JP2009127473A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009127473A
JP2009127473A JP2007301761A JP2007301761A JP2009127473A JP 2009127473 A JP2009127473 A JP 2009127473A JP 2007301761 A JP2007301761 A JP 2007301761A JP 2007301761 A JP2007301761 A JP 2007301761A JP 2009127473 A JP2009127473 A JP 2009127473A
Authority
JP
Japan
Prior art keywords
additive
temperature
exhaust
heater
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007301761A
Other languages
Japanese (ja)
Other versions
JP4445001B2 (en
Inventor
Osamu Shimomura
修 下村
Ataru Ichikawa
中 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2007301761A priority Critical patent/JP4445001B2/en
Priority to DE102008043897A priority patent/DE102008043897A1/en
Priority to US12/274,670 priority patent/US20090126349A1/en
Publication of JP2009127473A publication Critical patent/JP2009127473A/en
Application granted granted Critical
Publication of JP4445001B2 publication Critical patent/JP4445001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently operate an exhaust emission control device by adjusting the temperature of a supplied additive agent into a predetermined temperature range. <P>SOLUTION: This exhaust emission control device sets the temperature of the additive agent supplied to a supply valve 5 into the predetermined temperature range by controlling a current-carrying quantity to a first heater 9 and a water communication quantity to a second heater 10. Thus, since a temperature change in the additive agent can be reduced, a difference between a supply quantity of the additive agent set as a control target value and an actually-supplied supply quantity can be reduced, and the exhaust emission control device can be efficiently operated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼルエンジン等の内燃機関の排気中に含まれる窒素酸化物を還元するための排気浄化装置に関するものであり、車両に適用して有効である。   The present invention relates to an exhaust emission control device for reducing nitrogen oxides contained in exhaust gas from an internal combustion engine such as a diesel engine, and is effective when applied to a vehicle.

ディーゼルエンジン等の内燃機関の排気中に含まれる窒素酸化物(NOx)を還元するための排気浄化装置として、例えば特許文献1に記載の発明では、排気管に還元反応を促進する触媒を設けるとともに、触媒に流れ込む排気中に尿素水溶液等の添加剤を噴射することにより、窒素酸化物を浄化(還元)している。   As an exhaust purification device for reducing nitrogen oxide (NOx) contained in exhaust gas from an internal combustion engine such as a diesel engine, for example, in the invention described in Patent Document 1, a catalyst for promoting a reduction reaction is provided in an exhaust pipe. The nitrogen oxide is purified (reduced) by injecting an additive such as an aqueous urea solution into the exhaust gas flowing into the catalyst.

すなわち、排気中に噴射された尿素(CO(NH2)2)を排気熱にて加水分解して(CO(NH2)2+H2O)→2NH3+CO2)、還元剤であるアンモニア(NH3)を生成し、触媒を介して窒素酸化物とアンモニアとを反応させて窒素酸化物を還元している。
特開2003−293739号公報
That is, urea (CO (NH 2 ) 2 ) injected into the exhaust is hydrolyzed with exhaust heat (CO (NH 2 ) 2 + H 2 O) → 2NH 3 + CO 2 ), and ammonia (reducing agent) ( NH 3 ) is generated, and nitrogen oxides and ammonia are reacted via a catalyst to reduce the nitrogen oxides.
JP 2003-293739 A

ところで、特許文献1に記載の発明では、供給する添加剤の量を流量制御弁で調節しているが、尿素水溶液等の流体状の添加剤では、温度が変化すると、これに応じて添加剤の粘度や密度が変化するので、流量制御弁の開度及び開時間等が一定であっても、実際に供給される添加剤の量(物質量)が温度によって変化してしまう。   By the way, in the invention described in Patent Document 1, the amount of the additive to be supplied is adjusted by the flow control valve. However, in the case of a fluid additive such as an aqueous urea solution, Thus, even if the opening degree and opening time of the flow control valve are constant, the amount of additive (substance amount) actually supplied varies depending on the temperature.

そして、供給する添加剤の量が必要とする添加剤の量に比べて少ないと、窒素酸化物を十分に還元することができず、排気の浄化率が低減してしまう。一方、供給する添加剤の量が必要とする添加剤の量に比べて多いと、添加剤が必要以上に消費されてしまうので、排気浄化装置の運転コストが上昇してしまう。   If the amount of additive to be supplied is less than the amount of additive required, nitrogen oxides cannot be sufficiently reduced, and the exhaust gas purification rate is reduced. On the other hand, if the amount of additive to be supplied is larger than the amount of additive required, the additive is consumed more than necessary, so that the operating cost of the exhaust purification device increases.

つまり、添加剤の温度が変化すると、制御目標値として設定された添加剤の供給量と、実際に供給された供給量との差が大きくなり、排気浄化装置を効率的に作動させることができなくなるおそれが高い。   That is, when the temperature of the additive changes, the difference between the supply amount of the additive set as the control target value and the supply amount actually supplied increases, and the exhaust purification device can be operated efficiently. There is a high risk of disappearing.

