、この還元剤流通管84b内の尿素水の圧力を検出する(図7及び図9)。またヒータ84aへの還元剤流通管84bの巻き始め部近傍のヒータ84a表面温度が第1温度センサ91により検出され、ヒータ84aへの還元剤流通管84bの巻き終わり部近傍のヒータ84a表面温度が第2温度センサ92により検出される。即ち、ヒータ84aをオンした状態で、第1温度センサ91によりヒータ84aで加熱され始めた還元剤流通管84b内の尿素水の温度が間接的に検出され、第2温度センサ92によりヒータ84aで加熱され終わった還元剤流通管84b内のアンモニア水の温度が間接的に検出される。更に還元剤流通管84bの一端(尿素水改質器84への尿素水の供給側端部)は第1供給管16bに接続され、還元剤流通管84bの他端(尿素水改質器84からのアンモニア水又は尿素水の排出側端部)は第2供給管32に接続される。上記以外は第1の実施の形態と同一に構成される。   On the other hand, the pressure sensor 86 for detecting the inlet pressure of the urea water reformer 84 is provided in the reducing agent circulation pipe 84b just before being wound around the heater 84a, and the pressure of the urea water in the reducing agent circulation pipe 84b is set. It detects (FIGS. 7 and 9). Further, the surface temperature of the heater 84a in the vicinity of the winding start portion of the reducing agent circulation pipe 84b to the heater 84a is detected by the first temperature sensor 91, and the surface temperature of the heater 84a in the vicinity of the winding end portion of the reducing agent circulation pipe 84b to the heater 84a is detected. It is detected by the second temperature sensor 92. That is, with the heater 84a turned on, the temperature of the urea water in the reducing agent circulation pipe 84b that has started to be heated by the heater 84a is indirectly detected by the first temperature sensor 91, and the temperature of the urea water is detected by the second temperature sensor 92 by the heater 84a. The temperature of the ammonia water in the reducing agent circulation pipe 84b that has been heated is indirectly detected. Further, one end of the reducing agent circulation pipe 84b (the end on the supply side of urea water to the urea water reformer 84) is connected to the first supply pipe 16b, and the other end of the reducing agent circulation pipe 84b (the urea water reformer 84). A discharge side end portion of ammonia water or urea water) is connected to the second supply pipe 32. The configuration other than the above is the same as that of the first embodiment.

このように構成された排ガス浄化装置では、尿素水がヒータ84aに螺旋状に巻回された還元剤流通管84b内を流通しているときに、還元剤流通管84bがヒータ84aの熱を還元剤流通管84bの内面に伝達し、吸着剤層84cが尿素水を染み込むように吸着するので、尿素水を螺旋状の還元剤流通管84b内で効率良くアンモニア水に改質できる。また棒状のヒータ84aの外周面に還元剤流通管84bを螺旋状に巻回するだけで済むので、還元剤流通管84bを比較的低い精度で加工工数を増大せずに比較的容易に作製できる。上記以外の動作は第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。   In the exhaust gas purification apparatus configured as described above, when the urea water is circulating in the reducing agent circulation pipe 84b spirally wound around the heater 84a, the reducing agent circulation pipe 84b reduces the heat of the heater 84a. Since it is transmitted to the inner surface of the agent flow pipe 84b and adsorbed so that the adsorbent layer 84c soaks in the urea water, the urea water can be efficiently reformed into the ammonia water in the spiral reducing agent flow pipe 84b. Further, since the reducing agent circulation pipe 84b only needs to be spirally wound around the outer peripheral surface of the rod-shaped heater 84a, the reducing agent circulation pipe 84b can be produced relatively easily with relatively low accuracy and without increasing the number of processing steps. . Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

