WO2006045875A1 - Material electroluminiscente que comprende un sólido microporoso o mesoporoso conteniendo compuestos orgánicos covalentemente enlazados que confieren propiedades electroluminiscentes - Google Patents

Material electroluminiscente que comprende un sólido microporoso o mesoporoso conteniendo compuestos orgánicos covalentemente enlazados que confieren propiedades electroluminiscentes Download PDF

Info

Publication number
WO2006045875A1
WO2006045875A1 PCT/ES2005/070148 ES2005070148W WO2006045875A1 WO 2006045875 A1 WO2006045875 A1 WO 2006045875A1 ES 2005070148 W ES2005070148 W ES 2005070148W WO 2006045875 A1 WO2006045875 A1 WO 2006045875A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroluminescent
hybrid material
material according
aromatic hydrocarbon
microporous
Prior art date
Application number
PCT/ES2005/070148
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Hermenegildo GARCÍA GÓMEZ
Mercedes Alvaro Rodriguez
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Priority to EP05799740A priority Critical patent/EP1840181A4/en
Priority to US11/665,802 priority patent/US20080203359A1/en
Priority to JP2007537316A priority patent/JP2008517133A/ja
Publication of WO2006045875A1 publication Critical patent/WO2006045875A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/101Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing an anthracene dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention encompasses in the technical field of porous micro- and meso solids such as zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates, combined with organic compounds or metal complexes, such as condensed polycyclic aromatic compounds, and particularly those aromatic compounds that confer electro-luminescent properties.
  • porous micro- and meso solids such as zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates, combined with organic compounds or metal complexes, such as condensed polycyclic aromatic compounds, and particularly those aromatic compounds that confer electro-luminescent properties.
  • Electroluminescence is a property consisting of the emission of light when it is subjected to a compound, or more commonly a series of properly arranged compounds, located between two electrodes, at a potential difference. Electroluminescence is a physical phenomenon that arises when a recombination of an electron and a positive charge occurs in a molecule. The latter is known as an electronic hole. The recombination of an electron and a hole produces an excited electronic state of the molecule, which relaxes to the fundamental electronic state by emitting a photon (equation 1).
  • the positive electrode abstracts electrons from the material in contact and produces positive holes that migrate to the negative electrode.
  • the negative electrode injects electrons into the material that is in contact with it and produces electrons. These migrate to the positive electrode.
  • it is common in the state of the art related to electroluminescent cells to place in contact with the electrodes films of thickness of the order of microns of suitable materials that accept holes or electrons. Between these films a layer of an intermediate electroluminescent material is placed between the injector layer of holes and the electron injector that is where the collapse of holes and electrons occurs and where recombination occurs.
  • One of the electrodes is a transparent electrode that allows the light generated in the phenomenon of electroluminescence to be visible from outside the cell.
  • the electroluminescent materials there are organic compounds.
  • organic compounds have the advantage over inorganics of a greater ease of synthesis and purification as well as the possibility of easily modifying the emission wavelength by introducing appropriate substituents.
  • polycyclic aromatic compounds exhibit the phenomenon of electroluminescence
  • electroluminescent materials are charge transfer complexes between a donor compound and another charge acceptor where an aromatic polycyclic compound is involved. For a complete list of these types of compounds, see Table 2 on page 3021 of the MM Richter reference, Electroluminescence, Chem. Rev. 2004, 104, 3003-3036.
  • Oxygen is a remarkably negative agent in the electroluminescence of organic compounds. On the one hand it can trap the radical ions involved in electroluminescence by initiating its degradation and on the other hand it can inhibit the emissive relaxation of the excited electronic state through inhibition phenomena. Particularly, the deactivation of excited triplet states by oxygen through an energy transfer process is well known in the area of organic photochemistry since it is used for the generation of singlet oxygen.
  • Spanish patent application P200201588 describes an electroluminescent material in which an electroluminescent compound selected from polyphenylenevinylene derivatives, metal ion complexes of group 3A with H-hydroxyquinoline, and combinations thereof, is housed in interior spaces of a composite matrix by micro and / or mesoporous materials, such as zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates.
  • mesoporous materials such as zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates.
  • These materials can be prepared starting from organosiliceous compounds in the absence or in combination with tetramethyl orthosilicate or tetraethyl orthosilicate. Hydrolysis of these compounds with trialkoxysilane groups under acidic or basic pH conditions causes polymerization of the monomer with the formation of the silicate containing organic components.
  • the synthesis of these materials requires a surfactant compound or structure directing agent, which in aqueous medium creates the first spatial inhomogeneity on a regular but not rigid basis. Around the surfactant in aqueous medium the condensation / polymerization of the organosiliceo compound or the co-condensation of this organosiliceo compound and orthosilicate is produced.
  • the most commonly used surfactants are cetyltrimethylammonium bromide and ethylene glycol copolymer and propylene glycol forming blocks.
  • Pluronic is the trade name of some of these types of neutral surfactants based on polyethylene glycol polypropylene glycol.
  • the structure of the organosiliceous material that results can be identical to those described in the literature as MCM and SBA-15. Through this methodology materials are obtained that having an amorphous or crystalline structure of silicon oxide and organosilanes, have an extraordinary periodicity in the distribution of the channels and pores so that due to this regularity a characteristic X-ray diffraction model is produced.
  • the channels have a regular size of the order of nanometers (mesopores) and a very high surface area greater than 500 m 2 ⁇ g ⁇ 1 .
  • the present invention seeks to avoid or at least reduce the problem of oxygen inhibition and degradation of organic compounds electroluminescent in the presence of atmospheric agents.
  • microporous or mesoporous solid with a structure selected from the structure of zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates, and
  • organic compound that confers electroluminescent properties
  • organic compound is a polycyclic aromatic hydrocarbon at least part of which is attached to the structure of the microporous or mesoporous solid by covalent bonds.