本発明は、上記点に鑑み、排気浄化装置を効率的に作動させることを目的とする。   An object of this invention is to operate | move an exhaust-gas purification apparatus efficiently in view of the said point.

本発明は、上記目的を達成するために、請求項1に記載の発明では、内燃機関(1)の排気中に含まれる窒素酸化物を還元する排気浄化装置であって、内燃機関から排出される排気の通路を構成する排気管(2)と、排気管(2)に設けられ、排気中の窒素酸化物の還元反応を促進する触媒(3)と、還元反応に用いる流体状の添加剤を触媒(3)より排気流れ上流側に供給する供給手段(5)と、添加剤が蓄えられたタンク(6)と、供給手段(5)に供給される添加剤の温度が所定の温度範囲となるように調節する温度調節手段(9、10、11、13)とを備えることを特徴とする。   In order to achieve the above object, according to the present invention, there is provided an exhaust purification device for reducing nitrogen oxides contained in exhaust gas of an internal combustion engine (1), wherein the exhaust gas is exhausted from the internal combustion engine. An exhaust pipe (2) that constitutes an exhaust passage, a catalyst (3) that is provided in the exhaust pipe (2) and promotes a reduction reaction of nitrogen oxides in the exhaust, and a fluid additive used for the reduction reaction Is supplied to the upstream side of the exhaust flow from the catalyst (3), the tank (6) in which the additive is stored, and the temperature of the additive supplied to the supply means (5) is within a predetermined temperature range. And a temperature adjusting means (9, 10, 11, 13) for adjusting so that

これにより、請求項1に記載の発明では、供給手段(5)に供給される添加剤の温度が所定の温度範囲となるように調節されるので、添加剤の温度変化を小さくすることができる。   Thereby, in the invention described in claim 1, since the temperature of the additive supplied to the supply means (5) is adjusted to be within a predetermined temperature range, the temperature change of the additive can be reduced. .

したがって、制御目標値として設定された添加剤の供給量と、実際に供給された供給量との差を小さくすることが可能となるので、排気浄化装置を効率的に作動させることができ得る。   Therefore, the difference between the supply amount of the additive set as the control target value and the supply amount actually supplied can be reduced, so that the exhaust purification device can be operated efficiently.

また、請求項2に記載の発明では、添加剤は尿素であり、さらに、温度調節手段(9、10、11、13)は、添加剤の温度を、60℃以上、尿素の沸点以下の温度となるように調節することを特徴とする。   In the invention according to claim 2, the additive is urea, and the temperature adjusting means (9, 10, 11, 13) is configured so that the temperature of the additive is a temperature not lower than 60 ° C. and not higher than the boiling point of urea. It is characterized by adjusting to become.

尿素を添加剤として用いた場合には、前述したように、排気熱を利用して尿素を加水分解して還元剤であるアンモニアを生成するので、添加剤(尿素)の温度が低いと、排気の温度が低下し、添加剤の加水分解反応が停滞してしまうおそれがある。   When urea is used as an additive, as described above, urea is hydrolyzed using exhaust heat to produce ammonia as a reducing agent. Therefore, if the temperature of the additive (urea) is low, the exhaust There is a risk that the temperature of the additive will decrease and the hydrolysis reaction of the additive will stagnate.

これに対して、請求項2に記載の発明では、添加剤の温度を、60℃以上、尿素の沸点以下の温度となるように調節しているので、排気温度が低下してしまうことを抑制でき、添加剤の加水分解反応が停滞してしまうことを防止でき得る。   On the other hand, in the invention according to claim 2, since the temperature of the additive is adjusted to be a temperature not lower than 60 ° C. and not higher than the boiling point of urea, it is possible to suppress the exhaust temperature from being lowered. It can prevent that the hydrolysis reaction of an additive stagnates.

ところで、寒冷地では、夜間等の外気温度が大きく低下し、タンク(6)に蓄えられた添加剤が凍結又はシャーベット状となるので、特に、冷間始動時においては、添加剤を排気管(2)に供給することができなくなるおそれが高い。   By the way, in cold districts, the outside air temperature at night and the like is greatly reduced, and the additive stored in the tank (6) becomes frozen or sherbet-like. There is a high possibility that it cannot be supplied to 2).

この問題に対しては、タンク(6)に蓄えられた添加剤を加熱する加熱手段を設ければ解決することができるものの、温度調節手段に加えて更に加熱手段を新たに設けると、排気浄化装置の製造原価上昇を招いてしまう。   This problem can be solved by providing a heating means for heating the additive stored in the tank (6). However, if a further heating means is provided in addition to the temperature control means, the exhaust gas purification is performed. The manufacturing cost of the equipment will be increased.

しかし、請求項3に記載の発明では、温度調節手段(10、11、13)は、タンク(6)に蓄えられた添加剤を加熱することにより、添加剤の温度が所定の温度範囲となるように調節することを特徴としているので、温度調節手段(10、11、13)にて加熱手段を兼用することができる。   However, in the invention described in claim 3, the temperature adjusting means (10, 11, 13) heats the additive stored in the tank (6), so that the temperature of the additive falls within a predetermined temperature range. Thus, the temperature adjusting means (10, 11, 13) can also be used as a heating means.

