WO2006046450A1 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2006046450A1
WO2006046450A1 PCT/JP2005/019213 JP2005019213W WO2006046450A1 WO 2006046450 A1 WO2006046450 A1 WO 2006046450A1 JP 2005019213 W JP2005019213 W JP 2005019213W WO 2006046450 A1 WO2006046450 A1 WO 2006046450A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
pulse
fat
unit
frequency magnetic
Prior art date
Application number
PCT/JP2005/019213
Other languages
English (en)
French (fr)
Inventor
Kosuke Hirai
Shinji Kawasaki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006543039A priority Critical patent/JP5004588B2/ja
Publication of WO2006046450A1 publication Critical patent/WO2006046450A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging

Definitions

  • the present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI) apparatus, and more particularly to an improvement of an MRI apparatus having a fat-suppressed image pulse sequence using a binomial pulse train by a binomial pulse method.
  • MRI magnetic resonance imaging
  • An MRI apparatus applies a high-frequency magnetic field to a subject placed in a static magnetic field to excite protons in the tissue within the subject and detect their NMR (nuclear magnetic resonance) signal.
  • This is a device that performs signal processing on the image.
  • the protons in the tissue in the specimen include protons such as water, protein, and fat.
  • protons such as water, protein, and fat.
  • NMR signals due to fat protons are relatively higher in signal than those due to other protons. It has the feature that it often becomes.
  • the fat component appearing in the image is a hindrance, so it is desirable to acquire an image in which the fat component is suppressed.
  • CHESS Chemical Shift Selective
  • STIR Short TI Inversion Recovery
  • Dixon method Dixon method
  • binomial pulse method methods for acquiring an image in which a fat component is suppressed.
  • the CHESS method uses the difference in the resonance frequency of the water / fat magnetic field due to chemical shift, and suppresses the fat signal by saturating only the fat signal in advance using a frequency-selective irradiation high-frequency magnetic field prepulse.
  • the STIR method uses the longitudinal relaxation time difference of the magnetization of water and fat.
  • the fat signal is saturated and suppressed by starting imaging when the longitudinal magnetic field of the signal reaches the null point.
  • the Dixon method uses the Larmor frequency difference between the water and fat magnets to detect a total of two echoes when the phase of the water and fat magnets is in phase and opposite. By adding and subtracting each, an image with water and fat separated is obtained.
  • the binomial pulse method uses the Larmor frequency of the water's fat magnetic field to irradiate a binary pulse train that selectively excites only the water signal, and acquires an image that suppresses the fat component. For example, it is described in JP-A-11-276453. It is.
  • a pulse train of binomial pulses used in the binomial pulse method includes at least two high-frequency magnetic field pulses, and the time-amplitude product ratio of each high-frequency magnetic field pulse is set to have a binomial distribution. Moreover, the pulse train is set so that the interval between the high-frequency magnetic field pulses is an odd multiple of the phase difference force S180 ° due to the precession of the water / fat magnetic field. By irradiating such a binomial pulse before the imaging sequence, only the water signal can be selectively excited.
  • the pulse train in the binomial pulse method takes the ratio of the time and amplitude product of the pulse and is 1 1 for 2 waves (time to amplitude product ratio is 1: 1), 1 for 3 waves. 2—1 (time 'amplitude product ratio is 1 to 2 to 1), and 4 waves are described as 1 3—3— 1 (time / amplitude product ratio is 1 to 3 to 3 to 1) Is done.
  • This binomial pulse method is not a method using a pre-pulse for saturation or inversion of only the fat magnetization in advance, such as the CHESS method and STIR method described above, and therefore does not significantly extend the imaging time. Also, unlike the Dixon method, addition / subtraction processing is not required, so this is a simple fat suppression method.
  • the rotational phase of the magnetic field of water excited by the first high-frequency magnetic field pulse is set. It is necessary to control the irradiation phase so that the phase of the next high-frequency magnetic field pulse is orthogonal to the phase of the magnetic field obtained by calculation. For example, when water is excited by a two-wave binary pulse train (1–1 pulse), the water's magnetic field is tilted by the 45 ° pulse of the first wave. Precesses at each Larmor frequency, and after a predetermined time, the phase difference between them becomes 180 °.
  • excitation is performed by controlling the irradiation phase of the high-frequency magnetic field pulse to be orthogonal to the water phase at this point so that only the water is inclined to a predetermined 90 °. By doing so, it acts as a 45 ° pulse for fat with 180 ° phase reversal, which can be suppressed.
  • the second high-frequency magnetic field pulse is obtained by calculating the rotational phase ⁇ of the magnetic field between the first wave and the second wave by calculation using the following equation (1). Predict the phase of the eyelids and control to make the irradiation phase orthogonal.
  • is the magnetic rotation ratio
  • Bo is the static magnetic field strength
  • is the time until the first wave force and the second wave are irradiated
  • is the chemical shift difference between water and fat (Larmor frequency (Hz) difference) ).
  • the rotational phase amount obtained from Equation (1) may not always match the actual phase rotational amount.
  • the phase of water and the irradiation phase of the high-frequency magnetic field pulse cannot be made completely orthogonal, there arises a problem that water excitation and fat suppression are insufficient.
  • a possible cause is a temporal variation of the static magnetic field.
  • the static magnetic field fluctuates over time according to temperature changes, and the magnetic field may vary due to eddy currents and residual magnetic flux components accompanying the application of gradient magnetic field pulses. Therefore, a phase rotation amount force shift calculated from Equation (1) occurs.
  • An object of the present invention is to provide an MRI apparatus having an imaging pulse sequence for acquiring a fat-suppressed image using a binomial pulse train by a binomial pulse method that enables accurate interpretation without substantially extending the imaging time. Is to provide.
  • One aspect of the present invention that achieves the above object is to provide a binary pulse train by a binary pulse method. Acquires a non-fat-suppressed image that facilitates the discrimination of fat tissue and the interpretation of the acquired fat-suppressed image at the same time as the fat-suppressed image by executing the imaging pulse sequence for acquiring the fat-suppressed image is there.
  • an NMR signal is acquired by applying a gradient magnetic field at least once between the high-frequency magnetic field binary pulses constituting the binary pulse train and after irradiation of the binary pulse train.
  • the contribution ratios of the magnetization of the water component and the magnetization of the fat component are different! /. Two types of images with different contribution rates are generated simultaneously.
  • the pulse interval of the high-frequency magnetic field binary pulse constituting the binary pulse train is an arbitrary odd multiple of the time when the phase difference due to precession of the magnetic protons of water protons and fat protons is 180 °.
  • Another aspect of the present invention that achieves the above-described object is that two prior two measurements are performed prior to the main measurement by the imaging pulse sequence of fat suppression image acquisition using the binomial pulse train by the binomial pulse method.
  • a reference measurement that actually measures the amount of phase rotation that occurs in the magnetism of the water between the term pulses is added, and based on the actual phase rotation amount of the magnetism measured in this reference measurement, Corrects the irradiation phase of the binary pulse after the second wave and irradiates so that the flip angle of the water magnet is exactly 90 ° and the flip angle of the fat magnet is exactly 0 ° It is.
  • a static magnetic field generation unit that applies a static magnetic field to an imaging space in which the subject is arranged, and a gradient that applies a gradient magnetic field in a predetermined direction to the imaging space
  • a magnetic field generator, a high-frequency magnetic field irradiation unit that applies a high-frequency magnetic field pulse to the subject, and A receiving unit that receives a magnetic resonance signal from the subject, a gradient magnetic field generating unit, and a high-frequency magnetic field irradiation unit are controlled to apply a gradient magnetic field and a high-frequency magnetic field pulse at a predetermined timing.
  • the predetermined imaging pulse sequence is used for the main measurement for acquiring the magnetic resonance signal for image reconstruction of the region of interest of the subject and the reference measurement performed before the main measurement. It is assumed that the configuration includes At this time, this measurement uses a high-frequency magnetic field binomial pulse train within a unit repetition time (TR) to selectively excite the magnetic component of the water component of the water and fat components in the subject, and This is a sequence for measuring the resonance signal, and the reference measurement is a sequence for measuring the amount of phase rotation of the magnetization of water generated between pulses of the high-frequency magnetic field binary pulse train.
  • TR unit repetition time
  • the control unit applies at least one irradiation of the high-frequency magnetic field binary pulse to be applied after the second wave in the high-frequency magnetic field binary pulse train of this measurement according to the phase rotation amount of the water magnet measured in the reference measurement. Control the phase. As a result, even if a complicated phase shift ⁇ occurs due to various factors, the irradiation phase of the high-frequency magnetic field binary pulse after the second wave is irradiated in accordance with the phase of the actual water magnetic field. It becomes possible.
  • the pulse sequence of the reference measurement is a modified version of the pulse sequence of the main measurement.
  • the control unit detects the phase rotation amount of each of the first and second echo signals, and obtains the phase rotation amount difference to obtain the phase rotation amount of the hydromagnet between the two high-frequency magnetic field binary pulses. Ask for.
  • the control unit sets the irradiation phase of the second and subsequent high-frequency magnetic field binary pulses using the obtained phase rotation amount.
  • the high-frequency magnetic field binary pulse train a pulse train including at least two high-frequency magnetic field binary pulses with a time interval in which the phase difference due to precession of magnetization of water and fat is an odd multiple of 180 ° is used.
  • FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus for carrying out the present invention.
  • FIG. 2 A binomial pulse method according to an embodiment of the present invention executed by the MRI apparatus of FIG. 1 is a diagram showing an imaging pulse sequence for acquiring a non-fat-suppressed image and a fat-suppressed image using a binomial pulse train.
  • FIG. 2 A binomial pulse method according to an embodiment of the present invention executed by the MRI apparatus of FIG. 1 is a diagram showing an imaging pulse sequence for acquiring a non-fat-suppressed image and a fat-suppressed image using a binomial pulse train.
