WO2006043675A1 - 無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。 - Google Patents

無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。 Download PDF

Info

Publication number
WO2006043675A1
WO2006043675A1 PCT/JP2005/019425 JP2005019425W WO2006043675A1 WO 2006043675 A1 WO2006043675 A1 WO 2006043675A1 JP 2005019425 W JP2005019425 W JP 2005019425W WO 2006043675 A1 WO2006043675 A1 WO 2006043675A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell extract
cell
protein
carrier
extract
Prior art date
Application number
PCT/JP2005/019425
Other languages
English (en)
French (fr)
Other versions
WO2006043675A9 (ja
Inventor
Yaeta Endo
Tatsuya Sawasaki
Yoshiko Ishizuka
Original Assignee
Cellfree Sciences Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellfree Sciences Co., Ltd. filed Critical Cellfree Sciences Co., Ltd.
Publication of WO2006043675A1 publication Critical patent/WO2006043675A1/ja
Publication of WO2006043675A9 publication Critical patent/WO2006043675A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography

Definitions

  • a cell extract for cell-free protein synthesis and a method for preparing the extract are provided.
  • the present invention relates to a cell extract for cell-free protein synthesis with reduced impurities and a preparation method thereof.
  • the protein when recovering a protein synthesized by a cell-free protein synthesis system contained in a cell extract for cell-free protein synthesis, the protein may exhibit the same or similar behavior (potentially compete) with the protein.
  • Cell extract from which cell extract intrinsic impurities hereinafter simply referred to as cell extract intrinsic impurities or simply endogenous impurities
  • endogenous impurities in the cell extract that may be at least the same or similar behavior (potentially competing) to the synthetic protein are introduced into the purification process of the protein from the cell-free protein synthesis system.
  • the present invention relates to a method for removing from an extract.
  • Non-patent literature l Madin, K. et al., Proc. Natl. Acad. Sci. USA, 97, 559-56 4 (2000)
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-236896
  • Patent Document 2 WO03 / 064672
  • Patent Document 3 WO2005 / 063979 Disclosure of the invention
  • the embryo extract obtained by the above method has a higher protein synthesis ability than a conventional cell-free protein synthesis system.
  • substances of less than 10,000 daltons are thoroughly eliminated by the above-mentioned treatment, and the remaining substances, including those necessary for the protein synthesis reaction originally present in the germ, remain.
  • Various substances such as substances derived from endosperm exist. Therefore, in the process of recovering the desired protein synthesized using this embryo extract with high purity, various substances originally present in the extract are mixed into the desired protein-containing fraction. When doing so, some kind of purification operation is required.
  • the wheat germ extract contained the tag fusion protein in the purification step of the tag fusion protein.
  • the present inventors have found that there are multiple types of contaminants in the cell extract that exhibit the same or similar behavior as proteins. Such cellular contaminants in the cell extract are adsorbed to the affinity matrix and are eluted under the same conditions as the desired tag fusion protein, and are co-purified with the desired protein. It becomes an impurity of the purified sample.
  • a GST fusion protein synthesized with a wheat germ extract is purified with dartathione sepharose
  • a protein with a molecular weight of about 30 kd is detected together with the GST tag fusion protein.
  • This protein is adsorbed on dartathione sepharose under the same conditions as the GST-tagged protein and is eluted at the same dartathione concentration as the GST-tagged protein.
  • These intracellular contaminants are considered to have similar or similar affinity to substances that specifically bind to the tag.
  • Sepharose as a chromatographic carrier is considered to have affinity for various beads. Therefore, in order to increase the degree of purification of the desired synthetic protein, it is necessary to remove these impurities in the cell extract.
  • an object of the present invention is to provide a cell extract for cell-free protein synthesis in which endogenous impurities are reduced and a method for preparing the same.
  • cell-free tampering In the protein synthesis system, as a means of increasing the degree of purification of the desired protein synthesized, the protein purification process exhibits the same or similar behavior as the protein and is co-purified with the protein.
  • the present invention also provides a cell extract for cell-free protein synthesis and a method for preparing the same, from which the impurities of the cell extract are substantially removed.
  • the present inventor has examined a method for removing the contaminants contained in the cell extract based on the behavior of adsorption / desorption behavior of the contaminants in the cell extract on various chromatographic carriers. As a result, it was found that the endogenous impurities adsorbed on the chromatography carrier can be removed by bringing the cell extract into contact with a chromatography carrier used for the purification of the synthetic protein. Furthermore, it was confirmed that the removal operation preserves the cell extract and does not significantly affect the protein synthesis ability of the cell extract.
  • the cell extract according to the present invention is particularly useful for the synthesis of a synthetic protein in which various tags for purification are fused.
  • the present invention comprises the following.
  • Contaminants in the cell extract that may show the same or similar behavior as the synthetic protein show the same adsorption / desorption behavior in the purification process from the cell-free protein synthesis system. 2. The preparation method according to item 1 above.
  • a chromatographic carrier that specifically binds dartathione S-transferase or a derivative thereof; 2) a chromatographic carrier that chelate-bonds a transition metal; 3) a chromatographic carrier that binds streptavidin or avidin or a derivative thereof.
  • transition metal is selected from one of zinc, copper, and manganese.
  • the contact between the cell extract and the chromatography carrier is at least one selected from the following: 14.
  • Affinity chromatography carrier strength 16 The preparation method according to 15 above, which is any one of the following.
  • a chromatographic carrier that specifically binds dartathione S-transferase or a derivative thereof; 2) a chromatographic carrier that chelate-bonds a transition metal; 3) a chromatographic carrier that binds streptavidin or avidin or a derivative thereof.
  • transition metal is one of zinc, copper, and manganese.
  • Affinity chromatography carrier strength 16 The preparation method according to 15 above, which is any one of the following.
  • Affinity chromatography carrier strength 16 The preparation method according to item 15 above, which is a carrier to which an immunoglobulin Fc fragment is bound.
  • Chromatographic carrier force Any one of cation exchange chromatography, anion exchange chromatography, gel filtration chromatography, hydrophobic chromatography, reverse phase chromatography, isoelectric focusing, and hydroxyapatite can be selected.
  • a cell extract used in a cell-free protein synthesis system prepared by the preparation method according to any one of 1 to 21 in the preceding paragraph.
  • Cell extract obtained by removing cellulose and Z or dalcosidase derived from cell extract used in cell-free protein synthesis system A cell extract obtained by removing impurities inherent in the cell extract that may behave the same or similar to the protein when the synthesized protein is recovered.
  • Contaminants in the cell extract that may show the same or similar behavior as the synthetic protein show the same adsorption / desorption behavior in the purification process from the cell-free protein synthesis system.
  • a reagent kit for use in a cell-free protein synthesis system comprising the cell extract according to any one of 22 to 29 above.
  • Enzymol., 96, 38-50 etc. can be used.
  • a low molecular weight substance can be obtained by dialysis operation or ultrafiltration membrane operation using a regenerated cellulose membrane having an excluded molecular weight of about 12,000-14,000 daltons. Is removed.
  • the protein synthesized by the cell-free protein synthesis system is recovered, It is characterized by the elimination of contaminants in the cell extract that may exhibit the same or similar behavior (potentially competing).
  • the endogenous impurities in the cell extract are substances originally present in the cells, and the permeation operation or limitation using a regenerated cellulose membrane having an excluded molecular weight of about 12,000 to 14,000 daltons.
  • the main target is a substance with a molecular weight of more than 14,000 daltons that cannot be removed by the operation of the outer filtration membrane.
  • contaminants in the cell extract are also substances that do not affect protein synthesis, rather than only substances exhibiting protein synthesis inhibitory activity.
  • the possibility of exhibiting substantially the same, similar, or pseudo adsorption / desorption behavior is that the synthesized protein and the impurities in the cell extract have commonality in the adsorption / desorption behavior with respect to the chromatography carrier for purification. This means that both the synthetic protein and the endogenous impurities in the cell extract are adsorbed on the chromatography carrier for purification and desorbed by the eluate.
  • Cell extract internal contaminants that may be (or potentially compete with) the same or similar behavior to the protein are the chromatographic carriers themselves used to purify the synthesized protein (for example, Sepharose Cefadex) ) And various beads, it also includes substances that are adsorbed on the purification chromatography carrier together with the synthetic protein and desorbed by the eluate.
  • the GST-tagged protein or histidine-tagged protein and the chromatography carrier for purification are absorbed under the same conditions.
  • the substance to be desorbed becomes an endogenous contaminant in the cell extract that may exhibit the same or similar behavior (potentially competing) when collecting these tag fusion proteins.
  • the synthetic protein is purified by a combination of precipitation fractionation using organic solvents and ammonium sulfate, and various column chromatography. Since the method differs depending on the nature of the protein, purification methods and conditions must be examined each time. This contributes to hindering today's protein research involving many new proteins of unknown nature and function.
  • the number of histidine tags is not limited as long as a plurality of histidine sequences are arranged.
  • the number of histidine tags is preferably 4 to 10.
  • a sequence in which a plurality of histidines are scattered within a specific peptide, such as a natural histidine affinity tag may be used.
  • a chromatographic carrier for specifically binding a histidine tag a carrier in which cobalt is bound in addition to nickel, such as TALON TM (BD Biosciences) can be used.
  • a carrier chelate-bonded with a transition metal such as iron or copper can also be used.
  • streptavidin or a peptide having affinity for avidin or a protein as a tag can be combined with a chromatographic carrier to which streptavidin or avidin or a derivative thereof is bound.
  • Calmodulin-binding peptide fusion protein Calmodulin-binding carrier, cellulose-binding domain fusion protein cellulose-binding carrier, chitin-binding domain fusion protein-chitin binding carrier, maltose-binding protein fusion protein-amylose or cross-linked amylose-binding carrier, FLAG tag A carrier to which an antibody against the fusion protein—FLAG tag is bound can also be used.
  • a carrier bound with an immunoglobulin Fc fragment that specifically binds to a protein A fusion protein or a protein G fusion protein as a tag can also be used.
  • the affinity purification method using substances that specifically bind to the tag is generally easy and has high purification efficiency.
  • a facility purification method with a cell-free protein synthesis system, high-throughput purification of a wide variety of proteins is possible, which will be an important technique in proteomics research.
  • a chromatographic carrier used for general protein purification such as an ion exchanger (for example, a cation exchanger or an anion exchanger), Hydrophobic chromatography carriers (eg, ferrule sepharose or butyl sepharose), reverse phase chromatography carriers, isoelectric focusing chromatography carriers, gel filtration chromatography carriers, inorganic adsorbents (eg, nodoxy apatite) are known per se It is also possible to use a chromatography carrier for purification. Moreover, those skilled in the art can select the carrier to be used as appropriate depending on the properties of the protein to be synthesized (affinity to a specific substance, pH, charge, hydrophobicity, hydrophilicity, etc.).
  • the cell-free protein synthesis system of the present invention When recovering a protein synthesized by the cell-free protein synthesis system of the present invention, it may exhibit the same or similar behavior (potentially competing) with the protein.
  • the cell extract In order to remove endogenous impurities from the cell extract, the cell extract is brought into contact with a chromatographic carrier used to purify the synthetic protein, and the endogenous impurities are adsorbed onto the chromatographic carrier. Shown (sometimes called pre-processing).
  • the following method is used for contact with the chromatography carrier.
  • a chromatographic support equilibrated with an appropriate buffer solution or the like is added directly to the cell extract, and after standing for a certain period of time or gently stirring, the cell extract solution is also removed by removing the chromatographic support.
  • the chromatographic support can be removed from the cell extract by spontaneous fall or centrifugation. It can also be removed by adding a chromatography carrier and pouring the suspended cell extract onto a purification column.
  • the addition amount of the chromatography carrier is 0.01% to 50%, preferably 1% to 20% of the volume of the cell extract, but is not limited to these values, and an appropriate amount can be selected.
  • a translation reaction solution is prepared by adding components necessary for protein synthesis to the cell extract prepared as described above, further brought into contact with a chromatography carrier, and recovered.
  • the cell extract is passed through a Sephadex G25 column equilibrated with a solution containing the components necessary for protein synthesis to replace the extract with the translation reaction.
  • the components necessary for protein synthesis include amino acids serving as substrates, energy sources, various ions, buffers, ATP regeneration systems, nucleolytic enzyme inhibitors, tRNAs, reducing agents, polyethylene glycol, 3 ', 5 '— CAMP, folate, antibacterial agent and the like.
  • Concentrations are preferably 100 ⁇ ⁇ to 0.5 mM ATP, 25 ⁇ M to lmM GTP, and 25 ⁇ M to 5 mM for each of the 20 amino acids. Yes. These can be appropriately selected and combined according to the translation reaction system.
  • wheat germ extract when wheat germ extract is used as the cell extract-containing solution, 30 mM HEPES-KOH (pH 7.8), lOO mM potassium acetate, 2.7 mM magnesium acetate, 0.4 mM spermidine (Nacalai ' Tester), 0.3mML type 20 amino acids each, 4mM dithiothreitol, 1.2mMATP (Wako Pure Chemicals), 0.25mMGTP (Wako Pure Chemicals), 16mM creatine phosphate (Wako Pure Chemicals) ), 40 ⁇ g / ml creatine kinase (Roche), 0.005% sodium azide, and after sufficient dissolution, an appropriate amount of translational type mRNA is added.
  • HEPES-KOH pH 7.8
  • lOO mM potassium acetate 2.7 mM magnesium acetate
  • 0.4 mM spermidine Nacalai ' Tester
  • 0.3mML type 20 amino acids each 4mM dithio
  • Nucleolytic enzyme inhibitors various ions, amino acids serving as substrates, energy sources, etc. (hereinafter, these may be referred to as “translation reaction solution additives”), and mRNA encoding a specific protein serving as a translation template,
  • a stabilizer containing at least one component selected from the group strength of inositol, trehalose, mannitol and sucrose-epoxychlorohydrin copolymer as desired.
  • the additive concentration of each component can be used at a known blending ratio.
  • mRNA is a sequence in which a region encoding a protein that can be synthesized in a cell-free protein synthesis system has a sequence recognized by an appropriate RNA polymerase and a function that further activates translation. Any structure may be used as long as it has a structure connected to the downstream side. Examples of the sequence recognized by RNA polymerase include T3, ⁇ 7 or Sp6 RNA polymerase promoter. In addition, those having a structure in which an ⁇ sequence, Sp6 promoter sequence or the like is linked to the 5 ′ upstream side of the coding sequence are preferably used as a means for enhancing translation activity in a cell-free protein synthesis system.
  • a sequence encoding histidine tag (sequence in which a plurality of histidines are arranged) or GST may be introduced into mRNA.
  • the best cell extract of the present invention is an extract derived from wheat germ, which further inhibits protein synthesis in the mixed endosperm components and germ tissue cells (embryonic cell endogenous). Since this is an extract from which metabolites such as glucose and dalcosidase have been substantially removed, the raw material preparation method will be described below using this as an example.
  • the portion of the germ is very small, so in order to efficiently obtain the germ, It is preferable to remove the outer portion as much as possible.
  • a mechanical force is first applied to the plant seeds to obtain a mixture containing germ, endosperm crushed material and seed coat crushed material, and the endosperm crushed material and seed coat crushed material are removed from the mixture to obtain a crude embryo fraction ( A mixture containing germ as a main component and containing a crushed endosperm and a crushed seed coat) is obtained.
  • the force applied to the plant seed may be strong enough to separate the germ from the plant seed.
  • a mixture containing embryos, endosperm crushed material, and seed coat crushed material is obtained by pulverizing plant seeds using a known pulverizing apparatus.
  • the plant seeds are pulverized by using a pulverizer of a type that can apply impact force to an object to be pulverized, such as a pin mill and a hammer mill.
  • the degree of pulverization may be appropriately selected according to the size of the plant seed germ used. For example, in the case of wheat seeds, the maximum length is usually 4 mm or less, and preferably the maximum length is 2 mm or less. To do.
  • the pulverization is preferably performed by a dry method.
  • a crude germ fraction is obtained from the pulverized plant seed obtained using a generally known classifier, for example, a sieve.
  • a generally known classifier for example, a sieve.
  • a crude embryo fraction having a mesh size of 0.5 mm to 2. Omm, preferably 0.7 mm to l.4 mm is usually obtained.
  • seed coat, endosperm, dust, etc. contained in the obtained crude germ fraction may be removed using wind power or electrostatic force.
  • a crude embryo fraction can also be obtained by a method utilizing the difference in specific gravity between embryo, seed coat, and endosperm, for example, heavy liquid sorting.
  • a plurality of the above methods may be combined. Sarakuko, the embryos are selected from the obtained crude germ fraction using, for example, visual inspection or a color sorter.
  • the embryo fraction obtained in this way may have an endosperm component adhering thereto, it is usually preferable to further carry out a washing treatment for pure germ.
  • the washing treatment the germ fraction is dispersed and suspended in water or an aqueous solution cooled to usually 10 ° C or less, preferably 4 ° C or less, specifically an aqueous solution containing a surfactant as an aqueous solution, and the washing solution becomes cloudy. It is preferable to wash until it stops. Further, it is more preferable to disperse and suspend the embryo fraction in an aqueous solution containing a surfactant, usually at 10 ° C. or lower, preferably at 4 ° C. or lower, and wash until the washing solution does not become cloudy.
  • Non-ionic surfactants are preferred as surfactants. As long as it is an on-active surfactant, it can be widely used. Specifically, for example, bridges that are polyoxyethylene derivatives such as Brij, Triton, Nonidet P40, and Tween are preferable. Of these, the Noni det P40 is the best. These nonionic surfactants can be used at a concentration sufficient to remove the endosperm component and not adversely affect the protein synthesis activity of the germ component, but can be used, for example, at a concentration of 0.5%. Either one or both of the cleaning treatment with water or an aqueous solution or the cleaning treatment with a surfactant may be performed. Further, these cleaning treatments may be performed in combination with ultrasonic treatment.
  • an intact (having germination ability) obtained by screening and washing plant germs obtained from pulverized plant seeds obtained by pulverizing plant seeds as described above. After the embryo is fragmented (preferably in the presence of an extraction solvent), the resulting wheat germ extract is separated and further purified to obtain a wheat germ extract for cell-free protein synthesis.