  • a protection of the polycyclic aromatic hydrocarbon is produced that confers electroluminescent properties in view of the fact that this hydrocarbon is integrated inside the microporous or mesoporous organosiliceo hybridized material, so that the attack of the chemical agents present in the The environment is impeded due to restricted diffusion and a confinement effect.
  • at least part of the polycyclic aromatic hydrocarbon is integrated into the same structure of the microporous or mesoporous solid by covalent bonds.
  • the structure of the mesoporous solid may be that of an MCM-type silica such as that of an MCM-41 type silica or that of an MCM-48 type silica, or that of other silices, such as silica type FSM-16 or silica type SBA-15.
  • the polycyclic aromatic hydrocarbon can be at least one derivative of 9,10-diphenylantracene, a derivative of the group consisting of derivatives of pyrene, phenanthrene, rubrene, perylene and tetraphenylporphyrin.
  • polycyclic aromatic hydrocarbon As derivative of the polycyclic aromatic hydrocarbon is understood herein as an aromatic hydrocarbon having substituents which have terminal groups capable of joining via covalent bonds to silane groups. Said terminal groups preferably comprise atoms selected from oxygen, sulfur, nitrogen, silicon and combinations thereof, and more preferably still comprise silicon atoms.
  • the electroluminescent hybrid material of the invention may further comprise housed in its structure one or more charge transfer complexes between a second aromatic hydrocarbon and an electron donor compound.
  • Said second aromatic hydrocarbon may be the same as the aromatic hydrocarbon having covalent bonds with the microporous or mesoporous solid, or it may be different from the aromatic hydrocarbon having covalent bonds with the microporous or mesoporous solid.
  • Said electron donor compound may be selected, for example, from amines, aromatic amines, phenols and ethers.
  • the present invention also relates to a process for preparing an electroluminescent organic-inorganic hybrid material comprising:
  • microporous or mesoporous solid with a structure selected from the structure of zeolites, porous oxides, molecular sieves, silicoaluminophosphates and aluminosilicates and at least one organic compound that confers electroluminescent properties, and wherein said organic compound is a polycyclic aromatic hydrocarbon at least part of which is attached to the structure of the microporous or mesoporous solid by covalent bonds, characterized in that it comprises:
  • said precursor is an organosiliceo compound comprising the aromatic hydrocarbon.
  • the second step comprises reacting said precursor with a source of Si in the presence of a structure directing agent.
  • Said structure director can optionally be removed by solid liquid extraction.
  • the hybrid materials of the present invention can also be obtained from an organosilicon precursor in which the aromatic hydrocarbon or a derivative thereof is already present - as defined above - by palladium catalyzed coupling reaction followed by the addition of a source of Si, such as mercaptoalkyltrialkoxysilane in the presence of a structure directing agent that can then be removed by a conventional solid-liquid extraction in the preparation of organosiliceous materials.
  • a source of Si such as mercaptoalkyltrialkoxysilane
  • the structured mesoporous organic / inorganic hybrid materials are organosiliceous materials with a base structure of the type MCM-41 or SBA-15, but containing in their structure a polycyclic aromatic component that gives them a response electroluminescent
  • the preparation of these solid materials can be carried out in two different phases.
  • the first is the synthesis of the organosilicon precursor as indicated above, and the second is the preparation of the structured microporous or mesoporous solid.
  • the synthesis of the organosiliceo compound that is used as a precursor of the solid material is carried out by any of the usual techniques in organic synthesis. According to particular embodiments, for obtaining the precursor of the electroluminescent material of the present invention, a methodology is followed which is of general application for the preparation of any type of aromatic organosiliceous precursor consisting of the concatenation of two reactions outlined in the following equation:
  • Ar-Q-CH CH 2 + (EtO) 3 Si-CH 2 CH 2 CH 2 SH - (EtO) 3 Si '
  • AIBN azobis (isobutyronitrile)
  • the first of the reactions leads to the formation of CC bonds by Suzuki-Miyaura reaction coupling catalyzed by palladium compounds and that leads to the synthesis of an appropriate aromatic hydrocarbon containing vinyl groups on the periphery, while the second reaction serves to introducing trialkoxysilane groups in terminal positions and consists of the addition of mercapto groups to vinyl groups through a chain mechanism initiated by radicals.
  • the structured mesoporous material is well prepared by hydrolysis under acidic pH conditions using Pluronic (Pluronic is a triblock polymer having a hydrophobic central part of propylene glycol groups and two outer parts of hydrophilic groups ethylene glycol; with a polymer having 40 ethylene glycol groups bonded to 70 propylene glycol groups and terminated with another 40 ethylene glycol - ethylene glycol 40 propylene glycol 70 ethylene glycol 40 -) groups as the directing agent of structure or under basic pH conditions, used cetyltrimethyl ammonium bromide as a surfactant.
  • Pluronic is a triblock polymer having a hydrophobic central part of propylene glycol groups and two outer parts of hydrophilic groups ethylene glycol; with a polymer having 40 ethylene glycol groups bonded to 70 propylene glycol groups and terminated with another 40 ethylene glycol - ethylene glycol 40 propylene glycol 70 ethylene glycol 40 -) groups as the directing agent of structure or
  • varying amounts of tetraethyl orthosilicate can be added as another source of silicon atoms in addition to that of the organic compound.
  • the medium of the synthesis is water but variable amounts of other organic solvents miscible with water can be added in order to favor the dissolution of the organic component in the water until a transparent gel is achieved.
  • the addition of the components must be done at temperatures between 0 and 20 0 C under stirring and these conditions should be maintained for a period of time.
  • the gel is transferred to a polypropylene bottle that can be sealed and heated to a temperature between 80 and 120 0 C for a period of several days.
  • the resulting solid is collected and washed thoroughly.
  • the material thus obtained is electroluminescent, as is the one resulting from extract the structure managing agent.
  • This extraction can be carried out using acidified water at pH 3 with hot hydrochloric acid or an organic solvent such as a 3: 1 mixture of heptane / ethanol containing hydrochloric acid.
  • Complete extraction of the structure directing agent is most commonly performed by carrying out a consecutive series of extractions by combining different solvents.
  • the structured mesoporous organosiliceo hybrid solid exhibits the usual characteristics of structured mesoporous silices, namely, i) characteristic X-ray diffraction model with a peak at low angles less than 2.5 ° depending on the distance between the centers of the channels. ii) Isothermal adsorption of gas with a type IV profile according to the IUPAC nomenclature and corresponding to mesoporous materials. The pore size varies between 2.5 and 6 nm and the BET surface area is greater than 500 m 2 ⁇ g ⁇ 1 . iii) Transmission electron microscopy images in which the openings of the channels can be seen when the image is frontal or the parallel arrangement of the channels when the image is lateral.