  • FIG. 3 is a diagram for explaining the inclination of the magnetization of water and fat protons and the timing of echo signal detection when the imaging pulse sequence shown in FIG. 2 is executed.
  • FIG. 4 Using the binomial pulse method according to another embodiment of the present invention performed by the MRI apparatus of FIG. 1 1 2— Two non-fat-suppressed images and one fat-suppressed image using one binary pulse train It is a figure explaining the timing of the inclination of the magnetization of water and a fat proton, and the detection of an echo signal when the imaging pulse sequence for image acquisition is performed.
  • FIG. 5A.5B An imaging pulse sequence for acquiring fat-suppressed images using a binomial pulse train of 1 1 by the binomial pulse method according to yet another embodiment of the present invention executed by the MRI apparatus of FIG.
  • FIG. 5A is a reference measurement pulse sequence executed prior to execution of the main measurement pulse sequence of FIG. 5B
  • FIG. 5B is a main measurement pulse sequence executed thereafter.
  • FIG. 6 Process from when the MRI apparatus in Fig. 1 executes the imaging pulse sequence in Figs. 5A and 5B to reconstruct a fat-suppressed image that eliminates the effects of spatial and temporal non-uniformities in the static magnetic field strength. It is a flowchart explaining these.
  • a binomial pulse train is used and a high-frequency magnetic field that constitutes a binomial pulse train is described.
  • RF Utilizing the fact that the magnetic field of fat has a transverse magnetic field between pulses, first, by acquiring an NMR (nuclear magnetic resonance) signal between these pulses, a non-fat-suppressed image is acquired. A fat suppression image is acquired after binary pulse train irradiation.
  • This MRI apparatus uses a magnetic resonance phenomenon to obtain a tomographic image of a subject.
  • a static magnetic field generator 1 a gradient magnetic field generator 2, a transmitter 3, a receiver 4, and a signal processor 5
  • a sequencer 6 a central processing unit (CPU) 7, an operation unit 8, and a bed 27 on which the subject 9 is mounted.
  • CPU central processing unit
  • the static magnetic field generator 1 is a device that generates a uniform static magnetic field around the subject 9 mounted on the bed 27 in the body axis direction or in a direction perpendicular to the body axis.
  • Static magnetic field generator 1 As the magnetic field generating source, a magnetic field generating source including a permanent magnet, a normal conducting magnet, or a superconducting magnet can be used.
  • the gradient magnetic field generation system 2 applies three orthogonal gradient magnetic fields Gs, Gp, and Gr to the subject 9. By applying this gradient magnetic field, the slice plane for the subject 9 is set, and position information is added to the NMR signal.
  • the transmission system 3 receives a signal transmitted from the sequencer 6 and generates an RF pulse (here, an RF binomial pulse) for causing nuclear magnetic resonance in the atomic nucleus constituting the biological tissue of the subject 9. And irradiates the subject 9 with a high-frequency oscillator 12, a modulator 13, a high-frequency amplifier 14, and a high-frequency irradiation coil 15.
  • the high-frequency signal output from the high-frequency oscillator 12 is modulated by the modulator 13 in accordance with the signal from the sequencer 6, further amplified by the high-frequency amplifier 14, and then placed near the subject 9. Supplied to 15.
  • 9 pulses of RF pulse are irradiated from the high-frequency irradiation coil 15.
  • the receiving system 4 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of the nucleus of the living tissue of the subject 9, and includes a high-frequency receiving coil 16, an amplifier 17, and a quadrature phase detector. 18 and AZD transformation 19.
  • NMR signal nuclear magnetic resonance of the nucleus of the living tissue of the subject 9
  • a desired NMR signal is received by the amplifier 17 and the quadrature detector 18.
  • the signal processing system 5 performs an image reconstruction operation using the echo signal detected by the reception system 4, and displays the reconstructed image.
  • the signal processing system 5 includes a CPU 7, a ROM 20, a RAM 21, a data storage unit such as a magneto-optical disk 22 and a magnetic disk 24, and a display 23.
  • the ROM 20 stores in advance various programs executed by the CPU 7 and invariant parameters used in the execution.
  • the CPU 7 reads the program stored in the ROM 20 and executes it to perform processing such as Fourier transform, correction coefficient calculation, and image reconstruction operation on the echo signal obtained by the receiving system 4.
  • a tomographic image is displayed on the display 23.
  • image analysis processing over time according to the program also do.
  • the RAM 21 temporarily stores measurement parameters used for measurement, echo signals detected by the reception system 4, and an image used for region of interest setting. On the magneto-optical disk 22 and the magnetic disk 24, a tomographic image reconstructed by the CPU 7 is recorded.
  • the CPU 7 controls the sequencer 6 by executing an imaging program stored in the ROM 20, and executes imaging (measurement) with a predetermined pulse sequence.
  • the sequencer 6 outputs RF pulses and gradient magnetic field pulses by outputting control signals to the modulator 13 of the transmission system 3, the gradient magnetic field power supply 11 and the AZD converter 19 of the reception system 4 according to the pulse sequence.
  • an echo signal by nuclear magnetic resonance is generated in the atomic nucleus constituting the biological tissue of the region of interest of the subject 9, and this is detected at the predetermined timing. .
  • the operation unit 8 is used by a user to input control information and measurement conditions for processing performed in the signal processing system 5, and includes a mouse 25 and a keyboard 26.
  • FIG. 2 shows the pulse sequence of the present embodiment.
  • a gradient magnetic field pulse train for acquiring an echo signal is applied between RF binomial pulses constituting the binomial pulse train, and after irradiation of the binomial pulse train, so that the contribution ratios of the fat magnetism differ.
  • a binary pulse train of two waves (RF pulses 101, 114) is used.
  • RF pulses 101 and 104 are set to have a product of time and amplitude so that the nuclear magnetization is inclined by 45 °.
  • the time interval between the RF pulse 101 and the RF pulse 114 is set such that the phase difference force S180 ° due to precession of the magnetic field of the fat proton and the water proton is S180 °.
  • the principle of the pulse sequence using this binary pulse train will be briefly explained with reference to Fig. 3. Irradiation of the first RF pulse 101 causes the magnetic field of water protons and fat protons to tilt at the same tilt angle (45 °) as shown in FIG.
  • the first echo 107 is detected by applying a gradient magnetic field pulse train for acquiring an echo signal using the transverse magnet in this state.
  • the magnetization of the fat protons disappears from the transverse magnetic field, whereas the magnetic field of the water protons is tilted to a predetermined angle, that is, to a flip angle of 90 °.
  • the second echo 120 is detected. From the first echo 107, an image in which the hydraulic power signal and the fat power signal contributed to the same extent is obtained from the second echo 120. Can each obtain a fat suppression image. In this way, two images with different fat signal contribution rates can be obtained simultaneously with one pulse sequence.
  • the pulse sequence of FIG. 2 of the present embodiment will be described in detail.
  • the first RF pulse 101 is irradiated from the high frequency irradiation coil 15.
  • a gradient magnetic field pulse (Gs) 102 in the slice direction is simultaneously applied to select a slice.
  • the magnetization of water protons and fat protons in the selected slice is tilted by 45 ° as shown in FIG.
  • the transverse magnetization components of water and fat are generated at the same rate. Therefore, as shown in FIG. 2, a gradient magnetic field pulse train is applied to obtain an echo signal 107 from transverse magnetization of both components.
  • a gradient echo (GE) sequence is used as the gradient magnetic field pulse train for echo signal acquisition.
  • the gradient signal pulse train for echo signal acquisition includes a rephasing gradient magnetic field in the slice direction (Gs) 103 for converging the magnetic field dispersed by the slice selective gradient magnetic field pulse 102, and an offset gradient in the phase encoding direction.
  • the readout gradient magnetic field pulse 106 is applied.
  • the first echo signal 107 generated during the application of the readout gradient magnetic field pulse 106 is received by the receiving system 4, and is sampled by the AZD converter 19 during the time range 108.
  • the reference gradient magnetic field pulse 103, the offset gradient magnetic field pulse 104, and the offset gradient magnetic field pulse 105 may be applied at the same time with different timing applied.
  • the read direction rephase gradient magnetic field pulse 110 for converging the magnetization dispersed by the read gradient magnetic field pulse 106, the rewind gradient magnetic field pulse 109 for the phase encoding gradient magnetic field pulse 104, and the next slice A sliced dephase gradient magnetic field pulse 111 for the selective gradient magnetic field pulse 115 is applied.
  • These gradient magnetic field pulses are set so that the sum of the products of the time and intensity of all gradient magnetic field pulses applied between the RF pulses 101 and 114 is 0 in all three directions. . As a result, it is possible to create a state in which the magnetization is re-referenced before applying the second RF noise 114.
  • Gradient magnetic field pulses 109, 110, and 111 should be marked simultaneously.
  • the second RF pulse 114 is applied at a timing when time ⁇ elapses.
  • the time is set so that the magnetic phase of the water proton and the magnetization of the fat proton are 180 ° due to the difference in precession frequency. .
  • is set as follows.
  • the gradient magnetic field pulse train for acquiring echo signals (gradient magnetic field pulses 103 to 106, 109) is acquired over time.
  • the slice selective gradient magnetic field pulse 115 is applied.
  • the magnetization of water protons is tilted to a flip angle of 90 °, and the magnetic field of fat protons becomes a flip angle of 0 °. Therefore, there is no transverse magnetic field of fat protons.
  • an echo signal acquisition gradient magnetic field pulse train is applied to detect the echo signal 120 of only the water proton magnetic field.
  • the slice gradient reference magnetic field pulse 116, the phase encoding direction offset gradient magnetic field pulse 117, and the readout direction offset gradient magnetic field for converging the magnetic field dispersed by the slice selective gradient magnetic field pulse 115 are converged.
  • the readout gradient magnetic field pulse 119 is applied.
  • the second echo signal 120 generated during the application of the readout gradient magnetic field pulse 119 is received by the receiving system 4 and sampled in the time range 121 by the AZD converter 19. Thereby, the magnetization of fat protons is suppressed, and the echo signal 120 of only the magnetization of water protons can be acquired.
  • a rewind gradient magnetic field pulse 122 for the phase encoding gradient magnetic field pulse 117, a spoil gradient magnetic field pulse 123 for dispersing the magnetic field in the reading direction, and a spoiling gradient magnetic field pulse 124 for dispersing the magnetic field in the slice direction Apply.