なお、上記第1〜第3の実施の形態では、本発明の排ガス浄化装置をディーゼルエンジンに適用したが、本発明の排ガス浄化装置をガソリンエンジンに適用してもよい。また、上記第1〜第3の実施の形態では、本発明の排ガス浄化装置をターボ過給機付ディーゼルエンジンに適用したが、本発明の排ガス浄化装置を自然吸気型ディーゼルエンジン又は自然吸気型ガソリンエンジンに適用してもよい。更に、上記第1〜第3の実施の形態では、触媒温度センサを触媒ケースのうち選択還元型触媒より排ガス入口側に設けたが、選択還元型触媒に関係する温度を検出できれば、触媒温度センサを触媒ケースのうち選択還元型触媒より排ガス出口側に設けたり、或いは触媒温度センサを触媒ケースのうち選択還元型触媒より排ガス入口側及び排ガス出口側の双方に設けてもよい。   In the first to third embodiments, the exhaust gas purifying apparatus of the present invention is applied to a diesel engine. However, the exhaust gas purifying apparatus of the present invention may be applied to a gasoline engine. In the first to third embodiments, the exhaust gas purifying apparatus of the present invention is applied to a turbocharged diesel engine. However, the exhaust gas purifying apparatus of the present invention is a naturally aspirated diesel engine or a naturally aspirated gasoline. It may be applied to the engine. In the first to third embodiments, the catalyst temperature sensor is provided on the exhaust gas inlet side of the selective reduction catalyst in the catalyst case. However, if the temperature related to the selective reduction catalyst can be detected, the catalyst temperature sensor May be provided on the exhaust gas outlet side of the selective reduction catalyst in the catalyst case, or a catalyst temperature sensor may be provided on both the exhaust gas inlet side and the exhaust gas outlet side of the selective reduction catalyst in the catalyst case.

11 ディーゼルエンジン(エンジン)
12 選択還元型触媒
13 尿素水
14,64,84 尿素水改質器
14a,64a 改質ケース
14b,64b,84a ヒータ
14c,64c 無機質多孔質体
16 尿素水供給手段
17 噴射ノズル
15 排気管
33 触媒温度センサ
34,86 圧力センサ
38 コントローラ
64f 仕切板
84b 還元剤流通管
84c 吸着剤層
11 Diesel engine (engine)
DESCRIPTION OF SYMBOLS 12 Selective reduction type | mold catalyst 13 Urea water 14, 64, 84 Urea water reformer 14a, 64a Reforming case 14b, 64b, 84a Heater 14c, 64c Inorganic porous body 16 Urea water supply means 17 Injection nozzle 15 Exhaust pipe 33 Catalyst Temperature sensor 34, 86 Pressure sensor 38 Controller 64f Partition plate 84b Reducing agent flow pipe 84c Adsorbent layer

Claims (6)