  • these materials have the analytical and spectroscopic characteristics of the organic / inorganic hybrid materials.
  • the most relevant characteristic with respect to the present invention is that these solids, analogously as the polycyclic aromatic compounds from which they derive, behave as electroluminescent materials.
  • the electroluminescence phenomenon may require adsorption in this material of another component that forms a charge transfer complex with the polycyclic aromatic component that is part of the material or with another aromatic hydrocarbon other than that which is part of the material.
  • a thin film of this material is placed on a transparent conductor electrode of indium tin oxide (ITO) and a cell is constructed with an aluminum cathode. This cell can be completed by adding other layers that inject holes or electrons that increase the efficiency of electroluminescence.
  • ITO indium tin oxide
  • an electrolytic solution can be added, with polyacrylates and polyethylene glycols that improve conductivity being especially effective.
  • electroluminescence is observed with these materials when electroluminescent cells are prepared using any other technique that constitutes the state of the art in the preparation of these cells.
  • the light emission is observed when a potential of direct current between 2.5 and 7 V is applied to the electrodes.
  • a fluctuating potential can also be applied.
  • the electroluminescent hybrid materials of the present invention have utility, for example, in light emitting systems (LED or light emitting diodes "). They also have utility due to their porous composition, such as gas sensors, for example to determine the composition and presence of ammonia, water, carbon monoxide and other components in gaseous effluents.
  • porous composition such as gas sensors, for example to determine the composition and presence of ammonia, water, carbon monoxide and other components in gaseous effluents.
  • Figures IA and IB are transmission microscopy images in which material 4 / MCM-41 is observed respectively with a frontal view and a lateral vision of the pores;
  • Figure 2 shows an NMR- 29 Si spectrum of solids recorded for a 4 / MCM-41-ex sample in a 300 MHz Broker, in which the sample is rotating at 5 kHz at a magic angle;
  • Figure 3 shows a registered electroluminescence spectrum with a potential of 4.5 V of direct current from samples containing a polycyclic aromatic hydrocarbon covalently bonded to an MCM-41 and SBA-15 structures;
  • Figure 4 shows an LED structure in which an organosiliceous hybrid material has been used.
  • an electroluminescent material containing 9, 10-diarylantracene is prepared as part of a structured mesoporous organic / inorganic hybrid solid.
  • the required precursor is obtained from 9,10-dibromoanthracene (6 g, 18 mmol) which is coupled with the p-vinylphenylboronic acid (7.98 g, 54 mmol) in excess using as a palladium catalyst a mixture of the palladium complex with dibenzylidenacetone and palladium bis (tributylphosphine) (100: 30 mg, respectively) in the presence of potassium carbonate (8.2 g) and in dry toluene (300 ml) as solvent.
  • precursor 4 is condensed with tetraethyl orthosilicate in the presence of cetyltrimethylammonium bromide (CTAB) to give a structured mesoporous material.
  • CTAB cetyltrimethylammonium bromide
  • the molar ratio of the preferred example contains: 1.00 Si: 0.12 CTAB: 8.0 NH 3 (28%): 114 H 2 O.
  • the experimental procedure is to add to an aqueous solution of NH 4 OH (10.349 g , 28% by weight) the CTAB structure directing agent (0.45 g) in deionized water (13.75 g) and stir the solution for 30 min. in a polyethylene bottle to form a solution Homogeneous at a temperature of 10 0 C.
  • Solids 4-MCM-41 and 4-MCM-41-ex have transmission microscopy images showing the presence of channels of dimensions of 3 nm and with a regular distribution as shown in Figure 1.
  • NMR- 29 If the signals Q 4 and Q 3 corresponding to the tetra- and tripodal silicons connected to four oxygen atoms are observed next to a signal of less intensity at -75 ppm corresponding to the silicon atoms connected tripodally to the structure of the solid and the CH 2 group of the organic compound (T 3 ).
  • One of these NMR- 29 spectra If shown in Figure 2.
  • solids 4- MCM-41 and 4-MCM-41-ex exhibit characteristic emission of the anthracene group present in the structure when excited to the maximum absorption wavelength.
  • these samples emit electroluminescence when a layer of this material from an aqueous suspension of the solid between an ITO electrode and an aluminum electrode and the electrodes are subjected to a DC potential of 4.5 V.
  • This electroluminescent emission is also observed in other materials subject to the The present invention as shown in Figure 3, in which the electroluminescence spectra recorded with a potential of 4.5 V of direct current of the samples containing the compound 4 covalently bound to an MCM-41 structure can be seen before extracting (•) and after extracting (*) the structure directing agent, as well as the spectra of the compound 4 forming part of the SBA-15 structure before (M) and after extracting (M) the structure directing agent.
  • an OLED structure can be seen comprising a cathode 1 in the form of a metallic layer and a glass substrate constituting the anode 4.
  • the cathode 1 and the anode 4 are connected to a direct current electrical circuit 7 of 2 a 1OV.
  • an electron transport layer 2 and an electroluminescent layer 5 that emits light in the direction of the arrows through the glass substrate constituting the anode.
  • aqueous nitric acid solution 75 ml of a 0.007 M aqueous nitric acid solution are prepared, to which 5 ml of an aqueous solution containing 4.5 mmol of compound 9, 10-anthropylene-bis (4-phenylene) are added at moderate stirring 5 ml.
  • propyl thiopropyltri methoxysilane) (compound 4).
  • the mixture is kept under stirring at 60 ° C for 1 to 3 minutes, and 20 ml of a 1.45 M ammonium hydroxide solution is added to increase the pH of the mixture and favor the condensation of the solid.
  • the mixture is left under stirring at the same temperature for 1 hr, and finally the solid formed by centrifugation is collected (at 6000 rpm and for 15 min) and washed repeatedly with H20 and allowed to dry in a desiccator. Once the solid dries, it turns out to have a surface area of about 350-400 m2 g-1, with pores within the microporosity range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La presente invención se refiere a un material hibrido orgánico-inorgánico electroluminiscente caracterizado porque comprende : - al menos un sólido microporoso o mesoporoso con una estructura seleccionada entre estructura de zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos, y al menos un compuesto orgánico que confiere propiedades electroluminiscentes, y en el que dicho compuesto orgánico es un hidrocarburo aromático policiclico al menos parte del cual está unido a la estructura del sólido microporoso o mesoporoso mediante enlaces covalentes, a su procedimiento de obtención y su uso.