  • a rewind gradient magnetic field pulse 122 for the phase encoding gradient magnetic field pulse 117 a spoil gradient magnetic field pulse 123 for dispersing the magnetic field in the reading direction
  • a spoiling gradient magnetic field pulse 124 for dispersing the magnetic field in the slice direction Apply.
  • the gradient magnetic field pulses 116, 117, 118 may also be applied at the same time as before. Also the gradient magnetic field pulses 122, 123, and 124 may also be applied simultaneously as before.
  • the intensity sequence of the phase encoding direction offset gradient magnetic field pulse is changed for each repetition unit (TR)
  • the above-described Nol sequence is repeated 256 times until the number of data necessary for image reconstruction of one slice is obtained. repeat.
  • the CPU 7 reconstructs two images by combining a predetermined number of echo signals 107 and echo signals 120, respectively. As a result, an image obtained by mixing the water component and the fat component from the echo signal 107 and a fat-suppressed image from the echo signal 120 are obtained.
  • the CPU 7 displays the obtained two kinds of images on the display 23.
  • the display method is such that the user compares the two types of images to determine the adipose tissue and accurately interprets the fat-suppressed image.
  • the desired method can be taken.
  • the user can easily determine the fat tissue and accurately interpret the fat suppression image.
  • two types of echo signals having different fat contribution ratios can be acquired at one time within one pulse sequence, and therefore, by the pulse sequence by the binomial pulse method.
  • a non-fat-suppressed image is further acquired using a normal pulse sequence, and the imaging time can be shortened to about half compared to the conventional method.
  • two types of echo signals can be obtained within the same nors sequence, differences due to changes over time, such as body movement of the subject, are unlikely to occur. Therefore, both image forces can accurately determine only the presence or absence of a fat component, and the effect of improving inspection accuracy can be obtained.
  • the echo signal acquisition gradient magnetic field pulse train can be three-dimensional (3D) imaging.
  • the slice encode gradient magnetic field pulses 112 and 125 and the rewind gradient magnetic field pulses 113 and 126 corresponding thereto are pursued in the slice direction!
  • the spoil gradient magnetic field pulse 124 in the slice direction is In some cases, it is not applied. This allows 3D imaging of two types of images with different fat contribution rates.
  • the slice encode gradient magnetic field pulse 112 may be applied in a superimposed manner with the slice direction reference gradient magnetic field pulse 116.
  • a two-term pulse train having three or more forces using a two-wave binary pulse train can be used.
  • Figure 4 shows the case of using 1-2-1 pulse as the binary pulse train.
  • the first pulse 401 and the third no 403 have a flip angle of 22.5.
  • the second pulse 402 is an RF binomial pulse with a flip angle of 45 °.
  • Each pulse interval (time) is set so that the phase difference between the magnetic fluxes of fat and water protons is 180 °, as in the above-described embodiment.
  • the binary pulse train consisting of a plurality of pulse waves of three or more waves as described above, by performing similar imaging, three or more types of images having different contribution ratios of water and fat magnetic fields are once obtained. Since these images can be obtained at the same time, it is easy to distinguish adipose tissue by comparing them.
  • a binary pulse train that also has a pulse force of 3 or more, it is not always necessary to apply the gradient magnetic field pulse train for acquiring the echo signal in all of the plurality of pulses. At least one of the plurality of pulses is not necessarily applied. If the configuration is such that the application of a gradient magnetic field pulse train for echo signal acquisition is executed after irradiation with a binary pulse train. As a result, at least one kind of fat / water component mixed image and fat suppression image are obtained.
  • the binary pulse train is not limited to the force applied to suppress fat, and can be applied to suppress water and obtain a fat image.
  • FIG. 1 An embodiment based on the second aspect of the present invention will be described with reference to FIGS. 1, 5A, 5B, and 6.
  • FIG. 1 An embodiment based on the second aspect of the present invention will be described with reference to FIGS. 1, 5A, 5B, and 6.
  • FIG. 1 An embodiment based on the second aspect of the present invention will be described with reference to FIGS. 1, 5A, 5B, and 6.
  • FIG. 1 An embodiment based on the second aspect of the present invention will be described with reference to FIGS. 1, 5A, 5B, and 6.
  • the imaging pulse sequence includes the reference measurement shown in Fig. 5A and the main measurement shown in Fig. 5B, and the reference measurement is performed prior to the main measurement.
  • Pulse irradiation force Actually measures the phase rotation amount of the water magnet until the echo signal is detected, and obtains the phase shift amount due to the spatial and temporal fluctuations of the static magnetic field.
  • the magnetic field for image reconstruction by gradient echo method is used.
  • the imaging method for acquiring the magnetic resonance signal for image reconstruction in this measurement is not limited to the gradient echo method, and a desired method such as the spin echo method (SE) can be used.
  • FIG. 5A shows the reference measurement of the imaging sequence that selectively excites the magnetic field of water by a binary pulse train (11 pulses) of two waves.
  • the reference measurement includes a first reference measurement interval 510 and a second reference measurement interval 520.
  • the same pulse sequence as that of the main measurement is used. repeat.
  • the first reference measurement section 510 only the high-frequency magnetic field pulse of the first wave 101 of the 1-1 pulse is irradiated, the second wave 114 is not irradiated, and an echo signal (magnetic resonance signal) 511 is acquired. .
  • the second reference measurement section 520 the first wave 101 is not emitted, but only the second wave 114 is emitted, and an echo signal 521 is acquired.
  • Gradient magnetic field pulses (Gs, Gr) other than the high-frequency magnetic field pulses (Gs, Gr) 102, 103, 115, 116, 118, 119, 123 and the acquisition timing of the echo signals 511, 521 are the same as in this measurement.
  • the phase of the echo signal 511 acquired in the first reference measurement section 510 indicates the amount of phase rotation 01 of the water magnet from the first wave 101 to the acquisition of the echo signal.
  • the phase of the echo signal 520 acquired in the measurement interval 520 indicates the phase rotation amount ⁇ 2 of the magnetization of water from the second wave 114 to the acquisition of the echo signal. Therefore, by measuring the difference between the phase rotation amounts 0 1 and 0 2, the actual phase rotation amount ( ⁇ 1- ⁇ 2) of the water magnet from the first wave 101 to the second wave 102 is measured. be able to.
  • the measured phase rotation amount (0 — 0) of the magnetic field is the theoretical phase rotation obtained by the following equation (3)
  • the phase is obtained by adding the phase shift due to the temporal variation of the static magnetic field strength to the amount ⁇ 0. Therefore, the phase shift can be absorbed by setting the irradiation phase after the second wave based on the amount of phase rotation obtained by reference measurement.
  • the first wave 101 and the second wave 114 which are high-frequency magnetic field pulses for tilting each magnetic field by 45 °, are applied at intervals of a predetermined time ⁇ .
  • This time ⁇ is set so that the rotational phase difference due to the precession of the water magnetization and the fat magnetism becomes 180 ° as described above.
  • a predetermined slice is selected, and the water magnetic field and fat magnetic field of the slice are set at a flip angle of 45 °. Tilt.
  • a slice direction (Gs) reference gradient magnetic field pulse 103 for refocusing the magnetic field dispersed by the application of the slice selection gradient magnetic field 102 at the application timing of the second wave 114 is applied.
  • the second wave 114 is irradiated and the slice selection gradient magnetic field 115 is applied to thereby magnetize the water. Inclined the flip angle of 90 ° to make the flip angle of the fat magnet 0 °.
  • the irradiation phase ⁇ e of the second wave 114 is the irradiation position of the first wave.
  • Phase ⁇ e is the same as the phase rotation amount ( ⁇ ⁇ ) of the magnetic field obtained by reference measurement.
  • the high-frequency magnetic field pulse (second wave 114) of the irradiation phase that matches the phase of the magnetic field of the water can be selected by tilting the flip angle of the magnetic field of the water by exactly 90 °.
  • the flip angle of fat magnetization can be suppressed to 0 °.
  • the second reference gradient magnetic field pulse 116 is applied in the slice direction (Gs).
  • the readout direction (Gr) gradient magnetic field pulse 119 is applied.
  • the magnetic field is converged and the generated echo signal 120 is sampled for a time range 121.
  • a rewind gradient magnetic field pulse 122 in the phase direction and a spoiling gradient magnetic field 123 in the readout direction are applied.
  • an encoding gradient magnetic field pulse 123 and a rewind gradient magnetic field pulse 126 are applied in the slice direction.
  • this sequence is repeated 256 times, for example, while changing the phase encoding gradient magnetic field pulse 117 (intensity of the slice direction encoding gradient magnetic field pulse 125), and the number of data required for image reconstruction is obtained. Get the echo signal.
  • the CPU 7 acquires the echo signals 511 and 521 in the first and second reference measurement sections 510 and 520 of the force reference measurement for continuously executing the reference measurement and the main measurement.
  • the respective phases ⁇ 1 and ⁇ 2 are detected. (Steps 601, 60 2).
  • the amount of phase rotation ( ⁇ — ⁇ ) between the first and second waves are detected.
  • this measurement is repeatedly executed, for example, 256 times, and a predetermined number of echo signals are acquired (step 605).
  • the acquired echo signal force also reconstructs a tomographic image or the like in which the fat in the region of interest of the subject is suppressed (step 606).
  • the irradiation phase of the binary pulse after the second wave in consideration of the phase shift of the water magnet due to the spatial and temporal non-uniformity of the static magnetic field strength.
  • two binary pulse (1 1 pulse) trains are used!
  • it can also be applied to binary pulse trains of 3 or more waves.
  • reference measurement is performed for the number of irradiations of the binomial pulse, echo signals for the number of irradiations are obtained, and the irradiation phase of the binomial pulse for the main measurement is set in the same manner as in the above embodiment.
  • the reference measurement can be performed twice as in the sequence of Fig. 5A, and the irradiation phase after the second wave of the binomial pulse train of this measurement can be set by calculation from the obtained ⁇ . By making the reference measurement twice in this way, the entire reference measurement can be completed in a short time.
  • the force described in the case of selectively exciting the magnetization of water and suppressing the magnetization of fat is not limited to this combination, but is also a selective excitation of various tissue components by a binary pulse train (The present invention can be applied to (suppression).