  • an aqueous solution containing a buffer solution, potassium ions, magnesium ions, and a Z- or thiol-based anti-oxidation agent can be used. If necessary, force ions, L-type amino acids and the like may be further added.
  • HEPES N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid
  • the germ and the amount of extraction solvent required for extraction are mixed, and the embryo is subdivided in the presence of the extraction solvent.
  • the amount of the extraction solvent is usually 0.1 ml or more, preferably 0.5 ml or more, more preferably 1 ml or more with respect to the lg before washing.
  • the upper limit of the amount of the extraction solvent is not particularly limited, but is usually 10 ml or less, preferably 5 ml or less with respect to the embryo lg before washing.
  • the embryos to be subdivided can be either frozen as in the past or unfrozen, but not frozen. Is more preferable.
  • fragmentation method a conventionally known method such as grinding or crushing can be employed.
  • a method of subdividing embryos by impact or cutting developed by the present inventors (WO03Z064671) Publication).
  • “subdivide by impact or cutting” means the destruction of plant germ cell nuclei, mitochondria, organelles such as chloroplasts, cell membranes, cell walls, etc. by conventional grinding or crushing. This means that the plant germ is destroyed under conditions that can be minimized.
  • the apparatus and method that can be used for subdividing are not particularly limited as long as the above conditions are satisfied.
  • an apparatus having a blade that rotates at high speed such as a Warinda blender, is used.
  • the rotational speed of the blade is usually lOOOO rpm or more, preferably ⁇ 5000 rpm or more, and usually 30000 rpm or less, preferably ⁇ 25000 rpm or less.
  • the rotation time of the blade is usually 5 seconds or longer, preferably 10 seconds or longer.
  • the upper limit of the rotation time is not particularly limited, but is usually 10 minutes or less, preferably 5 minutes or less.
  • the temperature at the time of subdivision is preferably within the range where the operation can be carried out at 10 ° C or less, particularly preferably about 4 ° C.
  • RNA and ribosome can be efficiently extracted from the germ with high purity.
  • Such plant germ fragmentation in particular, subdivision by impact or cutting, is preferably performed in the presence of an extraction solvent, but the extraction solvent can also be added after subdivision.
  • the wheat germ extract is collected by centrifugation or the like and purified by gel filtration or the like.
  • the gel filtration can be performed, for example, by equilibrating with an appropriate solution in advance and using a gel filtration apparatus.
  • the composition and concentration of each component in the gel filtration solution are known per se and are used in the production of wheat germ extract for cell-free protein synthesis (eg, HEPES—KOH, potassium acetate, magnesium acetate, dithio
  • a solvent containing thritol or L-type amino acid may be employed.
  • the cell extract obtained in this way has an extremely reduced RNase activity and phosphatase activity.
  • the germ extract-containing liquid after gel filtration may contain microorganisms, particularly spores such as filamentous fungi (breast), and these microorganisms are preferably excluded. It is important to prevent microbial growth, especially during long-term (> 1 day) cell-free protein synthesis reactions.
  • the means for eliminating microorganisms is not particularly limited, but it is preferable to use a filter sterilization filter.
  • the pore size of the filter is not particularly limited as long as it is capable of removing microorganisms that may be mixed, but usually 0.1 to 1 micrometer, preferably 0.2 to 0.5 micrometer is appropriate. It is.
  • the cell extract thus obtained is a substance that suppresses the protein synthesis function contained in or retained by the raw wheat germ itself (tritin, thionine, ribonuclease, mRNA, tRNA, Substances that act on translated protein factors and ribosomes to suppress their function) have been almost completely removed. In other words, the endosperm where these inhibitors are localized is almost completely removed and purified. The degree of removal of endosperm can be evaluated by monitoring the activity of tritin contaminated in the wheat germ extract, that is, the activity of adenylating the ribosome.
  • the ribosome is not substantially deadenylated, it is judged that there is no contaminating endosperm-derived component in the germ extract, that is, the endosperm is almost completely removed and purified. Ribosomes are virtually deadened The level of not being removed means that the ribosome deadenylation rate is 7% or less, preferably 1% or less.
  • Centrifugal supernatant is obtained by centrifuging the raw embryo extract at 20,000 to 40,000 G, preferably 2.5 to 350,000 G, more preferably 30,000 G.
  • an inorganic carrier as a precipitation aid to separate the precipitate from the supernatant.
  • This precipitate contains a complex of an enzyme such as glycosidase and calcium. Pre-stripping the glycosidase! Starch power also helps to minimize glucose production.
  • suitable inorganic carriers include bentonite, activated carbon, silica gel, sea sand and the like. By introducing this inorganic carrier, it is possible to almost completely prevent the precipitate from being mixed into the supernatant.
  • the resulting centrifugation supernatant is used as a translation reaction solution by exchanging the solution by gel filtration or adding necessary components, and molecular weight fractionation is performed with a molecular weight lOkDa cut to remove the low molecular fraction.
  • a substance having a molecular weight of lOkDa or more can be fractionated and recovered.
  • This fractionation treatment is preferably performed a plurality of times, and in particular, it is preferable to substantially remove substances having a molecular weight of 1 kDa or less.
  • the specific number of times is 1 to: LO times, preferably 2 to 9 times, more preferably 3 to 8 times, and most preferably 4 to 7 times.
  • sugar and phosphate sucrose are substantially reduced to 10 mM or less, preferably 6 mM or less (as the glucose concentration in the extract having an absorbance of 200 OD / ml at 260 nm). ).
  • the extract with reduced glucose concentration obtained by force has a high level of cell-free protein synthesis ability.
  • ATP-mediated phosphorylation of sugars endogenous to cells is regulated (sna As cell extracts, those prepared in this way can be used as they are, or even if such removal has not been performed completely, If any one of various inhibition means and inactivation means is applied, a high cell-free protein synthesis ability can be achieved.
  • the cell extract in which the phosphate chain system is controlled via ATP of the sugar of the present invention is also intended to be a cell extract into which at least one means selected from the following is introduced. Specific examples of these means are as follows:
  • glycolytic enzyme is substantially removed or inactivated
  • Control of polysaccharide strength and monosaccharide production means that starch power, which is a polysaccharide, also controls the reaction system to monosaccharides such as glucose or fructose through the small sugar disaccharide, and the cell extract is continuously It means eliminating the production of sugars.
  • This exclusion is possible by achieving substantial removal of polysaccharides and small saccharides * disaccharides from cell extracts. Alternatively, it can be achieved by removing or inactivating the glycolytic enzyme and further adding an inhibitor.
  • the removal method of polysaccharides and small saccharides' disaccharides can be performed by using a molecular weight fractionation, affinity chromatography, inorganic adsorbent treatment method and the like known per se.
  • examples of the polysaccharide include starch and amylose
  • examples of the small saccharide disaccharide include sucrose and maltose.
  • glycolytic enzyme purification means such as known affinity chromatography or ion exchange chromatography using an antibody can be used.
  • a glycolytic enzyme-calcium complex can be formed and removed by centrifugation.
  • a chromatographic carrier such as bentonite, activated carbon, silica gel, or cefadex, or an inorganic carrier such as sea sand is added as a precipitation aid.
  • the saccharide-degrading enzyme include polysaccharides such as amylase, maltase, glycosidase, and enzymes that degrade small saccharides' disaccharides.
  • Removal of phosphate sucrose means that monosaccharide phosphates are contaminated in the existing cell extract for cell-free protein synthesis, which itself is a powerful cell-free protein synthesis. Since it was found to have an inhibitory ability, it means that this is substantially excluded from the cell extract.
  • the removal can be carried out by using a molecular weight fraction, affinity chromatography, an inorganic adsorbent treatment method, or the like known per se.
  • the removal of monosaccharides and phosphate sucrose can be eliminated to some extent by molecular sieves such as Sephadex G25, which are generally used when preparing cell extracts for cell-free protein synthesis.
  • molecular sieves such as Sephadex G25, which are generally used when preparing cell extracts for cell-free protein synthesis.
  • the specific number of times is 1 to 10 times, preferably 2 to 9 times, more preferably 3 to 8 times, and most preferably 4 to 7 times.
  • Inactivation of phosphate sucrose means that no further phosphate activity of phosphate sucrose occurs. Such inactivation can be performed by an enzyme reaction known per se.
  • Controlling the production of phosphate sucrose from monosaccharides means controlling the system that receives monosaccharides, especially hexoses, S-phosphates in cell extracts, and producing phosphate sucrose. Is virtually eliminated.
  • there are means such as substantial removal of monosaccharides, inactivation of sugar kinase, removal of sugar kinase, and addition of Z or a sugar kinase inhibitor.
  • Substantial removal of monosaccharides is as described above.
  • the inactivation of the sugar phosphate enzyme is generally performed by selecting the non-reaction conditions corresponding to the optimal reaction conditions such as pH and temperature of each sugar phosphatase.
  • Control of sugar phosphates can also be achieved by enzymatically and Z- or chemically modifying the sugar phosphate sites and altering them. For example, there is a method of oxidizing the OH group at the 6-position of glucose using glucose oxidase.
  • the wheat germ extract for cell-free protein synthesis subjected to the method of the present invention exhibits the same or similar behavior as the protein when the protein synthesized by this system is recovered ( Potentially competing cell extract endogenous contaminants have been reduced or substantially eliminated by any one of the various removal means described above. Extract.
  • the presence of impurities in the cell extract is reduced or substantially removed. This means that contamination of the cell extract in the purified fraction synthesized by the cell extract according to the present invention is reduced.
  • the GST tag fusion protein or histidine tag fusion protein and the final refinement of the protein in which the impurities in the cell extract showing substantially the same adsorption / desorption behavior in the purification process are remarkably removed.
  • Cell extract for cell-free protein synthesis that can be obtained as a product.
  • a protein synthesized using a wheat germ extract for cell-free protein synthesis subjected to the method of the present invention or a cell-free protein synthesis reagent kit containing this extract can be obtained by a conventional purification method. It can be purified to such a high purity that it cannot be achieved. Therefore, the reagent kit used for the cell-free protein synthesis system containing the cell extract of the present invention is particularly suitable as a high-purity protein synthesis system required for three-dimensional structure analysis samples and antigens for antibody production.
  • This color sorter includes means for irradiating light to the crude germ fraction, means for detecting reflected light and Z or transmitted light from the crude germ fraction, means for comparing the detected value with a reference value, Supplying the coarse germ fraction at 1000 to 5000 grains / cm 2 on the beige belt of the color sorter, which is a device that has a means to sort out and remove those that fall outside or within the reference value. Then, the reflected light was detected by irradiating the crude germ fraction on the belt with a fluorescent lamp. The belt conveyance speed was 50 mZ. A monochrome CCD line sensor (2048 pixels) was used as the light receiving sensor.
  • a reference value was set between the brightness of the germ and the brightness of the seed coat, and those that deviated from the reference value were removed by suction.
  • a reference value was set between the brightness of the germ and the brightness of the endosperm, and anything that deviated from the reference value was removed by suction.
  • Suction was performed using 30 suction nozzles (one suction nozzle per 1 cm length) installed approximately lcm above the conveyor belt. By repeating this method, the germs were selected until the purity of the germs (the weight ratio of the germs contained in any lg sample) reached 98% or more.
  • Glutathione S transferase (GST) gene GST gene and human T cell receptor alfa locus (TRA, Accession No. BC063432) C-terminal 65 amino acid cDNA fusion gene (GST-TRA), GST gene and human Caspase 4 (CASP4, Accession No. NM_00122512)
  • the transcription reaction was carried out using pEU (Toyobo Co., Ltd.), each of which was subcloned as a full-length cDNA fusion gene (GST-CASP4).
  • each pEU was transferred to a transcription reaction solution (80 mM HEPES-KOH pH7.8, 16 mM magnesium acetate, 10 mM dithiothreitol, 2 mM spermidine, plasmid 100 ng / ml, Sp6 1U / ⁇ 1, RNAsin 1U / ⁇ 1, NTPs 2.5 mM) ) And incubated at 26 ° C. for 4 hours to prepare mRNA.
  • a transcription reaction solution 80 mM HEPES-KOH pH7.8, 16 mM magnesium acetate, 10 mM dithiothreitol, 2 mM spermidine, plasmid 100 ng / ml, Sp6 1U / ⁇ 1, RNAsin 1U / ⁇ 1, NTPs 2.5 mM
  • the OD nm of this cell extract was measured and found to be OD nm 141, with a concentration of about 6%.
  • the mRNA obtained in (3) is converted into a translation type, and the translation reaction is performed by dialysis using the cell extract ( Figure C: C) that has been pretreated with dartathione sepharose 4B obtained in (4). I did.
  • Dialysis is performed by using an internal solution of dialysis (extract: final concentration 80OD, mR equivalent to transcription reaction 500 1 NA, 40ng / ⁇ 1 creatine kinase, 30mM HEPES-KOH pH7.8, lOOmM potassium acetate, 2.7mM magnesium acetate, 4mM dithiothreitol, 0.4mM spermidine, 16mM taleatin phosphate, 0.3mM 20 amino acids, 1.2mM ATP , 0.25 mM GTP) 500 ⁇ 1, dialysis solution (30 mM HEPES-KOH pH 7.8, lOOmM potassium acetate, 2.7 mM magnesium acetate, 4 mM dithiothreitol, 0.4
  • Glutathione Sepharose 4FF (Amersham) (100 ⁇ l) was equilibrated with PBS (Phosphate Buffered Saline).
  • the translation reaction solution obtained in (5) (in Fig. 1: A, B, C) was diluted 3-fold with PBS, and the precipitate was removed by centrifugation at 12,000 g for 15 minutes.
  • This translation reaction solution was put in a sealable tube, equilibrated glutathione sepharose 4FF1001 was added, and the tube was sealed and stirred for about 1 hour.
  • the sample was transferred to a sample reservoir and dropped into a sample vial by centrifugation at 5,000 g for 1 minute.
  • the sample was collected from the sample vial, transferred again to the sample reservoir, and dropped into the sample vial by centrifugation at 5,000 g for 1 minute. Subsequently, for washing, 500 1 PBS was added to the sample reservoir, centrifuged at 5,000 g for 1 minute, and the obtained filtrate was transferred to another tube. This washing operation was repeated three times. Next, elution buffer (50 mM Tris-HC1, pH lOmM GSH) 150 1 was added to the sample reservoir, and centrifuged at 5,000 g. This filtrate was collected as a purified protein solution fraction. The obtained fraction was analyzed by SDS-PAGE.
  • elution buffer 50 mM Tris-HC1, pH lOmM GSH
  • Fig. 1 shows the results of purifying GST synthesized using three types of cell extracts.
  • FT in Fig. 1 is the fraction not adsorbed with glutathione sepharose
  • Wash is the washed fraction
  • Eluate is the eluted fraction.
  • approximately the same amount of purified GST can be obtained and pretreated by passing through a 4 ° C overnight treatment (0 / N treatment) or a Dartathione Sepharose column. The decrease in the amount of synthesis due to was strong. This indicates that these treatments do not reduce the protein synthesis ability of the cell extract.
  • the final purified sample contained contaminating protein (GST-like protein) with a molecular weight of 30,000 or less. This protein had a strength not seen in the elution fraction of C. From this, it was found that this contaminating protein was effectively removed by a treatment in which the cell extract was previously passed through a dartathione sepharose column.
  • GST-like protein contaminating protein
  • Figure 2 shows GST-CASP4 synthesized using cell extracts of B (not pre-treated) and C (pre-treated) in Fig. 2: 1 lane (B), 2 lanes (C) ⁇ , GST-TRA ⁇ in Fig. 2: 3 lanes (B), 4 lanes (C) ⁇ . Furthermore, examples of extracts B and C that did not require a translation type were purified by the same method ⁇ in Fig. 2: 5 lanes (B) and 6 lanes (C) ⁇ . In any lane, it was shown that the GST-like protein was effectively removed by the pretreatment, and that the cell extract according to the present invention is effective for the synthesis of fusion proteins tagged with GST. I got it.
  • the pretreated extract B was stored at -80 ° C for 3 days, redissolved and used for protein synthesis. Since the storage did not affect the protein synthesis ability, it was confirmed that the pretreatment did not affect the storage of the extract.
  • a transcription reaction was carried out using pEU having a green fluorescent protein (GFP) gene with a histidine tag as a saddle type. That is, the pEU was mixed with a transcription reaction solution (80 mM HEPES-KOH pH7.8, 16 mM magnesium acetate, 10 mM dithiothreitol, 2 mM spermidine, plasmid 100 ng / ml, Sp6 1U / ⁇ 1, RNAsin 1U / ⁇ 1, NTPs 2.5 mM) and incubated at 26 ° C. for 4 hours to prepare mRNA.
  • GFP green fluorescent protein
  • Example 1 Wheat germ cell extract obtained in (2) (concentration: OD nm300)
  • the translation reaction is performed by dialysis. It was done.
  • the internal solution of the dialysis (extracted solution: final concentration 80OD, mRNA equivalent to the transcription reaction solution 5001, 40ng / ⁇ 1 creatine kinase, 30mM HEPES-KOH pH7.8, lOOmM potassium acetate, 2.7mM magnesium acetate, 4mM Dithiothreitol, 0.4 mM spermidine, 16 mM taletaphosphate, 0.3 mM 20 amino acids, 1.2 mM ATP, 0.25 mM GTP) 500 ⁇ 1, dialyzed external solution (30 mM HEPES-KOH pH7.8, lOOmM potassium acetate, 2.7 mM) Magnesium acetate, 4 mM dithiothreitol, 0.4 mM
  • Ni sepharose high performance 100 ⁇ l was equilibrated with equilibration buffer (20 mM sodium phosphate buffer pH 7.5, 300 mM sodium chloride, 10 mM imidazole). Each of the translation reaction solutions described above was diluted 3 times with PBS, and the precipitate was removed by centrifugation at 12,000 g for 15 minutes. This translation reaction solution was put into a tube that could be sealed, equilibrated Ni Sepharoseno and Ipuffance 100 1 were added, and the tube was sealed and stirred for about 1 hour. The sample was transferred to a sample reservoir and dropped into a sample vial by centrifugation at 5,000 g for 1 minute.
  • the sample was collected from the sample vial, transferred again to the sample reservoir, and dropped into the sample vial by centrifugation at 5,000 g for 1 minute. Subsequently, 500 1 of equilibration buffer was added to the sample reservoir for washing, centrifuged at 5,000 g for 1 minute, and the obtained filtrate was transferred to another tube. This washing operation was repeated three times. Next, the sample reservoir 150 ⁇ l of elution buffer (20 mM phosphate-sodium buffer pH 7.5, 300 mM sodium chloride, 50 mM imidazole pH 7.5) was added to 5,000 g and centrifuged for 1 minute. This filtrate was recovered as a purified protein solution fraction. The obtained filter fraction was analyzed by SDS-PAGE.
  • FIG. 3 shows SDS-PAGE patterns of the translation reaction solution fraction (Crude), the Ni Sepharose high performance non-adsorbed fraction (FT), and the eluted fraction (Eluate).
  • the Ni sepharose high performance non-adsorbed fraction and translation reaction fraction do not show any changes due to the presence or absence of pretreatment.
  • a nearly single band of GFP was confirmed.
  • multiple bands due to contaminants in the cell extract other than GFP were confirmed. From these results, it was shown that pretreatment with Ni Sepharose has the effect of significantly improving the degree of purification.
  • FIG. 2 Effect of pretreatment of extract with dartathione sepharose (GST fusion protein)
  • FIG. 3 Effect of pretreatment with nickel chelating sepharose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明の課題は、内在性夾雑物が低減された無細胞タンパク質合成用細胞抽出液およびその調製方法を提供することである。  無細胞タンパク質合成用細胞抽出液を合成タンパク質の精製に用いるクロマトグラフィー担体とあらかじめ接触させることにより、このクロマトグラフィー担体に吸着する内在性夾雑物を細胞抽出液から除去する。

