WO2006044629A2 - Gaseous fluid production apparatus and method - Google Patents

Gaseous fluid production apparatus and method Download PDF

Info

Publication number
WO2006044629A2
WO2006044629A2 PCT/US2005/036977 US2005036977W WO2006044629A2 WO 2006044629 A2 WO2006044629 A2 WO 2006044629A2 US 2005036977 W US2005036977 W US 2005036977W WO 2006044629 A2 WO2006044629 A2 WO 2006044629A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
stream
outlet
valve
gas generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2005/036977
Other languages
English (en)
French (fr)
Other versions
WO2006044629A3 (en
Inventor
Joel A. Taube
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Climax Molybdenum Co
Original Assignee
Climax Molybdenum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Climax Molybdenum Co filed Critical Climax Molybdenum Co
Priority to DE112005002548T priority Critical patent/DE112005002548T5/de
Priority to JP2007536928A priority patent/JP5634658B2/ja
Priority to GB0705039A priority patent/GB2432652B/en
Publication of WO2006044629A2 publication Critical patent/WO2006044629A2/en
Publication of WO2006044629A3 publication Critical patent/WO2006044629A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/022Mixing fluids identical fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • This invention relates to apparatus for producing gaseous fluid and more specifically to methods and apparatus for controlling at least one parameter of the gaseous fluid.
  • Controlling the temperatures of quench fluids can greatly assist in nano-particle production. Temperature control of quench fluids can affect the number and size of nanoparticles produced, can minimize fluctuations in flow and pressure, and may help to conserve energy.
  • Temperature control of a quench fluid may be achieved in part by mixing the gas with a cooler, liquefied stream of the same gas.
  • a liquid/gas mixture of this sort can then be maintained within a range of desired end temperatures to provide for increased flow-rates or to avoid flow-rate fluctuations, for example.
  • devices for providing a liquid/gas mixture are not without their problems, as it can be difficult to combine liquid and gas streams depending on the temperatures and pressures involved.
  • a method of the present invention comprises supplying a first fluid stream substantially in a liquid state and a second fluid stream substantially in liquid state from a single fluid source. At least a portion of the second fluid stream is vaporized to form a gaseous fluid. The flow rate of at least one of the first and second fluid streams is varied.
  • the method provides for the combining of the first and second fluid streams to produce a gaseous fluid product, at least one parameter of which is affected by the varying of the flow rate of at least one of the first and second fluid streams.
  • An outlet stream production apparatus of the present invention comprises a fluid container containing fluid in substantially a liquid state.
  • a gas generator is connected to said fluid container.
  • a first fluid line is also connected to said fluid container.
  • the first fluid line is connected to a product discharge manifold via a first valve.
  • the gas generator is also connected to the product discharge manifold via a second valve.
  • the first valve and the second valve are operable to control at least one parameter of an outlet stream produced at the product discharge manifold.
  • Another embodiment of a method for controlling an outlet stream parameter comprises removing two discrete streams of liquid-phase material from the single source; passing a first one of said two discrete streams through a first line having a first valve; passing the second of the streams through a second line having a gas generator and a second valve; mixing the first and second fluid streams in a controlled relationship to produce an outlet stream with a controlled parameter.
  • the controlled parameter is temperature
  • the method may further comprise controlling the temperature to maintain the temperature at a selected value in the range between about the boiling point of the outlet stream and about the ambient temperature.
  • the mixing of the first and the second fluid streams may provide not only for producing a single fluid outlet stream, but also for controlling a parameter of the single fluid outlet stream.
  • apparatus of the present invention may provide for a parametrically-controlled outlet stream wherein the controlled parameter is one or more of the temperature, pressure or volumetric flow rate of at least one of the first and second fluid streams, and the outlet stream.
  • a gaseous fluid production apparatus 10 according to one embodiment of the present invention is illustrated in the drawing figure and may comprise a fluid container 11 containing fluid 14 in at least a liquid phase 12. The fluid 14 is dispensed through respective first and second fluid lines 16, 17 to a product discharge manifold 18.