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング (以下、 MRIと称す)装置に関し、特に二項パル ス法による二項パルス列を使った脂肪抑制画像パルスシーケンスを有する MRI装置 の改良に関する。
背景技術
[0002] MRI装置は、静磁場中に置かれた被検体に高周波磁場を印加することにより、被 検体内組織のプロトンを励起しそこ力ゝらの NMR (核磁気共鳴)信号を検出し、これに 信号処理を施して画像化する装置である。被検体内組織のプロトンには、水、蛋白 質、脂肪等のプロトンが含まれ、これらの中でも脂肪のプロトンに因る NMR信号は、 他のプロトンに因るそれよりも相対的に高信号となることが多いという特徴を持つ。し 力しながら、臨床現場においては多くの場合、画像に現れる脂肪成分は妨げとなる ため、脂肪成分を抑制した画像を取得することが望まれる。
[0003] 脂肪成分を抑制した画像を取得する手法としては、 CHESS (Chemical Shift Selectiv e)法、 STIR (Short TI Inversion Recovery)法、 Dixon法、二項パルス法が知られてい る。 CHESS法は、ケミカルシフトによる水'脂肪の磁ィ匕の共鳴周波数の違いを利用し、 周波数選択性の照射高周波磁場プリパルスを用いて予め脂肪信号だけを飽和させ ることで脂肪信号を抑制する。 STIR法は、水'脂肪の磁化の縦緩和時間差を利用し、 静磁場方向に対して縦磁ィ匕を 180° 反転させるプリパルスを照射して縦磁ィ匕を反転 した後、縦緩和によって脂肪信号の縦磁ィ匕が null pointに達する時点で撮像を開始 することで脂肪信号を飽和させ、抑制する。 Dixon法は、水'脂肪の磁ィ匕のラーモア周 波数差を利用して、水'脂肪の磁ィ匕の位相が同位相になる時点と逆位相になる時点 で合計 2エコーを検出し、それぞれを加算'減算処理することで、水'脂肪を分離した 画像を取得する。二項パルス法は、 Dixon法と同様に水'脂肪の磁ィ匕のラーモア周波 数を利用して水信号のみを選択的に励起する二項パルス列を照射し、脂肪成分を 抑制した画像を取得する方法であり、例えば、特開平 11— 276453号公報に記載さ れている。
[0004] 二項パルス法で用いられる二項パルスのパルス列とは、少なくとも二つの高周波磁 場パルスを含み、各高周波磁場パルスの時間 ·振幅積比が二項分布となるように設 定され、しかも高周波磁場パルスの間隔が水 ·脂肪の磁ィ匕の歳差運動による位相差 力 S180° の奇数倍となるように設定されたパルス列である。このような二項パルスを撮 像シーケンスの前に照射することにより、水信号のみを選択的に励起することができ る。一般的に二項パルス法におけるパルス列は、パルスの時間、振幅積の比を取つ て、 2波の場合は 1 1 (時間'振幅積の比が 1対 1)、 3波の場合は 1 2— 1 (時間' 振幅積の比が 1対 2対 1)、 4波の場合には 1 3— 3— 1 (時間 ·振幅積の比が 1対 3 対 3対 1)のように記述される。
[0005] この二項パルス法は、前述の CHESS法や STIR法のような予め脂肪の磁化のみを飽 和または反転させるプリパルスを用いる手法ではな 、ため、大幅な撮像時間の延長 はない。また、 Dixon法のように加算 ·減算処理も必要としないため、簡便な脂肪抑制 法である。
[0006] 上述のように、臨床において画像中の高信号の脂肪成分は往々にして診断の妨げ になるため、脂肪成分を抑制した画像が必要とされている。し力しながら、臨床現場 では単に脂肪成分を抑制するだけでなぐどの組織が脂肪組織力、の判別が必要とな ることも多い。このような場合には、脂肪抑制画像だけでは脂肪組織がどこにあるか 判別することが難しいため、脂肪抑制画像と共に非抑制画像を撮像し、ユーザが 2画 像を見比べることで脂肪組織を判別し、脂肪抑制画像の正確な読影を行って 、た。 脂肪抑制画像と非脂肪抑制画像の両方を取得するためには、脂肪抑制法の有りお よび無しの 2回の撮像シーケンスを行う必要があり、撮像時間が 2倍になるという問題 かあつた。
[0007] また、二項パルス列を用いて水の磁ィ匕を励起し、脂肪の磁ィ匕を抑制するためには、 最初の高周波磁場パルスによって励起された水の磁ィ匕の回転位相を計算により求め 、その磁ィ匕の位相に対して、次に照射する高周波磁場パルスの位相を直交させるよ うに照射位相を制御する必要がある。例えば、 2波の二項パルス列(1— 1パルス)に よって水を励起する際には、第 1波の 45° パルスによって傾斜した水'脂肪の磁ィ匕が 、夫々のラーモア周波数で歳差運動し、所定の時間が経過すると両者の位相差が 1 80° となる。その時点で、さらに水だけを所定の 90° まで傾斜するよう、この時点で の水の位相に対し、直交するように高周波磁場パルスの照射位相を制御して励起す る。そうすることで、 180° 位相が反転した脂肪に対しては一 45° パルスとして働くた め抑制されること〖こなる。
[0008] 第 2波の高周波磁場パルスは、従来、次式(1)を用いて計算により第 1波と第 2波の 間の磁ィ匕の回転位相 Θを求めることで、水の磁ィ匕の位相を予測し、照射位相を直交 させるように制御を行う。
θ = γ Χ Βο Χ τ (1)
ただし、 て = 1/ (2 Χ δ ) · ·· (2)
なお、 γは、磁気回転比、 Boは、静磁場強度、 τは、第 1波力も第 2波の照射までの 時間、 δは、水と脂肪のケミカルシフト差 (ラーモア周波数 (Hz)の差)である。
[0009] し力しながら、実際には、式(1)から求めた回転位相量と実際の位相回転量は必ず しも一致しない場合がある。このような場合、水の位相と高周波磁場パルスの照射位 相を完全に直交させることができないため、水の励起および脂肪の抑制が不十分に なるという問題が生じる。
[0010] その要因としては、静磁場の時間的な変動が考えられる。特に永久磁石装置にお いては、温度変化に応じて時間的に静磁場が変動する上、傾斜磁場パルスの印加 に伴った渦電流や残留磁ィ匕成分によって、磁場が変動することが考えられるため、 式(1)から算出される位相回転量力 ずれが生じることになる。
[0011] このように、計算により求められる位相回転量に対して、種々の要因により位相ずれ が生じるため、第 2波以降の二項パルスの照射位相を完全に水の位相に対して直交 させるように照射するのは困難であった。
[0012] 本発明の目的は、撮像時間を実質的に引き延ばすことなぐ正確な読影を可能とす る二項パルス法による二項パルス列を使った脂肪抑制画像取得の撮像パルスシー ケンスを有する MRI装置を提供することである。
発明の開示
[0013] 上記目的を達成する本発明の一つの観点は、二項パルス法による二項パルス列を 使った脂肪抑制画像取得の撮像パルスシーケンスの 1回の実行で、脂肪抑制画像と 同時に脂肪組織の判別を容易にしかつ取得した脂肪抑制画像の読影を容易にする 非脂肪抑制画像を取得するものである。
[0014] さらに具体的に説明すると、上記観点の発明では、撮像パルスシーケンスの単位の 繰り返し時間 (TR)内に、被検体内組織の水成分及び脂肪成分の励起角度を異なら せるための高周波磁場二項パルス列を印加する。このとき、二項パルス列を構成す る高周波磁場二項パルス間のうち少なくとも 1回、ならびに、二項パルス列の照射後 に、それぞれ傾斜磁場を印加して NMR信号を取得する。このように得られる 2種以 上の NMR信号の中では、水成分の磁化と脂肪成分の磁化の寄与率の異なって!/、る ため、これを再構成することにより、水成分の磁化の寄与率の異なる 2種類の画像が 同時に生成される。
[0015] 二項パルス列を構成する高周波磁場二項パルスのパルス間隔は、水プロトンの磁 ィ匕と脂肪プロトンの磁ィ匕の歳差運動による位相差が 180° となる時間の任意の奇数 倍に設定される。
[0016] また、二項パルス列を構成する高周波磁場二項パルス間で NMR信号を取得する ための傾斜磁場を印カロした後、当該傾斜磁場により水および脂肪の磁ィ匕に生じた影 響を打ち消すための傾斜磁場が、同一の高周波磁場二項パルス間でさらに印加さ れる。
[0017] 上記目的を達成する本発明のもう一つの観点は、二項パルス法による二項パルス 列を使った脂肪抑制画像取得の撮像パルスシーケンスによる本計測に先立って、引 き続く 2つの二項パルス間で水の磁ィ匕に生じる位相回転量を実際に計測するリファレ ンス計測を加え、このリファレンス計測で計測された水磁ィ匕の実位相回転量に基づ ヽ て、本計測における第 2波以降の二項パルスの照射位相を補正し、水の磁ィ匕のフリツ プ角が正確に 90° 、脂肪の磁ィ匕のフリップ角が正確に 0° となるように照射するもの である。
[0018] さらに具体的に説明すると、上記観点の発明では、被検体が配置される撮像空間 に静磁場を印加する静磁場発生部と、撮像空間に所定の方向の傾斜磁場を印加す る傾斜磁場発生部と、被検体に高周波磁場パルスを印加する高周波磁場照射部と、 被検体からの磁気共鳴信号を受信する受信部と、傾斜磁場発生部と高周波磁場照 射部とを制御して、所定のタイミングで傾斜磁場および高周波磁場パルスを印加する 所定のパルスシーケンスを実行する制御部とを有する磁気共鳴イメージング装置に おいて、この所定の撮像パルスシーケンスは、被検体関心領域の画像再構成のため の磁気共鳴信号を取得する本計測と、本計測の前に行うリファレンス計測とを含む構 成とする。このとき本計測は単位の繰り返し時間 (TR)内に高周波磁場二項パルス列 を用いて、被検体内の水および脂肪の成分の内の水の成分の磁ィ匕を選択励起して 、その磁気共鳴信号を計測するシーケンスであり、リファレンス計測は、高周波磁場 二項パルス列のパルス間に生じる水の磁化の位相回転量を計測するシーケンスとす る。制御部は、リファレンス計測で計測した水の磁ィ匕の位相回転量に応じて、本計測 の高周波磁場二項パルス列で第 2波以降に照射する高周波磁場二項パルスの少な くとも一つの照射位相を制御する。これにより種々の要因により複雑な位相ずれ△ Θ が発生した場合であっても、第二波以降の高周波磁場二項パルスの照射位相を実 測の水の磁ィ匕の位相に合わせて照射することが可能となる。