エンジン(11)の排ガスを浄化する排ガス浄化装置において、
前記エンジン(11)の排気管(15)に設けられ排ガス中のNOxをN2に還元可能な選択還元型触媒(12)と、
尿素水(13)をヒータ(14b,64b,84a)により加熱してアンモニア水に改質する尿素水改質器(14,64,84)と、
前記尿素水改質器(14,64,84)に前記尿素水(13)を供給する尿素水供給手段(16)と、
前記選択還元型触媒(12)より排ガス上流側の排気管(15)に臨み前記尿素水改質器(14,64,84)で改質されたアンモニア水又は前記尿素水改質器(14,64,84)で改質されずにそのまま通過した尿素水のいずれか一方又は双方を噴射可能な噴射ノズル(17)と、
前記選択還元型触媒(12)に関係する前記排ガス温度を検出する触媒温度センサ(33)と、
前記尿素水改質器(14)の入口圧力を検出する圧力センサ(34)と、
前記触媒温度センサ(33)及び前記圧力センサ(34)の各検出出力に基づいて前記ヒータ(14b,64b,84a)及び前記尿素水供給手段(16)を制御するコントローラ(38)と
を備えたことを特徴とする排ガス浄化装置。
In the exhaust gas purification device that purifies the exhaust gas of the engine (11),
A selective reduction catalyst (12) provided in the exhaust pipe (15) of the engine (11) and capable of reducing NOx in the exhaust gas to N 2 ;
A urea water reformer (14, 64, 84) for heating the urea water (13) with a heater (14b, 64b, 84a) to reform it into ammonia water;
Urea water supply means (16) for supplying the urea water (13) to the urea water reformer (14, 64, 84);
Ammonia water reformed by the urea water reformer (14, 64, 84) facing the exhaust pipe (15) upstream of the exhaust gas from the selective reduction catalyst (12) or the urea water reformer (14, 64, 84) and an injection nozzle (17) capable of injecting one or both of the urea water that has passed through without being reformed,
A catalyst temperature sensor (33) for detecting the exhaust gas temperature related to the selective catalytic reduction catalyst (12);
A pressure sensor (34) for detecting the inlet pressure of the urea water reformer (14);
A controller (38) for controlling the heater (14b, 64b, 84a) and the urea water supply means (16) based on the detection outputs of the catalyst temperature sensor (33) and the pressure sensor (34). An exhaust gas purification apparatus characterized by that.
前記尿素水改質器(14,64)が、筒状の改質ケース(14a,64a)と、この改質ケース(14a,64a)の外周面に螺旋状に巻回されたヒータ(14b,64b)と、この改質ケース(14a,64a)に充填され前記ヒータ(14b,64b)の熱を前記改質ケース(14a,64a)の内部に伝達する複数の無機質多孔質体(14c,64c)とを有する請求項1記載の排ガス浄化装置。   The urea water reformer (14, 64) includes a cylindrical reforming case (14a, 64a) and a heater (14b, 64a) wound spirally around the outer peripheral surface of the reforming case (14a, 64a). 64b) and a plurality of inorganic porous bodies (14c, 64c) filled in the reforming case (14a, 64a) and transferring heat of the heater (14b, 64b) to the inside of the reforming case (14a, 64a). The exhaust gas purification apparatus according to claim 1, further comprising: 前記改質ケース(64a)内にこのケースの長手方向に所定の間隔をあけて仕切板(64f)が設けられ、前記仕切板(64f)により前記改質ケース(64a)内が互いに連通する複数の空間に区画され、前記複数の空間に前記複数の無機質多孔質体(64c)が充填され、更に前記改質ケース(64a)に流入した尿素水が前記複数の空間を蛇行しながら通過して前記アンモニア水に改質されるように構成された請求項2記載の排ガス浄化装置。   A partition plate (64f) is provided in the reforming case (64a) at a predetermined interval in the longitudinal direction of the case, and the reforming case (64a) communicates with each other by the partition plate (64f). The plurality of spaces are filled with the plurality of inorganic porous bodies (64c), and the urea water flowing into the reforming case (64a) passes through the plurality of spaces while meandering. The exhaust gas purification device according to claim 2, wherein the exhaust gas purification device is configured to be reformed into the ammonia water. 前記無機質多孔質体(14c,64c)に前記尿素水(13)の加水分解を促進する触媒が担持された請求項2又は3記載の排ガス浄化装置。   The exhaust gas purifying apparatus according to claim 2 or 3, wherein a catalyst for promoting hydrolysis of the urea water (13) is supported on the inorganic porous body (14c, 64c). 前記尿素水改質器(84)が、棒状のヒータ(84a)と、前記ヒータ(84a)の外周面に螺旋状に巻回され前記尿素水が流通しかつ前記ヒータ(84a)の熱を内面に伝達する還元剤流通管(84b)と、前記還元剤流通管(84b)の内周面にコーティングされ前記尿素水を吸着する吸着剤層(84c)とを有する請求項1記載の排ガス浄化装置。   The urea water reformer (84) is a rod-shaped heater (84a) and is wound spirally around the outer peripheral surface of the heater (84a) so that the urea water flows and the heat of the heater (84a) is transferred to the inner surface. The exhaust gas purifying apparatus according to claim 1, further comprising: a reducing agent circulation pipe (84b) that transmits to the gas, and an adsorbent layer (84c) that is coated on an inner peripheral surface of the reducing agent circulation pipe (84b) and adsorbs the urea water. . 前記吸着剤層(84c)に前記尿素水の加水分解を促進する触媒が担持された請求項5記載の排ガス浄化装置。   The exhaust gas purifying apparatus according to claim 5, wherein a catalyst for promoting hydrolysis of the urea water is supported on the adsorbent layer (84c).
JP2011287957A 2011-03-18 2011-12-28 Exhaust gas purification device Active JP5865074B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011287957A JP5865074B2 (en) 2011-12-28 2011-12-28 Exhaust gas purification device
PCT/JP2012/056543 WO2012128145A1 (en) 2011-03-18 2012-03-14 Urea solution reformer and exhaust gas purifier using same
CN201280005447.7A CN103348104B (en) 2011-03-18 2012-03-14 Urea water reformer and employ the waste gas cleaning plant of urea water reformer
EP12760036.9A EP2687695B1 (en) 2011-03-18 2012-03-14 Urea solution reformer and exhaust gas purifier
US14/005,096 US8875499B2 (en) 2011-03-18 2012-03-14 Urea solution reformer and exhaust gas purifier using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287957A JP5865074B2 (en) 2011-12-28 2011-12-28 Exhaust gas purification device