Description

明 細 書
無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。
技術分野
[0001] 本出願は、参照によりここに援用されるところ、 日本特許出願番号 2004-308827から の優先権を請求する。
本発明は、内在する夾雑物が低減された無細胞タンパク質合成用細胞抽出液及 びその調製方法等に関するものである。詳しくは、無細胞タンパク質合成用細胞抽 出液に含まれる無細胞タンパク質合成系によって合成されたタンパク質を回収する 際に、該タンパク質と同一あるいは類似の挙動を示す (潜在的に競合する)可能性の ある細胞抽出液内在性夾雑物(以後、単に細胞抽出液内在性夾雑物又は単に内在 性夾雑物と言うことがある)が実質的に除去された細胞抽出液、及びその調製方法 等に関するものである。さらに詳しくは、少なくとも合成タンパク質と同一あるいは類似 の挙動を示す (潜在的に競合する)可能性のある細胞抽出液内在性夾雑物が、無細 胞タンパク質合成系からの該タンパク質の精製工程にぉ 、て、精製に用いるクロマト グラフィー担体に対して該タンパク質と実質同一の吸脱着挙動を示す夾雑物である ことを特徴とし、さらには該細胞抽出液内在性夾雑物の無細胞タンパク質合成用細 胞抽出液中からの除去方法に関するものである。
背景技術
[0002] 無細胞タンパク質合成系につ 、ては、細胞をすり潰して得られた抽出液にタンパク 質合成能が残存することが 40年前に報告されて以来、種々の方法が開発され、大腸 菌、コムギ胚芽、ゥサギ網状赤血球由来、昆虫由来の細胞抽出物はタンパク質合成 等に現在も広く利用されている。無細胞系における翻訳速度は in vivoとほぼ同等 で、 10ペプチド結合 Z秒であり高速性及び翻訳の正確性にも優れた反応特性を発 揮するものの、いずれの無細胞系においても合成持続時間が短ぐ得られる収量は 反応容量 lml当り数/ z g乃至数十/ z gで生細胞の 1Z100から 1Z1000程度と極端 に低ぐタンパク質の合成法としては実用的でな力つた。
[0003] 従来の無細胞タンパク質合成系の最大の欠点は、合成効率がきわめて低いことで あるが、この原因について正面から研究されたことはなかった。細胞を物理的に破砕 し、人工の緩衝液で調製した細胞抽出物中の活性が低 、のは生化学分野ではごく 常識のことであった力 である。
[0004] 先に発明者らは、これまでのリボソーム不活性ィ匕毒素の研究力 得た知見をもとに 、コムギ胚芽抽出液を用いた無細胞タンパク質合成系に見られる極端なタンパク質 合成活性の低下の原因究明を進めてきた。その結果、胚芽抽出液調製中に混入す る胚乳成分に、様々なタンパク質合成阻害因子 (核酸分解酵素、タンパク質分解酵 素、トリチン、チォニンなどのリボソーム不活性ィ匕タンパク質など)が含まれていること 、これらの胚乳由来タンパク質合成阻害因子によって胚芽抽出液のタンパク質合成 活性が著しく低下することを明らかにした。そして、胚芽から混入した胚乳成分を排 除する新規方法で調製したコムギ胚芽抽出液のタンパク質合成反応が長時間に渡 つて高 、タンパク質合成特性を発揮するようになることを実証した (非特許文献 1) (特 許文献 1)。
[0005] また、発明者らは、先にコムギ胚芽抽出液を排除分子量 12, 000〜14, 000ダルト ン程度の再生セルロース膜を用い、透析を行うことによって、該抽出液から低分子量 物質を取り除いたところ、該細胞抽出液のタンパク質合成活性が著しく促進されるこ とを見出して 、る (特許文献 2)。
[0006] さらに発明者らは、上記得られた細胞抽出液から、限外ろ過膜を用いて 1万ダルト ンまでの低分子量物質を徹底的に排除することにより、抽出液のタンパク質合成能が さらに上昇することを見出した。この限外ろ過膜処理によって得られるろ液には、無細 胞タンパク質合成系のタンパク質合成を阻害する活性が検出された。発明者らは、こ れらのことから、上記無細胞タンパク質合成用細胞抽出液には、まだタンパク質合成 を阻害する低分子物質が存在することを確認した (特許文献 3)。
非特許文献 l : Madin, K. et al. , Proc. Natl. Acad. Sci. USA, 97, 559- 56 4 (2000)
特許文献 1:特開 2000 - 236896号公報
特許文献 2: WO03/064672
特許文献 3: WO2005/063979 発明の開示
発明が解決しょうとする課題
上記方法により得られた胚芽抽出液は、従来の無細胞タンパク質合成系に比較し て高いタンパク質合成能を有するものである。この胚芽抽出液は、上述の処理により 1万ダルトン以下の物質は徹底的に排除されて 、るとは 、え、胚芽に元来存在して ヽ るタンパク質合成反応に必要な物質も含め、残存する胚乳に由来する物質など様々 な物質が、多量に存在している。従って、この胚芽抽出液を用いて合成された所望 のタンパク質を高純度に回収する工程にぉ 、て、抽出液中に元来存在して 、る様々 な物質が所望のタンパク質含有画分に混入する場合には、何らかの精製操作が必 要になる。
発明者らは、コムギ胚芽無細胞タンパク質合成系で合成されたタグ融合タンパク質 を効率的に精製するシステムの開発を進めるうちに、コムギ胚芽抽出液には、タグ融 合タンパク質の精製工程において、該タンパク質と同様あるいは類似の挙動を示す 細胞抽出液内在性夾雑物が複数種、存在することを見出した。このような細胞抽出 液内在性夾雑物は、所望のタグ融合タンパク質と同じ条件でァフィ-テイク口マトダラ フィー担体に吸着され、同じ条件で溶出されるため、所望のタンパク質と共精製され 、その最終精製標品の不純物となる。例えばコムギ胚芽抽出液で合成した GST融合 タンパク質をダルタチオンセファロースで精製した場合、その最終精製標品を SDS-P AGEにより確認すると、 GSTタグ融合タンパク質と共に分子量約 30kdのタンパク質が 検出される。このタンパク質はダルタチオンセファロースに GSTタグ融合タンパク質と 同じ条件で吸着し、 GSTタグ融合タンパク質と同じダルタチオン濃度で溶出されると 考えられる。これらの細胞抽出液内在性夾雑物はタグに特異的に結合する物質に対 して、タグ同様あるいは類似の親和性を有するものと考えられる。あるいは、クロマトグ ラフィー担体となるセファロースゃ各種ビーズに対して親和性を有するものであるとも 考えられる。よって、所望の合成タンパク質の精製度を上げるためには、これらの細 胞抽出液内在性夾雑物を除去する必要がある。
以上により、本発明の課題は、内在性夾雑物が低減された無細胞タンパク質合成 用細胞抽出液及びその調製方法を提供することである。具体的には、無細胞タンパ ク質合成系にお 、て合成された所望のタンパク質の精製度を高める手段として、該タ ンパク質の精製工程において、該タンパク質と同一あるいは類似の挙動を示し、該タ ンパク質と共精製される夾雑物を細胞抽出液力も実質的に除去した無細胞タンパク 質合成用細胞抽出液及びその調製方法を提供することである。
課題を解決するための手段
[0008] 本発明者は、各種クロマトグラフィー担体に対する細胞抽出液内在性夾雑物の吸 脱着挙動性質の検討をもとに、この細胞抽出液内在性夾雑物の除去方法の検討を 行った。その結果、細胞抽出液を合成タンパク質の精製に用いるクロマトグラフィー 担体とあら力じめ接触させることにより、このクロマトグラフィー担体に吸着する内在性 夾雑物を細胞抽出液力 除去できることを見出した。さらに、該除去操作によって細 胞抽出液の保存ある 、は細胞抽出液のタンパク質合成能に大きな影響を与えな 、こ とを確認した。本発明に係る細胞抽出液は、特に精製用各種タグを融合した合成タ ンパク質の合成に有用である。
[0009] すなわち本発明は以下よりなる。
「 1.無細胞タンパク質合成系に使用する細胞抽出液由来のダルコース及び Z又は ダルコシダーゼが除去された細胞抽出液の調製方法であって、無細胞タンパク質合 成系によって合成されたタンパク質を回収する際に、該タンパク質と同一あるいは類 似の挙動を示す可能性のある細胞抽出液内在性夾雑物を除去することを特徴とする 細胞抽出液の調製方法。
2.合成タンパク質と同一あるいは類似の挙動を示す可能性のある細胞抽出液内在 性夾雑物が、該タンパク質の無細胞タンパク質合成系からの精製工程にぉ 、て実質 同一の吸脱着挙動を示す夾雑物である前項 1に記載の調製方法。
3.細胞抽出液内在性夾雑物が、分子量 14,000ダルトン以上であることを特徴とする 前項 2に記載の調製方法。
4.細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示す ことを特徴とする前項 2の調製方法。
1) GSTタグ融合タンパク質、 2)ヒスチジンタグ融合タンパク質、 3)ストレプ一タグ融合 タンパク質 5.細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示す ことを特徴とする前項 2に記載の調製方法。
1)カルモデュリン結合ペプチド融合タンパク質、 2)マルトース結合タンパク質融合タ ンパク質、 3)セルロース結合ドメイン融合タンパク質、 4)キチン結合ドメイン融合タン パク質、 5) FLAGタグ融合タンパク質
6.細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示す ことを特徴とする前項 2に記載の調製方法。
1)プロテイン A融合タンパク質、 2)プロテイン G融合タンパク質
7.細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とする 前項 2に記載の調製方法。
1)ダルタチオン Sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)遷移金属をキレート結合したクロマトグラフィー担体、 3)ストレプトアビ ジン若しくはアビジン又はそれらの誘導体を結合したクロマトグラフィー担体
8.遷移金属が、ニッケル又はコバルトである前項 7に記載の調製方法。
9.遷移金属が、亜鉛、銅、マンガンのいずれか 1力 選ばれる前項 7に記載の調製 方法。
10.細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とす る前項 2に記載の調製方法。
1)カルモデュリン結合担体、 2)アミロース又は架橋アミロース結合担体、 3)セルロー ス結合担体、 4)キチン結合担体、 5) FLAGタグに対する抗体を結合した担体
11.細胞抽出液内在性夾雑物が、免疫グロブリンの Fcフラグメントを結合したクロマ トグラフィー担体と親和性を示すことを特徴とする前項 2に記載の調製方法。
12.細胞抽出液の原料が、混入する胚乳成分および低分子タンパク質合成阻害物 質が実質的に除去されたコムギ胚芽抽出物である前項 1〜11に記載のいずれか 1の 調製方法。
13.細胞抽出液内在性夾雑物の除去力 細胞抽出液をクロマトグラフィー担体に接 触させることである前項 1〜 12に記載のいずれか 1の調製方法。
14.細胞抽出液とクロマトグラフィー担体との接触が、以下から選ばれる少なくとも一 の手段である前項 13に記載の調製方法。
1)細胞抽出液にクロマトグラフィー担体を添加し、一定時間接触させた後、担体を除 去する (バッチ法)手段、 2)クロマトグラフィー担体を充填したカラムに細胞抽出液を 通す手段
15.クロマトグラフィー担体力 ァフィ-ティクロマトグラフィー担体である前項 13又は 14に記載の調製方法。
16.ァフィ-ティクロマトグラフィー担体力 以下のいずれか 1である前項 15に記載の 調製方法。
1)ダルタチオン Sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)遷移金属をキレート結合したクロマトグラフィー担体、 3)ストレプトアビ ジン若しくはアビジン又はそれらの誘導体を結合したクロマトグラフィー担体
17.遷移金属が、ニッケル又はコバルトである前項 16に記載の調製方法。
18.遷移金属が、亜鉛、銅、マンガンのいずれか 1力も選ばれる前項 16に記載の調 製方法。
19.ァフィ-ティクロマトグラフィー担体力 以下のいずれか 1である前項 15に記載の 調製方法。
1)カルモデュリン結合担体、 2)アミロース又は架橋したアミロース結合担体、 3)セル ロース結合担体、 4)キチン結合担体、 5) FLAGタグに対する抗体を結合した担体
20.ァフィ-ティクロマトグラフィー担体力 免疫グロブリンの Fcフラグメントを結合し た担体である前項 15に記載の調製方法。
21.クロマトグラフィー担体力 陽イオン交換クロマトグラフィー、陰イオン交換クロマト グラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー、逆相クロマトグラフ ィー、等電点クロマトグラフィー、ハイドロキシアパタイトのいずれか 1力も選ばれる前 項 13〜20の!、ずれか 1に記載の調製方法。
22.前項 1〜 21の 、ずれか 1に記載の調製方法によって調製された無細胞タンパク 質合成系に使用する細胞抽出液。
23.無細胞タンパク質合成系に使用する細胞抽出液由来のダルコース及び Z又は ダルコシダーゼが除去された細胞抽出液であって、無細胞タンパク質合成系によつ て合成されたタンパク質を回収する際に該タンパク質と同一あるいは類似の挙動を 示す可能性のある細胞抽出液内在性夾雑物が、実質的に除去されていることを特徴 とする細胞抽出液。