[0019] 上記リファレンス計測のパルスシーケンスは、本計測のパルスシーケンスを変形した ものであって、まず本計測と同じ高周波磁場二項パルス列のうちの 1つの高周波磁 場二項パルスのみを印加し所定のタイミングで第 1のェコ一信号を取得した後、次に 高周波磁場二項パルス列のうち別の 1つの高周波磁場二項パルスのみを印加して 所定のタイミングで第 2のエコー信号を取得するシーケンスとする。制御部は、第 1お よび第 2のエコー信号の位相回転量をそれぞれ検出し、位相回転量差を求めること により、引き続く 2つの高周波磁場二項パルス間での水磁ィ匕の位相回転量を求める。
[0020] 上記制御部は、求めた位相回転量を用いて第 2波以降の高周波磁場二項パルス の照射位相を設定する。上記高周波磁場二項パルス列としては、水と脂肪の磁化の 歳差運動による位相差が 180° の奇数倍になる時間間隔を空けた、少なくとも 2つの 高周波磁場二項パルスを含むパルス列を用いる。
図面の簡単な説明
[0021] [図 1]本発明を実施する MRI装置の全体構成を示すブロック図である。
[図 2]図 1の MRI装置で実行される本発明の一実施例による二項パルス法による 1一 1二項パルス列を使った非脂肪抑制画像および脂肪抑制画像取得のための撮像パ ルスシーケンスを示す図である。
[図 3]図 2に示した撮像パルスシーケンスを実行した時の、水および脂肪プロトンの磁 化の斜きとエコー信号検出のタイミングを説明する図である。
[図 4]図 1の MRI装置で実行される本発明のもう一つの実施例による二項パルス法に よる 1 2— 1の二項パルス列を使った 2つの非脂肪抑制画像および 1つの脂肪抑制 画像取得のための撮像パルスシーケンスを実行した時の水および脂肪プロトンの磁 化の斜きとエコー信号検出のタイミングを説明する図である。
[図 5A.5B]図 1の MRI装置で実行される本発明のさらにもう一つの実施例による二項 パルス法による 1 1の二項パルス列を使った脂肪抑制画像取得のための撮像パル スシーケンスを示す図で、図 5Aは、図 5Bの本計測のパルスシーケンスの実行に先 立って実行されるリファレンス計測のパルスシーケンス、図 5Bはその後に実行される 本計測のパルスシーケンスである。
[図 6]図 1の MRI装置が図 5A, 5Bの撮像パルスシーケンスを実行して静磁場強度の 空間的および時間的不均一の影響を排除した脂肪抑制画像を再構成するまでのプ 口セスを説明するフローチャートである。
[0022] 以下、本発明の第一の観点に基づく実施形態について図 1〜4を用いて説明する 本実施の形態の MRI装置では、二項パルス列を用い、二項パルス列を構成する高 周波磁場 (RF)パルス間で脂肪の磁ィ匕が横磁ィ匕を持つことを利用し、まずこのパルス 間で NMR (核磁気共鳴)信号を検出することにより非脂肪抑制画像を取得するととも に、二項パルス列照射後に脂肪抑制画像を取得する。
[0023] 本実施の形態の MRI装置の全体構成を図 1を用いて説明する。この MRI装置は、 磁気共鳴現象を利用して被検体の断層像を得るもので、静磁場発生装置 1と、傾斜 磁場発生系 2と、送信系 3と、受信系 4と、信号処理系 5と、シーケンサ 6と、中央処理 装置 (CPU) 7と、操作部 8と、被検体 9を搭載するベッド 27とを備えている。
[0024] 静磁場発生装置 1は、ベッド 27に搭載された被検体 9の周りに、その体軸方向また は体軸と直交する方向に均一な静磁場を発生させる装置である。静磁場発生装置 1 としては、磁場発生源として永久磁石、常電導磁石または超電導磁石を備えるものを 用いることができる。傾斜磁場発生系 2は、直交する三軸方向の傾斜磁場 Gs, Gp、 Grを被検体 9に印加する。この傾斜磁場の加え方により、被検体 9に対するスライス 面の設定、ならびに、 NMR信号への位置情報の付加等を行う。
[0025] 送信系 3は、シーケンサ 6から送出される信号を受け取って、被検体 9の生体組織 を構成する原子の原子核に核磁気共鳴を起させるための RFパルス (ここでは RF二 項パルス)を生成し、被検体 9に対して照射するものであり、高周波発振器 12と変調 器 13と高周波増幅器 14と高周波照射コイル 15とを備えている。高周波発振器 12が 出力した高周波信号は、シーケンサ 6からの信号に応じて変調器 13で変調され、さら に高周波増幅器 14で増幅された後に被検体 9に近接して配置された高周波照射コ ィル 15に供給される。これにより、高周波照射コイル 15から RFパルスを被検体 9〖こ 照射する。
[0026] 受信系 4は、被検体 9の生体組織の原子核の核磁気共鳴により放出されるエコー 信号 (NMR信号)を検出するものであり、高周波受信コイル 16と増幅器 17と直交位 相検波器 18と AZD変翻19とを備えている。この構成により、被検体 9の核磁気共 鳴により生じたエコー信号は、被検体 9に近接して配置された高周波受信コイル 16 によって受信され、増幅器 17および直交位相検波器 18によって所望の NMR信号 が検出され、 AZD変 19でディジタル量に変換され、さらにシーケンサ 6からの 命令によるタイミングで直交位相検波器 18によりサンプリングされた-系列の収集デ ータとされる。この信号が信号処理系 5に送られる。
[0027] 信号処理系 5は、受信系 4で検出したエコー信号を用いて画像再構成演算を行い 、再構成した画像を表示する。信号処理系 5は、 CPU7と、 ROM20と、 RAM21と、 光磁気ディスク 22や磁気ディスク 24等のデータ格納部と、ディスプレイ 23とを有する 。 ROM20には、 CPU7が実行する各種のプログラムとその実行において用いる不 変のパラメータ等が予め格納されている。 CPU7は、 ROM20に格納されているプロ グラムを読み込んでそれを実行することにより、受信系 4で得たエコー信号について フーリエ変換、補正係数計算、画像再構成演算等の処理を行い、得られた断層像等 をディスプレイ 23に表示させる。また、プログラムに従って経時的な画像解析処理等 も行う。 RAM21は、計測に使う計測パラメータや受信系 4で検出したエコー信号、お よび関心領域設定に用いる画像を一時保管する。光磁気ディスク 22や磁気ディスク 24には、 CPU7が再構成した断層像等を記録する。
[0028] さらに、 CPU7は、 ROM20に格納されている撮像用プログラムを実行することによ り、シーケンサ 6を制御し、所定のパルスシーケンスで撮像 (計測)を実行させる。シー ケンサ 6は、パルスシーケンスに従って、送信系 3の変調器 13、傾斜磁場電源 11お よび受信系 4の AZD変換器 19にそれぞれ制御信号を出力することにより、 RFパル スおよび傾斜磁場パルスを被検体 9の所定の領域に所定のタイミングで印加し、被検 体 9の関心領域の生体組織を構成する原子の原子核に核磁気共鳴によるエコー信 号を生じさせ、所定のタイミングでこれを検出する。
[0029] 操作部 8は、信号処理系 5で行う処理の制御情報ならびに計測条件等をユーザが 入力するもので、マウス 25およびキーボード 26を含む。
[0030] 次に、本実施の形態のパルスシーケンスについて図 2に示す。このパルスシーケン スでは、二項パルス列を構成する RF二項パルス間、ならびに、二項パルス列の照射 後にエコー信号取得用傾斜磁場パルス列を印加することにより、脂肪の磁ィヒの寄与 率の異なる複数種の NMR信号 (ここでは 2種の)を検出する。
[0031] 本実施の形態のパルスシーケンスでは、図 2に示したように、 2波(RFパルス 101, 114)の二項パルス列を用いている。 RFパルス 101、 104は、いずれも核磁化を 45 ° 傾斜させるように時間と振幅の積が設定されている。また、 RFパルス 101と RFパ ルス 114の時間間隔ては、脂肪プロトンと水プロトンの磁ィ匕の歳差運動による位相差 力 S180° となるような間隔に設定されている。この二項パルス列を用いたパルスシー ケンスの原理を図 3を用いて簡単に説明する。第 1の RFパルス 101の照射により、水 プロトンと脂肪プロトンの磁ィ匕は、図 3に示したように同じ傾斜角(45° )に傾く。この 状態の横磁ィ匕を利用してエコー信号取得用傾斜磁場パルス列を印加することにより 第 1エコー 107を検出する。第 2の RFパルス 114の照射後には、脂肪プロトンの磁化 は横磁ィ匕がなくなるのに対し、水プロトンの磁ィ匕は所定の角度まで、即ちフリップ角 9 0° まで、倒されるので、この状態で第 2エコー 120を検出する。第 1エコー 107から は水力 の信号と脂肪力 の信号とが同程度に寄与した画像を、第 2エコー 120から は脂肪抑制画像をそれぞれ得ることができる。このように、 1つのパルスシーケンスで 、一度に脂肪信号の寄与率の異なる 2つの画像を同時に得ることができる。