Publications (3)

Publication Number Publication Date
JP2013136968A true JP2013136968A (en) 2013-07-11
JP2013136968A5 JP2013136968A5 (en) 2015-02-05
JP5865074B2 JP5865074B2 (en) 2016-02-17

Family

ID=48912881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287957A Active JP5865074B2 (en) 2011-03-18 2011-12-28 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP5865074B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202074A1 (en) 2015-02-13 2016-08-18 Honda Motor Co., Ltd. Control system for internal combustion engine
WO2019194169A1 (en) * 2018-04-03 2019-10-10 いすゞ自動車株式会社 Exhaust pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180826A (en) * 1990-11-13 1992-06-29 Noritake Co Ltd Static mixer built-in reaction pipe
JPH0857258A (en) * 1994-08-24 1996-03-05 Babcock Hitachi Kk Denitrification apparatus using solid reducing agent
JP2004353523A (en) * 2003-05-28 2004-12-16 Hitachi Ltd Engine exhaust gas treatment system and exhaust gas treatment process
JP2009537723A (en) * 2006-05-16 2009-10-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for supplying air-fuel mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180826A (en) * 1990-11-13 1992-06-29 Noritake Co Ltd Static mixer built-in reaction pipe
JPH0857258A (en) * 1994-08-24 1996-03-05 Babcock Hitachi Kk Denitrification apparatus using solid reducing agent
JP2004353523A (en) * 2003-05-28 2004-12-16 Hitachi Ltd Engine exhaust gas treatment system and exhaust gas treatment process
JP2009537723A (en) * 2006-05-16 2009-10-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for supplying air-fuel mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202074A1 (en) 2015-02-13 2016-08-18 Honda Motor Co., Ltd. Control system for internal combustion engine
WO2019194169A1 (en) * 2018-04-03 2019-10-10 いすゞ自動車株式会社 Exhaust pipe
JP2019183667A (en) * 2018-04-03 2019-10-24 いすゞ自動車株式会社 Exhaust pipe

Also Published As

Publication number Publication date
JP5865074B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
US8875499B2 (en) Urea solution reformer and exhaust gas purifier using same
JP4519173B2 (en) Device for supplying a liquid medium in an exhaust gas conduit of an internal combustion engine
US9623376B2 (en) Fuel reformer and exhaust gas purifier using the same
JP5016026B2 (en) Method and apparatus for treating exhaust gas of internal combustion engine
CN101443096B (en) Method and device for providing a gaseous mixture
US20100199643A1 (en) Exhaust gas purification system
US9156000B2 (en) Exhaust gas purifier
EP2942503B1 (en) Exhaust gas purification system and ozone generator
US9512760B2 (en) Aftertreatment system implementing low-temperature SCR
CN104847459A (en) Internal combustion engine
JP5711578B2 (en) Urea water reformer and exhaust gas purification apparatus using the same
JP2004239109A (en) Exhaust gas emission control device for engine
CN107227998A (en) Exhaust gas post-treatment device for explosive motor
US9644515B2 (en) Gaseous ammonia injection system
JP5865074B2 (en) Exhaust gas purification device
JP6050942B2 (en) Exhaust gas purification device
WO2014203754A1 (en) Chemical heat storage device
JP2011025166A (en) Oxidation catalyst and device which treats exhaust gas from engine by using the same
DK201970656A1 (en) Injector for injecting a gaseous reducing agent into the exhaust gas stream of an internal combustion engine
JP5964595B2 (en) Exhaust gas purification device
WO2005033479A1 (en) Exhaust gas purification device of engine
CN106164431B (en) Heating system for exhaust gas treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5865074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250