  • a gas generator 20 is disposed in or otherwise connected to the second fluid line 17, as shown. However, in another embodiment, the gas generator 20 may also be disposed in or otherwise connected to the first fluid line 16. As will be described in greater detail below, the gas generator 20 receives the fluid 14 substantially in the liquid phase 12 and vaporizes at least some of the fluid 14 to produce a gaseous fluid.
  • cryogenic fluid refers to liquids that boil at temperatures of less than about HO K (-163.15 degree C) at atmospheric pressure.
  • Cryogenic fluids include, but are not limited to, hydrogen, helium, nitrogen, oxygen, argon, air, and methane.
  • Cryogenic fluids may not be suitable when exposed to ambient temperature. That is, when cryogenic fluids in liquid form are exposed to such ambient temperatures, they may quickly reach boiling temperature(s) and thus change state to gaseous form. Often, the actual temperature of cryogenic fluid at its initial boiling temperature has been of little importance, since it is still very cold relative to most ambient temperatures. However, systems desiring particular cryogenic temperatures are emerging and thus controlled parameter (temperature and/or pressure) output fluid streams for those systems may be preferred.
  • the apparatus 10 of the present invention comprises a fluid container 11, which may, but need not be, in a tank form.
  • the fluid container 11 is fluidly connected to first and second fluid lines 16, 17 which are ultimately also connected to each other to define, or form, the product discharge manifold 18.
  • the connections of both the first and second fluid lines 16, 17 to the fluid container 11 are generally made in such as way so as to permit the fluid 14 to be conducted from the fluid container 11 in the liquid phase 12.
  • such a connection between the fluid container 11 and the first and second fluid lines 16, 17 may be made below the liquid-gas interface 15.
  • the first and second fluid streams may be brought together and mixed to produce the outlet stream 19 having a resultant or manufactured parameter (e.g., temperature, pressure, flow rate) at a set level or within a controlled range.
  • a resultant or manufactured parameter e.g., temperature, pressure, flow rate
  • the outlet stream 19 parameters be manipulated, selected and/or controlled, hi many cases, the physical, mechanical and/or plumbing constraints (e.g., sizes, shapes, lengths, etc.) of one or more parts of the apparatus 10 (e.g., the first and second fluid lines 16, 17) may contribute to and/or result in the parameters of the first and second fluid streams, thereby affecting the parameters of the outlet stream 19.
  • one or more valves may be inserted in the fluid lines 16, 17 to control the mixing of the first and second fluid streams, and therefore control the parameters of the outlet stream 19.
  • a first valve 26 may be inserted into the first fluid line 16 and/or a second valve 27 maybe inserted into the second fluid line 17.
  • the first valve 26 is disposed on the first fluid line 16 and maybe used to vary the flow of the first fluid stream in the first fluid line 16 into the product discharge manifold 18 (and the outlet stream 19), thereby regulating the temperature in the outlet stream 19.
  • the first valve 26 may be completely open, partially open, or completely closed, permitting the outlet stream 19 in the product discharge manifold 18 to receive full input, some input or no input from the first fluid stream.
  • the first valve 26 may be manipulated to restrict the flow of the first stream to any degree desired.
  • the second valve 27 may be used on the second fluid line 17 to provide parametric control of the second fluid stream as it enters the product discharge manifold 18, thus affecting the parameter(s) of the outlet stream 19.
  • Another embodiment may also include an optional control system 30 comprising at least one parametric sensing device.
  • the embodiment shown contains an outlet stream temperature sensor 32 and an outlet stream pressure sensor 34 included in the product discharge manifold 18 to assist in controlling the parameters of the outlet stream 19.
  • the outlet stream temperature sensor 32 may measure a temperature of the outlet stream 19 in, through, at, or upon exit from the product discharge manifold 18. Information from the outlet stream temperature sensor 32 may then be used in determining whether a mechanical change to the apparatus 10 is required to change the temperature of the outlet stream 19 in the product discharge manifold 18. Either of the valves 26, 27 may then be manipulated to effectuate the desired change.
  • the temperature indication may call for a change in the contribution from the first fluid stream in the first line 16, and thus call for a manipulation of the first valve 26.
  • a manipulation of the second valve 27 may be required to change the contribution from the second fluid stream to the output stream 19.