Description

MATERIAL ELECTROLUMINISCENTE QUE COMPRENDE UN SÓLIDO
MICROPOROSO O MESOPOROSO CONTENIENDO COMPUESTOS ORGÁNICOS
COVALENTEMENTE ENLAZADOS QUE CONFIEREN PROPIEDADES
ELECTROLUMINISCENTES
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se engloba en el campo técnico de los sólidos micro- y meso porosos tales como zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos, combinados con compuestos orgánicos o complejos metálicos, tales como los compuestos aromáticos policiclicos condensados, y particularmente aquellos compuestos aromáticos que confieren propiedades electrosluminiscentes .
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN La electroluminiscencia es una propiedad consistente en la emisión de luz cuando se somete a un compuesto, o más comúnmente a una serie de compuestos dispuestos adecuadamente, situado entre dos electrodos, a una diferencia de potencial. La electroluminiscencia es un fenómeno fisico que surge cuando en una molécula se produce una recombinación de un electrón y de una carga positiva. Esta última es conocida como un hueco electrónico. La recombinación de un electrón y de un hueco produce un estado electrónico excitado de la molécula, la cual se relaja al estado electrónico fundamental mediante la emisión de un fotón (ecuación 1) . La relajación de un estado electrónico mediante la emisión de luz es un fenómeno conocido como luminiscencia, y en el caso aqui considerado se denomina electroluminiscencia porque el origen de la emisión luminosa es una diferencia de potencial entre dos electrodos. Compuesto orgánico + e" + h >~ [compuesto orgánico] * *- compuesto orgánico + hsd
e" electrones móviles h huecos electrónicos hvel fotón de electroluminiscencia
El electrodo positivo abstrae electrones del material en contacto y produce huecos positivos que migran hacia el electrodo negativo. El electrodo negativo inyecta electrones en el material que se halla en contacto con él y produce electrones. Estos migran hacia el electrodo positivo. Para favorecer la creación de huecos y electrones y su migración, es común en el estado del arte relativo a celdas electroluminiscentes, colocar en contacto con los electrodos peliculas de espesor del orden de mieras de materiales adecuados que acepten huecos o electrones . Entre estas peliculas se coloca una capa de un material electroluminiscente intermedia entre la capa inyectora de huecos y la inyectora de electrones que es donde ocurre el colapso de huecos y electrones y donde se produce la recombinación. Uno de los electrodos (generalmente el ánodo) es un electrodo transparente que permite que la luz generada en el fenómeno de la electroluminiscencia sea visible desde el exterior de la celda. Entre los materiales electroluminiscentes, existen compuestos orgánicos. Como materiales electroluminiscentes, los compuestos orgánicos presentan la ventaja sobre los inorgánicos de una mayor facilidad de sintesis y purificación asi como la posibilidad de modificar fácilmente la longitud de onda de emisión mediante la introducción de sustituyentes apropiados . De especial importancia en la presente invención es el hecho de que los compuestos aromáticos policiclicos exhiban el fenómeno de electroluminiscencia. También son materiales electroluminiscentes los complejos de transferencia de carga entre un compuesto dador y otro aceptor de carga donde interviene un compuesto policiclico aromático. Para una lista completa de este tipo de compuestos se debe consultar la Tabla 2 de la página 3021 de la referencia M. M. Richter, Electroluminescence, Chem. Rev. 2004, 104, 3003-3036.
Uno de los principales inconvenientes de los compuestos orgánicos como materiales electroluminiscentes es su durabilidad, ya que sufren descomposición por ataque de los componentes atmosféricos. Esta descomposición es especialmente importante durante la operación de la celda electroluminiscente. El oxigeno es un agente notablemente negativo en la electroluminiscencia de compuestos orgánicos. Por un lado puede atrapar los iones radicales implicados en la electroluminiscencia iniciando su degradación y por otro lado puede inhibir la relajación emisiva del estado electrónico excitado mediante fenómenos de inhibición. Particularmente, la desactivación de estados excitados tripletes por oxigeno mediante un proceso de transferencia de energia es muy conocida en el área de la fotoquimica orgánica ya que sirve para la generación de oxigeno singlete.
La solicitud de patente española P200201588 describe un material electroluminiscente en el que un compuesto electroluminiscente seleccionado entre derivados de polifenilenvinileno, complejos de iones de metales del grupo 3A con H-hidroxiquinolina, y combinaciones de los mismos, está alojado en espacios interiores de una matriz compuesta por materiales micro y/o mesoporosos, tales como zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos . En este antecedente no existe unión covalente entre el componente orgánico y la estructura inorgánica que actúa como matriz. Por otra parte, también se conoce la preparación de materiales hibridos orgánicos-inorgánicos mesoporosos estructurados. Estos materiales se pueden preparar partiendo de compuestos organosiliceos en ausencia o en combinación con tetrametil ortosilicato o tetraetil ortosilicato. La hidrólisis de estos compuestos con grupos trialcoxisilano en condiciones de pH acidas o básicas produce la polimerización del monómero con la formación del silicato conteniendo componentes orgánicos. La sintesis de estos materiales requiere de un compuesto surfactante o agente director de estructura, que en medio acuoso crea la primera inhomogeneidad espacial de forma regular aunque no rigida. Alrededor del surfactante en medio acuoso va produciendo la condensación/polimerización del compuesto organosiliceo o la o co-condensación de este compuesto organosiliceo y del ortosilicato. Los agentes surfactantes más comúnmente empleados son el bromuro de cetiltrimetilamonio y el copolimero del etilenglicol y el propilenglicol formando bloques . Pluronic es el nombre comercial de algunos de estos tipos de surfactantes neutros basados en polietilenglicol- polipropilenglicol . La estructura del material organosiliceo que resulta asi puede ser idéntica a las que se encuentran descritas en la literatura como MCM y SBA-15. Mediante esta metodologia se obtienen materiales que teniendo una estructura amorfa o cristalina de óxido de silicio y organosilanos, presentan una periodicidad extraordinaria en la distribución de los canales y poros de manera que debido a esta regularidad se produce un modelo de difracción de rayos X caracteristico. Los canales tienen un tamaño regular del orden de nanometros (mesoporos) y un área superficial muy elevada superior a 500 mg~1.
La presente invención pretende evitar o al menos reducir el problema de la inhibición por oxigeno y de la degradación de los compuestos orgánicos electroluminiscentes en presencia de los agentes atmosféricos .
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a un material hibrido orgánico-inorgánico electroluminiscente caracterizado porque comprende:
- al menos un sólido microporoso o mesoporoso con una estructura seleccionada entre estructura de zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos, y
- al menos un compuesto orgánico que confiere propiedades electroluminiscentes, y en el que dicho compuesto orgánico es un hidrocarburo aromático policiclico al menos parte del cual está unido a la estructura del sólido microporoso o mesoporoso mediante enlaces covalentes .
En este material, se produce una protección del hidrocarburo aromático policiclico que confiere las propiedades electroluminiscentes a la vista de que ese hidrocarburo se encuentra integrado en el interior del material hibrido organosiliceo microporoso o mesoporoso estructurado por lo que el ataque de los agentes quimicos presentes en el entorno está impedido debido a una difusión restringida y a un efecto de confinamiento. De acuerdo con una realización preferida de la invención, al menos parte del hidrocarburo aromático policiclico está integrado en la misma estructura del sólido microporoso o mesoporoso mediante enlaces covalentes .
De acuerdo con realizaciones preferidas de la invención, la estructura del sólido mesoporoso puede ser la de una silice de tipo MCM como por ejemplo la de una silice tipo MCM-41 o la de una silice tipo MCM-48, o la de otras silices, como por ejemplo silice tipo FSM-16 o silice tipo SBA-15. A su vez, el hidrocarburo aromático policiclico puede ser al menos un derivado del 9, 10-difenilantraceno, un derivado del grupo constituido por derivados de pireno, fenantreno, rubreno, perileno y tetrafenilporfirina. Como derivado del hidrocarburo aromático policiclico se entiende en esta memoria un hidrocarburo aromático que tiene sustituyentes los cuales poseen grupos terminales capaces de unirse mediante enlaces covalentes a grupos silanoles. Dichos grupos terminales comprenden preferentemente átomos seleccionados entre oxigeno, azufre, nitrógeno, silicio y combinaciones de ellos, y de forma más preferente aún comprenden átomos de silicio.