24.合成タンパク質と同一あるいは類似の挙動を示す可能性のある細胞抽出液内 在性夾雑物が、該タンパク質の無細胞タンパク質合成系からの精製工程にぉ 、て実 質同一の吸脱着挙動を示す夾雑物である前項 23に記載の細胞抽出液。
25.細胞抽出液内在性夾雑物が、分子量 14,000ダルトン以上であることを特徴とす る前項 24に記載の細胞抽出液。
26.細胞抽出液内在性夾雑物において、以下のいずれか 1と実質同一の吸脱着挙 動を示すことを特徴とする前項 24に記載の細胞抽出液。
1) GSTタグ融合タンパク質、 2)ヒスチジンタグ融合タンパク質
27.細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とす る前項 24の細胞抽出液。
1)ダルタチオン Sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)ニッケル又はコバルトをキレート結合したクロマトグラフィー担体
28.細胞抽出液の原料が、混入する胚乳成分および低分子タンパク質合成阻害物 質が実質的に除去された植物種子の胚芽抽出物である前項 23〜27に記載のいず れか 1の細胞抽出液。
29.植物種子が、コムギ、ォォムギ、イネ、コーンのいずれか 1から選ばれる前項 28 に記載の細胞抽出液。
30.前項 22〜29に記載のいずれか 1の細胞抽出液を用いたタンパク質合成方法。
31.前項 22〜29に記載のいずれか 1の細胞抽出液を含む無細胞タンパク質合成 系に使用する試薬キット。」
発明の効果
本発明の調製方法で得られた細胞抽出液を用いて合成されたタンパク質は、従来 にない高い純度にまで精製することが可能になった。本発明により提供される細胞抽 出液を用いた無細胞タンパク質合成系は、特に立体構造解析用試料や抗体製造用 抗原の調製に最適である。 発明を実施するための最良の形態
[0011] 本発明の無細胞タンパク質合成用細胞抽出液の調製に用 、られる細胞抽出物とし ては、無細胞タンパク質合成系にお ヽてタンパク質合成能を有するものであれば如 何なるものであってもよい。ここで、無細胞タンパク質合成系とは、細胞内に備わるタ ンパク質翻訳装置であるリボソーム等を含む成分を生物体力 抽出し、この抽出液に 転写または翻訳铸型、基質となる核酸、アミノ酸、エネルギー源、各種イオン、緩衝液 、及びその他の有効因子を加えて試験管内で行う方法である。このうち、铸型として
RNAを用いるもの(これを以下「無細胞翻訳系」と称することがある)と、 DNAを用い 、 RNAポリメラーゼ等転写に必要な酵素をさらに添加して反応を行うもの(これを以 下「無細胞転写 Z翻訳系」と称することがある)がある。本発明における無細胞タンパ ク質合成系は、上記の無細胞翻訳系、無細胞転写 Z翻訳系のいずれをも含む。 本発明に用いられる細胞抽出液として具体的には、大腸菌、植物種子の胚芽、ゥ サギ網状赤血球、昆虫由来細胞等の細胞抽出物等の既知のものが用いられる。これ らは市販のものを用いることもできるし、それ自体既知の方法、具体的には大腸菌抽 出揿は、 Pratt, J. M. et al. , Transcription and Translation, Hames, 179 - 209, B. D. &Higgins, S. J. , eds, IRL Press, Oxford (1984)に記載の方 法等に準じて調製することもできる。
市販の細胞抽出液としては、大腸菌由来のものは、 E. coli S30 extract syste m (Promega社製)と RTS 500 Rapid Translation System (Roche社製)等 が挙げられ、ゥサギ網状赤血球由来のものは Rabbit Reticulocyte Lysate Sys tem (Promega社製)等、さらにコムギ胚芽由来のものは PROTEIOS™(TOYOB O社製)等が挙げられる。このうち、植物種子の胚芽抽出液を用いることが好ましぐ 植物種子としては、コムギ、ォォムギ、イネ、コーン等のイネ科の植物のものが好まし い。本発明の細胞抽出液としては、このうちコムギ胚芽抽出液を用いたものが好適で ある。また、昆虫由来細胞では、カイコ由来等の細胞抽出液を用いることができる。
[0012] コムギ胚芽抽出液の作製法としては、例え ^Johnston, F. B. et al. , Nature, 179, 160— 161 (1957)、あるいは Erickson, A. H. et al. , (1996) Meth. In
Enzymol. , 96, 38— 50等に記載の方法を用いることができる。 [0013] このような既知の無細胞タンパク質合成用細胞抽出液から、さらに排除分子量 12, 000-14, 000ダルトン程度の再生セルロース膜を用いた透析操作あるいは限外ろ 過膜操作によって低分子物質の除去を行なう。本発明では、これらの透析操作ある いは限外ろ過膜操作によって除去できな力つた細胞抽出液内在性夾雑物のうち、無 細胞タンパク質合成系によって合成されたタンパク質を回収する際に該タンパク質と 同一あるいは類似の挙動を示す (潜在的に競合する)可能性のある細胞抽出液内在 性夾雑物を排除することを特徴とする。
[0014] 本発明における細胞抽出液内在性夾雑物とは、その細胞に元来存在する物質で あり、排除分子量 12, 000〜14, 000ダルトン程度の再生セルロース膜を用いた透 析操作あるいは限外ろ過膜操作によって除去できな力つた分子量 14, 000ダルトン 以上の物質が主な対象である。また、細胞抽出液内在性夾雑物は、タンパク質合成 阻害活性を示す物質のみを対象とするのではなぐタンパク質合成に影響を与えな い物質も対象としている。
無細胞タンパク質合成系によって合成されたタンパク質を回収する際に該タンパク 質と同一あるいは類似の挙動を示す (潜在的に競合する)可能性あるとは、以下によ つて定義される。
合成されたタンパク質を回収する際に該タンパク質と同一あるいは類似の挙動を示 す (潜在的に競合する)可能性とは、無細胞タンパク質合成手段によって合成された タンパク質を合成系から回収する際に、精製用クロマトグラフィー担体を用いた場合 に、この担体に対する吸着及び Z又は脱着において、同一あるいは類似の挙動を示 すことを意味する。詳しくは、合成タンパク質の無細胞タンパク質合成系からの精製 工程において実質同一、類似又は擬似的の精製用クロマトグラフィー担体に対する 吸脱着挙動を示す可能性を意味する。ここで、実質同一、類似又は擬似的の吸脱着 挙動を示す可能性とは、合成されたタンパク質と細胞抽出液内在性夾雑物が精製用 クロマトグラフィー担体に対する吸脱着挙動において共通性があるため、合成タンパ ク質と細胞抽出液内在性夾雑物が共に精製用クロマトグラフィー担体に吸着し、溶出 液により脱着することを意味する。
また無細胞タンパク質合成系によって合成されたタンパク質を回収する際に該タン パク質と同一あるいは類似の挙動を示す (潜在的に競合する)可能性のある細胞抽 出液内在性夾雑物は、合成されたタンパク質の精製に用いるクロマトグラフィー担体 自体 (例えばセファロースゃセフアデックスなど)や各種ビーズに対して親和性を有す ることにより、合成タンパク質と共に精製用クロマトグラフィー担体に吸着し、溶出液に より脱着する物質も含まれる。
具体的な例としては、無細胞タンパク質合成系によって GSTタグ又はヒスチジンタグ を融合したタンパク質を合成する場合に、 GSTタグ融合タンパク質又はヒスチジンタグ 融合タンパク質と、精製用クロマトグラフィー担体に同一の条件で吸脱着する物質が 、これらのタグ融合タンパク質を回収する際に、該タンパク質と同一あるいは類似の 挙動を示す (潜在的に競合する)可能性のある細胞抽出液内在性夾雑物となる。 合成タンパク質の精製操作は、有機溶媒や硫酸アンモ-ゥムなどによる沈殿分画、 各種カラムクロマトグラフィーなどを組み合わせて行なわれる。その方法はタンパク質 の性質ごとに異なるため、精製方法や条件を、その都度検討しなくてはならない。こ のことは、性質も機能も不明な多数の新規タンパク質を対象とする今日のタンパク質 研究を妨げる一因になっている。
この点を解消するため、様々なタグ配列と、それぞれのタグにァフィユティーのある 物質を結合した担体を用いた精製系が開発されている。すなわち、 目的とするタンパ ク質と特定のタグ (ペプチドあるいはタンパク質)との融合タンパク質を発現させ、タグ にァフィユティーのある物質を固定ィ匕したクロマトグラフィー担体により、この融合タン パク質を特異的に回収すると 、う方法である。タグ配列とタグ特異的なァフィ二ティー クロマト担体を用いた精製系の例としては、ヒスチジンタグ一ニッケルキレーティング セファロース、グルタチオン Sトランスフェラーゼ(GST)—グルタチオンセファロース、 ストレプタグ一ストレプタクチン(修飾ストレプトアビジン)などが挙げられる。
ヒスチジンタグは、ヒスチジンが複数個並んだ配列であればその個数に限定はな ヽ 力 好ましくは 4個〜 10個である。また、ナチュラルヒスチジンァフィ-ティタグのように 、特定のペプチド内に複数個のヒスチジンが点在する配列であってもよい。また、ヒス チジンタグを特異的に結合するクロマトグラフィー担体としてニッケルのほかコバルト を結合した担体例えば TALON™ (BD Biosciences社)を使用することができる。また、 鉄、銅など遷移金属をキレート結合した担体も使用することができる。
また、ストレプタグのほか、ストレプトアビジンまたはアビジンに親和性を有するぺプ チド若しくはタンパク質をタグとして、ストレプトアビジン若しくはアビジン、又はこれら の誘導体を結合したクロマトグラフィー担体を組み合わせることができる。
さらにカルモデュリン結合ペプチド融合タンパク質 カルモデユリン結合担体、セル ロース結合ドメイン融合タンパク質 セルロース結合担体、キチン結合ドメイン融合タ ンパク質—キチン結合担体、マルトース結合タンパク質融合タンパク質—アミロース 又は架橋したアミロースを結合した担体、 FLAGタグ融合タンパク質—FLAGタグに対 する抗体を結合した担体なども用いることができる。プロテイン A融合タンパク質、プロ ティン G融合タンパク質をタグとして、これに特異的に結合する免疫グロブリン Fcフラ グメントを結合した担体を用いることもできる。また、タグとして特定のタンパク質を用 V、、この特定タンパク質に対する抗体を固定ィ匕したクロマトグラフィー担体により精製 する方法、逆に抗体をタグとし、その抗原タンパク質を固定ィ匕したクロマトグラフィー により精製する方法も可能である。
このようにタグと特異的結合をする物質同士を利用したァフィユティー精製法は、一 般に容易で、かつ精製効率が高い。このようなァフィユティー精製法と無細胞タンパ ク質合成系を組み合わせれば、多種類のタンパク質のハイスループット精製も可能 であり、プロテオミクス研究における重要な技術になると考えられる。
[0016] タグ結合タンパク質の精製には、上記のァフィユティークロマト担体のほか、一般の タンパク質の精製に用いるクロマトグラフィー担体、例えばイオン交換体 (例えば陽ィ オン交換体もしくは陰イオン交換体)、疎水性クロマトグラフィー担体 (例えばフエ-ル セファロースもしくはブチルセファロース)、逆相クロマトグラフィー担体、等電点クロマ トグラフィー担体、ゲルろ過クロマトグラフィー担体、無機吸着体 (例えばノヽイドロキシ アパタイト)等それ自体は既知の精製用クロマトグラフィー担体を用いることもできる。 また、当業者なら、合成するタンパク質の性質 (特定の物質に対する親和性、 pH、荷 電化、疎水性、親水性等)によって、適宜使用する担体を選択可能である。
[0017] 本発明の、無細胞タンパク質合成系によって合成されたタンパク質を回収する際に 、該タンパク質と同一あるいは類似の挙動を示す (潜在的に競合する)可能性のある 細胞抽出液内在性夾雑物を除去するとは、細胞抽出液を、あら力じめ合成タンパク 質の精製に用いるクロマトグラフィー担体と接触させ、内在性夾雑物をクロマトグラフ ィー担体に吸着させることを示す (以後、前処理と呼ぶことがある)。
クロマトグラフィー担体との接触は、以下の方法が用いられる。
1)細胞抽出液にクロマトグラフィー担体を添加し、一定時間接触させた後担体を除 去する(バッチ法)。
適当な緩衝液などで平衡ィ匕したクロマトグラフィー担体を直接細胞抽出液に添加し 、一定時間、静置あるいは穏やかに攪拌した後、細胞抽出液力もクロマトグラフィー 担体を除去することによって行なわれる。クロマトグラフィー担体は、自然落下あるい は遠心により、細胞抽出液から除去することができる。また、クロマトグラフィー担体を 添加し、懸濁した細胞抽出液を精製用カラムに注ぐことによっても除去できる。
クロマトグラフィー担体の添加量は、細胞抽出液の体積の 0.01%〜50%、好ましく は 1%〜20%であるが、これらの数値に限定されず、適当な量を選択することができ る。
2)クロマトグラフィー担体を充填したカラムに細胞抽出液を通す
クロマトグラフィー担体を適当な溶液に懸濁し、ガラス、プラスチック、金属などでで きたクロマトグラフィー精製用カラムに適量を流し込み、さらに適当な緩衝液を流して 平衡化を行う。平衡ィ匕に用いる緩衝液量は、通常カラム体積の 2倍〜 10倍であるが、 特に限定されない。このカラムに細胞抽出液を流し、カラムに内在性夾雑物を吸着さ せ、未吸着画分を回収する。
以上のように調製され、さらにクロマトグラフィー担体と接触させ、回収した細胞抽出 液に、タンパク質合成に必要な成分を添加して、翻訳反応液を調製する。あるいは細 胞抽出液を、タンパク合成に必要な成分を含む溶液で平衡ィ匕したセフアデックス G2 5カラムに通すことによって、抽出溶液から翻訳反応液に置換する。タンパク合成に 必要な成分とは、具体的には、基質となるアミノ酸、エネルギー源、各種イオン、緩衝 液、 ATP再生系、核酸分解酵素阻害剤、 tRNA、還元剤、ポリエチレングリコール、 3', 5'— cAMP、葉酸塩、抗菌剤等が挙げられる。また濃度は、 ATP100 μ Μ〜0. 5mM、 GTP25 μ M〜lmM、 20種類のアミノ酸それぞれ 25 μ M〜5mMが好まし い。これらは、翻訳反応系に応じて適宜選択して組み合わせて用いることができる。 具体的には、細胞抽出物含有液としてコムギ胚芽抽出液を用いた場合には、 30mM HEPES-KOH (pH7. 8)、 lOOmM酢酸カリウム、 2. 7mM酢酸マグネシウム、 0. 4m Mスペルミジン(ナカライ'テスタ社製)、各 0. 3mML型アミノ酸 20種類、 4mMジチ オスレィトール、 1. 2mMATP (和光純薬社製)、 0. 25mMGTP (和光純薬社製)、 16mMクレアチンリン酸(和光純薬社製)、 40 μ g/mlクレアチンキナーゼ(Roche社製 )、 0.005%アジ化ナトリウムをカ卩え、十分溶解した後に適量の翻訳铸型 mRNAを入れ たもの等が例示される。核酸分解酵素阻害剤、各種イオン、基質となるアミノ酸、エネ ルギ一源等(以下、これらを「翻訳反応溶液添加物」と称することがある)及び翻訳铸 型となる特定タンパク質をコードする mRNA、加えて所望によりイノシトール、トレハロ ース、マン-トール及びスクロースーェピクロロヒドリン共重合体力 なる群力 選択さ れる少なくとも 1種の成分を含有する安定化剤などである。各成分の添加濃度は、自 体公知の配合比で用いることができる
[0019] ここで、 mRNAは、無細胞タンパク質合成系にお 、て合成され得るタンパク質をコー ドする領域が、適当な RNAポリメラーゼが認識する配列と、さらに翻訳を活性ィ匕する 機能を有する配列の下流に連結された構造を有していれば如何なるものであっても よい。 RNAポリメラーゼが認識する配列とは、 T3、 Τ7または Sp6 RNAポリメラーゼプロ モーター等が挙げられる。また、無細胞タンパク質合成系において翻訳活性を高め るものとして Ω配列、 Sp6プロモーター配列等をコーディング配列の 5'上流側に連結 させた構造を有するものが好ましく用いられる。
また、以下の実施例で示すようにタグを融合した合成タンパク質を合成するために 、 mRNAにヒスチジンタグ (複数個のヒスチジンが並んだ配列)や GST等をコードする 配列を導入しても良い。
[0020] さらに、本発明の最良の細胞抽出液は、コムギ胚芽由来の抽出液であり、さらに混 入する胚乳成分や胚芽組織細胞中(胚芽細胞内因性)のタンパク質合成阻害をもた らすグルコース、ダルコシダーゼなどの代謝物質が実質的に除去された抽出液であ るので、これを例にとって原料の調製方法を以下説明する。
[0021] 通常、胚芽の部分は非常に小さいので胚芽を効率的に取得するためには胚芽以 外の部分をできるだけ除去しておくことが好ましい。通常、まず植物種子に機械的な 力を加えることにより、胚芽、胚乳破砕物、種皮破砕物を含む混合物を得、該混合物 から、胚乳破砕物、種皮破砕物等を取り除いて粗胚芽画分 (胚芽を主成分とし、胚乳 破砕物、種皮破砕物を含む混合物)を得る。植物種子に加える力は、植物種子から 胚芽を分離することができる程度の強さであればよい。具体的には、公知の粉砕装 置を用いて、植物種子を粉砕することにより、胚芽、胚乳破砕物、種皮破砕物を含む 混合物を得る。
植物種子の粉砕は、通常公知の粉砕装置を用いて行うことができる力 ピンミル、 ハンマーミル等の被粉砕物に対して衝撃力をカ卩えるタイプの粉砕装置を用いることが 好ましい。粉砕の程度は、使用する植物種子胚芽の大きさに応じて適宜選択すれば よいが、例えばコムギ種子の場合は、通常、最大長さ 4mm以下、好ましくは最大長さ 2mm以下の大きさに粉砕する。また、粉砕は乾式で行うのが好ましい。
次いで、得られた植物種子粉砕物から、通常公知の分級装置、例えば、篩を用い て粗胚芽画分を取得する。例えば、コムギ種子の場合、通常、メッシュサイズ 0. 5m m〜2. Omm、好ましくは 0. 7mm〜l. 4mmの粗胚芽画分を取得する。さらに、必 要に応じて、得られた粗胚芽画分に含まれる種皮、胚乳、ゴミ等を風力、静電気力を 利用して除去してもよい。
また、胚芽と種皮、胚乳の比重の違いを利用する方法、例えば重液選別により、粗 胚芽画分を得ることもできる。より多くの胚芽を含有する粗胚芽画分を得るために、上 記の方法を複数組み合わせてもよい。さら〖こ、得られた粗胚芽画分から、例えば目視 や色彩選別機等を用いて胚芽を選別する。
このようにして得られた胚芽画分は、胚乳成分が付着して 、る場合があるため、通 常胚芽純ィ匕のために更に洗浄処理することが好ましい。洗浄処理としては、通常 10 °C以下、好ましくは 4°C以下に冷却した水または水溶液、具体的に水溶液として界面 活性剤を含有する水溶液に胚芽画分を分散'懸濁させ、洗浄液が白濁しなくなるま で洗浄することが好ましい。また、通常 10°C以下、好ましくは 4°C以下で、界面活性 剤を含有する水溶液に胚芽画分を分散'懸濁させて、洗浄液が白濁しなくなるまで 洗浄することがより好ましい。界面活性剤としては、非イオン性のものが好ましぐ非ィ オン性界面活性剤であるかぎりは、広く利用ができる。具体的には、例えば、好適な ものとして、ポリオキシエチレン誘導体であるブリッジ(Brij)、トリトン (Triton)、ノ -デ ット(Nonidet) P40、ツイーン (Tween)等が例示される。なかでも、ノ-デット(Noni det) P40が最適である。これらの非イオン性界面活性剤は、胚乳成分の除去に十分 且つ胚芽成分のタンパク質合成活性に悪影響を及ぼさない濃度で使用され得るが、 例えば 0. 5%の濃度で使用することができる。水もしくは水溶液による洗浄処理又は 界面活性剤による洗浄処理は、どちらか一方の洗浄処理でもよいし、両方実施しても よい。また、これらの洗浄処理は、超音波処理と組み合わせて実施してもよい。
[0023] 本発明にお ヽては、上記のように植物種子を粉砕して得られた粉砕物カゝら植物胚 芽を選別した後洗浄して得られた無傷 (発芽能を有する)の胚芽を (好ましくは抽出 溶媒の存在下に)細分化した後、得られるコムギ胚芽抽出液を分離し、更に精製する ことにより無細胞タンパク質合成用コムギ胚芽抽出液を得る。
[0024] 抽出溶媒としては、緩衝液、カリウムイオン、マグネシウムイオンおよび Zまたはチ オール基の酸ィ匕防止剤を含む水溶液を用いることができる。また、必要に応じて、力 ルシゥムイオン、 L型アミノ酸等をさらに添カ卩してもよい。例えば、 N— 2—ヒドロキシェ チルピペラジン N'— 2—エタンスルホン酸(HEPES)—KOH、酢酸カリウム、酢酸 マグネシウム、 L型アミノ酸および Zまたはジチオスレィトールを含む溶液や、 Patter sonらの方法を一部改変した溶液 (HEPES— KOH、酢酸カリウム、酢酸マグネシゥ ム、塩ィ匕カルシウム、 L型アミノ酸および Zまたはジチオスレィトールを含む溶液)を 抽出溶媒として使用することができる。抽出溶媒中の各成分の組成 ·濃度はそれ自 体既知であり、無細胞タンパク質合成用のコムギ胚芽抽出液の製造法に用いられる ものを採用すればよい。
胚芽と抽出に必要な量の抽出溶媒とを混合し、抽出溶媒の存在下に胚芽を細分化 する。抽出溶媒の量は、洗浄前の胚芽 lgに対して、通常 0. 1ミリリットル以上、好まし くは 0. 5ミリリットル以上、より好ましくは 1ミリリットル以上である。抽出溶媒量の上限は 特に限定されないが、通常、洗浄前の胚芽 lgに対して、 10ミリリットル以下、好ましく は 5ミリリットル以下である。また、細分ィ匕しょうとする胚芽は従来のように凍結させたも のを用いてもよいし、凍結させていないものを用いてもよいが、凍結させていないもの を用いるのがより好ましい。
[0025] 細分化の方法としては、摩砕、圧砕等粉砕方法として従来公知の方法を採用する ことができるが、本発明者が開発した衝撃または切断により胚芽を細分ィ匕する方法( WO03Z064671号公報)が好ましい。ここで、「衝撃または切断により細分ィ匕する」 とは、植物胚芽の細胞核、ミトコンドリア、葉緑体等の細胞小器官 (オルガネラ)、細胞 膜や細胞壁等の破壊を、従来の摩砕または圧砕と比べて最小限に止めうる条件で 植物胚芽を破壊することを意味する。
細分ィ匕する際に用いることのできる装置や方法としては、上記条件を満たすもので あれば特に限定されないが、例えば、ワーリンダブレンダ一のような高速回転する刃 状物を有する装置を用いることが好ましい。刃状物の回転数は、通常 lOOOrpm以上 、好まし <は 5000rpm以上であり、また、通常 30000rpm以下、好まし <は 25000rp m以下である。刃状物の回転時間は、通常 5秒以上、好ましくは 10秒以上である。回 転時間の上限は特に限定されないが、通常 10分以下、好ましくは 5分以下である。 細分ィ匕する際の温度は、好ましくは 10°C以下で操作が可能な範囲内、特に好ましく は 4°C程度が適当である。
このように衝撃または切断により胚芽を細分ィ匕することにより、胚芽の細胞核や細胞 壁を全て破壊してしまうのではなぐ少なくともその一部は破壊されることなく残る。即 ち、胚芽の細胞核等の細胞小器官、細胞膜や細胞壁が必要以上に破壊されることが ないため、それらに含まれる DNAや脂質等の不純物の混入が少なぐ細胞質に局 在するタンパク質合成に必要な RNAやリボソーム等を高純度で効率的に胚芽から 抽出することができる。
このような方法によれば、従来の植物胚芽を粉砕する工程と粉砕された植物胚芽と 抽出溶媒とを混合してコムギ胚芽抽出液を得る工程とを同時に一つの工程として行う ことができるため効率的にコムギ胚芽抽出液を得ることができる。上記の方法を、以 下「プレンダ一法」と称することがある。
このような植物胚芽の細分化、特に衝撃または切断による細分ィ匕は、抽出溶媒の 存在下に行うことが好ましいが、細分ィ匕した後に抽出溶媒を添加することもできる。
[0026] 次いで、遠心分離等によりコムギ胚芽抽出液を回収し、ゲルろ過等により精製する ことによりコムギ胚芽抽出液を得ることができる。ゲルろ過としては、例えば予め適当 な溶液で平衡ィ匕してお 、たゲルろ過装置を用いて行うことができる。ゲルろ過溶液中 の各成分の組成 ·濃度はそれ自体既知であり、無細胞タンパク質合成用のコムギ胚 芽抽出液の製造法に用いられるもの(例えば、 HEPES— KOH、酢酸カリウム、酢酸 マグネシウム、ジチオスレィトールまたは L型アミノ酸を含む溶媒)を採用すればよい。 好ましくはこのようにして得られた細胞抽出物は、 RNase活性およびホスファターゼ 活性が極めて低減されたものである。
[0027] ゲルろ過後の胚芽抽出物含有液には、微生物、特に糸状菌 (力ビ)などの胞子が混 入していることがあり、これら微生物を排除しておくことが好ましい。特に長期(1日以 上)の無細胞タンパク質合成反応中に微生物の繁殖が見られることがあるので、これ を阻止することは重要である。微生物の排除手段は特に限定されないが、ろ過滅菌 フィルターを用いるのが好ましい。フィルターのポアサイズとしては、混入の可能性の ある微生物が除去可能なものであれば特に制限はないが、通常 0. 1〜1マイクロメ一 ター、好ましくは 0. 2〜0. 5マイクロメーターが適当である。ちなみに、小さな部類の 枯草菌の胞子のサイズは 0. 5 μ mxl μ mであることから、 0. 20マイクロメーターのフ ィルター(例えば Sartorius製の Minisart™等)を用いるのが胞子の除去にも有効で ある。ろ過に際して、まずポアサイズの大きめのフィルターでろ過し、次に混入の可能 性のある微生物が除去可能であるポアサイズのフィルターを用いてろ過するのが好ま しい。
[0028] このようにして得られた細胞抽出物は、原料であるコムギ胚芽自身が含有するまた は保持するタンパク質合成機能を抑制する物質 (トリチン、チォニン、リボヌクレア一 ゼ等の、 mRNA、 tRNA、翻訳タンパク質因子やリボソーム等に作用してその機能を 抑制する物質)が、ほぼ完全に取り除かれている。すなわち、これらの阻害物質が局 在する胚乳がほぼ完全に取り除かれ純ィ匕されている。胚乳の除去の程度は、コムギ 胚芽抽出物中に夾雑するトリチンの活性、すなわちリボソームを脱アデ-ンィ匕する活 性をモニターすることにより評価できる。リボソームが実質的に脱アデ-ンィ匕されてい なければ、胚芽抽出物中に夾雑する胚乳由来成分がない、すなわち胚乳がほぼ完 全に取り除かれ純ィ匕されていると判断される。リボソームが実質的に脱アデ-ンィ匕さ れていない程度とは、リボソームの脱アデ-ンィ匕率が 7%以下、好ましくは 1%以下に なっていることをいう。
[0029] このような胚芽抽出物を原料にして、本発明では、さらに上記の「糖の ATPを介す るリン酸ィ匕系の制御」のために糖、リン酸ィ匕糖、糖のリン酸化酵素、糖分解酵素等が 制御された無細胞タンパク質合成用の細胞抽出物調製のための処理を行う。処理工 程の概要は以下である。
原料の胚芽抽出液を 2〜4万 G、好ましくは 2. 5〜3. 5万 G、さらに好ましくは 3万 G の遠心分離で遠心上清を取得する。この際、沈殿助剤として無機担体をいれておく ことは、沈殿物と上清の分離のためにより好ましい。この沈殿物中には、グリコシダー ゼなどの酵素とカルシウムの複合体が含まれて 、る。グリコシダーゼをあら力じめ除!ヽ ておくことは、澱粉力もグルコースの生成を最小限に抑えることに役立つ。好適な無 機担体としては、ベントナイト、活性炭素、シリカゲル、海砂等が例示される。この無機 担体の導入により、沈殿物が上清へ混入することをほぼ完全に防ぐことが出来る。沈 殿助剤を遠心時に加えない場合は、沈殿物の上部に不溶性スラリーが存在し、これ が混入した S-30画分力ゝら調製した抽出液のタンパク質合成活性は低くなる。そこで 、遠心後の遠心管からの S-30画分の回収に当たっては混入を避けるために細心の 注意が必要となる。
得られた遠心上清を、ゲルろ過による溶液の交換あるいは必要成分の添加など〖こ より翻訳反応液としたものを、分子量 lOkDaカットで分子量分画し、低分子画分を排 除する。あるいは、分子量 lOkDa以上の物質を分子量分画し、回収することも可能 である。この分画処理は複数回行い、特に分子量 lOkDa以下の物質を実質的に除 去することが好ましい。複数回の具体的回数としては、 1〜: LO回、好ましくは 2〜9回 、さらに好ましくは 3〜8回、最も好ましくは 4〜7回である。このように調製された細胞 抽出物は、実質的に糖、リン酸ィ匕糖が lOmM以下、好ましくは 6mM以下まで低減され ている(260nmにおける吸光度 200 OD/mlの抽出液中のグルコース濃度として)。 力べして得られたグルコース濃度が低減された抽出液は、従来にな ヽ高 、無細胞タ ンパク質合成能を保有して 、る。
[0030] 本発明の、細胞に内在する糖の ATPを介するリン酸化系が制御されている(すな わち細胞に内在する翻訳阻害機構が排除されている)細胞抽出物としては、このよう に調製されたものはそのまま利用できる力 あるいはこのような除去が完全におこな われていなくとも、下記の各種の阻害手段、不活化手段のいずれか 1の手段が施さ れて 、れば従来にな 、高 、無細胞タンパク質合成能を達成できる。
本発明の糖の ATPを介するリン酸ィ匕系の制御がされた細胞抽出物としては、少な くとも以下カゝら選ばれる一の手段が導入されている細胞抽出物をも対象とする。それ らの手段の具体例は下述のとおりである、
1)実質的にリン酸ィ匕糖が除去又は不活化されている、
2)実質的に多糖類、小糖類'二糖類、及び単糖類が除去されている、
3)実質的に糖分解酵素が除去又は不活化されている、
4)糖分解酵素阻害剤が添加されている、
5)実質的にリン酸ィ匕酵素が除去又は不活化されている、
6)リン酸ィ匕酵素阻害剤が添加されて!、る。
多糖類力も単糖類の生成の制御とは、多糖類であるスターチ力も小糖類'二糖類を へてグルコース、或いは果糖等の単糖類への反応系をコントロールし、細胞抽出物 が継続的に単糖類を作り出すことを排除することを意味する。この排除のためには、 細胞抽出物から多糖類及び小糖類 *ニ糖類の実質的な除去を達成すれば可能であ る。あるいは、糖分解酵素の除去、不活化、さらには阻害剤の添カ卩によっても達成可 能である。
多糖類及び小糖類 '二糖類の除去方法は、自体公知の分子量分画、ァフィ-ティ 一クロマトグラフィー、無機吸着体処理法などを利用しておこなうことが可能である。こ こで、多糖類は、澱粉、アミロース等が例示され、また小糖類'二糖類は、ショ糖、麦 芽糖等が例示される。
糖分解酵素の除去には、抗体を使った自体公知のァフィユティークロマトグラフィー 、イオン交換クロマトグラフィー等の公知の糖分解酵素の精製手段が利用できる。ま た、糖分解酵素とカルシウムの複合体を形成させ、遠心によって除去することも出来 る。遠心に際しては、沈殿助剤として、ベントナイト、活性炭素、シリカゲル、セフアデ ックスなどのクロマトグラフィー用担体、海砂等の無機担体を加える。これらの沈殿助 剤の添カ卩により、遠心後に、上清画分への沈殿物の混入を実質的に排除することが 可能となる。沈殿助剤を遠心時に加えない場合は、沈殿物の上部に不溶性スラリー が存在し、これが混入した S-30画分力ゝら調製した抽出液のタンパク質合成活性は低 くなる。そこで、遠心後の遠心管からの S-30画分の回収に当たっては混入を避ける ために細心の注意が必要となる。ここで、糖分解酵素とは、アミラーゼ、マルターゼ、 グリコシダーゼ等の多糖類、小糖類'二糖類を分解する酵素が例示される。
不活化には、一般的には各酵素の pH、温度等の反応至適条件に対応する不反応 条件の選択によって行われる。また、酵素の一般的な失活条件とその他の無細胞タ ンパク質合成系への影響を考慮し選択された温度及び Z又は PHの条件における選 択された処理時間を用いることで達成可能である。
糖分解酵素の阻害剤は広く公知の物質が適用可能である。その添加量は、実験的 繰り返しによって、糖分解酵素の阻害には有効である力 その他の無細胞タンパク質 合成系への影響は無視できる条件が選定される。
[0032] 単糖類の除去とは、細胞抽出物力 単糖類特に六炭糖類を実質的に排除すること を意味する。六炭糖としては、グルコース、ガラクトース、及びフルクトース等が例示さ れる。その除去は、自体公知の分子量分画、ァフィユティークロマトグラフィー、無機 吸着体処理法などを利用しておこなうことが可能である。
[0033] リン酸ィ匕糖の除去とは、単糖類のリン酸ィ匕物が既存の無細胞タンパク質合成用細 胞抽出物中に夾雑しており、そのもの自体が強力な無細胞タンパク質合成の阻害能 を有することを見出したことから、細胞抽出物からこれを実質的に排除することを意味 する。リン酸ィ匕糖としては、例えばグルコース 1リン酸、フルクトース 1リン酸、ガラクトー ス 1ジン 、グノレ =3—ス 1, 6二ジン 、フノレク卜ース 1, 6二ジン 、ガラク卜ース 1, 6二!; ン酸等が例示される。その除去は、自体公知の分子量分画、ァフィユティークロマト グラフィー、無機吸着体処理法などを利用しておこなうことが可能である。
単糖類、リン酸ィ匕糖の除去は、一般的に無細胞タンパク質合成用細胞抽出物の調 製時に用いられているセフアデックス G25などの分子篩によって、ある程度排除する ことが出来る。しかし、より効率的に単糖類、リン酸ィ匕糖を除去するためには、さらに ゲルろ過、限外ろ過膜などによる徹底した分画を行うことが望ましぐ例として、分子 量 1万カットのアミコンゥノレトラ遠心ろ過器(Amicon Ultra- 15 centrifogal filter device, 15 ml, 10K NMWL, MILLIPORE社製)による低分子の分画が挙げられる。さらには、 この分画操作を複数回繰り返すことが望ましい。複数回の具体的回数としては、 1〜 10回、好ましくは 2〜9回、さらに好ましくは 3〜8回、最も好ましくは 4〜7回である。 また、リン酸ィ匕糖の不活化とは、リン酸ィ匕糖のさらなるリン酸ィ匕活性が起こらないこと を意味する。これらの不活ィ匕は、自体公知の酵素反応等によって行うことができる。
[0034] 単糖類からリン酸ィ匕糖の生成の制御とは、細胞抽出物中での単糖類特に六炭糖類 力 Sリン酸ィ匕を受ける系を制御し、リン酸ィ匕糖の生成を実質的に排除することを意味す る。そのためには、単糖類の実質的除去、糖リン酸化酵素の不活化、糖リン酸化酵素 の除去、及び Z又は糖リン酸化酵素阻害剤の添加等の手段がある。単糖類の実質 的除去は、上記のとおりである。糖リン酸ィ匕酵素の不活ィ匕には、一般的には各糖リン 酸化酵素の pH、温度等の反応至適条件に対応する不反応条件の選択によって行 われる。また、各糖リン酸ィ匕酵素の一般的な失活条件とその他の無細胞タンパク質 合成系への影響を考慮し選択された温度及び Z又は PHの条件における選択された 処理時間を用いることで達成可能である。また、これらの酵素に特異的な抗体を用い て不活ィ匕することもできる。
各糖リン酸ィ匕酵素の阻害剤は広く公知の物質が適用可能である。その添加量は、 実験的繰り返しによって、各糖リン酸ィ匕酵素の阻害には有効であるが、その他の無細 胞タンパク質合成系への影響は無視できる条件が選定される。ここで、糖リン酸化酵 素としては、へキソキナーゼが例示され、具体的にはダルコキナーゼ、フルクトキナー ゼ等である。
糖のリン酸ィ匕の制御は、糖のリン酸ィ匕部位を酵素的及び Z又は化学的に修飾、並 びにそれらを改変することによつても達成することができる。例えば、グルコースォキ シダーゼを用いてグルコースの 6位の OH基を酸化する方法などが挙げられる。
[0035] 以上により、本発明の方法を施された無細胞タンパク質合成用コムギ胚芽抽出液と は、この系により合成されたタンパク質を回収する際に、該タンパク質と同一あるいは 類似の挙動を示す (潜在的に競合する)可能性のある細胞抽出液内在性夾雑物が、 あら力じめ上記の各種除去手段のいずれか 1により低減された又は実質的に除去さ れた抽出液である。ここで、細胞抽出液内在性夾雑物が低減又は実質的に除去され たとは、本発明に係る細胞抽出液により合成されたタンパク質の精製画分への細胞 抽出液内在性夾雑物の混入が低減されたことを意味する。具体的な例として、 GSTタ グ融合タンパク質、又はヒスチジンタグ融合タンパク質と、それらの精製工程において 、実質同一の吸脱着挙動を示す細胞抽出液内在性夾雑物が著しく除去された当該 タンパク質の最終精製品が得られるような、無細胞タンパク質合成用細胞抽出液が 挙げられる。また、本発明の方法を施された無細胞タンパク質合成用コムギ胚芽抽出 液あるいはこの抽出液を含む無細胞タンパク質合成用試薬キットを用 ヽて合成され たタンパク質は、従来の精製方法では得ることができない程度の高純度にまで精製 することができる。したがって本発明の細胞抽出液を含む無細胞タンパク質合成系に 使用する試薬キットは、特に立体構造解析用試料、抗体製造用抗原に要求される高 純度のタンパク質の合成系として最適である。
[0036] 以下、実施例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらの実施 例により限定されるものではない。
実施例 1
[0037] ダルタチオンセファロースによる抽出液の前処理の効果
(1)コムギ胚芽の調製
北海道産チホクコムギ種子または愛媛産チクゴィズミ種子を 1分間に lOOgの割合 でミル(Fritsch社製: Rotor Speed Mill pulverisettel4型)に添加し、回転数 8, OOOrp mで種子を温和に粉砕した。篩!ヽで発芽能を有する胚芽を含む画分 (メッシュサイズ 0. 7〜1. 00mm)を回収した後、四塩ィ匕炭素とシクロへキサンの混合液 (容量比 = 四塩ィ匕炭素:シクロへキサン = 2. 4 : 1)を用いた浮選によって、発芽能を有する胚芽 を含む浮上画分を回収し、室温乾燥によって有機溶媒を除去した後、室温送風によ つて混在する種皮等の不純物を除去して粗胚芽画分を得た。
次に、ベルト式色彩選別機 BLM— 300K (製造元:株式会社安西製作所、発売元: 株式会社安西総業)を用いて、次の通り、色彩の違いを利用して粗胚芽画分から胚 芽を選別した。この色彩選別機は、粗胚芽画分に光を照射する手段、粗胚芽画分か らの反射光及び Z又は透過光を検出する手段、検出値と基準値とを比較する手段、 基準値より外れたもの又は基準値内のものを選別除去する手段を有する装置である 色彩選別機のベージュ色のベルト上に粗胚芽画分を 1000乃至 5000粒/ cm2とな るように供給し、ベルト上の粗胚芽画分に蛍光灯で光を照射して反射光を検出した。 ベルトの搬送速度は、 50mZ分とした。受光センサーとして、モノクロの CCDラインセ ンサー(2048画素)を用いた。
まず、胚芽より色の黒い成分 (種皮等)を除去するために、胚芽の輝度と種皮の輝 度の間に基準値を設定し、基準値力 外れるものを吸引により取り除いた。次いで、 胚乳を選別するために、胚芽の輝度と胚乳の輝度の間に基準値を設定し、基準値か ら外れるものを吸引により取り除いた。吸引は、搬送ベルト上方約 lcm位置に設置し た吸引ノズル 30個(長さ 1 cm当たり吸引ノズル 1個並べたもの)を用 、て行つた。 この方法を繰り返すことにより胚芽の純度 (任意のサンプル lg当たりに含まれる胚 芽の重量割合)が 98%以上になるまで胚芽を選別した。得られたコムギ胚芽画分を 4 °Cの蒸留水に懸濁し、超音波洗浄機を用 、て洗浄液が白濁しなくなるまで洗浄した 。次いで、ノ-デット (Nonidet :ナカライ'テクトニタス社製) P40の 0. 5容量0 /0溶液に 懸濁し、超音波洗浄機を用いて洗浄液が白濁しなくなるまで洗浄してコムギ胚芽を 得た。回収した胚芽湿重量に対して 2倍容量の抽出溶媒(80mMHEPES— KOH、 pH7. 8、 200mM酢酸カリウム、 10mM酢酸マグネシウム、 8mMジチオスレィトール 、 4mM塩化カルシウム、各 0. 6mM20種類の L型アミノ酸)をカ卩え、ワーリングブレン ダーを用い、 5, 000〜20, OOOrpmで 30秒間ずつ 3回の胚芽の限定破砕を行った (2)沈殿助剤を用いた S-30画分の調製
上記得られたホモゲネート (破砕物)に、 20%重量の海砂あるいは膨潤させたセフ アデックス G25粒子を加え、混合した。海砂は、ホモゲネート添加前にあら力じめ以下 の処理を行った:水洗→5容の 0. 1規定の NaOH又は KOH洗浄→水洗→0. 1規定 の HC1洗浄→水洗→ 100〜 120°Cの加熱により RNase失活処理後、乾燥処理。 海砂を混合したホモゲネートを 3万 xg、 30分で 2回遠心、続いて 12分間 1回の遠心 で、半透明な遠心上清を得た (S- 30画分)(糖分解酵素の除去)。海砂あるいはセフ アデックス粒子を遠心前に加えない場合は、沈殿物の上部に不溶性スラリーが存在 し、これが混入した S-30画分力ゝら調製した抽出液のタンパク質合成活性は低くなつ た。得られた S- 30画分を、溶出溶液(40mM HEPES-KOH, pH7.8、 200mM酢酸力リウ ム、 10mM酢酸マグネシウム、 4mM DTT)で平衡化したセフアデックス G25にかけ、ゲ ルろ過し、分子量 1000ダルトン以下の低分子物質を排除した胚芽細胞抽出液を調 製した (単糖類の除去)。
[0039] (3)翻訳铸型の調製
グルタチオン Sトランスフェラーゼ (GST)遺伝子、 GST遺伝子とヒト T cell receptor alfa locus (TRA、 Accession No. BC063432)の C末端側 65アミノ酸をコードする cDNAフラ グメントの融合遺伝子(GST— TRA)、 GST遺伝子とヒト caspase 4(CASP4、 Accession No.NM_00122512)完全長 cDNAの融合遺伝子(GST— CASP4)をそれぞれサブクロー ユングした pEU (東洋紡社)を铸型として転写反応を行なった。すなわち、各 pEUを転 写反応液(80mM HEPES-KOH pH7.8、 16mM酢酸マグネシウム、 10mMジチオスレィ トール、 2mMスペルミジン、プラスミド 100ng/ml、 Sp6 1U/ μ 1、 RNAsin 1U/ μ 1、 NTPs 2 .5mM)に添加して、 26°C、 4時間インキュベートして、 mRNAを調製した。
[0040] (4)ダルタチオンセファロースによる抽出液の前処理の効果
(2)で得られたコムギ胚芽細胞抽出液 (濃度が OD 應 300) 1mlに SMバッファー(
260
30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム、 2.7mM酢酸マグネシウム、 4mMジ チオスレィトール、 0.4mMスペルミジン、 16mMクレアチンリン酸、 0.3mM 20種類アミノ 酸、 1.2mM ATP、 0.25mM GTP) 1mlをカ卩えて希釈し、 OD nmを 150に調製した。この
260
細胞抽出液にグルタチオンセファロース 4B (Amersham社) 200 1を添カ卩し、 4°C、一 晚、バッチ法にて吸着させた後、細胞抽出液力も榭脂を除去した。
この細胞抽出液の OD nmを測定したところ、 OD nm 141であり、約 6%の濃度の
260 260
減少がみられた。
[0041] (5)ダルタチオンセファロースを用いた前処理済みの抽出液でのタンパク質合成
(3)で得られた mRNAを翻訳铸型とし、(4)で得られたダルタチオンセファロース 4B を用いた前処理済みの細胞抽出液(図 1中: C)を用い、透析法により翻訳反応を行 なった。透析は、透析内液 (抽出液:終濃度 80OD、転写反応液 500 1に相当する mR NA、 40ng/ μ 1クレアチンキナーゼ、 30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム 、 2.7mM酢酸マグネシウム、 4mMジチオスレィトール、 0.4mMスペルミジン、 16mMタレ ァチンリン酸、 0.3mM 20種類アミノ酸、 1.2mM ATP、 0.25mM GTP) 500 μ 1、透析外液 (30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム、 2.7mM酢酸マグネシウム、 4mMジ チオスレィトール、 0.4mMスペルミジン、 16mMクレアチンリン酸、 0.3mM 20種類アミノ 酸、 1.2mM ATP、 0.25mM GTP) 5mlを用い、 26°C、 20時間行なった。コントロールとし て前処理を行なわない抽出液(図 1中: A)、及び SMバッファーで希釈後、ダルタチ オンセファロース 4Bを添加せずに 4°C、 overnightで静置した(0/N処理)抽出液(図 1 中: B)を用いて、同様に透析による翻訳反応を行った。
[0042] (6)合成タンパク質の精製
グルタチオンセファロース 4FF (Amersham社) 100 μ 1を PBS( Phosphate Buffered Sali ne)で平衡ィ匕した。(5)で得られた翻訳反応液(図 1中: A,B,C)を PBSで 3倍に希釈し 、 12,000g、 15分の遠心により沈殿を除去した。この翻訳反応液を密閉可能なチュー ブに入れ、平衡化したグルタチオンセファロース 4FF100 1を加え、チューブを密閉 して約 1時間、撹拌した。このサンプルをサンプルリザーバーに移し、 5,000g、 1分の 遠心により、サンプルバイアルに落とした。サンプルバイアルからサンプルを回収し、 再びサンプルリザーバーに移し、 5,000gの遠心、 1分により、サンプルバイアルに落と した。続いて洗浄のために、 PBSをサンプルリザーバーに 500 1加え、 5,000g、 1分の 遠心を行い、得られたろ液を別のチューブに移した。この洗浄操作を 3回繰り返した。 次にサンプルリザーバーに溶出バッファー(50mM Tris- HC1、 pH lOmM GSH) 150 1を加え、 5,000gの遠心を行なった。このろ液を精製タンパク質溶液画分として回収 した。得られた画分を SDS-PAGEにより解析した。
[0043] 図 1に、 3種類の細胞抽出液を用いて合成された GSTを精製した結果を示した。ここ で、図 1中の F.Tはグルタチオンセファロース非吸着画分、 Washは洗浄画分、 Eluate は溶出画分である。 A、 B、 Cいずれの細胞抽出液を用いた場合でも、ほぼ同じ量の 精製 GSTが得られ、 4°C、 overnightの処理(0/N処理)またはダルタチオンセファロー スカラムを通すという前処理による合成量の低下は見られな力つた。このことから、こ れらの処理は細胞抽出液のタンパク質合成能を低下させないことがわ力つた。 またん Bの細胞抽出液を用いた場合は、最終精製サンプルに分子量 3万以下の 夾雑タンパク質 (GST-likeタンパク質)が含まれていた。このタンパク質は、 Cの溶出 画分では見られな力つた。このことから、この夾雑タンパク質は、細胞抽出液をあらか じめダルタチオンセファロースカラムに通す処理により、効果的に除去されることがわ かった。
図 2に、 B (前処理を行っていないもの)、 C (前処理済み)の細胞抽出液を用いて合 成した GST— CASP4{図 2中: 1レーン(B)、 2レーン(C) }、 GST— TRA{図 2中: 3レー ン (B)、 4レーン (C) }を精製した例を示した。さらに、翻訳铸型をいれない抽出液 B、 Cにおいても同様な方法で精製した例を示した {図 2中: 5レーン (B)、 6レーン (C) }。 いずれのレーンにおいても、前処理により GST-likeタンパク質が効果的に除去される ことが示され、本発明に係る細胞抽出液は GSTをタグとする融合タンパク質の合成に 有効であることがわ力つた。なお、前処理した抽出液 Bは、 3日間、 -80°Cにて保存し、 再溶解してタンパク質合成に使用された。該保存はタンパク質合成能に影響を与え ないことにより、前処理は、抽出液の保存に影響を与えないことが確認できた。
実施例 2
[0044] ニッケルキレーティングセファロースによる抽出液の前処理の効果
(1)翻訳铸型の調製
ヒスチジンタグを付けた緑色蛍光タンパク質 (GFP)遺伝子を有する pEUを铸型として 転写反応を行なった。すなわち、該 pEUを転写反応液(80mM HEPES-KOH pH7.8、 16mM酢酸マグネシウム、 10mMジチオスレィトール、 2mMスペルミジン、プラスミド 100 ng/ml、 Sp6 1U/ μ 1、 RNAsin 1U/ μ 1、 NTPs 2.5mM) に添加して、 26°C、 4時間インキ ュペートして、 mRNAを調製した。
[0045] (2)ニッケルキレーティングセファロースによる抽出液の前処理の効果
実施例 1 (2)で得られたコムギ胚芽細胞抽出液 (濃度が OD nm300) 1mlに SMバ
260
ッファー(30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム、 2.7mM酢酸マグネシウム 、 4mMジチオスレィトール、 0.4mMスペルミジン、 16mMクレアチンリン酸、 0.3mM 20種 類アミノ酸、 1.2mM ATP、 0.25mM GTP) 1mlをカ卩えて希釈し、 OD nmを 150に調製し
260
た。この抽出液に Niセファロースハイパフォーマンス(Amersham社) 200 μ 1を添カロし、 4°C、 3時間、バッチ法にて吸着させた後、該抽出液力も榭脂を除去した。この抽出液 の OD nmを測定したところ、 OD nm 136.4であり、約 10%の濃度の減少がみられ
260 260
た。
[0046] (3)ニッケルキレーティングセファロースを用いた前処理済みの抽出液でのタンパク 質合成
(1)で得られた mRNAを翻訳铸型とし、 (2)で得られた Niセファロースハイパフォー マンスを用 、た前処理済みの細胞抽出液 (C + )を用い、透析法により翻訳反応を行 なった。透析は、透析内液 (抽出液:終濃度 80OD、転写反応液 500 1に相当する mR NA、 40ng/ μ 1クレアチンキナーゼ、 30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム 、 2.7mM酢酸マグネシウム、 4mMジチオスレィトール、 0.4mMスペルミジン、 16mMタレ ァチンリン酸、 0.3mM 20種類アミノ酸、 1.2mM ATP、 0.25mM GTP) 500 μ 1、透析外液 (30mM HEPES-KOH pH7.8、 lOOmM酢酸カリウム、 2.7mM酢酸マグネシウム、 4mMジ チオスレィトール、 0.4mMスペルミジン、 16mMクレアチンリン酸、 0.3mM 20種類アミノ 酸、 1.2mM ATP、 0.25mM GTP) 5mlを用い、 26°C、 20時間行なった。コントロールとし て前処理を行なわな 、細胞抽出液を SMバッファーで希釈後、 Niセファロースハイパ フォーマンスを添加せずに 4°C、 3時間静置した細胞抽出液 (C一)を用いて、同様に 透析による翻訳反応を行なった。
[0047] (4)合成タンパク質の精製
Niセファロースハイパフォーマンス 100 μ 1を平衡化バッファー (20mMリン酸一ナトリウ ムバッファー pH7.5、 300mM塩化ナトリウム、 10mMイミダゾール)で平衡化した。前述 の各翻訳反応液を PBSで 3倍に希釈し、 12,000g、 15分の遠心により沈殿を除去した 。この翻訳反応液を密閉可能なチューブに入れ、平衡ィ匕した Niセファロースノ、ィパフ オーマンス 100 1を加え、チューブを密閉して約 1時間、撹拌した。このサンプルをサ ンプルリザーバーに移し、 5,000g、 1分の遠心により、サンプルバイアルに落とした。 サンプルバイアルからサンプルを回収し、再びサンプルリザーバーに移し、 5,000gの 遠心、 1分により、サンプルバイアルに落とした。続いて洗浄のために、平衡化バッフ ァーをサンプルリザーバーに 500 1加え、 5,000g、 1分の遠心を行い、得られたろ液 を別のチューブに移した。この洗浄操作を 3回繰り返した。次にサンプルリザーバー に溶出バッファー(20mMリン酸—ナトリウムバッファー pH7.5、 300mM塩化ナトリウム、 50mMイミダゾール pH 7.5) 150 μ 1を加え、 5,000g、 1分の遠心を行なった。このろ液 を精製タンパク質溶液画分として回収した。得られたろ画分について、 SDS-PAGEに よる解析を行なった。
[0048] 図 3に、翻訳反応液画分 (Crude)、 Niセファロースハイパフォーマンス非吸着画分( FT)、溶出画分(Eluate)の SDS- PAGEパターンを示した。 Niセファロースハイパフォー マンス非吸着画分、翻訳反応液画分では前処理の有無による変化は見られない。 Ni セファロースハイパフォーマンスによる前処理をした C +の溶出画分では、 GFPのほ ぼ単一なバンドが確認できた。前処理をしない C一の溶出画分では、 GFP以外の細 胞抽出液内在性夾雑物によるバンドが複数確認できた。これらの結果から、 Niセファ ロースによる前処理は、精製度を著しく向上させる効果があることが示された。
図面の簡単な説明
[0049] [図 1]ダルタチオンセファロースによる抽出液の前処理の効果 (GSTタンパク質)
[図 2]ダルタチオンセファロースによる抽出液の前処理の効果 (GST融合タンパク質) [図 3]ニッケルキレーティングセファロースによる前処理の効果

Claims

請求の範囲
[1] 無細胞タンパク質合成系に使用する細胞抽出液由来のグルコース及び Z又はダル コシダーゼが除去された細胞抽出液の調製方法であって、無細胞タンパク質合成系 によって合成されたタンパク質を回収する際に、該タンパク質と同一あるいは類似の 挙動を示す可能性のある細胞抽出液内在性夾雑物を除去することを特徴とする細胞 抽出液の調製方法。
[2] 合成タンパク質と同一あるいは類似の挙動を示す可能性のある細胞抽出液内在性 夾雑物が、該タンパク質の無細胞タンパク質合成系力 の精製工程において実質同 一の吸脱着挙動を示す夾雑物である請求項 1に記載の調製方法。
[3] 細胞抽出液内在性夾雑物が、分子量 14,000ダルトン以上であることを特徴とする請 求項 2に記載の調製方法。
[4] 細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示すこ とを特徴とする請求項 2の調製方法。
1) GSTタグ融合タンパク質、 2)ヒスチジンタグ融合タンパク質、 3)ストレプ一タグ融合 タンパク質
[5] 細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示すこ とを特徴とする請求項 2に記載の調製方法。
1)カルモデュリン結合ペプチド融合タンパク質、 2)マルトース結合タンパク質融合タ ンパク質、 3)セルロース結合ドメイン融合タンパク質、 4)キチン結合ドメイン融合タン パク質、 5) FLAGタグ融合タンパク質
[6] 細胞抽出液内在性夾雑物が、以下のいずれか 1と実質同一の吸脱着挙動を示すこ とを特徴とする請求項 2に記載の調製方法。
1)プロテイン A融合タンパク質、 2)プロテイン G融合タンパク質
[7] 7.細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とする 請求項 2に記載の調製方法。
1)ダルタチオン Sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)遷移金属をキレート結合したクロマトグラフィー担体、 3)ストレプトアビ ジン若しくはアビジン又はそれらの誘導体を結合したクロマトグラフィー担体
[8] 遷移金属が、ニッケル又はコバルトである請求項 7に記載の調製方法。
[9] 遷移金属が、亜鉛、銅、マンガンのいずれか 1力 選ばれる請求項 7に記載の調製 方法。
[10] 細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とする請 求項 2に記載の調製方法。
1)カルモデュリン結合担体、 2)アミロース又は架橋アミロース結合担体、 3)セルロー ス結合担体、 4)キチン結合担体、 5) FLAGタグに対する抗体を結合した担体
[11] 細胞抽出液内在性夾雑物が、免疫グロブリンの Fcフラグメントを結合したクロマトダラ フィー担体と親和性を示すことを特徴とする請求項 2に記載の調製方法。
[12] 細胞抽出液の原料が、混入する胚乳成分および低分子タンパク質合成阻害物質が 実質的に除去されたコムギ胚芽抽出物である請求項 1〜11に記載の 、ずれか 1の 調製方法。
[13] 細胞抽出液内在性夾雑物の除去が、細胞抽出液をクロマトグラフィー担体に接触さ せることである請求項 1〜12に記載のいずれか 1の調製方法。
[14] 細胞抽出液とクロマトグラフィー担体との接触が、以下から選ばれる少なくとも一の手 段である請求項 13に記載の調製方法。
1)細胞抽出液にクロマトグラフィー担体を添加し、一定時間接触させた後、担体を除 去する (バッチ法)手段、 2)クロマトグラフィー担体を充填したカラムに細胞抽出液を 通す手段
[15] クロマトグラフィー担体力 ァフィ-ティクロマトグラフィー担体である請求項 13又は 1 4に記載の調製方法。
[16] ァフィ-ティクロマトグラフィー担体力 以下のいずれか 1である請求項 15に記載の調 製方法。
1)ダルタチオン Sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)遷移金属をキレート結合したクロマトグラフィー担体、 3)ストレプトアビ ジン若しくはアビジン又はそれらの誘導体を結合したクロマトグラフィー担体
[17] 遷移金属が、ニッケル又はコバルトである請求項 16に記載の調製方法。
[18] 遷移金属が、亜鉛、銅、マンガンのいずれか 1力 選ばれる請求項 16に記載の調製 方法。
[19] ァフィ-ティクロマトグラフィー担体力 以下のいずれか 1である請求項 15に記載の調 製方法。
1)カルモデュリン結合担体、 2)アミロース又は架橋したアミロース結合担体、 3)セル ロース結合担体、 4)キチン結合担体、 5) FLAGタグに対する抗体を結合した担体
[20] ァフィ-ティクロマトグラフィー担体力 免疫グロブリンの Fcフラグメントを結合した担 体である請求項 15に記載の調製方法。
[21] クロマトグラフィー担体が、陽イオン交換クロマトグラフィー、陰イオン交換クロマトダラ フィ一、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー、逆相クロマトグラフィー 、等電点クロマトグラフィー、ハイドロキシアパタイトのいずれか 1力 選ばれる請求項 13〜20の!、ずれか 1に記載の調製方法。
[22] 請求項 1〜21のいずれか 1に記載の調製方法によって調製された無細胞タンパク質 合成系に使用する細胞抽出液。
[23] 無細胞タンパク質合成系に使用する細胞抽出液由来のグルコース及び Z又はダル コシダーゼが除去された細胞抽出液であって、無細胞タンパク質合成系によって合 成されたタンパク質を回収する際に該タンパク質と同一あるいは類似の挙動を示す 可能性のある細胞抽出液内在性夾雑物が、実質的に除去されていることを特徴とす る細胞抽出液。
[24] 合成タンパク質と同一あるいは類似の挙動を示す可能性のある細胞抽出液内在性 夾雑物が、該タンパク質の無細胞タンパク質合成系力 の精製工程において実質同 一の吸脱着挙動を示す夾雑物である請求項 23に記載の細胞抽出液。
[25] 細胞抽出液内在性夾雑物が、分子量 14,000ダルトン以上であることを特徴とする請 求項 24に記載の細胞抽出液。
[26] 細胞抽出液内在性夾雑物において、以下のいずれか 1と実質同一の吸脱着挙動を 示すことを特徴とする請求項 24に記載の細胞抽出液。
1) GSTタグ融合タンパク質、 2)ヒスチジンタグ融合タンパク質
[27] 細胞抽出液内在性夾雑物が、以下のいずれか 1と親和性を示すことを特徴とする請 求項 24の細胞抽出液。 1)ダルタチオン sトランスフェラーゼ又はその誘導体を特異的に結合するクロマトダラ フィー担体、 2)ニッケル又はコバルトをキレート結合したクロマトグラフィー担体
[28] 細胞抽出液の原料が、混入する胚乳成分および低分子タンパク質合成阻害物質が 実質的に除去された植物種子の胚芽抽出物である請求項 23〜27に記載のいずれ 力 1の細胞抽出液。
[29] 植物種子が、コムギ、ォォムギ、イネ、コーンのいずれか 1から選ばれる請求項 28に 記載の細胞抽出液。
[30] 請求項 22〜29に記載のいずれか 1の細胞抽出液を用いたタンパク質合成方法。
[31] 請求項 22〜29に記載のいずれか 1の細胞抽出液を含む無細胞タンパク質合成系 に使用する試薬キット。
PCT/JP2005/019425 2004-10-22 2005-10-21 無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。 WO2006043675A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-308827 2004-10-22
JP2004308827A JP2007320853A (ja) 2004-10-22 2004-10-22 無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法

Publications (2)

Publication Number Publication Date
WO2006043675A1 true WO2006043675A1 (ja) 2006-04-27
WO2006043675A9 WO2006043675A9 (ja) 2006-06-08

Family

ID=36203087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019425 WO2006043675A1 (ja) 2004-10-22 2005-10-21 無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。

Country Status (2)

Country Link
JP (1) JP2007320853A (ja)
WO (1) WO2006043675A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130053A1 (ja) * 2007-04-23 2008-10-30 Synthera Technologies Co., Ltd. プロテインgとアビジン類との融合タンパク質
CN110964736A (zh) * 2018-09-28 2020-04-07 康码(上海)生物科技有限公司 一种体外蛋白合成体系及其用于提高蛋白合成效率的方法、试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064672A1 (fr) * 2002-01-31 2003-08-07 Yaeta Endo Extrait cellulaire pour synthese de proteine acellulaire et procede de production de cet extrait
WO2005063979A1 (ja) * 2003-12-26 2005-07-14 Cellfree Sciences Co.,Ltd. 高機能化無細胞タンパク質合成用細胞抽出物及び該抽出物の調製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064672A1 (fr) * 2002-01-31 2003-08-07 Yaeta Endo Extrait cellulaire pour synthese de proteine acellulaire et procede de production de cet extrait
WO2005063979A1 (ja) * 2003-12-26 2005-07-14 Cellfree Sciences Co.,Ltd. 高機能化無細胞タンパク質合成用細胞抽出物及び該抽出物の調製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENDO Y. ET AL: "High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system", J.STRUCT.FUNCT.GENOMICS, vol. 5, 2004, pages 45 - 57, XP003007152 *
KAWASAKI T. ET AL: "Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ", EUR.J.BIOCHEM., vol. 270, 2003, pages 4780 - 4786, XP003007151 *
SAWASAKI T. ET AL: "Musaibo Tanpakushitsu Goseikei: Komugi Haigakei", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 49, no. 11, August 2004 (2004-08-01), pages 1514 - 1519, XP003007150 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130053A1 (ja) * 2007-04-23 2008-10-30 Synthera Technologies Co., Ltd. プロテインgとアビジン類との融合タンパク質
JPWO2008130053A1 (ja) * 2007-04-23 2010-07-22 シンセラ・テクノロジーズ株式会社 プロテインgとアビジン類との融合タンパク質
JP5211041B2 (ja) * 2007-04-23 2013-06-12 シンセラ・テクノロジーズ株式会社 プロテインgとアビジン類との融合タンパク質
CN110964736A (zh) * 2018-09-28 2020-04-07 康码(上海)生物科技有限公司 一种体外蛋白合成体系及其用于提高蛋白合成效率的方法、试剂盒

Also Published As

Publication number Publication date
WO2006043675A9 (ja) 2006-06-08
JP2007320853A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
KR101769634B1 (ko) 재조합 adamts13 및 기타 단백질을 정제하는 방법, 그리고 이들의 조성물
US7834161B2 (en) Process for proteolytic cleavage and purification of recombinant proteins produced in plants
JP3675804B2 (ja) 無細胞タンパク質合成用細胞抽出液、及びその製造方法
CN102695721A (zh) 生物感受器的稳定用于体内应用
US7273615B2 (en) Reaction solution for cell-free protein synthesis, method of preparing the same, and protein synthesis method using the same
WO2006043675A1 (ja) 無細胞タンパク質合成用細胞抽出液及び該抽出液の調製方法。
WO2021219585A2 (en) Fusion polypeptides for target peptide production
JP2000236896A (ja) 無細胞タンパク質合成用胚芽抽出液及びその製造方法並びにそれを用いるタンパク質の合成方法
JPWO2005063979A1 (ja) 高機能化無細胞タンパク質合成用細胞抽出物及び該抽出物の調製方法
WO2006054683A1 (ja) 無細胞タンパク質合成方法を用いた抗体検出方法及び特定タンパク質のスクリーニング方法
EP2953961A2 (en) Improved purification of proteins via a deglycosylation step
JP5010269B2 (ja) タンパク質合成・回収一体型無細胞タンパク質合成方法
CA2927005C (en) Methods for separating and purifying endogenous, exogenous and recombinant proteins/peptides from plants and animals using aqueous-free, anhydrous strategies
JP2008029204A (ja) 無細胞タンパク質合成方法
JP2006288320A (ja) 無細胞タンパク質合成用胚芽抽出物の製造方法
JP2008029203A (ja) 無細胞タンパク質合成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1/3-3/3, DRAWINGS, REPLACED BY NEW PAGES 1/3-3/3

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05795231

Country of ref document: EP

Kind code of ref document: A1