したがって、請求項3に記載の発明では、排気浄化装置の製造原価上昇を抑制しつつ、排気浄化装置を効率的に作動させることができ得る。
請求項4に記載の発明では、温度調節手段(10、11、13)は、内燃機関(1)から回収した廃熱を熱源として添加剤を加熱することにより、添加剤の温度が所定の温度範囲となるように調節することを特徴とする。
Therefore, according to the third aspect of the present invention, the exhaust purification device can be operated efficiently while suppressing an increase in the manufacturing cost of the exhaust purification device.
In the invention according to claim 4, the temperature adjusting means (10, 11, 13) heats the additive using the waste heat recovered from the internal combustion engine (1) as a heat source, so that the temperature of the additive is a predetermined temperature. It adjusts so that it may become a range, It is characterized by the above-mentioned.

これにより、請求項4に記載の発明では、加熱用の熱源を新たに設ける必要がないので、排気浄化装置の製造原価上昇を抑制しつつ、排気浄化装置を効率的に作動させることができ得る。   Thus, in the invention according to claim 4, since it is not necessary to newly provide a heat source for heating, the exhaust purification device can be operated efficiently while suppressing an increase in the manufacturing cost of the exhaust purification device. .

因みに、上記各手段等の括弧内の符号は、後述する実施形態に記載の具体的手段等との対応関係を示す一例であり、本発明は上記各手段等の括弧内の符号に示された具体的手段に限定されるものではない。   Incidentally, the reference numerals in parentheses for each of the above means are examples showing the correspondence with the specific means described in the embodiments described later, and the present invention is indicated by the reference numerals in the parentheses of the above respective means. It is not limited to specific means.

本実施形態は、本発明に係る排気浄化装置を車両用ディーゼルエンジンの尿素SCR(選択還元:Selective catalytic reduction)システムに適用したものであり、以下に本発明の実施形態を図面と共に説明する。   In the present embodiment, the exhaust gas purification apparatus according to the present invention is applied to a urea SCR (Selective Catalytic Reduction) system of a vehicle diesel engine, and the embodiment of the present invention will be described below with reference to the drawings.

1.図面の説明
図1は本実施形態に係る排気浄化装置の模式図であり、図2は本実施形態に係る排気浄化装置の特徴的作動を示すフローチャートである。
1. DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an exhaust purification apparatus according to the present embodiment, and FIG. 2 is a flowchart showing a characteristic operation of the exhaust purification apparatus according to the present embodiment.

2.排気浄化装置の構成(図1参照)
排気管2は、ディーゼル式の内燃機関1から排出される排気の通路を構成するものであり、この排気管2には、排気中の窒素酸化物の還元反応を促進するSCR触媒3(以下、触媒3と略す。)、及び排気に含まれるすす等の粒子状物質を捕捉するDPF(ディーゼル微粒子除去装置:Diesel Particulate Filter)4等が設けられている。なお、DPF4は、触媒3より排気流れ上流側(内燃機関側)に設けられている。
2. Configuration of exhaust purification system (see Fig. 1)
The exhaust pipe 2 constitutes a passage of exhaust discharged from the diesel internal combustion engine 1, and the exhaust pipe 2 includes an SCR catalyst 3 (hereinafter referred to as “reduced nitrogen oxide”) that promotes a reduction reaction of nitrogen oxides in the exhaust. And a DPF (diesel particulate filter: Diesel Particulate Filter) 4 that captures particulate matter such as soot contained in the exhaust. The DPF 4 is provided on the upstream side (internal combustion engine side) of the exhaust gas flow from the catalyst 3.

また、供給弁5は、還元反応に用いる流体状の添加剤(本実施形態では、尿素水溶液)を触媒3より排気流れ上流側の排気管2に供給する供給手段であり、添加剤タンク6は排気管2に供給される添加剤を蓄えるタンク手段である。   The supply valve 5 is supply means for supplying a fluid additive used in the reduction reaction (in this embodiment, an aqueous urea solution) to the exhaust pipe 2 on the upstream side of the exhaust flow from the catalyst 3. It is a tank means for storing the additive supplied to the exhaust pipe 2.

添加剤ポンプ7は、添加剤タンク6に蓄えられている添加剤を供給弁5に送るポンプ手段であり、レギュレータ7Aは、添加剤ポンプ7から吐出された添加剤の圧力が所定圧力を超えたときに、添加剤を添加剤タンク6に戻す圧力調整手段である。   The additive pump 7 is a pump means for sending the additive stored in the additive tank 6 to the supply valve 5, and the regulator 7A is such that the pressure of the additive discharged from the additive pump 7 exceeds a predetermined pressure. Sometimes the pressure adjusting means returns the additive to the additive tank 6.