  • the embodiment shown also comprises outlet stream pressure sensor 34 for measuring pressure of the outlet stream 19 in, through, at, or upon exit from the product discharge manifold 18.
  • the outlet stream pressure sensor 34 may indicate a needed change in fluid flow in the second fluid line 17.
  • the use of the first valve 26 with the outlet stream temperature sensor 32 and the use of the second valve 27 with the outlet stream pressure sensor 34 may be used to provide pressure control of the fluid streams in each of the first and second lines 16, 17. Such pressure control can be used to reduce or minimize flow fluctuations, or flow variances of the outlet stream 19 exiting the product discharge manifold 18.
  • these activities may be automated by using a temperature controller 36 and a pressure controller 37.
  • the temperature controller 36 may be disposed between the outlet stream temperature sensor 32 and the first valve 26 to receive input (e.g., a temperature measurement) from the outlet stream temperature sensor 32, and use that input to control (i.e., open, close, or merely restrict, more or less) the flow of the first fluid stream through the first valve 26.
  • the temperature controller 36 may thereby vary the impact that first fluid stream has on the outlet stream 19.
  • the pressure controller 37 may similarly be used in connection with the outlet stream pressure sensor 34 and the second valve 27.
  • the temperature controller 36 and the pressure controller 37 may be programmable as by a human or may be interoperative with one or more other parts of a larger system which may control either one or both of the controllers 36, 37.
  • the embodiment shown depicts the temperature controller 36 as disposed between the outlet stream temperature sensor 32 and the first valve 26, and the pressure controller 37 disposed between the outlet stream pressure sensor 34 and the second valve 27, the controllers 36, 37 may be placed in any location as would be familiar to one of skill in the art.
  • either one or both controllers 36, 37 may be inherent in or disposed on one or the other or both of the respective valves 26, 27.
  • either or both controllers 36, 37 may be inherent in or disposed on either one or both of the outlet stream temperature sensor 32 and the outlet stream pressure sensor 34.
  • FIG. 1 Another embodiment, as shown in the drawing, may comprise a supplemental heat exchanger 40 for the primary purpose of ensuring a gas flow in the second fluid line 17, particularly downstream of the gas generator 20.
  • the heat exchanger 40 may, as shown here, include a bypass valve 41 , bypass piping 42 and associated bypass inlet valve 43 and bypass outlet valve 45 to control flow in the heat exchanger 40 as would be generally understood by those of skill in the art.
  • a gas generator temperature sensor 47 may also be included to measure the temperature downstream of both the gas generator 20 and the heat exchanger 40 (as shown here) to determine whether the second fluid stream in the second fluid line 17 has been adequately converted to the gas phase.
  • the data from the gas generator temperature sensor 47 may be used to adjust the flow through the heat exchanger 40 to add sufficient heat to change the second fluid stream to a gas.
  • the flow through the heat exchanger 40 may be controlled primarily by the bypass valve 41 which may be used to shunt the desired quantity of the second fluid stream in the second fluid line 17 into the heat exchanger 40.
  • the gas generator temperature sensor 47 may be connected to at least one controller (not shown) which, in turn, is connected to either the gas generator 20 or heat exchanger 40 (at bypass valve 41), or both, to ensure the desired phase change of the second fluid stream to a gas.
  • Said at least one controller may be inherent in or on the gas generator 20, or the heat exchanger 40, bypass valve 41 or even on the gas generator temperature sensor 47.
  • Alternative embodiments may include those in which one or more of the heat exchanger 40, gas generator temperature sensor 47, valves 26, 27, sensors 32, 34, or controllers 36, 37 are not included.
  • An example of an alternative embodiment without valves 26, 27 may involve first and second fluid lines 16, 17 of controlled sizes (lengths, diameters and the like). The thinner the line, the more restricted the flow and the smaller the fluid stream. Thus, in the case where the first fluid line 16 is much thinner than the second fluid line 17, the parametric impact of the first fluid stream on the second fluid stream will be minimized. If the first fluid line 16 were sufficiently thin, the outlet stream 19 exiting the product discharge manifold 18 may appear like the second fluid stream, parametrically.
  • the relative size ratios of the first and second fluid streams will impact the parametric control of the outlet stream 19, as determined by the diameter of the first and second fluid lines 16, 17, respectively.
  • the relative temperature or pressure change of the first fluid stream due to its length of travel in the first fluid line 16, for example, may contribute to the parameters of the outlet stream 19 at the product discharge manifold 18.
  • a longer travel length can expose a fluid stream to: (a) a greater temperature rise (if the ambient temperature is greater than the fluid boiling point); (b) increased cooling (if the fluid boiling point is higher than the ambient temperature), or (c) greater pressure changes (due to any change of state, e.g., by boiling in the line), hi such cases, however, understood and/or pre-selected line sizes, lengths, diameters, connections and the like can contribute to the ultimate parametric control of the outlet stream 19, including control of its temperature. In any case, careful selection of these relative parts can provide for a desired outlet stream 19 parametric control, as for example, within a particular range of temperatures, pressures or volumetric flow rates.
  • the apparatus 10 may include the fluid container 11 containing fluid 14 at least in the liquid phase 12.
  • Two fluid communication lines (the first fluid line 16 and the second fluid line 17) may be connected to the fluid container 11 in a manner to permit both the first fluid line 16 to receive the first fluid stream substantially in the liquid state and the second fluid line 17 to receive the second fluid stream substantially in the liquid state.
  • the first fluid line 16 conducts the first fluid stream and the second fluid line 17 conducts the second fluid stream to a connection that defines, or forms, the product discharge manifold 18.
  • the first fluid stream is combined with the second fluid stream at the product discharge manifold 18 to produce the outlet stream 19.
  • the gas generator 20 is disposed in the second fluid line 17 in between the fluid container 11 and the product discharge manifold 18.
  • the gas generator 20 is connected to the heat exchanger 40 and the gas generator temperature sensor 47 via the second fluid line 17.
  • the gas generator 20, the heat exchanger 40 and the gas generator temperature sensor 47 operate in the process of changing the phase of the second fluid stream from liquid to gas, as well as ensure that the proper degree of conversion has occurred.
  • the gas generator temperature sensor 47 may be connected through a controller (not shown) to either the gas generator 20 or heat exchanger 40 (at bypass valve 41), or both, to ensure the change in phase to a gas.
  • the outlet stream 19 in gaseous form may include separately or in combination a gas mixed with a liquid such that the liquid cools the gas, but also a gas/liquid mixture where the liquid is suspended in the gas, whether vaporized, colloidally suspended or aerosolized in the gas.
  • colder temperatures may be achieved by combining a gas stream with a liquid stream.
  • the liquid stream may be only a liquid initially, having at some point vaporized, it should still be generally colder than the primary gas phase stream.
  • the ability to control the temperature of the outlet stream 19 by mixing a gas phase with a liquid phase may provide for desirable cooling affects in another system, which may be limited by using only a single phase ⁇ either a gas only form or a liquid only form ⁇ of an output fluid to cool.
  • the gas only form may be too hot (relatively), and the liquid only form may be too cold.
  • the advantage of using a cooled gas to cool in an operative system allows better control over the cooling rate, and consequently overall better system control.
  • a two-container system doubles the required inventory and creates operational size problems, as two containers may generally take up twice the space.
  • a single tank containing both a liquid and a separate gas phase may require producing an unacceptably high liquid pressure in order to obtain the gas pressure necessary for mixing to occur.
  • the pressure of the gas and liquid should be similar and allow for mixing; however, if a cryogenic fluid were used, the cryogenic fluid in the liquid phase would boil in the line and vaporize, creating an increased pressure in the line, preventing it from mixing with the gas phase drawn off in the other line at the container pressure.
  • the apparatus 10 of the present invention supplied with cryogenic fluid may have a desirable effect of minimizing liquid coolant pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Accessories For Mixers (AREA)
PCT/US2005/036977 2004-10-15 2005-10-14 Gaseous fluid production apparatus and method Ceased WO2006044629A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005002548T DE112005002548T5 (de) 2004-10-15 2005-10-14 Vorrichtung und Verfahren zum Erzeugen eines gasförmigen Fluides
JP2007536928A JP5634658B2 (ja) 2004-10-15 2005-10-14 気体状の流体生成物を形成する装置及び方法
GB0705039A GB2432652B (en) 2004-10-15 2005-10-14 Gaseous fluid production apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61943604P 2004-10-15 2004-10-15
US60/619,436 2004-10-15

Publications (2)

Publication Number Publication Date
WO2006044629A2 true WO2006044629A2 (en) 2006-04-27
WO2006044629A3 WO2006044629A3 (en) 2006-12-28

Family

ID=36203542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/036977 Ceased WO2006044629A2 (en) 2004-10-15 2005-10-14 Gaseous fluid production apparatus and method

Country Status (5)

Country Link
US (2) US7191603B2 (enExample)
JP (1) JP5634658B2 (enExample)
DE (1) DE112005002548T5 (enExample)
GB (1) GB2432652B (enExample)
WO (1) WO2006044629A2 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566112A (zh) * 2021-08-09 2021-10-29 翱华工程技术股份有限公司 一种低能耗氯气供应站及使用方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2432652B (en) * 2004-10-15 2008-02-13 Climax Molybdenum Co Gaseous fluid production apparatus and method
US20070095077A1 (en) * 2005-11-01 2007-05-03 Chevron U.S.A. Inc. LNG by-pass for open rack vaporizer during LNG regasification
US8726676B2 (en) 2007-05-17 2014-05-20 The Boeing Company Thermodynamic pump for cryogenic fueled devices
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US20110266810A1 (en) 2009-11-03 2011-11-03 Mcbride Troy O Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US7963110B2 (en) * 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
WO2012158781A2 (en) 2011-05-17 2012-11-22 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8720500B2 (en) * 2011-10-11 2014-05-13 GM Global Technology Operations LLC Electrical architecture for passive controller wake-up during refuel
US20130091836A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
GB2565661B (en) * 2016-03-14 2021-12-15 Enermech Pty Ltd A cooling system
GB2561898A (en) 2017-04-28 2018-10-31 Mexichem Fluor Sa De Cv Improvements in or relating to propellant conditioning assemblies
FR3066248B1 (fr) * 2017-05-12 2020-12-11 Gaztransport Et Technigaz Procede et systeme de traitement de gaz d'une installation de stockage de gaz pour un navire de transport de gaz
US20230049965A1 (en) * 2019-06-10 2023-02-16 Patched Conics, LLC. Fluid supply device
US11346348B2 (en) * 2019-09-04 2022-05-31 Advanced Flow Solutions, Inc. Liquefied gas unloading and deep evacuation system
DE102020001082A1 (de) * 2020-02-20 2021-08-26 Messer Group Gmbh Vorrichtung und Verfahren zur Erzeugung eines temperierten, kalten Gasstroms
FR3108385B1 (fr) * 2020-03-19 2022-06-17 Air Liquide France Ind Système de vaporisation de fluides cryogéniques et notamment du CO2

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001375A (en) * 1959-08-14 1961-09-26 Mine Safety Appliances Co Oxygen distribution system
US3771260A (en) * 1970-01-29 1973-11-13 Black Sivalls & Bryson Inc Method of vaporizing and combining a liquefied cryogenic fluid stream with a gas stream
US3733838A (en) * 1971-12-01 1973-05-22 Chicago Bridge & Iron Co System for reliquefying boil-off vapor from liquefied gas
US3804108A (en) * 1972-10-20 1974-04-16 Damon Corp Apparatus for the selective dispensing of a liquid and a gas
US4127008A (en) * 1976-11-01 1978-11-28 Lewis Tyree Jr Method and apparatus for cooling material using liquid CO2
JPS586117B2 (ja) * 1979-06-28 1983-02-03 株式会社神戸製鋼所 常温液化ガスの蒸発装置
US4406129A (en) * 1981-12-11 1983-09-27 Beech Aircraft Corporation Saturated cryogenic fuel system
US4555387A (en) * 1984-02-27 1985-11-26 Amax Inc. Flash roasting of molybdenum sulfide concentrates in a slagging reactor
US4690813A (en) * 1984-09-14 1987-09-01 Alps Electric Co., Ltd. Molybdenum oxide whiskers and a method of producing the same
JPS6465394A (en) * 1987-09-03 1989-03-10 Osaka Gas Co Ltd Manufacture of fuel gas
DE3805564A1 (de) * 1988-02-23 1989-08-31 Siemens Ag Katalysator zur minderung der stickoxide und verfahren zu seiner herstellung
US5185133A (en) * 1988-08-23 1993-02-09 Gte Products Corporation Method for producing fine size yellow molybdenum trioxide powder
US5243821A (en) * 1991-06-24 1993-09-14 Air Products And Chemicals, Inc. Method and apparatus for delivering a continuous quantity of gas over a wide range of flow rates
US5214925A (en) * 1991-09-30 1993-06-01 Union Carbide Chemicals & Plastics Technology Corporation Use of liquified compressed gases as a refrigerant to suppress cavitation and compressibility when pumping liquified compressed gases
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US5514350A (en) * 1994-04-22 1996-05-07 Rutgers, The State University Of New Jersey Apparatus for making nanostructured ceramic powders and whiskers
US5549142A (en) * 1994-05-27 1996-08-27 Jeffrey P. Beale Dispensing system for refueling transport containers with cryogenic liquids
US5572864A (en) * 1994-09-16 1996-11-12 Martin Marietta Corporation Solid-fuel, liquid oxidizer hybrid rocket turbopump auxiliary engine
US5472749A (en) * 1994-10-27 1995-12-05 Northwestern University Graphite encapsulated nanophase particles produced by a tungsten arc method
EP0731211B1 (de) * 1995-02-24 2002-06-05 Voith Paper Patent GmbH Strahleinrichtung
US5698483A (en) * 1995-03-17 1997-12-16 Institute Of Gas Technology Process for preparing nanosized powder
US5590535A (en) * 1995-11-13 1997-01-07 Chicago Bridge & Iron Technical Services Company Process and apparatus for conditioning cryogenic fuel to establish a selected equilibrium pressure
US5788738A (en) * 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US5851507A (en) * 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US5922299A (en) * 1996-11-26 1999-07-13 Battelle Memorial Institute Mesoporous-silica films, fibers, and powders by evaporation
US5762119A (en) * 1996-11-29 1998-06-09 Golden Spread Energy, Inc. Cryogenic gas transportation and delivery system
CH690720A5 (de) * 1996-12-18 2000-12-29 Eidgenoess Tech Hochschule Nanotubes, Verwendung solcher Nanotubes sowie Verfahren zu deren Herstellung.
US5820844A (en) * 1997-01-29 1998-10-13 Cyprus Amax Minerals Company Method for the production of a purified MoO3 composition
JP3720160B2 (ja) * 1997-03-17 2005-11-24 日本エア・リキード株式会社 低温液化ガスの気化方法及び設備
TW444109B (en) * 1997-06-20 2001-07-01 Exxon Production Research Co LNG fuel storage and delivery systems for natural gas powered vehicles
US5879715A (en) 1997-09-02 1999-03-09 Ceramem Corporation Process and system for production of inorganic nanoparticles
US5804151A (en) * 1997-09-16 1998-09-08 Cyprus Amax Minerals Company Process for autoclaving molybdenum disulfide
US5884488A (en) * 1997-11-07 1999-03-23 Westport Research Inc. High pressure fuel supply system for natural gas vehicles
US7572430B2 (en) * 2000-11-09 2009-08-11 Cyprus Amax Minerals Company Method for producing nano-particles
US6505469B1 (en) * 2001-10-15 2003-01-14 Chart Inc. Gas dispensing system for cryogenic liquid vessels
US6799429B2 (en) * 2001-11-29 2004-10-05 Chart Inc. High flow pressurized cryogenic fluid dispensing system
GB2432652B (en) * 2004-10-15 2008-02-13 Climax Molybdenum Co Gaseous fluid production apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566112A (zh) * 2021-08-09 2021-10-29 翱华工程技术股份有限公司 一种低能耗氯气供应站及使用方法

Also Published As

Publication number Publication date
GB2432652B (en) 2008-02-13
JP2008516754A (ja) 2008-05-22
GB0705039D0 (en) 2007-04-25
US20070130964A1 (en) 2007-06-14
WO2006044629A3 (en) 2006-12-28
US7565811B2 (en) 2009-07-28
JP5634658B2 (ja) 2014-12-03
GB2432652A (en) 2007-05-30
US7191603B2 (en) 2007-03-20
US20060086100A1 (en) 2006-04-27
DE112005002548T5 (de) 2008-09-18

Similar Documents

Publication Publication Date Title
US7565811B2 (en) Gaseous fluid production apparatus and method
US8020589B2 (en) Hydrogen dispensing station and method of operating the same
CA2573853C (en) Ramp rate blender
KR100447665B1 (ko) 극저온 유체 실린더 충전 시스템
CN103797314B (zh) 具有压力受控的液化腔室的液化器
US11187382B2 (en) Device and method for filling tanks
JP5513590B2 (ja) 始動作動中のプロセスガスの排気を最小限に抑えるコンプレッサ組立体及び方法
US10920933B2 (en) Device and process for refueling containers with pressurized gas
US11287087B2 (en) Device and process for refueling containers with pressurized gas
US11499765B2 (en) Device and process for refueling containers with pressurized gas
US11953158B2 (en) Device and process for refueling containers with pressurized gas
CN115199951A (zh) 一种用于液氢发动机测试的混合增压液氢输送系统及方法
CN101855495A (zh) 用于控制致冷剂温度的设备和方法
US6584998B1 (en) Apparatus and method for regulating gas flow
CN102884360A (zh) 生产无菌低温液体的方法
JP2006283812A (ja) 液化ガスの供給システムおよび供給方法
EP3604893B1 (en) Device and process for refuelling containers with pressurized gas
JP7145101B2 (ja) 燃料ガス供給システムおよび燃料ガス供給方法
CN202484593U (zh) 一种卸车增压工艺装置
JPH0747251A (ja) 混合ガス発生方法
JP4964462B2 (ja) 高圧ガス供給装置および高圧ガス供給方法
US20070163273A1 (en) Liquid Purge for a Vaporizer
JPH0450619A (ja) 低温液化ガスの流量測定方法及びその方法を用いた流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 0705039

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20051014

WWE Wipo information: entry into national phase

Ref document number: 0705039.6

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2007536928

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050025489

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase

Ref document number: 05812604

Country of ref document: EP

Kind code of ref document: A2

RET De translation (de og part 6b)

Ref document number: 112005002548

Country of ref document: DE

Date of ref document: 20080918

Kind code of ref document: P