El material hibrido electroluminiscente de la invención puede comprender además alojado en su estructura uno o más complejos de transferencia de carga entre un segundo hidrocarburo aromático y un compuesto dador de electrones . Dicho segundo hidrocarburo aromático puede ser el mismo que el hidrocarburo aromático que tiene enlaces covalentes con el sólido microporoso o mesoporoso, o puede ser distinto del hidrocarburo aromático que tiene enlaces covalentes con el sólido microporoso o mesoporoso.
Dicho compuesto dador de electrones puede estar seleccionado por ejemplo entre aminas, aminas aromáticas, fenoles y éteres . La presente invención se refiere también a un procedimiento para preparar un material hibrido orgánico- inorgánico electroluminiscente que comprende:
- al menos un sólido microporoso o mesoporoso con una estructura seleccionada entre estructura de zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos y al menos un compuesto orgánico que confiere propiedades electroluminiscentes, y en el que dicho compuesto orgánico es un hidrocarburo aromático policiclico al menos parte del cual está unido a la estructura del sólido microporoso o mesoporoso mediante enlaces covalentes, caracterizado porque comprende:
- una primera etapa de preparación de un precursor que comprende un hidrocarburo aromático policiclico integrado en su estructura, y
- una segunda etapa de conversión de dicho precursor en el material hibrido electroluminiscente.
Según realizaciones preferidas del procedimiento dicho precursor es un compuesto organosiliceo que comprende el hidrocarburo aromático.
Según realizaciones particulares del procedimiento la segunda etapa comprende hacer reaccionar dicho precursor con una fuente de Si en presencia de un agente director de estructura. Dicho agente director de estructura puede opcionalmente ser eliminado por extracción sólido liquido.
Los materiales hibridos de la presente invención pueden también obtenerse a partir de un precursor organosiliceo en el que ya está presente el hidrocarburo aromático o un derivado del mismo preparado - tal como se ha definido anteriormente - por reacción de acoplamiento catalizada por paladio seguida de adición de una fuente de Si, como por ejemplo, mercaptoalquiltrialcoxisilano en presencia de un agente director de estructura que luego puede ser eliminado mediante una extracción sólido-liquido en si convencional en la preparación de los materiales organosiliceos .
En una realización preferente de la presente invención, los materiales hibridos orgánicos/inorgánicos mesoporosos estructurados son materiales organosiliceos con una estructura base del tipo MCM-41 o SBA-15, pero que contienen en su estructura un componente aromático policiclico que les dota de una respuesta electroluminiscente.
La preparación de estos materiales sólidos puede realizarse en dos fases diferenciadas. La primera es la sintesis del precursor organosiliceo como se ha indicado anteriormente, y la segunda es la preparación del sólido microporoso o mesoporoso estructurado. La sintesis del compuesto organosiliceo que se emplea como precursor del material sólido se lleva a cabo por cualquiera de las técnicas habituales en la sintesis orgánica. Según realizaciones particulares, para la obtención del precursor del material electroluminiscente de la presente invención, se sigue una metodologia que es de aplicación general para la preparación de cualquier tipo de precursor organosiliceo aromático consistente en la concatenación de dos reacciones esquematizadas en la siguiente ecuación:
Ar-X + (HO)2B-Q-CH=CH2 ^ Ar-Q-CH=CH2 catalizador Pd
AIBN
Ar-Q-CH=CH2 + (EtO)3Si-CH2CH2CH2SH - (EtO)3Si'
Ar
Ar: grupo arilo
X: halógeno
B: boro
Q: espaciador formado por grupo o cadena orgánica
AIBN: azobis(isobutironitrilo)
Ar: argón
Ecuación 2
Puede observarse que la primera de las reacciones conduce a la formación de enlaces C-C mediante acoplamiento por reacción de Suzuki-Miyaura catalizada por compuestos de paladio y que conduce a la sintesis de un hidrocarburo aromático apropiado conteniendo grupos vinilos en la periferia, mientras que la segunda reacción sirve para introducir grupos trialcoxisilanos en posiciones terminales y consiste en la adición de grupos mercapto a grupos vinilicos mediante un mecanismo en cadena iniciado por radicales . Tras la etapa de sintesis del precursor organosiliceo, se procede a la preparación del material mesoporoso estructurado bien por hidrólisis en condiciones de pH acidas empleando Pluronic (Pluronic es un polimeero tribloque que tiene una parte central hidrofóbica de grupos propilénglicol y dos partes exteriores de grupos hidrófilos etilénglicol; siendo preferente un polimero que tiene 40 grupos etilénglicol unidos a 70 grupos propilénglicol y terminados con otros 40 grupos etilénglicol - etilénglicol 40 propilénglicol 70 etilénglicol 40 - ) como agente director de estructura o en condiciones de pH básico empleado bromuro de cetiltrimetilamonio como surfactante. En ambos casos puede añadirse cantidades variables de tetraetil ortosilicato como otra fuente de átomos de silicio adicionales al del compuesto orgánico. El medio de la sintesis es agua pero puede añadirse cantidades variable de otros disolventes orgánicos miscibles con agua a fin de favorecer la disolución del componente orgánico en el agua hasta conseguir un gel transparente. La adición de los componentes debe hacerse a temperatura entre 0 y 20 0C bajo agitación y estas condiciones deben mantenerse por un periodo de tiempo. Tras la mezcla de los componentes
(surfactantes, agente de pH, precursor organosiliceo con o sin tetraalquil ortosilicato) , el gel se trasvasa a una botella de polipropileno que se puede cerrar herméticamente y se calienta a una temperatura entre 80 y 1200C por un periodo de varios dias .
El sólido resultante se recoge y se lava exhaustivamente. El material asi obtenido es electroluminiscente, como también lo es el que resulta de extraer el agente director de estructura. Esta extracción puede llevarse a cabo empleando agua acidulada a pH 3 con ácido clorhidrico caliente o un disolvente orgánico tal como una mezcla 3:1 de heptano/etanol conteniendo ácido clorhidrico. La extracción completa del agente director de estructura se realiza más comúnmente llevando a cabo una serie consecutiva de extracciones combinando diferentes disolventes .
El sólido hibrido organosiliceo mesoporoso estructurado exhibe las caracteristicas habituales de las silices mesoporosas estructuradas, a saber, i) modelo de difracción de rayos X caracteristico con un pico a ángulos bajos inferior a 2.5 ° en función de la distancia entre los centros de los canales. ii) Adsorción isoterma de gas con un perfil tipo IV según la nomenclatura de la IUPAC y que corresponde a materiales mesoporosos . El tamaño de poro varia entre 2.5 y 6 nm y el área superficial BET es superior a 500 mg~1. iii) Imágenes de microscopia electrónica de transmisión en la que pueden verse las aberturas de los canales cuando la imagen es frontal o la disposición paralela de los canales cuando la imagen es lateral.
Además estos materiales tienen las caracteristicas analiticas y espectroscópicas de los materiales hibrido orgánico/inorgánicos. En particular: i) En espectroscopia RMN-29Si de estado sólido se observan junto con los picos caracteristicos de los silicios tetra- (Q4) y tripodales (Q3) a -110 y -95 ppms, la presencia de otras señales de Si entre -60 y -80 ppms y que se corresponden con las del precursor orgánico que se encuentran tri- (T 3) o bipodalmente (T2) conectadas a la estructura del sólido. La existencia de estos silicios es una prueba de que el componente organosilano se encuentra covalentemente unido a la estructura del sólido ya que el desplazamiento químico del precursor organosilano en disolución antes de condensar en el sólido es superior a -50 ppms . ii) En espectroscopia de IR se observan junto a las bandas características del silicato, de los grupos silanoles y del agua co-adsorbida, los picos de vibración en la región aromática (1620-1400 cm"1) y que indican la presencia del componente aromático. Estas bandas aromáticas persisten tras la extracción del agente director de estructura y se mantienen inalteradas cuando el material se calienta a temperaturas de 300 0C o inferior y presión reducida de 10~2 Pa durante 1 h. iii) En espectroscopia UV-Vis registrada por el método de reflectancia difusa del sólido aparecen en el UV cercano o visible las bandas de absorción características de los compuestos aromáticos y que pueden tener estructura fina vibracional. iv) En espectroscopia de emisión, estos sólidos emiten luz visible cuando son excitados a la longitud de onda del máximo de absorción. Los tiempos de vida de emisión, aunque más cortos y con varios componentes, están en el rango de los nanosegundos y son los correspondientes al estado singlete.
Por otra parte, la característica más relevante con respecto a la presente invención es que estos sólidos, análogamente a como lo hacen los compuestos aromáticos policíclicos de los que derivan, se comportan como materiales electroluminiscentes . Alternativamente, el fenómeno de electroluminiscencia puede requerir la adsorción en este material de otro componente que forme un complejo de transferencia de carga con el componente aromático policíclico que se encuentra formando parte del material o con otro hidrocarburo aromático distinto del que se encuentra formando parte del material. Para observar esta propiedad una fina pelicula de este material se dispone sobre un electrodo conductor transparente de óxido de indio-estaño (ITO) y se construye una celda con un cátodo de aluminio. Esta celda se puede completar añadiendo otras capas que inyecten huecos o electrones que aumente la eficacia de la electroluminiscencia. Igualmente se puede añadir una disolución electrolitica siendo especialmente eficaz poliacrilatos y polietilenglicoles que mejoren la conductividad. De la misma manera, se observa electroluminiscencia con estos materiales cuando se preparan celdas electroluminiscentes empleando cualquier otra técnica que constituye el estado del arte en la preparación de estas celdas. La emisión de luz se observa cuando se aplica a los electrodos un potencial de corriente continua entre 2.5 y 7 V. También se puede aplicar un potencial fluctuante.
Los materiales hibridos electroluminiscentes de la presente invención tienen utilidad por ejemplo en sistemas emisores de luz (LED o light emitting diodes") . También tienen utilidad debido a su composición porosa, como sensores de gases, por ejemplo para determinar composición y presencia de amoniaco, agua, monóxido de carbono y otros componentes en efluentes gaseosos .
BREVE DESCRIPCIÓN DE LAS FIGURAS
Como parte integrante de esta memoria descriptiva, figuran una serie de dibujos en los que las figuras IA y IB son sendas imágenes de microscopia de transmisión en la que se observa el material 4/MCM-41 respectivamente con una visión frontal y una visión lateral de los poros; la figura 2 muestra un espectro de RMN-29Si de sólidos registrado para una muestra 4/MCM-41-ex en un equipo Broker de 300 MHz, en el que la muestra se encuentra girando a 5 kHz en ángulo mágico; la figura 3 muestra un espectro de electroluminiscencia registrado con un potencial de 4,5 V de corriente continua de muestras conteniendo un hidrocarburo aromático policiclico covalentemente unido a una estructuras MCM-41 y SBA-15;
La figura 4 muestra una estructura LED en la que se ha empleado un material hibrido organosiliceo.
MODOS DE REALIZAR LA INVENCIÓN Según una realización particular se prepara un material electroluminiscente que contiene 9, 10-diarilantraceno formando parte de un sólido hibrido orgánico/inorgánico mesoporoso estructurado. El precursor requerido se obtiene a partir del 9, 10-dibromoantraceno (6 g, 18 mmol) que se acopla con el ácido p-vinilfenilborónico (7.98 g, 54 mmol) en exceso utilizando como catalizador de paladio una mezcla del complejo de paladio con la dibencilidenacetona y paladio bis (tributilfosfina) (100:30 mg, respectivamente) en presencia de carbonato potásico (8.2 g) y en tolueno seco (300 mi) como disolvente. La reacción se lleva a cabo a temperatura de reflujo, bajo atmósfera inerte y por un periodo de 48 horas. La mezcla de reacción se purifica por cromatografia en columna, obteniéndose un 80 % del correspondiente 9, 10-bis (4-vinilfenil) antraceno. Este intermedio (2.5 mmol) se hace reaccionar seguidamente en tolueno (10 mi) con el 3- mercaptopropiltrietoxisilano (5 mmol) bajo corriente de argón y utilizando AIBN (1.25 mmol) como iniciador de radicales. La mezcla se mantiene en agitación magnética a 90 0C durante 6 h. Transcurrido este tiempo el disolvente se evapora a presión reducida y el residuo se lava exhaustivamente con hexano para eliminar el exceso de reactivos. De esta manera se obtiene el compuesto 9,10bis(4- [2- (3-trimetoxisililpropiltio) etil] antraceno (Compuesto número 4 en la ecuación 3)
Figure imgf000015_0001
4(83%)
Ecuación 3. Esquema de sintesis del compuesto organosilano precursor 4.
Una vez obtenido el precursor 4, éste se condensa con tetraetil ortosilicato en presencia de bromuro de cetiltrimetilamonio (CTAB) para dar un material mesoporoso estructurado. La relación molar del ejemplo preferente contiene: 1,00 Si:0,12 CTAB: 8,0 NH3 (28%) :114 H2O. El procedimiento experimental consiste en añadir a una disolución acuosa de NH4OH (10,349 g, 28 % en peso) el agente director de estructura CTAB (0,45 g) en agua desionizada (13,75 g) y agitar la disolución durante 30 min. en una botella de polietileno hasta formar una disolución homogénea a una temperatura de 10 0C. A esta disolución fria se añaden los compuestos 4 (0,4 g) y tetraetil ortosilicato (2,04 g) disueltos en 2 mi de una mezcla de 1:1 de acetona/agua. La mezcla se deja que alcance lentamente la temperatura ambiente mientras se mantiene la agitación durante 2 h. Transcurrido este tiempo, el gel resultante se calienta a 100 0C sin agitación durante 4 dias . El sólido que resulta en estas condiciones se lava exhaustivamente con agua destilada (1,5 L) . El agente director de estructura se puede extraer agitando el sólido con una disolución etanólica (10 mi por gramo de sólido) de ácido clorhidrico 0,05 M a 50 0C durante 3 h. Seguidamente se continua la extracción con una disolución de etanol/heptano (50:50) conteniendo ácido clorhidrico 0.15 M a 90 0C durante 3 h utilizando una relación sólido:disolvente de 10:1. Los sólidos resultantes se denominan de aqui en adelante 4/MCM- 41 y 4/MCM-41-ex según se refieran al material extraido o sin extraer.
Los sólidos 4-MCM-41 y 4-MCM-41-ex presentan unas imágenes de microscopia de transmisión donde se observan la presencia de canales de dimensiones de 3 nm y con una distribución regular como se muestra en la Figura 1.
En RMN-29Si se observan las señales Q4 y Q3 correspondientes a los silicios tetra- y tripodales conectados a cuatro átomos de oxigeno junto a una señal de menor intensidad a -75 ppm correspondiente a los átomos de silicio conectados tripodalmente a la estructura del sólido y al grupo CH2 del compuestos orgánico (T3) . Uno de estos espectros de RMN-29Si se muestra en la Figura 2. En espectroscopia de fotoluminiscencia, los sólidos 4- MCM-41 y 4-MCM-41-ex exhiben emisión caracteristica del grupo antraceno presente en la estructura cuando se excita a la longitud de onda del máximo de absorción. Además estas muestras emiten electroluminiscencia cuando se dispone una capa de este material a partir de una suspensión acuosa del sólido entre un electrodo de ITO y otro de aluminio y los electrodos se someten a un potencial de corriente continua de 4,5 V. Esta emisión electroluminiscente se observa igualmente en otros materiales objeto de la presente invención tal y como se muestra en la Figura 3, en la que pueden apreciarse los espectros de electroluminiscencia registrados con un potencial de 4,5 V de corriente continua de las muestras conteniendo el compuesto 4 covalentemente unido a una estructura MCM-41 antes de extraer (•) y después de extraer (*) el agente director de estructura, asi como los espectros del compuesto 4 formando parte de la estructura SBA-15 antes (M) y después de extraer (M) el agente director de estructura. En la figura 4 puede observarse una estructura OLED que comprende un cátodo 1 en forma de capa metálica y un sustrato de cristal que constituye el ánodo 4. El cátodo 1 y el ánodo 4 están conectados a un circuito eléctrico 7 de corriente continua de 2 a 1OV. Entre el cátodo 1 y el ánodo están una capa de transporte de electrones 2 y una capa electroluminiscente 5 que emite luz en la dirección de las flechas a través del sustrato de cristal que constituye el ánodo.
Ejemplo 2
Se preparan 75 mi de una disolución acuosa de ácido nitrico 0.007 M, a la que se añaden a 60°C y bajo agitación moderada 5 mi de una disolución acuosa conteniendo 4.5 mmol del compuesto 9, 10-antrileno-bis (4-fenileno-propil-tiopropiltri metoxisilano) (compuesto 4) . La mezcla de mantiene bajo agitación a 60°C entre 1 y 3 minutos, y se añaden 20 mi de una disolución de hidróxido amónico 1.45 M para aumentar el pH de la mezcla y favorecer la condensación del sólido. La mezcla se deja en agitación a la misma temperatura durante 1 hr, y finalmente se recoge el sólido formado por centrifugación (a 6000 rpm y durante 15 min) y se lava repetidas veces con H20 y se deja secar en un desecador. Una vez seco el sólido resulta poseer un área superficial de unos 350-400 m2 g-1, con poros dentro del rango de microporosidad.

Claims

REIVINDICACIONES
1. Un material híbrido orgánico-inorgánico electroluminiscente caracterizado porque comprende: - al menos un sólido microporoso o mesoporoso con una estructura seleccionada entre estructura de zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos, y al menos un compuesto orgánico que confiere propiedades electroluminiscentes, y en el que dicho compuesto orgánico es un hidrocarburo aromático policíclico al menos parte del cual está unido a la estructura del sólido microporoso o mesoporoso mediante enlaces covalentes .
2. Un material híbrido electroluminiscente según la reivindicación 1, caracterizado porque comprende un sólido mesoporoso con una estructura que corresponde a la de una sílice tipo MCM-41.
3. Un material híbrido electroluminiscente según la reivindicación 1, caracterizado porque comprende un sólido mesoporoso con una estructura que corresponde a la de una sílice tipo MCM-48.
4. Un material híbrido electroluminiscente según la reivindicación 1, caracterizado porque comprende un sólido mesoporoso con una estructura que corresponde a la de una sílice tipo FSM-16.
5. Un material híbrido electroluminiscente según la reivindicación 1, caracterizado porque comprende un sólido mesoporoso con una estructura que corresponde a la de una sílice tipo SBA-15.
6. Un material híbrido electroluminiscente según una cualquiera de las reivindicaciones 1 a 7, caracterizado porque el hidrocarburo aromático es un derivado del 9,10- difenilantraceno.
7. Un material híbrido electroluminiscente según una cualquiera de las reivindicaciones 1 a 5, caracterizado porque el hidrocarburo aromático es al menos un derivado del grupo constituido por derivados de pireno, fenantreno, rubreno, perileno y tetrafenilporfirina.
8. Un material híbrido electroluminiscente según la reivindicación 7, caracterizado porque dicho derivado comprende un núcleo seleccionado entre pireno, fenantreno, rubreno, perileno y tetrafenilporfirina unido a sustituyentes que tienen grupos terminales capaces de unirse mediante enlaces covalentes a grupos silanoles.
9. Un material híbrido electroluminiscente según la reivindicación 8, caracterizado porque dichos grupos terminales comprenden átomos seleccionados entre oxígeno, azufre, nitrógeno, silicio y combinaciones de ellos.
10. Un material híbrido electroluminiscente según la reivindicación 9, caracterizado porque dichos grupos terminales comprenden átomos de silicio.
11. Un material híbrido electroluminiscente según una cualquiera de las reivindicaciones 1 a 7, caracterizado porque dicho material comprende además alojado en su estructura un complejo de transferencia de carga entre un segundo hidrocarburo aromático y un compuesto dador de electrones .
12. Un material híbrido electroluminiscente según una la reivindicación 11, caracterizado porque dicho segundo hidrocarburo aromático es el mismo que el hidrocarburo aromático que tiene enlaces covalentes con el sólido microporoso o mesoporoso.
13. Un material híbrido electroluminiscente según una la reivindicación 11, caracterizado porque dicho segundo hidrocarburo aromático es distinto del hidrocarburo aromático que tiene enlaces covalentes con el sólido microporoso o mesoporoso.
14. Un material híbrido electroluminiscente según una la reivindicación 11, caracterizado porque dicho compuesto dador de electrones está seleccionado entre aminas, aminas aromáticas, fenoles y éteres.
15. Procedimiento para preparar un material híbrido orgánico-inorgánico electroluminiscente que comprende: - al menos un sólido microporoso o mesoporoso con una estructura seleccionada entre estructura de zeolitas, óxidos porosos, tamices moleculares, silicoaluminofosfatos y aluminosilicatos y al menos un compuesto orgánico que confiere propiedades electroluminiscentes, y en el que dicho compuesto orgánico es un hidrocarburo aromático policíclico al menos parte del cual está unido a la estructura del sólido microporoso o mesoporoso mediante enlaces covalentes, caracterizado porque comprende: - una primera etapa de preparación de un precursor que comprende un hidrocarburo aromático policíclico integrado en su estructura, y
- una segunda etapa de conversión de dicho precursor en el material híbrido electroluminiscente.
16. Procedimiento según la reivindicación 15, caracterizado porque dicho precursor es un compuesto organosiliceo que comprende el hidrocarburo aromático.
17. Procedimiento según la reivindicación 15, caracterizado porque la segunda etapa comprende hacer reaccionar dicho precursor con una fuente de Si en presencia de un agente director de estructura.
18. Procedimiento según la reivindicación 17, caracterizado porque el agente director de estructura es eliminado por extracción sólido liquido.
19. Procedimiento según la reivindicación 15, caracterizado porque la primera etapa de preparación del precursor organosiliceo comprende una reacción de acoplamiento catalizada por paladio seguida de adición de una fuente de Si, en presencia de un agente director de estructura.
20. Procedimiento según la reivindicación 19, caracterizado porque dicha fuente de Si es mercaptoalquiltrialcoxisilano.
21. Procedimiento según la reivindicación 19, caracterizado porque dicho agente director de estructura es eliminado mediante una extracción sólido-liquido.
22. Un material hibrido electroluminiscente según la reivindicación 1, caracterizado porque es un material obtenido mediante un procedimiento que comprende preparar un sólido microporoso o mesoporoso a partir de un precursor que comprende un hidrocarburo aromático policiclico integrado en su estructura.
23. Un material híbrido electroluminiscente según la reivindicación 1, caracterizado porque es un material obtenido mediante una primera etapa de preparación de un precursor organosilíceo que comprende una reacción de acoplamiento catalizada por paladio seguida de adición de mercaptoalquiltrialcoxisilano en presencia de un agente director de estructura, que es posteriormente eliminado mediante extración sólido-líquido.
24. Uso de un material híbrido electroluminiscente definido en una cualquiera de las reivindicaciones 1 a 14 en la fabricación de sistemas emisores de luz.
25. Uso de un material híbrido electroluminiscente definido en una cualquiera de las reivindicaciones 1 a 14 como sensor de gases .
PCT/ES2005/070148 2004-10-21 2005-10-21 Material electroluminiscente que comprende un sólido microporoso o mesoporoso conteniendo compuestos orgánicos covalentemente enlazados que confieren propiedades electroluminiscentes WO2006045875A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05799740A EP1840181A4 (en) 2004-10-21 2005-10-21 ELECTROLUMINESCENT HYBRID MATERIAL COMPRISING A COVALENT-CONTAINING ORGANIC COMPOUNDS AND, THEREFORE, ELECTROLUMINESCENT PROPERTIES, MICRO OR MESOPOROUS SOLIDS
US11/665,802 US20080203359A1 (en) 2004-10-21 2005-10-21 Electroluminescent Hybrid Material Comprising a Microporous or Mesoporous Solid Containing Covalently-Bonded Organic Compounds Which Confer Electroluminescent Properties to Same
JP2007537316A JP2008517133A (ja) 2004-10-21 2005-10-21 電界発光特性を付与する有機化合物が共有結合された微孔性又は中細孔性固体を含有する電界発光性複合物質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200402592 2004-10-21
ES200402592A ES2251882B1 (es) 2004-10-21 2004-10-21 Material electroluminiscente que esta constituido por un solido microporoso o mesoporoso conteniendo compuestos organicos covalentemente enlazados que confieren propiedades elctroluminescentes.

Publications (1)

Publication Number Publication Date
WO2006045875A1 true WO2006045875A1 (es) 2006-05-04

Family

ID=36227501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070148 WO2006045875A1 (es) 2004-10-21 2005-10-21 Material electroluminiscente que comprende un sólido microporoso o mesoporoso conteniendo compuestos orgánicos covalentemente enlazados que confieren propiedades electroluminiscentes

Country Status (5)

Country Link
US (1) US20080203359A1 (es)
EP (1) EP1840181A4 (es)
JP (1) JP2008517133A (es)
ES (1) ES2251882B1 (es)
WO (1) WO2006045875A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438423A (en) * 2006-05-24 2007-11-28 Univ Graz Tech Optical sensor for detecting an analyte
DE102006060781A1 (de) * 2006-09-29 2008-04-10 Osram Opto Semiconductors Gmbh Organisches Leuchtmittel
US8328375B2 (en) 2006-09-29 2012-12-11 Osram Opto Semiconductors Gmbh Organic lighting device and lighting equipment
CN109781674A (zh) * 2019-02-02 2019-05-21 京东方科技集团股份有限公司 一种气体检测装置及其制备方法、气体监控系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5164018B2 (ja) * 2006-08-31 2013-03-13 株式会社豊田中央研究所 光エネルギー変換材料
JP5658913B2 (ja) * 2009-06-02 2015-01-28 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子
JP5498077B2 (ja) * 2009-07-24 2014-05-21 一般財団法人ファインセラミックスセンター 発光体、発光体の製造方法、照明装置および化粧品用紫外線遮蔽材

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2208087A1 (es) * 2002-07-01 2004-06-01 Universidad Politecnica De Valencia Un material electroluminiscente conteniendo un polimero conjugado o complejos de metales terreos en el interior de zeolitas y materiales porosos, y su procedimiento de preparacion.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306441A (en) * 1992-12-31 1994-04-26 Gte Products Corporation Method of preparing fluoroplogopite phosphor
ATE350337T1 (de) * 2000-11-03 2007-01-15 Univ Bern Farbstoff beladene zeolithe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2208087A1 (es) * 2002-07-01 2004-06-01 Universidad Politecnica De Valencia Un material electroluminiscente conteniendo un polimero conjugado o complejos de metales terreos en el interior de zeolitas y materiales porosos, y su procedimiento de preparacion.

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CORMA A. ET AL: "Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide", CHEM.COMM., vol. 10, 2002, pages 1100 - 1101, XP008117856 *
FERNANDES A. ET AL:: "Grafting luminecent metal-organic species into mesoporous MCM-41 silica Europium (III) tetramethyl heptanedionate, Eu(thd)3", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 83, 1 September 2005 (2005-09-01), pages 35 - 46, XP004347336 *
SCHULZ-EKLOFF G. ET AL: "Chromophores in porous silicas and minerals: preparation and optical properties", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 51, no. 2, 2002, pages 91 - 138, XP004335458 *
See also references of EP1840181A4 *
ZHANG P. ET AL: "Incorporation of luminescent tris(bipyridine) ruthenium (II) complex in mesoporous silica spheres and their spectroscopic and oxygen-sensing properties", MAT.LETT., vol. 53, 2002, pages 400 - 405, XP004347336, DOI: doi:10.1016/S0167-577X(01)00514-6 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438423A (en) * 2006-05-24 2007-11-28 Univ Graz Tech Optical sensor for detecting an analyte
DE102006060781A1 (de) * 2006-09-29 2008-04-10 Osram Opto Semiconductors Gmbh Organisches Leuchtmittel
US8328375B2 (en) 2006-09-29 2012-12-11 Osram Opto Semiconductors Gmbh Organic lighting device and lighting equipment
US8946986B2 (en) 2006-09-29 2015-02-03 Osram Opto Semiconductors Gmbh Organic lighting device and lighting equipment
US9312308B2 (en) 2006-09-29 2016-04-12 Osram Oled Gmbh Organic lighting device and lighting equipment
US9829192B2 (en) 2006-09-29 2017-11-28 Osram Oled Gmbh Organic lighting device and lighting equipment
US10267507B2 (en) 2006-09-29 2019-04-23 Osram Oled Gmbh Organic lighting device and lighting equipment
CN109781674A (zh) * 2019-02-02 2019-05-21 京东方科技集团股份有限公司 一种气体检测装置及其制备方法、气体监控系统
CN109781674B (zh) * 2019-02-02 2021-10-01 京东方科技集团股份有限公司 一种气体检测装置及其制备方法、气体监控系统

Also Published As

Publication number Publication date
ES2251882B1 (es) 2007-06-16
EP1840181A4 (en) 2009-11-04
EP1840181A1 (en) 2007-10-03
ES2251882A1 (es) 2006-05-01
JP2008517133A (ja) 2008-05-22
US20080203359A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
EP3663308B1 (en) Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
WO2006045875A1 (es) Material electroluminiscente que comprende un sólido microporoso o mesoporoso conteniendo compuestos orgánicos covalentemente enlazados que confieren propiedades electroluminiscentes
Spitler et al. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks
Hwang et al. Donor engineered Deep-Blue emitters for tuning luminescence mechanism in Solution-Processed OLEDs
CN112159432A (zh) 用官能化苯基卡宾配体环金属化的四齿铂(ii)络合物和它们的类似物
Zeng et al. High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation via a spiro-linked double D–A molecular architecture
EP2684231A1 (en) Organic compound and photovoltaic device comprising the same
JP7109409B2 (ja) 有機金属化合物とそれを含む有機発光素子及び診断用組成物
Liras et al. New BODIPY chromophores bound to polyhedral oligomeric silsesquioxanes (POSS) with improved thermo-and photostability
Muleta et al. Small molecule-doped organic crystals towards long-persistent luminescence in water and air
WO2010061989A1 (en) Organometallic complex compounds for photoelectric device and photoelectric device including the same
JP2019182850A (ja) 有機金属化合物とそれを含む有機発光素子及び診断用組成物
Guo et al. Synthesis, spectroscopic properties, and stabilities of ternary europium complex in SBA-15 and periodic mesoporous organosilica: A comparative study
He et al. Efficient energy transfer in terbium complexes/porous boron nitride hybrid luminescent materials
Yu et al. Fluorenone-based thermally activated delayed fluorescence materials for orange-red emission
JP7249917B2 (ja) 有機金属化合物とそれを含む有機発光素子及び診断用組成物
CN109575058B (zh) 4,10-二氧-5,9-二硼芘衍生物、制备方法及应用
Yang et al. Chiral tetracoordinate organoboranes based on double B← N bridged bipyridine with circularly polarized luminescence
Gao et al. A fully π-conjugated triazine-based 2D covalent organic framework used as metal-free yellow phosphors in white light-emitting diodes
JP2019189605A (ja) 有機金属化合物とそれを含む有機発光素子及び診断用組成物
JP2007088307A (ja) 電界発光素子
Lu et al. Reversible photoluminescence of an H-bonded organic framework based on macrocyclic triazine in solvation and desolvation
Bagnall et al. Mesoscopic FRET Antenna Materials by Self‐Assembling Iridium (III) Complexes and BODIPY Dyes
Mizoshita et al. Enhanced photoluminescence of mesostructured organosilica films with a high density of fluorescent chromophores
Wang et al. Novel europium complexes covalently bonded to MCM-41 and SBA-15: spatial confinement effects on photoluminescence behavior

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007537316

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005799740

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005799740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11665802

Country of ref document: US