フィルタ8は、添加剤中に混入した異物を捕捉・除去する除去手段であり、このフィルタ8は、添加剤ポンプ7から吐出された添加剤を供給弁5に導く配管8Aに設けられている。そして、フィルタ8より上流側には、車載バッテリ(図示せず。)から電力の供給を受けて配管8A内の添加剤を加熱する第1ヒータ9が設けられている。   The filter 8 is a removing unit that captures and removes foreign matters mixed in the additive. The filter 8 is provided in a pipe 8 </ b> A that guides the additive discharged from the additive pump 7 to the supply valve 5. A first heater 9 is provided on the upstream side of the filter 8 to receive power from an in-vehicle battery (not shown) and heat the additive in the pipe 8A.

また、添加剤タンク6内には、内燃機関1から回収した廃熱、つまり内燃機関1の冷却水を熱源として添加剤タンク6内の添加剤を加熱する第2ヒータ10が設けられており、この第2ヒータ10に冷却水を供給する配管10Aには、第2ヒータ10に供給する冷却水量を調節する流量制御弁11が設けられている。   The additive tank 6 is provided with a second heater 10 that heats the waste heat recovered from the internal combustion engine 1, that is, the additive tank 6 using the cooling water of the internal combustion engine 1 as a heat source, A pipe 10 </ b> A that supplies cooling water to the second heater 10 is provided with a flow rate control valve 11 that adjusts the amount of cooling water supplied to the second heater 10.

第1温度センサ12Aは添加剤タンク6内の添加剤の温度を検出する温度検出手段であり、第2温度センサ12Bは配管8A内の添加剤の温度を検出する温度検出手段であり、第3温度センサ12Cは、供給弁5内の添加剤の温度を検出する温度検出手段であり、第4温度センサ12Dは、冷却水の温度を検出する温度検出手段である。   The first temperature sensor 12A is temperature detecting means for detecting the temperature of the additive in the additive tank 6, and the second temperature sensor 12B is temperature detecting means for detecting the temperature of the additive in the pipe 8A. The temperature sensor 12C is a temperature detection unit that detects the temperature of the additive in the supply valve 5, and the fourth temperature sensor 12D is a temperature detection unit that detects the temperature of the cooling water.

なお、第2温度センサ12Bは配管8Aのうち第1ヒータ9より上流側で添加剤の温度を検出し、第3温度センサ12Cは供給弁5の噴射口(図示せず)近傍の先端部で添加剤の温度を検出し、第4温度センサ12Dは流量制御弁11より上流側で冷却水の温度を検出する。   The second temperature sensor 12B detects the temperature of the additive on the upstream side of the first heater 9 in the pipe 8A, and the third temperature sensor 12C is at the tip of the supply valve 5 near the injection port (not shown). The temperature of the additive is detected, and the fourth temperature sensor 12D detects the temperature of the cooling water upstream from the flow control valve 11.

また、電子制御装置(以下、ECUと記す。)13は、供給弁5の開度、第1ヒータ9への通電量及び流量制御弁11の開度等を制御する制御手段であり、このECU13は、CPU13A、RAM13B及びROM13C等からなる周知のマイクロコンピュータにて構成されている。なお、供給弁5等を制御するためのプログラムは、EUC13のROM13Cに記憶されている。   An electronic control unit (hereinafter referred to as ECU) 13 is a control means for controlling the opening degree of the supply valve 5, the energization amount to the first heater 9, the opening degree of the flow control valve 11, and the like. Is constituted by a known microcomputer including a CPU 13A, a RAM 13B, a ROM 13C, and the like. A program for controlling the supply valve 5 and the like is stored in the ROM 13C of the EUC 13.

そして、第1〜4温度センサ12A〜12Dの検出温度はECU13に入力されており、ECU13は、これらの検出温度に基づいて、供給弁5に供給される添加剤の温度が所定の温度範囲(本実施形態では、60℃以上、尿素の沸点(103℃)以下の所定温度)となるように、第1ヒータ9への通電量及び流量制御弁11の開度を制御する。   The detected temperatures of the first to fourth temperature sensors 12A to 12D are input to the ECU 13, and the ECU 13 determines the temperature of the additive supplied to the supply valve 5 based on these detected temperatures within a predetermined temperature range ( In the present embodiment, the energization amount to the first heater 9 and the opening degree of the flow control valve 11 are controlled so as to be 60 ° C. or higher and a predetermined temperature of urea boiling point (103 ° C.) or lower.

また、排気温度センサ14は、内燃機関1から排出される排気の温度を検出する温度検出手段であり、NOxセンサ15は触媒3を通過した排気中に含まれる窒素酸化物を検出するNOx検出手段である。   The exhaust temperature sensor 14 is a temperature detection means for detecting the temperature of the exhaust gas discharged from the internal combustion engine 1, and the NOx sensor 15 is a NOx detection means for detecting nitrogen oxides contained in the exhaust gas that has passed through the catalyst 3. It is.

3.排気浄化装置の基本的作動
排気浄化装置は、排気中に噴射された添加剤である尿素(CO(NH2)2)を排気熱にて加水分解(CO(NH2)2+H2O)→2NH3+CO2)して、還元剤であるアンモニア(NH3)を生成し、触媒3を介して窒素酸化物とアンモニアとを反応させて窒素酸化物を浄化(還元)する。
3. Basic operation of exhaust gas purification device The exhaust gas purification device hydrolyzes urea (CO (NH 2 ) 2 ), which is an additive injected into exhaust gas, with exhaust heat (CO (NH 2 ) 2 + H 2 O) → 2NH 3 + CO 2 ) to produce ammonia (NH 3 ) as a reducing agent, and the nitrogen oxide and ammonia are reacted through the catalyst 3 to purify (reduce) the nitrogen oxide.