[0032] 以下、本実施の形態の図 2のパルスシーケンスを詳しく説明する。まず、第 1の RF パルス 101を高周波照射コイル 15から照射する。このとき、スライス方向の傾斜磁場 パルス(Gs) 102を同時に印加し、スライスを選択する。これにより、選択したスライス の水プロトンと脂肪プロトンの磁化が、図 3に示したように 45° 傾けられる。この状態 では、水と脂肪の磁ィ匕が同じ角度に傾斜しているため、水と脂肪の横磁化成分が同 じ割合で生じている。そこで、図 2に示したように傾斜磁場パルス列を印加し、両成分 の横磁化からのエコー信号 107を得る。ここでは、エコー信号取得用傾斜磁場パル ス列として、グラディエントエコー(GE)シーケンスを用いている。
[0033] 即ち、エコー信号取得用傾斜磁場パルス列は、スライス選択傾斜磁場パルス 102 によって分散した磁ィ匕を収束するためのスライス方向のリフェーズ用傾斜磁場 (Gs) 1 03、位相エンコード方向のオフセット傾斜磁場パルス(Gp) 104、読み出し方向のォ フセット傾斜時場パルス (Gr) 105を印加した後、読み出し傾斜磁場パルス 106を印 加する。読み出し傾斜磁場パルス 106の印加中に発生する第 1エコー信号 107を受 信系 4で受信し、 AZD変換器 19により時間範囲 108の間サンプリングする。なお、 図 2では、リフエーズ用傾斜磁場パルス 103、オフセット傾斜磁場パルス 104、オフセ ット傾斜磁場パルス 105をタイミングをずらして印加している力 同時に印加してもよ い。
[0034] エコー信号 107の受信後、読み出し傾斜磁場パルス 106で分散した磁化を収束す るための読み出し方向リフェーズ傾斜磁場パルス 110、位相エンコード傾斜磁場パ ルス 104に対するリワインド傾斜磁場パルス 109、次のスライス選択傾斜磁場パルス 115のためのスライス方向のディフェーズ傾斜磁場パルス 111を印加する。これらの 傾斜磁場パルスは、 RFパルス 101、 114間に加えられるすべての傾斜磁場パルスの 時間と強度との積の和が三方向についてそれぞれ 0になるようにパルスの時間と強度 が設定されている。これにより、第 2の RFノ ルス 114を印加する前に、磁化がリフエ一 ズされた状態を作ることができる。なお、傾斜磁場パルス 109、 110、 111は同時に 印カロしてちょい。 [0035] 第 1の RFパルス 101を印加してから、時間 τが経過するタイミングで第 2の RFパル ス 114を印加する。時間ては、従来の二項パルス法と同様に、水プロトンの磁ィ匕と脂 肪プロトンの磁化が歳差運動周波数の差により、位相差が 180° となる時間てに設 定されている。すなわち、水プロトンと脂肪プロトンの磁ィ匕の歳差運動周波数の差 (ケ ミカルシフト)を δ (Hz)とすると、 τは以下のように設定されている。
τ (2. δ ) (η=任意の奇数)
[0036] ηは、パルスシーケンス全体の時間を短縮するためにできるだけ小さ 、奇数 (η= 1) となるように設定する。ただし、時間ては、静磁場発生装置 1が形成する静磁場の強 度が大きくなるとそれに伴い短くなるため、時間ての間にエコー信号取得用傾斜磁 場パルス列(傾斜磁場パルス 103〜106, 109〜111)を実行する時間が確保できる ように、静磁場強度に応じて η= 3、 5 · ·のように任意の奇数に設定する。
[0037] 第 2の RFパルス 114の印加と同時に、スライス選択傾斜磁場パルス 115を印加す る。これにより、図 3に示したように水プロトンの磁化は 90° のフリップ角まで倒され、 脂肪プロトンの磁ィ匕はフリップ角 0° となる。よって、脂肪プロトンの横磁ィ匕はなくなる 。この状態で、エコー信号取得用傾斜磁場パルス列を印加し水プロトンの磁ィ匕のみ のエコー信号 120を検出する。具体的には、スライス選択傾斜磁場パルス 115によつ て分散した磁ィ匕を収束するためのスライス方向のリフエーズ傾斜磁場パルス 116、位 相エンコード方向オフセット傾斜磁場パルス 117、読み出し方向のオフセット傾斜磁 場パルス 118を印加した後、読み出し傾斜磁場パルス 119を印加する。読み出し傾 斜磁場パルス 119の印加中に発生する第 2のエコー信号 120を、受信系 4で受信し 、 AZD変換器 19で時間範囲 121の間サンプリングする。これにより、脂肪プロトンの 磁化が抑制され、水プロトンの磁化のみのエコー信号 120を取得することができる。
[0038] この後、位相エンコード傾斜磁場パルス 117に対するリワインド傾斜磁場パルス 12 2、読み出し方向に磁ィ匕を分散させるスポイル傾斜磁場パルス 123、スライス方向に 磁ィ匕を分散させるスポイル傾斜磁場パルス 124を印加する。これにより、先の第 1の R Fパルス 101を印加する前と同様の、磁化がリフエーズさえた状態を作ることができる
[0039] なお、傾斜磁場パルス 116、 117、 118も、先と同様に同時に印加してもよい。また 、傾斜磁場パルス 122, 123, 124も先と同様に同時に印加してもよい。
[0040] 上記ノ ルスシーケンスを繰り返し単位 (TR)毎に位相エンコード方向オフセット傾斜 磁場パルスの強度を変化させながら、 1スライスの画像再構成に必要なデータ数が得 られるまで、例えば、 256回、繰り返す。 CPU7は、所定数のエコー信号 107とエコー 信号 120からそれぞれ合わせて 2つの画像を再構成する。これにより、エコー信号 10 7から水成分と脂肪成分とが混合された画像を、エコー信号 120から脂肪抑制画像 を得る。 CPU7は、得られた 2種類の画像をディスプレイ 23に表示させる。表示方法 は、ユーザが 2種類の画像を比較して脂肪組織を判別し、正確に脂肪抑制画像が読 影できるように行う。例えば、 2種類の画像を並列に表示する方法や、 2種類の画像 間で信号強度 (濃淡)に差異のある画素を画像処理により抽出することにより、まず脂 肪組織を抽出して表示する等、所望の方法をとることができる。これにより、ユーザは 、脂肪組織を容易に判別することができると共に正確に脂肪抑制画像を読影すること ができる。
[0041] このように本実施の形態の MRI装置では、従来の二項パルス法を使った脂肪抑制 画像取得のパルスシーケンスとほぼ同じ計測時間で、脂肪抑制画像のみならず、脂 肪成分と水成分とが混合された画像を同時に得ることができる。
[0042] 本実施の形態のパルスシーケンスでは、 1つのパルスシーケンス内で脂肪寄与率 の異なる 2種類のェコ一信号を一度に取得することができるため、二項パルス法によ るパルスシーケンスにより脂肪抑制画像を取得した後、更めて通常のパルスシーケン スを使って非脂肪抑制画像を取得して 、た従来の方法と比べて、撮像時間を約半分 に短縮することができる。し力も、 2種類のエコー信号を同一ノルスシーケンス内に得 ることが出来るため、脂肪寄与率以外の、被検体の体動等の経時変化による差異が 生じにくい。よって、両画像力も脂肪成分の有無のみを精度よく判別することができ、 検査精度を向上させることができるという効果が得られる。
[0043] なお、図 2のパルスシーケンスにおいて、エコー信号取得用傾斜磁場パルス列を 3 次元(3D)撮像にすることも出来る。その場合には、図 2に破線で示したように、スライ ス方向にスライスエンコード傾斜磁場パルス 112、 125とそれに対するリワインド傾斜 磁場パルス 113、 126を追力!]し、スライス方向のスポイル傾斜磁場パルス 124はこの 場合には印加しない。これにより、脂肪寄与率の異なる 2種類の画像の 3D撮像を実 現できる。なお、スライスエンコード傾斜磁場パルス 112は、スライス方向リフエーズ傾 斜磁場パルス 116と重畳して印加してもょ 、。
[0044] 上述の実施の形態では、 2波の二項パルス列を用いている力 3波以上のニ項パ ルス列を用いることも出来る。この場合、各ノ ルス間でそれぞれエコー信号取得用傾 斜磁場パルス列を印加することにより、脂肪寄与率の異なる 3種以上の画像を得るこ とができる。図 4に二項パルス列として 1— 2— 1パルスを用いた場合を示す。第 1パ ルス 401と第 3ノ レス 403は、フリップ角 22. 5。 の RF二項パルスであり、第 2パルス 402はフリップ角 45° の RF二項パルスである。各パルス間隔(時間て )は、上述の 実施の形態と同様に、脂肪と水のプロトンの磁ィ匕の位相差が 180° になるように設定 されている。これら各パルス間にそれぞれ図 2に示したエコー信号取得傾斜磁場パ ルス列 103〜106を印加し、図 4に示したようにそれぞれ第 1および第 2エコー信号 4 04、 405を検出する。その後、図 2の傾斜磁場パルス 109、 110、 111を印カロし、磁 化をリフエーズする。また、第 3パルス 403の後に図 2のエコー信号取得用傾斜磁場 パルス列 116〜119を印加し、第 3エコー信号 406を検出する。その後、リワインド傾 斜磁場 122、スポイル用傾斜磁場パルス 123、 124を印加し、磁ィ匕を分散させる。こ れにより、第 1および第 2エコー信号により、脂肪成分と水成分の寄与率がそれぞれ 異なる 2種類の画像を得ることができる。第 3エコー信号により、脂肪抑制画像を得る ことができる。よって、水'脂肪の磁化の寄与率の異なる 3種類の画像を 1度の撮像で 同時に取得することが出来る。
[0045] このように 3波以上の複数パルスカゝらなる二項パルス列であっても、同様な撮像を おこなうことにより、水'脂肪の磁ィ匕の寄与率の異なる 3種以上の画像を一度の撮像 で同時に得ることができるため、それらを比較することにより脂肪組織の判別が容易 になる。なお、 3以上のパルス力もなる二項パルス列を用いる場合、必ずしも複数の パルス間の全てにおいてエコー信号取得用傾斜磁場パルス列を印加しなければな らないわけではなぐ複数のパルス間のうちの少なくとも 1回と、二項パルス列照射後 にエコー信号取得用傾斜磁場パルス列の印加を実行する構成にすればょ 、。これ により、少なくとも 1種類の脂肪 ·水成分混合画像と、脂肪抑制画像とが得られる。 [0046] また、本実施の形態では、二項パルス列は脂肪を抑制するように印加した力 これ に限られるものではなく水を抑制し脂肪画像を得るように印加することも可能である。
[0047] 以下、本発明の第二の観点に基づく実施形態について、図 1、 5A、 5B、 6を用い て説明する。
[0048] 本実施の形態の MRI装置では、その撮像パルスシーケンスとして図 5Aに示すリフ アレンス計測および図 5Bに示す本計測を含み、本計測に先立ってリファレンス計測 を行うことによって、それぞれの二項パルス照射力 エコー信号検出までの水の磁ィ匕 の位相回転量を実際に計測し、静磁場の空間的および時間的変動による位相ずれ 量を求める。本計測は、 2波の二項パルス列(1— 1)によって水の磁化の選択励起と 脂肪の磁ィ匕の抑制を行った後、グラディエントエコー法 (GE)により画像再構成のた めの磁気共鳴信号を取得するパルスシーケンスであり、この本計測時に先のリファレ ンス計測で求めた位相回転量に基づいて第 2波以降の二項パルスの照射位相を決 定する。なお、本計測における画像再構成のための磁気共鳴信号を取得する撮像 方法としては、グラディエントエコー法に限らず所望の方法、例えば、スピンエコー法 (SE)、を用いることができる。
[0049] リファレンス計測による水磁ィ匕の位相の測定を図 5Aを用いて説明する。図 5Aには 、 2波の二項パルス列(1 1パルス)により水の磁ィ匕を選択励起する撮像シーケンス のリファレンス計測を示す。図 5Aに示すようにリファレンス計測は、第 1リファレンス計 測区間 510と第 2リファレンス計測区間 520とを含み、第 1および第 2リファレンス計測 区間 510、 520ではそれぞれ、本計測と同様のパルスシーケンスを繰り返す。ただし 、第 1リファレンス計測区間 510では 1—1パルスのうちの第 1波 101の高周波磁場パ ルスのみを照射し、第 2波 114は照射せず、エコー信号 (磁気共鳴信号) 511を取得 する。第 2リファレンス計測区間 520では、第 1波 101は照射せず、第 2波 114のみを 照射し、エコー信号 521を取得する。高周波磁場パルス以外の傾斜磁場パルス (Gs , Gr) 102、 103、 115、 116、 118, 119、 123の印カロタイミングおよびエコー信号 5 11、 521の取得タイミングは、本計測と同じにする。
[0050] 第 1リファレンス計測区間 510で取得されるエコー信号 511の位相は、第 1波 101か らエコー信号取得までの水の磁ィ匕の位相回転量 0 1を示しており、第 2リファレンス計 測区間 520で取得されるエコー信号 520の位相は、第 2波 114からエコー信号取得 までの水の磁化の位相回転量 Θ 2を示している。よって、位相回転量 0 1と 0 2との 差を取ることにより、第 1波 101から第 2波 102までの水の磁ィ匕の実際の位相回転量( θ 1 - Θ 2)を実測することができる。
[0051] 実測した磁ィ匕の位相回転量( 0 — 0 )には、下式(3)で求まる理論上の位相回転
2 1
量△ 0に、静磁場強度の時間的変動による位相ずれを加算した位相となる。そのた め、リファレンス計測によって求めた位相回転量を基に第 2波以降の照射位相を設定 することで、位相ずれを吸収することができる。
Δ θ = ( γ Χ Βο Χ τ ) · · · (3)
[0052] 次に、以上のリファレンス計測に引き続いて実行される本計測シーケンスの内容に ついて説明する。本計測シーケンスは、図 5Βに示したようにそれぞれの磁ィ匕を 45° 傾斜させる高周波磁場パルスである第 1波 101および第 2波 114を予め定めた時間 τの間隔で印加する。この時間 τは、先に説明したように水の磁化と脂肪の磁ィ匕の 歳差運動による回転位相差を 180° にするために、設定されている。
[0053] 第 1波 101の照射と同時にスライス選択傾斜磁場パルス 102を印加することにより、 所定のスライスを選択し、当該スライスの水の磁ィ匕および脂肪の磁ィ匕をフリップ角 45 ° に傾斜させる。つぎに、スライス選択傾斜磁場 102の印加によって分散した磁ィ匕を 、第 2波 114の印加タイミングで再度収束させるためのスライス方向(Gs)リフエーズ傾 斜磁場パルス 103を印加する。そして、上記時間 τが経過して水の磁化と脂肪の磁 化の位相差が 180° になったタイミングで第 2波 114を照射すると共にスライス選択 傾斜磁場 115を印加することにより、水の磁化のフリップ角を 90° 傾斜させ、脂肪の 磁ィ匕のフリップ角を 0° にする。なお、第 2波 114の照射位相 Θ eは第一波の照射位
2
相 Θ eに対して、リファレンス計測にて求めた磁ィ匕の位相回転量( Θ Θ )だけ位相
1 2 1 をずらした位相 θ β = θ β + ( θ — Θ )を設定することで、位相ずれを補正する。
2 1 2 1
[0054] 即ち、求めた位相ずれ量△ Θに対応させて第 2波 114の照射位相を補正すること により、静磁場強度の空間的不均一性および時間的変動による位相ずれが生じてい る場合であっても、水の磁ィ匕の位相に一致した照射位相の高周波磁場パルス (第 2 波 114)により水の磁ィ匕のフリップ角を正確に 90° 傾斜させて選択できるとともに、脂 肪の磁化のフリップ角を 0° にして抑制することができる。
[0055] その後、第 2のリフエーズ傾斜磁場パルス 116をスライス方向(Gs)に印加する。こ れと同時、もしくは遅れて読み出し方向(Gr)のディフェーズ傾斜磁場パルス 118お よび位相方向(Gp)のエンコード用傾斜磁場パルス 117を印加した後、読み出し方 向(Gr)傾斜磁場パルス 119を印加して磁ィ匕を収束させ、発生するエコー信号 120を 時間範囲 121の間サンプリングする。その後、位相方向のリワインド用傾斜磁場パル ス 122と読み出し方向のスポイル傾斜磁場 123とを印加する。 3D計測を行う場合に はさらにスライス方向のエンコード用傾斜磁場パルス 123とリワインド用傾斜磁場パル ス 126とを印加する。本計測では、このシーケンスを位相エンコード用傾斜磁場パル ス 117 (スライス方向エンコード用傾斜磁場パルス 125の強度)を変化させながら、例 えば、 256回、繰り返し行い、画像再構成に必要なデータ数のエコーィ信号を取得 する。
[0056] 次に、図 5A、 5Bを参照して説明したリファレンス計測および本計測を含む撮像パ ルスシーケンスおよび本計測で取得したエコー信号力 脂肪が抑制された画像の再 構成されるまでの CPU7によって実行される流れを図 6のフローチャートで説明する。
[0057] CPU7は、図 5A、 5Bのようにリファレンス計測と本計測を連続して実行させる力 リ ファレンス計測の第 1および第 2リファレンス計測区間 510、 520でエコー信号 511、 521が取得された時点で、それぞれの位相 θ 1, Θ 2を検出する。(ステップ 601, 60 2)。検出した 0 、 Θ を基に第 1波と第 2波の間の位相回転量(Θ — Θ )を求める。
1 2 2 1
[0058] 上記位相回転量と第 1波の照射位相 Θ eを基にして第 2波の照射位相 0 eを 0 e =
1 2 2
Θ Θ + ( Θ — θ )のように設定する (ステップ 604)。設定した照射位相 Θ eの第 2波 1
1 2 1 2
14により、本計測を、例えば、 256回繰り返し実行し、所定数のエコー信号を取得す る (ステップ 605)。取得したエコー信号力も被検体の関心領域の脂肪が抑制された 断層像等を再構成する (ステップ 606)。
[0059] 上述してきた本実施の形態の MRI装置では、静磁場強度の空間的および時間的 不均一による水の磁ィヒの位相ずれを考慮して第 2波以降の二項パルスの照射位相 を水の磁化の位相に一致させることができるため、水の磁化のフリップ角を 90° 傾斜 させて励起できるとともに、脂肪の磁ィ匕のフリップを 0° に抑制することができる。よつ て、十分に脂肪信号が抑制された画像を取得することができる。
[0060] なお、本実施の形態では 2波の二項パルス(1 1パルス)列を用いる場合につ!ヽて 説明したが、 3波以上の二項パルス列についても適用することができる。その場合、 二項パルスの照射回数分のリファレンス計測を行 、、照射回数分のエコー信号を取 得して、上述の実施の形態と同様に本計測の二項パルスの照射位相を設定してもよ いが、リファレンス計測は図 5Aのシーケンス同様に 2回とし、得られた△ Θから本計 測の二項パルス列の第 2波以降の照射位相を計算により設定することもできる。この ようにリファレンス計測を 2回とすることにより、リファレンス計測全体を短時間で終了さ せることができる。
[0061] なお、上述してきた実施の形態では、水の磁化を選択励起し、脂肪磁化を抑制す る場合について説明した力 この組み合わせに限らず、二項パルス列による種々の 組織成分の選択励起 (抑制)に本発明を適用することができる。

Claims

請求の範囲
[1] 被検体が配置される撮像空間に静磁場を印加する静磁場発生部と、前記撮像空間 に所定の方向の傾斜磁場を印加する傾斜磁場発生部と、前記被検体に高周波磁場 パルスを印加する高周波磁場照射部と、前記被検体からの NMR信号を受信する受 信部と、前記傾斜磁場発生部と前記高周波磁場照射部とを制御して、所定のタイミン グで前記傾斜磁場および前記高周波磁場パルスを前記被検体に印加する所定の撮 像パルスシーケンスを実行する制御部を有した磁場共鳴イメージング装置において 前記制御による制御により、前記所定の撮像パルスシーケンスの単位の繰り返し時 間 (TR)内に、前記被検体内組織の少なくとも 2つの成分の励起角度を異ならせるた めの高周波磁場二項パルス列を前記高周波磁場照射部により印加し、前記ニ項パ ルス列を構成する高周波磁場二項パルス間のうち少なくとも 1回、ならびに、前記二 項パルス列の照射後に、それぞれ前記傾斜磁場発生部により前記傾斜磁場を印加 して少なくとも 2種の NMR信号を前記受信部により取得し、取得した 2種以上の NM R信号に基づいて所定成分の磁化の寄与率の異なる少なくとも 2種の画像を生成す るための手段が備えられていることを特徴とする磁気共鳴イメージング装置。
[2] 前記制御部は、前記所定の撮像パルスシーケンスを実行して、水プロトンの磁化と脂 肪プロトンの磁ィ匕の寄与率の異なる少なくとも 2種の NMR信号を生じさせることを特 徴とする請求の範囲第 1項に記載の磁気共鳴イメージング装置。
[3] 前記制御部は、前記所定の撮像パルスシーケンスの実行に際して、前記二項パルス 列を構成する前記高周波磁場パルスのパルス間隔を、水プロトンの磁化と脂肪プロト ンの磁ィ匕の歳差運動による位相差が 180° となる最小時間の任意の奇数倍に設定 することを特徴とする請求の範囲第 2項に記載の磁気共鳴イメージング装置。
[4] 前記所定の撮像パルスシーケンスの実行は、前記二項パルス列を構成する高周波 磁場二項パルスの印加後、前記 NMR信号を取得するための第 1の傾斜磁場を印加 し、前記 NMR信号を取得した後で次の高周波磁場パルスを印加する前に前記第 1 の傾斜磁場により前記非検体内組織成分の磁ィヒに生じた影響を打ち消すための第 2の傾斜磁場を印加することにより行われることを特徴とする請求項 1〜3項のいずれ かに記載の磁気共鳴イメージング装置。
[5] 被検体が配置される撮像空間に静磁場を印加する静磁場発生部と、前記撮像空間 に所定の方向の傾斜磁場を印加する傾斜磁場発生部と、前記被検体に高周波磁場 パルスを印加する高周波磁場照射部を、前記被検体からの磁気共鳴信号を受信す る受信部と、前記傾斜磁場発生部と前記高周波磁場照射部とを制御して、所定のタ イミングで前記傾斜磁場および前記高周波磁場パルスを前記被検体に印加する所 定の撮像パルスシーケンスを実行する制御部とを有し、
前記所定の撮像パルスシーケンスは、画像再構成のための磁気共鳴信号を取得 する本計測と、本計測の前に行うリファレンス計測とを含み、前記本計測は、単位の 繰り返し時間 (TR)内に高周波磁場二項パルス列を用いて、前記被検体内組織の複 数の成分の内の所望の成分の磁ィヒを前記高周波磁場照射部により選択励起して、 その磁気共鳴信号を前記受信部により計測するシーケンスであり、前記リファレンス 計測は、前記高周波磁場二項パルス列のパルス間に生じる所望成分の磁化の位相 回転量を計測するシーケンスであり、
前記制御部は、前記リファレンス計測で計測した所望成分の磁ィ匕の位相回転量に 応じて、前記本計測の前記高周波磁場二項パルス列で第 2波以降で前記高周波磁 場照射部により照射する高周波磁場二項パルスの少なくとも一つの照射位相を制御 することを特徴とする磁気共鳴イメージング装置。
[6] 前記リファレンス計測のパルスシーケンスは、前記本計測のパルスシーケンスの変形 であって、前記本計測と同じ高周波磁場二項パルス列のうちの第 1の高周波磁場二 項パルスのみを印加し所定のタイミングで第 1のェコ一信号を取得した後、次に前記 高周波磁場二項パルス列のうち第 1の高周波磁場二項パルスより後に印加される第 2の高周波磁場二項パルスのみを印加して所定のタイミングで第 2のエコー信号を取 得するシーケンスを含み、前記制御部は、前記第 1および第 2のエコー信号の位相 回転量をそれぞれ検出し、位相回転量差を求めることにより、引き続く 2つの高周波 磁場二項パルス間での所望成分の磁ィ匕の位相回転量を求めることを特徴とする請 求の範囲第 5項に記載の磁気共鳴イメージング装置。
[7] 前記制御部は、前記リファレンス計測で求めた位相回転量分だけ、前記第 1の高周 波磁場二項パルスの照射位相をずらして、前記第 2の高周波磁場二項パルスを照射 する際の照射位相とすることを特徴とする請求項 6記載の磁気共鳴イメージング装置
[8] 前記高周波磁場二項パルス列は、水と脂肪のプロトンの磁ィ匕の歳差運動による位相 差が 180° の奇数倍になる時間間隔を空けた少なくとも 2つの高周波磁場二項パル スを有することを特徴とする請求の範囲第 5〜7項のいずれかに記載の磁気共鳴ィメ 一ジング装置。
[9] 二項パルス法による二項パルス列を使った被検体の関心領域の脂肪抑制画像を取 得するための撮像パルスシーケンスを有する磁気共鳴イメージング装置において、 前記撮像パルスシーケンスは繰り返される単位撮像パルスシーケンス力も構成され、 前記各単位撮像パルスシーケンスはその最後の二項パルスの照射後脂肪抑制画像 を再構成するための脂肪の磁ィ匕の信号成分が抑制されたエコー信号を取得するた めの傾斜磁場パルス列に加えて先行する二項パルス間で非脂肪抑制画像を再構成 するための脂肪の磁化と水の磁ィ匕による信号成分の寄与度が同等のエコー信号を 取得するための傾斜磁場パルス列を有することを特徴とする磁気共鳴イメージング装 置。
[10] 二項パルス法による二項パルス列を使った被検体の関心領域の脂肪抑制画像を取 得するための撮像パルスシーケンスを有する磁気共鳴イメージング装置において、 前記撮像パルスシーケンスは、二項パルス法による二項パルス列を使った脂肪抑制 画像を取得するための本計測に先立って実行される本計測の各単位撮像パルスシ 一ケンスで引き続 ヽて照射される二項パルス間で生じる水の磁ィ匕の位相回転量を実 測するための本計測単位撮像パルスシーケンスを変形したリファレンス計測を有し、 本計測の各単位撮像パルスシーケンスではリファレンス計測で実測された水の磁ィ匕 の位相回転量に合わせて各単位撮像パルスシーケンスの第 2波以降の二項パルス の照射位相が調整されることを特徴とする磁気共鳴イメージング装置。
[11] 前記リファレンス計測は前記単位撮像パルスシーケンス中の第 2波の二項パルスの 照射を省略した第 1のリファレンス計測と、前記単位撮像パルスシーケンス中の第 1 波の二項パルスの照射を省略した第 2のリファレンス計測を有することを特徴とする請 求の範囲第 10項に記載の磁気共鳴イメージング装置。
[12] エコー信号を取得するための前記単位撮像パルスシーケンスはグラジェントエコー 法あるいはスピンエコー法によるパルスシーケンスであることを特徴とする請求の範 囲第 9〜: L 1項のいずれかに記載の磁気共鳴イメージング装置。
[13] 前記撮像パルスシーケンスを実行することにより 2Dまたは 3Dの脂肪抑制画像を再 構成することが出来るエコー信号が取得されることを特徴とする請求の範囲第 9〜11 項の 、ずれかに記載の磁気共鳴イメージング装置。
PCT/JP2005/019213 2004-10-29 2005-10-19 磁気共鳴イメージング装置 WO2006046450A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006543039A JP5004588B2 (ja) 2004-10-29 2005-10-19 磁気共鳴イメージング装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004315881 2004-10-29
JP2004-315881 2004-10-29
JP2005-085202 2005-03-24
JP2005085202 2005-03-24

Publications (1)

Publication Number Publication Date
WO2006046450A1 true WO2006046450A1 (ja) 2006-05-04

Family

ID=36227692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019213 WO2006046450A1 (ja) 2004-10-29 2005-10-19 磁気共鳴イメージング装置

Country Status (2)

Country Link
JP (1) JP5004588B2 (ja)
WO (1) WO2006046450A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018079A (ja) * 2007-07-13 2009-01-29 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2010162096A (ja) * 2009-01-14 2010-07-29 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2012196432A (ja) * 2011-03-22 2012-10-18 Toshiba Corp 磁気共鳴イメージングシステム及び方法
JP2016120128A (ja) * 2014-12-25 2016-07-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103421A (ja) * 1995-08-18 1997-04-22 Siemens Medical Syst Inc マルチスライスmr検査を実施する方法
JPH10211186A (ja) * 1997-01-29 1998-08-11 Hitachi Medical Corp 磁気共鳴イメージング方法及び装置
US6583623B1 (en) * 2000-03-31 2003-06-24 University Of Rochester Interleaved water and fat dual-echo spin echo magnetic resonance imaging with intrinsic chemical shift elimination
US6794867B1 (en) * 2003-06-13 2004-09-21 Wisconsin Alumni Research Foundation Isotropic imaging of vessels with fat suppression

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9666598A (en) * 1997-09-26 1999-04-12 Case Western Reserve University Magnetic resonance imaging (mri) optimized chemical-shift excitation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09103421A (ja) * 1995-08-18 1997-04-22 Siemens Medical Syst Inc マルチスライスmr検査を実施する方法
JPH10211186A (ja) * 1997-01-29 1998-08-11 Hitachi Medical Corp 磁気共鳴イメージング方法及び装置
US6583623B1 (en) * 2000-03-31 2003-06-24 University Of Rochester Interleaved water and fat dual-echo spin echo magnetic resonance imaging with intrinsic chemical shift elimination
US6794867B1 (en) * 2003-06-13 2004-09-21 Wisconsin Alumni Research Foundation Isotropic imaging of vessels with fat suppression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KWOK WE ET AL: "Simultaneous Water and Fat MRI with Chemical-shift Correction.", PROCEEDINGS OF THE IEEE 22ND ANNUAL EMBS INTERNATIONAL CONFERENCE., July 2000 (2000-07-01), pages 3114 - 3117, XP010531303 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018079A (ja) * 2007-07-13 2009-01-29 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2010162096A (ja) * 2009-01-14 2010-07-29 Hitachi Medical Corp 磁気共鳴イメージング装置
JP2012196432A (ja) * 2011-03-22 2012-10-18 Toshiba Corp 磁気共鳴イメージングシステム及び方法
JP2016120128A (ja) * 2014-12-25 2016-07-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 磁気共鳴装置およびプログラム

Also Published As

Publication number Publication date
JPWO2006046450A1 (ja) 2008-05-22
JP5004588B2 (ja) 2012-08-22

Similar Documents

Publication Publication Date Title
US9588205B2 (en) Simultaneous and dynamic determination of longitudinal and transversal relaxation times of a nuclear spin system
JP6255005B2 (ja) Aptコントラスト向上および複数エコー時間におけるサンプリングを用いたmr撮像
US9977108B2 (en) Metal resistant MR imaging reference scan
US8754645B2 (en) Method for spatially resolved determination of an MR parameter
JP6581584B2 (ja) 水/脂肪分離を用いた位相感応型反転回復mri
US10247798B2 (en) Simultaneous multi-slice MRI measurement
US10222437B2 (en) MR imaging with temperature mapping
WO2000032107A1 (fr) Dispositif de diagnostic par imagerie a resonance magnetique
JP2017530761A (ja) ゼロエコー時間mrイメージング
JPH1133012A (ja) 磁気共鳴イメージング装置及び撮像方法
US8148980B2 (en) Magnetic resonance imaging system and method
JPWO2006040866A1 (ja) 磁気共鳴撮影装置及び磁気共鳴撮影方法
JP2014008173A (ja) 磁気共鳴イメージング装置及び分離画像撮像方法
US10866296B2 (en) Magnetic resonance imaging apparatus and calculation image generation method using pulse sequence
WO2002013692A1 (fr) Appareil d'imagerie par resonance magnetique
JP5004588B2 (ja) 磁気共鳴イメージング装置
JP5564213B2 (ja) 磁気共鳴イメージング装置
JP5508165B2 (ja) 磁気共鳴イメージング装置及びt2マップ取得方法
US10182739B2 (en) Magnetic resonance imaging system and method for generating conductivity distribution image using magnetic resonance electrical impedance tomography
EP4239357A1 (en) Diffusion mapping by mr fingerprinting
JPH0245448B2 (ja)
JP2695594B2 (ja) Mri装置
JP2023021768A (ja) 磁気共鳴イメージング装置およびその制御方法
JPH0470013B2 (ja)
JPS60166852A (ja) Nmr画像装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006543039

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795458

Country of ref document: EP

Kind code of ref document: A1