このとき、尿素を加水分解するには、排気の温度を175℃以上とすることが望ましく、排気の温度を175℃以上とすると、窒素酸化物を効率よく浄化(還元)することができる。   At this time, in order to hydrolyze urea, it is desirable to set the temperature of the exhaust to 175 ° C. or higher. When the temperature of the exhaust is set to 175 ° C. or higher, nitrogen oxides can be efficiently purified (reduced).

4.排気浄化装置の特徴的作動(図2参照)
排気浄化装置(供給弁5及び添加剤ポンプ7)は、内燃機関1の始動と同時に開始され、供給される添加剤の量は、通常、内燃機関1から排出される排気の温度及び排気中に含まれる窒素酸化物の量等に基づいて制御(以下、この制御を、通常制御という。)される。
4). Characteristic operation of exhaust purification system (see Fig. 2)
The exhaust purification device (the supply valve 5 and the additive pump 7) is started simultaneously with the start of the internal combustion engine 1, and the amount of the additive to be supplied is usually the temperature of the exhaust discharged from the internal combustion engine 1 and the exhaust gas. Control is performed based on the amount of nitrogen oxide contained (hereinafter, this control is referred to as normal control).

そして、図2に示す制御(以下、この制御を添加剤温度制御という。)は、通常制御と同時に開始されて通常制御と独立して作動するものであり、その概要は、前述したように、供給弁5に供給される添加剤の温度が所定の温度範囲なるように、第1ヒータ9への通電量及び流量制御弁11の開度を制御するものである。以下、図2に基づいての詳細を説明する。   The control shown in FIG. 2 (hereinafter, this control is referred to as additive temperature control) is started at the same time as the normal control and operates independently of the normal control. The energization amount to the first heater 9 and the opening degree of the flow control valve 11 are controlled so that the temperature of the additive supplied to the supply valve 5 falls within a predetermined temperature range. Hereinafter, details based on FIG. 2 will be described.

添加剤温度制御が起動されると、先ず、第1温度センサ12A〜第3温度センサ12Cが検出した添加剤温度のいずれかが第1所定温度T1(本実施形態では、60℃)以下となっているか否かが判定され(S1)、いずれかの添加剤温度が第1所定温度以下であると判定された場合には(S1:YES)、第1ヒータ9への通電が開始されるとともに、流量制御弁11が開かれて第2ヒータ10への通水が開始される(S2)。   When the additive temperature control is activated, first, any one of the additive temperatures detected by the first temperature sensor 12A to the third temperature sensor 12C is equal to or lower than the first predetermined temperature T1 (60 ° C. in the present embodiment). Is determined (S1), and when it is determined that any one of the additive temperatures is equal to or lower than the first predetermined temperature (S1: YES), energization of the first heater 9 is started. Then, the flow control valve 11 is opened and water flow to the second heater 10 is started (S2).

また、第1温度センサ12A〜第3温度センサ12Cが検出した添加剤温度のいずれもが第1所定温度T1より高いと判定された場合(S1:NO)、又は第1ヒータ9への通電が開始され、かつ、流量制御弁11が開かれると(S2)、第1温度センサ12A〜第3温度センサ12Cが検出した添加剤温度のいずれかが、第1所定温度より高い第2所定温度T2(本実施形態では、80℃)以上となっているか否かが判定される(S3)。   Further, when it is determined that any of the additive temperatures detected by the first temperature sensor 12A to the third temperature sensor 12C is higher than the first predetermined temperature T1 (S1: NO), or the first heater 9 is energized. When the flow control valve 11 is started and the flow control valve 11 is opened (S2), any one of the additive temperatures detected by the first temperature sensor 12A to the third temperature sensor 12C is higher than the first predetermined temperature, the second predetermined temperature T2. It is determined whether or not (80 ° C. in this embodiment) or higher (S3).

そして、第1〜3温度センサ12A〜12Cのいずれかが検出した添加剤温度が第2所定温度T2以上であると判定された場合には(S3:YES)、第1ヒータ9への通電が遮断されるとともに、流量制御弁11が閉じられて第2ヒータ10への通水が停止される(S4)。   When it is determined that the additive temperature detected by any of the first to third temperature sensors 12A to 12C is equal to or higher than the second predetermined temperature T2 (S3: YES), the first heater 9 is energized. In addition to being shut off, the flow control valve 11 is closed and water flow to the second heater 10 is stopped (S4).

また、第1温度センサ12A〜第3温度センサ12Cが検出した添加剤温度のいずれもが第2所定温度T1より低いと判定された場合(S3:NO)、又は第1ヒータ9への通電が遮断され、かつ、流量制御弁11が閉じられた後(S4)、一定時間が経過すると(S5)、再び、S1が実行される。   Further, when it is determined that any of the additive temperatures detected by the first temperature sensor 12A to the third temperature sensor 12C is lower than the second predetermined temperature T1 (S3: NO), or the first heater 9 is energized. After being shut off and the flow control valve 11 is closed (S4), when a certain time has passed (S5), S1 is executed again.

5.本実施形態に係る排気浄化装置の特徴
本実施形態では、供給弁5に供給される添加剤の温度が所定の温度範囲となるように調節されるので、添加剤の温度変化を小さくすることができる。
5). Features of the Exhaust Gas Purifying Device According to the Present Embodiment In this embodiment, the temperature of the additive supplied to the supply valve 5 is adjusted so as to be within a predetermined temperature range, so that the temperature change of the additive can be reduced. it can.

したがって、制御目標値として設定された添加剤の供給量と、実際に供給された供給量との差を小さくすることが可能となるので、排気浄化装置を効率的に作動させることができ得る。   Therefore, the difference between the supply amount of the additive set as the control target value and the supply amount actually supplied can be reduced, so that the exhaust purification device can be operated efficiently.

また、尿素を添加剤として用いた場合には、前述したように、排気熱を利用して尿素を加水分解して還元剤であるアンモニアを生成するので、添加剤(尿素)の温度が低いと、排気の温度が低下し、添加剤の加水分解反応が停滞してしまうおそれがある。   Further, when urea is used as an additive, as described above, urea is hydrolyzed using exhaust heat to generate ammonia as a reducing agent. Therefore, when the temperature of the additive (urea) is low The exhaust temperature may decrease, and the hydrolysis reaction of the additive may stagnate.

これに対して、本実施形態では、添加剤の温度を、60℃以上、尿素の沸点以下の温度となるように調節しているので、排気温度が低下してしまうことを抑制でき、添加剤の加水分解反応が停滞してしまうことを防止でき得る。   On the other hand, in this embodiment, since the temperature of the additive is adjusted so as to be 60 ° C. or higher and lower than the boiling point of urea, it is possible to suppress the exhaust temperature from being lowered, and the additive It is possible to prevent the hydrolysis reaction of stagnation.

ところで、寒冷地では、夜間等の外気温度が大きく低下し、添加剤タンク6に蓄えられた添加剤が凍結又はシャーベット状となるので、特に、冷間始動時においては、添加剤を排気管2に供給することができなくなるおそれが高い。   By the way, in cold districts, the temperature of the outside air at night or the like is greatly reduced, and the additive stored in the additive tank 6 becomes frozen or sorbet-like, so that the additive is exhausted to the exhaust pipe 2 particularly during cold start. There is a high possibility that it will not be possible to supply the battery.

これに対して、添加剤タンク6に蓄えられた添加剤を加熱する加熱手段を設ければ解決することができるものの、添加剤の温度を所定温度範囲に維持するための第2ヒータ10に加えて更に別の加熱手段を新たに設けると、排気浄化装置の製造原価上昇を招いてしまう。   On the other hand, although it can be solved by providing a heating means for heating the additive stored in the additive tank 6, it is added to the second heater 10 for maintaining the temperature of the additive in a predetermined temperature range. If another heating means is newly provided, the manufacturing cost of the exhaust emission control device will increase.

しかし、本実施形態では、第2ヒータ10により添加剤タンク6に蓄えられた添加剤を加熱することにより、添加剤の温度が所定の温度範囲となるように調節することを特徴としているので、第2ヒータ10にて前記加熱手段を兼用することができる。   However, the present embodiment is characterized in that the temperature of the additive is adjusted to be within a predetermined temperature range by heating the additive stored in the additive tank 6 by the second heater 10. The second heater 10 can also serve as the heating means.

したがって、本実施形態では、排気浄化装置の製造原価上昇を抑制しつつ、排気浄化装置を効率的に作動させることができ得る。
また、本実施形態では、内燃機関1の廃熱を熱源として第2ヒータ10を構成しているので、加熱用の熱源を新たに設ける必要がなく、排気浄化装置の製造原価上昇を抑制しつつ、排気浄化装置を効率的に作動させることができ得る。
Therefore, in the present embodiment, the exhaust purification device can be operated efficiently while suppressing an increase in the manufacturing cost of the exhaust purification device.
Further, in the present embodiment, since the second heater 10 is configured using the waste heat of the internal combustion engine 1 as a heat source, there is no need to newly provide a heat source for heating, while suppressing an increase in the manufacturing cost of the exhaust purification device. The exhaust purification device can be operated efficiently.

6.発明特定事項と実施形態との対応関係
本実施形態では、供給弁5が特許請求の範囲に記載された供給手段に相当し、添加剤タンク6が特許請求の範囲に記載されたタンクに相当し、第1ヒータ9、第2ヒータ10、流量制御弁11及びECU13により特許請求の範囲に記載された温度調節手段が構成されている。
6). Correspondence between Invention Specific Items and Embodiment In this embodiment, the supply valve 5 corresponds to the supply means described in the claims, and the additive tank 6 corresponds to the tank described in the claims. The first heater 9, the second heater 10, the flow control valve 11 and the ECU 13 constitute the temperature adjusting means described in the claims.

(その他の実施形態)
上述の実施形態では、第1ヒータ9及び第2ヒータ10にて温度調節手段を構成したが、本発明はこれに限定されるものではなく、いずれか一方を廃止する、又はその他のヒータにて温度調節手段を構成してもよい。
(Other embodiments)
In the above-described embodiment, the first heater 9 and the second heater 10 constitute the temperature adjusting means, but the present invention is not limited to this, and either one is abolished or other heaters are used. You may comprise a temperature control means.

また、上述の実施形態では、第1ヒータ9への通電、及び第2ヒータ10への通水をON−OFFの二値で制御したが、本発明はこれに限定されるものではなくなく、通電量及び通水量を連続的に変化させて添加剤の温度を制御してもよい。   In the above-described embodiment, the energization to the first heater 9 and the water flow to the second heater 10 are controlled by binary values of ON-OFF, but the present invention is not limited to this, The temperature of the additive may be controlled by continuously changing the energization amount and the water flow amount.

上述の実施形態では、添加剤として尿素を用いたが、本発明はこれに限定されるものではなく、アンモニア以外の還元剤又はこの還元剤を生成可能な添加剤を用いてもよい。
また、本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。
In the above-described embodiment, urea is used as an additive. However, the present invention is not limited to this, and a reducing agent other than ammonia or an additive capable of generating this reducing agent may be used.
Further, the present invention is not limited to the above-described embodiment as long as it matches the gist of the invention described in the claims.

本発明の実施形態に係る排気浄化装置の模式図である。1 is a schematic diagram of an exhaust emission control device according to an embodiment of the present invention. 本発明の実施形態に係る排気浄化装置の特徴的作動を示すフローチャートである。It is a flowchart which shows the characteristic action | operation of the exhaust gas purification apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…内燃機関、2…排気管、3…触媒、5…供給弁、6…添加剤タンク、
7…添加剤ポンプ、7A…レギュレータ、8…フィルタ、8A…配管、
9…第1ヒータ、10…第2ヒータ、10A…配管、11…流量制御弁、
12A…第1温度センサ、12B…第2温度センサ、12C…第3温度センサ、
12D…第4温度センサ、14…排気温度センサ、15…NOxセンサ、
13…ECU。
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Exhaust pipe, 3 ... Catalyst, 5 ... Supply valve, 6 ... Additive tank,
7 ... Additive pump, 7A ... Regulator, 8 ... Filter, 8A ... Piping,
9 ... 1st heater, 10 ... 2nd heater, 10A ... Piping, 11 ... Flow control valve,
12A ... 1st temperature sensor, 12B ... 2nd temperature sensor, 12C ... 3rd temperature sensor,
12D ... 4th temperature sensor, 14 ... Exhaust temperature sensor, 15 ... NOx sensor,
13 ECU.

Claims (4)

内燃機関の排気中に含まれる窒素酸化物を還元する排気浄化装置であって、
前記内燃機関から排出される排気の通路を構成する排気管と、
前記排気管に設けられ、排気中の窒素酸化物の還元反応を促進する触媒と、
前記還元反応に用いる流体状の添加剤を前記触媒より排気流れ上流側に供給する供給手段と、
前記添加剤が蓄えられたタンクと、
前記供給手段に供給される前記添加剤の温度が所定の温度範囲となるように調節する温度調節手段と
を備えることを特徴とする排気浄化装置。
An exhaust purification device for reducing nitrogen oxides contained in exhaust gas of an internal combustion engine,
An exhaust pipe constituting a passage of exhaust discharged from the internal combustion engine;
A catalyst that is provided in the exhaust pipe and promotes a reduction reaction of nitrogen oxides in the exhaust;
Supply means for supplying the fluid additive used for the reduction reaction to the upstream side of the exhaust flow from the catalyst;
A tank in which the additive is stored;
An exhaust emission control device comprising: temperature adjusting means for adjusting the temperature of the additive supplied to the supply means so as to be within a predetermined temperature range.
前記添加剤は尿素であり、
さらに、前記温度調節手段は、前記添加剤の温度を、60℃以上、尿素の沸点以下の温度となるように調節することを特徴とする請求項1に記載の排気浄化装置。
The additive is urea;
Furthermore, the said temperature control means adjusts the temperature of the said additive so that it may become the temperature below 60 degreeC and the boiling point of urea, The exhaust emission purification device of Claim 1 characterized by the above-mentioned.
前記温度調節手段は、前記タンクに蓄えられた前記添加剤を加熱することにより、前記添加剤の温度が所定の温度範囲となるように調節することを特徴とする請求項1又は2に記載の排気浄化装置。   The said temperature control means adjusts so that the temperature of the said additive may become a predetermined temperature range by heating the said additive stored in the said tank. Exhaust purification device. 前記温度調節手段は、前記内燃機関から回収した廃熱を熱源として前記添加剤を加熱することにより、前記添加剤の温度が所定の温度範囲となるように調節することを特徴とする請求項1ないし3のいずれか1つに記載の排気浄化装置。   The temperature adjusting means adjusts the temperature of the additive to be within a predetermined temperature range by heating the additive using waste heat recovered from the internal combustion engine as a heat source. The exhaust emission control device according to any one of 1 to 3.
JP2007301761A 2007-11-21 2007-11-21 Exhaust purification device Expired - Fee Related JP4445001B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007301761A JP4445001B2 (en) 2007-11-21 2007-11-21 Exhaust purification device
DE102008043897A DE102008043897A1 (en) 2007-11-21 2008-11-19 Exhaust control device
US12/274,670 US20090126349A1 (en) 2007-11-21 2008-11-20 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301761A JP4445001B2 (en) 2007-11-21 2007-11-21 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2009127473A true JP2009127473A (en) 2009-06-11
JP4445001B2 JP4445001B2 (en) 2010-04-07

Family

ID=40577251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301761A Expired - Fee Related JP4445001B2 (en) 2007-11-21 2007-11-21 Exhaust purification device

Country Status (3)

Country Link
US (1) US20090126349A1 (en)
JP (1) JP4445001B2 (en)
DE (1) DE102008043897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134195A (en) * 2013-01-11 2014-07-24 Joseph Voegele Ag Construction machine having thermal management system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273576B2 (en) * 2010-08-17 2016-03-01 Ford Global Technologies, Llc Method for reducing urea deposits in an aftertreatment system
DE102010054912A1 (en) * 2010-12-17 2012-06-21 Daimler Ag Dosing arrangement and method for operating a metering arrangement
EP2527609A1 (en) * 2011-05-23 2012-11-28 Inergy Automotive Systems Research (Société Anonyme) Additive delivery system and method for controlling said system
JP5765394B2 (en) 2012-11-20 2015-08-19 株式会社デンソー Gas sensor
IT202000003080A1 (en) * 2020-02-17 2021-08-17 Irca Spa SYSTEM FOR HEATING A SUBSTANCE IN A CAR

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839264B1 (en) * 1994-09-13 1999-12-01 Siemens Aktiengesellschaft Process and device for introducing a fluid into an exhaust gas purification system
US5872398A (en) * 1996-01-11 1999-02-16 Micron Technology, Inc. Reduced stress LOC assembly including cantilevered leads
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US6063350A (en) * 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
DE19818448A1 (en) * 1998-04-24 1999-10-28 Siemens Ag Catalytic reduction of nitrogen oxides in exhaust gases using judiciously dosed urea reductant
JP2001303934A (en) * 1998-06-23 2001-10-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003293739A (en) 2002-04-02 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
EP1669567B1 (en) * 2003-09-19 2012-03-21 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
EP1691046B1 (en) * 2003-09-19 2013-04-24 Nissan Diesel Motor Co., Ltd. Exhaust emission purification apparatus for an internal combustion engine
JP3686670B1 (en) * 2004-10-29 2005-08-24 日産ディーゼル工業株式会社 Exhaust purification device
JP4656039B2 (en) * 2006-10-19 2011-03-23 株式会社デンソー Engine exhaust purification system
US8281570B2 (en) * 2007-08-09 2012-10-09 Caterpillar Inc. Reducing agent injector having purge heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134195A (en) * 2013-01-11 2014-07-24 Joseph Voegele Ag Construction machine having thermal management system
US9046018B2 (en) 2013-01-11 2015-06-02 Joseph Voegele Ag Construction machine with heat management system

Also Published As

Publication number Publication date
US20090126349A1 (en) 2009-05-21
DE102008043897A1 (en) 2009-05-28
JP4445001B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP6114305B2 (en) Exhaust aftertreatment system and method for operating the system
JP4888480B2 (en) Control device for exhaust purification system
KR102309229B1 (en) Combustion engine
US8061123B2 (en) Method and system of thermal management in an exhaust system
JP4290027B2 (en) Exhaust purification equipment
US20100290957A1 (en) Exhaust gas purifying system
JP4445001B2 (en) Exhaust purification device
JP4900002B2 (en) Exhaust gas purification system for internal combustion engine
JP4978635B2 (en) Control device for exhaust purification system
JP2008267682A (en) Fluid heating device and exhaust gas post-treatment device equipped with same
JP2017025830A (en) Exhaust emission control device for engine
EP2319608B1 (en) Exhaust gas purification apparatus for internal combustion engine
WO2015023477A1 (en) Supervisory model predictive selective catalytic reduction control method
JP2010065581A (en) Exhaust emission control system of internal combustion engine
JP4137831B2 (en) Engine exhaust purification system
JP2020180590A (en) Exhaust emission control device for internal combustion engine
JP4728124B2 (en) Exhaust purification device
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
US20090133389A1 (en) Exhaust emission control device
JP2012189048A (en) Exhaust gas purification device
GB2533099A (en) Method for providing heating to a diesel exhaust fluid (DEF) tank and diesel exhaust fluid (DEF) tank
JP4261393B2 (en) Exhaust purification device control method
US8146348B2 (en) Exhaust emission control device
JP2009228433A (en) Urea water supplying device and exhaust emission control system
JP2014202094A (en) Control device of urea water addition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4445001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees