WO2006041133A1 - 合成ガスの製法および製造装置 - Google Patents

合成ガスの製法および製造装置 Download PDF

Info

Publication number
WO2006041133A1
WO2006041133A1 PCT/JP2005/018880 JP2005018880W WO2006041133A1 WO 2006041133 A1 WO2006041133 A1 WO 2006041133A1 JP 2005018880 W JP2005018880 W JP 2005018880W WO 2006041133 A1 WO2006041133 A1 WO 2006041133A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reactor
steam reforming
low
temperature steam
Prior art date
Application number
PCT/JP2005/018880
Other languages
English (en)
French (fr)
Inventor
Hirokazu Fujie
Nobuhiro Yamada
Ichiro Kitahara
Yoshiyuki Watanabe
Original Assignee
Jgc Corporation
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Corporation, Osaka Gas Co., Ltd. filed Critical Jgc Corporation
Priority to EP05793616A priority Critical patent/EP1808409A4/en
Priority to US11/577,152 priority patent/US7867411B2/en
Priority to BRPI0516111-8A priority patent/BRPI0516111A/pt
Priority to AU2005292828A priority patent/AU2005292828B2/en
Publication of WO2006041133A1 publication Critical patent/WO2006041133A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series

Definitions

  • the present invention relates to a method and an apparatus for producing a synthesis gas containing carbon monoxide and hydrogen by catalytic partial oxidation of a raw gas containing light hydrocarbons such as natural gas, and carbon in the catalytic partial oxidation step. This is designed to suppress self-combustion of hydrocarbons of number 2 or more.
  • CPO catalytic partial oxidation method
  • oxygen is added to a raw material gas such as natural gas containing light hydrocarbons such as methane, and then fed into the reactor, and nickel, ruthenium, rhodium, platinum, etc. in the reactor are added.
  • a raw material gas such as natural gas containing light hydrocarbons such as methane
  • nickel, ruthenium, rhodium, platinum, etc. in the reactor are added.
  • This is a method for producing synthesis gas by converting light hydrocarbons such as methane and ethane into carbon monoxide and hydrogen by the action of this catalyst (see the following chemical formula).
  • the source gas such as natural gas usually contains hydrocarbons having 2 or more carbon atoms such as ethane, propane, and butane. Many. Since these hydrocarbons having 2 or more carbon atoms have a lower ignition temperature than methane, they tend to burn when they are mixed with oxygen and subjected to catalytic oxidation. For this reason, the oxygen mixer located upstream from the catalytic layer of the catalytic partial oxidation reactor is a significant obstacle to safety in the design of a device that is likely to self-combust in the preheating section.
  • WO98Z49095 has a high line that does not self-combust hydrocarbon gas and oxygen gas by attaching an injector equipped with a plurality of mixing nozzles to the inlet of the catalytic partial acid-sodium reactor.
  • An invention is disclosed that mixes under fast conditions and feeds to the catalyst layer of the partial oxidation reactor.
  • Patent Document 1 Pamphlet of International Publication No. WO98Z49095
  • the problem in the present invention is to convert hydrocarbons having 2 or more carbon atoms in the raw material gas when producing synthesis gas from the raw material gas containing light hydrocarbons such as natural gas by the catalytic partial oxidation method.
  • the purpose is to prevent the self-combustion caused.
  • a first aspect of the present invention is a process for producing a synthesis gas containing a raw material gas power containing light hydrocarbons, carbonic acid and carbon, and adding low temperature steam reforming to the source gas by adding steam. And a process for converting a hydrocarbon having 2 or more carbon atoms in the raw material gas into methane, and a process for synthesizing partial synthesis by adding oxygen after the low temperature steam reforming.
  • the pressure in the first reactor for low-temperature steam reforming is normal pressure to 8 MPa
  • the inlet temperature is 200 to 500 ° C
  • the outlet temperature is 300 to 600 ° C
  • the amount of added calories may be 0.1 to 3.0 moles per mole of carbon in the source gas.
  • the inlet temperature in the second reactor for catalytic partial oxidation is 300 ° C or higher, and the oxygen loading is 1 mol of carbon in the gas. As opposed to 0.2 mol or more.
  • the raw material gas may be natural gas, naphtha or liquid petroleum gas.
  • a second aspect of the present invention is a carbonization having 2 or more carbon atoms in a raw material gas containing light hydrocarbons.
  • a synthesis gas comprising a low-temperature steam reforming reactor that converts hydrogen to methane, and a catalytic partial oxidation reactor that uses the product gas from the low-temperature steam reforming reactor as a synthesis gas containing carbon monoxide and hydrogen. It is a manufacturing apparatus.
  • the synthesis gas production apparatus may include a heat exchanger that is provided between the low-temperature steam reforming reactor and the catalytic partial oxidation reactor and that heats the gas from the low-temperature steam reforming reactor. Yes.
  • the syngas production apparatus is provided between the desulfurization reactor provided in the front stage of the low-temperature steam reforming reactor and the desulfurization reactor and the low-temperature steam reforming reactor. With heat exchange that heats the gas.
  • hydrocarbons having 2 or more carbon atoms contained in light hydrocarbons such as natural gas and naphtha are converted to methane by low-temperature steam reforming. For this reason, the self-combustion of the raw material gas does not occur in the subsequent contact partial oxidation process.
  • the temperature of the gas sent to the catalytic partial oxidation reactor can be increased by about 200 ° C compared to the conventional method, so the amount of oxygen required for the catalytic partial oxidation reaction can be reduced. .
  • FIG. 1 is a schematic configuration diagram showing an example of a synthesis gas production apparatus according to the present invention.
  • FIG. 1 is a schematic configuration diagram showing an example of the synthesis gas production apparatus of the present invention.
  • Source gas containing light hydrocarbons such as natural gas is sent from pipe 1 to desulfurization reactor 2 Be turned. At this time, hydrogen for hydrogenation is simultaneously supplied from the pipe 3 to the desulfurization reactor 2.
  • an adsorber or the like that reduces sulfur compound in the raw material gas with hydrogen to form hydrogen sulfide, and adsorbs and removes this sulfur hydrogen is used.
  • the desulfurized raw material gas is led out from the pipe 4 and the water vapor from the pipe 5 is mixed therewith and sent to the first heat exchanger 6 where it is heated to 200 to 500 ° C. Then, it is sent to the low-temperature steam reforming reactor 8 through the pipe 7.
  • the low-temperature steam reforming reactor 8 includes a catalyst bed filled with a catalyst formed by supporting a metal such as nickel and Z or ruthenium on a carrier such as aluminum oxide.
  • a catalyst formed by supporting a metal such as nickel and Z or ruthenium on a carrier such as aluminum oxide.
  • hydrocarbons having 2 or more carbon atoms in the raw material gas are converted into methane by reacting with water vapor by the action of the catalyst, and oxygen is by-produced as a by-product.
  • the operating conditions in the low-temperature steam reforming reactor 8 are that the pressure is normal pressure to 8 MPa, preferably 1 to 4 MPa, and the artificial temperature force is 200 to 500 ° C, preferably 300 to 400 ° C.
  • the outlet temperature is 300 to 600 ° C, preferably 400 to 550 ° C, and the amount of water vapor added is 0.1 to 3.0 monolayers, preferably 0 to one carbon monolayer in the raw material gas. 3 to 1.0 Mono is set.
  • the product gas containing methane and oxygen from the low-temperature steam reforming reactor 8 is sent to the second heat exchanger ⁇ 11 together with the steam from the tube 9 to the tube 10, where it is heated to 300 to 550 ° C. Is sent to the mixer 12.
  • the mixer 12 is separately supplied with oxygen from a pipe 13 where oxygen is mixed with the mixed gas of the product gas and water vapor.
  • the steam added here prevents coking of the catalyst in the catalytic partial oxidation reactor 15.
  • the amount of oxygen added in the mixer 12 is 0.2 to 1.0 mol, preferably as oxygen content at the outlet of the mixer 12 with respect to 1 mol of carbon in the gas. Is adjusted to be in the range of 0.3 to 0.8 mol, and can be higher than the oxygen content in the conventional method. This is because self-combustion hardly occurs in the catalytic partial oxidation reaction step in the next stage.
  • the gas from the mixer 12 is fed into the catalytic partial oxidation reactor 15 via the tube 14.
  • the catalytic partial oxidation reactor 15 is filled with a catalyst in which one or more metals selected from the group force consisting of nickel, ruthenium, rhodium and platinum are supported on a carrier such as alumina or silica. Provide a catalyst bed.
  • a catalyst in which one or more metals selected from the group force consisting of nickel, ruthenium, rhodium and platinum are supported on a carrier such as alumina or silica.
  • a carrier such as alumina or silica.
  • Methane and oxygen react with each other to obtain a synthesis gas containing carbon monoxide and hydrogen.
  • the operating conditions in the catalytic partial oxidation reactor 15 are that the pressure is normal pressure to 8 MPa, the inlet temperature force S300 to 550 ° C, and the outlet temperature 700 to 1200 ° C.
  • the synthesis gas produced in the catalytic partial oxidation reactor 15 is led out from the pipe 16 and sent to the next process.
  • a low-temperature water steam reforming reactor 8 is provided upstream of the catalytic partial oxidation reactor 15, and in the low-temperature steam reforming reactor 8,
  • the hydrocarbons having 2 or more carbon atoms are converted into methane in advance, and this is led to the catalytic partial oxidation reactor 15.
  • hydrocarbons having 2 or more carbon atoms do not flow into the catalytic partial oxidation reactor 15, so there are 2 carbon atoms between the mixer 12 and the upstream of the catalyst layer of the catalytic partial acid reactor 15. Self-combustion of the above hydrocarbons can be suppressed.
  • Table 1 shows an example of gas composition change at the inlet and outlet of the low-temperature steam reforming reactor 8 using natural gas as a raw material as an example. It can be seen that the above ethane, propane and the like are hardly contained and converted into a composition.
  • the ignition temperature of the product gas from the low-temperature steam reforming reactor 8 is increased, the temperature of the gas fed into the catalytic partial oxidation reactor 15 can be increased. For this reason, the amount of oxygen required for the contact partial oxidation reaction can be reduced.
  • the ignition temperature of the raw material gas at the inlet of the low temperature steam reforming reactor 8 is about 250 to 350 ° C. depending on its composition, but the ignition temperature of the product gas at the outlet is about 450 to 350 ° C. 530 ° C.
  • the catalyst used in the low temperature steam reforming reaction may be a relatively inexpensive one such as nickel. By using a large amount of this inexpensive catalyst to collect residual sulfur in the raw material gas, it is possible to reduce deterioration of the catalyst in the catalytic partial oxidation reactor 15 due to sulfur.
  • methane: ethane: propane: normal butane: isobutane: hydrogen 87: 7: 2. 8: 0. 6: 0. 6: 2 (mol 0 / 0 )) 1.
  • steam was mixed at 0.95 kgZ, heated to 300 ° C with a heater, mixed with heated oxygen, and fed to the catalytic partial oxidation reactor .
  • the temperature of the mixed gas in the oxygen mixer was about 290 ° C.
  • This catalytic partial oxidation reactor is a tubular reactor having a length of lm and an inner diameter of 22 mm, and inside thereof, a catalyst bed having a catalytic force in which rhodium and nickel are supported on alumina is formed. A space with a length of 10 cm is formed in the upper part, and this space is filled with ceramic balls with a diameter of 3 mm.
  • the temperature of the steam mixed natural gas and the temperature of the added oxygen are lowered so that the temperature of the mixed gas in the oxygen mixer becomes 250 ° C, and oxygen is gradually supplied. It was introduced into a catalytic partial oxidation reactor. Even with 0.6 mol of oxygen per 1 mol of carbon in natural gas, self-combustion did not occur in the ceramic ball packed part on the catalyst bed, and the original catalytic partial oxidation reaction could be maintained.
  • the ratio of hydrogen to carbon monoxide is about 2.1, which is suitable as a synthesis gas feedstock.
  • the low-temperature steam reforming reactor is a tubular reactor with a length of 2 m and an inner diameter of 50 mm, and inside it is formed a catalyst bed consisting of a catalyst with nickel supported on alumina! Speak.
  • the reformed gas was heated with a second heater, and heated oxygen was added to the contact partial oxidation reactor in an amount of 0.53 mol per mol of carbon in the gas.
  • the temperature of the gas in the oxygen mixer was 500 ° C, but no self-combustion occurred between the oxygen mixer and the upstream side of the catalytic partial oxidation reactor, and the predetermined catalytic partial oxidation reaction was maintained. It was done.
  • the catalyst of the low-temperature steam reforming reactor was replaced with a catalyst for catalytic partial oxidation, changed to a low-temperature partial oxidation reactor, and oxygen could be supplied immediately before the steam mixed natural gas heater.
  • the device configuration was such that the catalytic partial oxidation reaction was performed in two stages, low and high.
  • the total amount of synthesis gas hydrogen and carbon monoxide was 5. INm 3 Z.
  • the ratio of hydrogen to carbon monoxide is about 2.1, which is suitable for synthesis gas feedstock. there were.
  • the present invention can also be applied to the production of synthesis gas such as naphtha and LPG (liquid petroleum gas).
  • synthesis gas such as naphtha and LPG (liquid petroleum gas).
  • the desulfurization reactor 2, the first heat exchanger 6, the second heat exchanger 11, and the mixer 12 in the apparatus shown in FIG. 1 are not essential and can be omitted.
  • the catalytic partial oxidation reactor may be a multistage with two or more stages instead of a single stage, or it may be a reactor that combines catalytic partial oxidation reaction and autothermal reforming reaction (ATR)! / ,.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 軽質炭化水素を含む原料ガスから一酸化炭素と水素を含む合成ガスを製造する製法は、前記原料ガスに水蒸気を加えて低温水蒸気改質を行い、前記原料ガス中の炭素数2以上の炭化水素類をメタンに変換する工程と、記低温水蒸気改質の後、酸素を加えて接触部分酸化させる工程とを有する。

Description

明 細 書
合成ガスの製法および製造装置
技術分野
[0001] 本発明は、天然ガスなどの軽質炭化水素類を含む原料ガスを接触部分酸化して、 一酸化炭素と水素を含む合成ガスを製造する方法および装置に関し、接触部分酸 化工程における炭素数 2以上の炭化水素類の自己燃焼を抑えるようにしたものであ る。
本願は、 2004年 10月 13日に出願された特願 2004— 298971号に対し優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 天然ガスなどの軽質炭化水素類を原料として一酸ィ匕炭素と水素を含む合成ガスを 製造し、さらにこの合成ガスを原料として灯油、軽油、メタノールなどの燃料油を合成 する技術 (GTL技術)が研究、開発されて ヽる。
この際、軽質炭化水素類力も合成ガスを製造する方法の一つとして、接触部分酸 化法(CPO)が知られて!/、る。
[0003] この接触部分酸化法は、メタンなどの軽質炭化水素類を含む天然ガスなどの原料 ガスに酸素を添加して、反応器に送り込み、反応器内のニッケル、ルテニウム、ロジゥ ム、白金などの触媒の作用によりメタン、ェタンなどの軽質炭化水素類を一酸ィ匕炭素 と水素とに変換して、合成ガスを製造する方法である(下記化学式参照)。
C H +m/20 =mCO+n/2H
m n 2 2
[0004] し力しながら、天然ガスなどの原料ガスには、メタン以外に通常 5〜20%程度のェ タン、プロパン、ブタンなどの炭素数 2以上の炭化水素類が含まれていることが多い。 これらの炭素数 2以上の炭化水素類は、メタンに比較して発火温度が低いため、酸 素を混合して接触酸化する際に燃焼しやすい。このため、接触部分酸化反応器の触 媒層よりも上流に位置する酸素混合器ゃ予熱部で自己燃焼する可能性が高ぐ装置 の設計において、安全面で大きな障害となる。
[0005] また、炭素数 2以上の炭化水素類では、それぞれの炭化水素の発火温度、燃焼濃 度範囲が異なる。このため、これら炭素数 2以上の炭化水素類の含有割合に応じて、 原料ガスの自己燃焼温度が異なってしまい、反応制御がしにくい。
このような不都合に対処するものとして、 WO98Z49095には、複数の混合ノズル を備えたインジェクターを接触部分酸ィ匕反応器の入口に取り付け、炭化水素ガスと酸 素ガスを自己燃焼しないような高線速条件下で混合して、部分酸化反応器の触媒層 に送るようにした発明が開示されて 、る。
特許文献 1:国際公開第 WO98Z49095号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] よって、本発明における課題は、天然ガスなどの軽質炭化水素類を含む原料ガス から接触部分酸化法により合成ガスを製造する際に、原料ガス中の炭素数 2以上の 炭化水素類に起因する自己燃焼が起こらないようにすることにある。
課題を解決するための手段
[0007] カゝかる課題を解決するため、
本発明の第 1態様は、軽質炭化水素を含む原料ガス力ゝらー酸ィ匕炭素と水素を含む 合成ガスを製造する製法であって、前記原料ガスに水蒸気を加えて低温水蒸気改 質を行い、前記原料ガス中の炭素数 2以上の炭化水素類をメタンに変換する工程と 、前記低温水蒸気改質の後、酸素を加えて接触部分酸化させる工程とを有する合成 ガスの製法である。
[0008] 上記合成ガスの製法において、低温水蒸気改質のための第 1の反応器での圧力を 常圧〜 8MPa、入口温度を 200〜500°C、出口温度を 300〜600°C、水蒸気添カロ 量を原料ガス中の炭素 1モルに対して 0. 1〜3. 0モルとしてもよい。
[0009] 上記合成ガスの製法にお!、て、接触部分酸化のための第 2の反応器での入口温 度を 300°C以上、酸素の添力卩量をガス中の炭素 1モルに対して 0. 2モル以上として ちょい。
上記合成ガスの製法において、原料ガスが天然ガス、ナフサまたは液ィ匕石油ガス であってもよい。
[0010] 本発明の第 2態様は、軽質炭化水素類を含む原料ガス中の炭素数 2以上の炭化 水素類をメタンに変換する低温水蒸気改質反応器と、この低温水蒸気改質反応器か らの生成ガスを一酸化炭素と水素を含む合成ガスとする接触部分酸化反応器とを備 えた合成ガスの製造装置である。
[0011] 上記合成ガスの製造装置は、低温水蒸気改質反応器と接触部分酸化反応器との 間に設けられ、低温水蒸気改質反応器からのガスを加熱する熱交換器を備えてもよ い。
上記合成ガスの製造装置は、低温水蒸気改質反応器の前段に設けられた脱硫反 応器と、この脱硫反応器と低温水蒸気改質反応器との間に設けられ、脱硫反応器か らのガスを加熱する熱交翻とを備えてもょ 、。
発明の効果
[0012] 本発明によれば、天然ガス、ナフサなどの軽質炭化水素類に含まれる炭素数 2以 上の炭化水素類は、低温水蒸気改質によりメタンに変換される。このため、次段の接 触部分酸化工程において原料ガスの自己燃焼が生じることがなくなる。
したがって、接触部分酸ィ匕での操業の安全性が向上する。また、原料ガスの組成 が変化した時の対応が容易となる。
また、自己燃焼が抑えられることから、接触部分酸化反応器に送り込むガスの温度 を従来の方法に比べて、 200°C程度高くすることができるので、接触部分酸化反応 に要する酸素量を低減できる。
図面の簡単な説明
[0013] [図 1]本発明の合成ガスの製造装置の一例を示す概略構成図である。
符号の説明
[0014] 6 · · '熱交^^、 8 · · '低温水蒸気改質反応器、 12· · '混合器、 15 · · '接触部分酸化 反 J心器
発明を実施するための最良の形態
[0015] 以下、本発明をその具体例に基づいて詳しく説明する。
図 1は、この発明の合成ガス製造装置の一例を示す概略構成図である。 天然ガスなどの軽質炭化水素類を含む原料ガスは、管 1から脱硫反応器 2に送り込 まれる。この時、管 3から水素添加用の水素が同時に脱硫反応器 2に供給される。
[0016] ここでの脱硫反応器 2としては、例えば原料ガス中の硫黄ィ匕合物を水素で還元して 硫化水素とし、この硫ィ匕水素を吸着除去する吸着器などが用いられる。
脱硫処理された原料ガスは、管 4から導出され、管 5からの水蒸気がこれに混合さ れたうえ、第 1熱交翻 6に送り込まれ、ここで 200〜500°Cに加熱されたのち、管 7 を経て、低温水蒸気改質反応器 8に送り込まれる。
[0017] この低温水蒸気改質反応器 8は、その内部にニッケルおよび Zまたはルテニウム等 の金属を酸化アルミニウムなどの担体に担持してなる触媒が充填された触媒床を備 える。この反応器 8では、原料ガス中の炭素数 2以上の炭化水素類が触媒の作用に より水蒸気と反応してメタンに変換され、酸素が副生成物として副生される。
[0018] この低温水蒸気改質反応器 8における操作条件は、圧力が常圧〜 8MPa、好まし くは l〜4MPaとされ、人口温度力 200〜500°C、好ましくは 300〜400°Cとされ、出 口温度が 300〜600°C、好ましくは 400〜550°Cとされ、水蒸気添加量は、原料ガス 中の炭素 1モノレに対して、 0. 1〜3. 0モノレ、好ましくは 0. 3〜1. 0モノレとされる。
[0019] 低温水蒸気改質反応器 8からのメタンと酸素を含む生成ガスは、管 9から管 10から の水蒸気とともに第 2熱交^^ 11に送られ、ここで 300〜550°Cに加熱された後、混 合器 12に送られる。
この混合器 12には、別途管 13からの酸素が供給され、ここで酸素が上記生成ガス と水蒸気との混合ガスに混合される。ここで添加される水蒸気は、接触部分酸化反応 器 15の触媒のコーキングを防ぐ。
[0020] この混合器 12での酸素の添カ卩量は、混合器 12の出口においての酸素含有量とし て、ガス中の炭素 1モルに対して、 0. 2〜1. 0モル、好ましくは 0. 3〜0. 8モルの範 囲となるように調整され、従来方法での酸素含有量よりも多くすることができる。これは 、次段での接触部分酸化反応工程での自己燃焼が生じにくいことによる。
混合器 12からのガスは、管 14を経て接触部分酸ィ匕反応器 15に送り込まれる。
[0021] 接触部分酸化反応器 15は、その内部にニッケル、ルテニウム、ロジウム、白金から なる群力 選ばれる 1種以上の金属をアルミナ、シリカなどの担体に担持してなる触 媒が充填された触媒床を備える。この接触部分酸化反応器 15に導入されたガス中 のメタンと酸素とが反応し、一酸化炭素と水素を含む合成ガスが得られる。
この接触部分酸化反応器 15における操作条件は、圧力が常圧〜 8MPaとされ、入 口温度力 S300〜550°C、出口温度が 700〜1200°Cとされる。
接触部分酸化反応器 15で生成された合成ガスは、管 16から導出され、次工程に 送られる。
[0022] このような合成ガスの製法にあっては、接触部分酸化反応器 15の前段に低温水蒸 気改質反応器 8を設け、この低温水蒸気改質反応器 8において、原料ガス中の炭素 数 2以上の炭化水素類を予めメタンに変換し、これを接触部分酸化反応器 15に導く ようにしている。このため、接触部分酸化反応器 15には炭素数 2以上の炭化水素類 が流れ込むことがないので、混合器 12から接触部分酸ィ匕反応器 15の触媒層上流ま での間で炭素数 2以上の炭化水素類の自己燃焼が抑えられる。
[0023] 表 1は、原料としての天然ガスを例として、低温水蒸気改質反応器 8における入口と 出口でのガスの組成変化の一例を示すもので、反応器 8の出口では、炭素数 2以上 のェタン、プロパン等がほとんど含まれな 、組成に変換されて 、ることが解る。
[0024] [表 1] 反応器入口 反応器出口
(mo l/hr) Cmo l %) (Dry mo l %) (mo l/hr) (mo l %) (Dry tno l %)
718 36 51. 717 86. 97 908. 81 62 367 94. 44
G2n6 58 48 4. 210 7. 08 0. 00 0 000 0, 00
WW 23 09 1. 662 2. 80 0. 00 0 000 0. 00
5. 11 0. 368 0. 62 0. 00 0 000 0. 00
4. 46 0. 321 0. 54 0. 00 0 000 0. 00 π- G5H,2 0 00 0. 000 0. 00 0. 00 0 000 0. 00 n-C3H14 0. 00 0. 000 0. 00 0. 00 0 000 0. 00
CnHm 0. 00 0. OOO 0. 00 0. 00 0 000 o. oo
Η2 16. 52 1. 189 2. 00 19. 43 1 333 2. 02
CO 0. 00 0. 000 0. 00 0. 05 0 004 0. 01
C02 0. oo 0. 000 0. 00 34. 03 2. 336 3. 54
02 0. 00 0, 000 0. 00 0. 00 0. 000 0. 00
N2 0, 00 0. 000 0. 00 0. 00 0. 000 0. 00
H20 563. 00 40. 532 - 494. 88 33. 961 -
Tota l 1389 03 100. 000 100. 00 1457. 20 100 OOO 100. 00
[0025] また、低温で燃焼する炭素数 2以上の炭化水素類がほとんど含まれなくなるので、 低温水蒸気改質反応器 8からの生成ガスの着火温度が高くなるため、接触部分酸化 反応器 15に送り込むガスの温度を高くすることができる。このため、接触部分酸化反 応に要する酸素量を低減することができる。例えば、低温水蒸気改質反応器 8の入 口での原料ガスの着火温度は、その組成によって異なるが約 250〜350°Cであるが 、これの出口での生成ガスの着火温度は約 450〜530°Cとなる。
[0026] さらに、低温水蒸気改質反応において使用される触媒は、ニッケルなどの比較的安 価なものを用いることができる。この安価な触媒を多量に用いて原料ガス中の残留硫 黄を捕集することにより、接触部分酸化反応器 15での触媒の硫黄による劣化を低減 することができる。
[0027] 以下、具体例を示す。
[0028] (従来例 1)
脱硫器に通して硫黄含有量 lOppb以下まで脱硫した天然ガス (メタン:ェタン:プロ パン:ノルマルブタン:イソブタン:水素 = 87: 7: 2. 8 :0. 6 :0. 6 : 2 (モル0 /0) ) 1. 73 Nm3Z時に、水蒸気を 0. 95kgZ時混合し、これを加熱器で 300°Cに加熱し、さらに 加熱された酸素を混合し、接触部分酸化反応器に供給した。酸素混合器での混合 ガスの温度は、約 290°Cであった。
[0029] この接触部分酸化反応器は、長さ lm、内径 22mmの管状反応器で、その内部に は、ロジウムとニッケルをアルミナに担持した触媒力もなる触媒床が形成され、この触 媒床の上部には長さ 10cmの空間部が形成され、この空間部に径 3mmのセラミック ボールが充填されている。
[0030] 天然ガスに対する酸素の混合量を徐々に増加し、酸素量を炭素 1モルに対して 0.
4モルにしたところ、触媒床上の空間部で無触媒下での自己燃焼が生じ、空間部内 の温度が 1000°Cを越えてしまった。そのため、酸素混合量を減量して反応を停止し た。この時の酸素混合器での混合ガス温度は 280°Cで、反応器内の圧力は 4MPa であった。
[0031] (従来例 2)
酸素添加量を増加するため、水蒸気混合天然ガスの温度、添加酸素の温度を下 げて、酸素混合器での混合ガス温度が 250°Cとなるようにし、酸素を徐々に供給し、 接触部分酸化反応器に導入した。天然ガス中の炭素 1モルに対して酸素 0.6モルで も触媒床上のセラミックボール充填部での自己燃焼が発生せず、本来の接触部分酸 化反応を維持できた。
[0032] 10時間反応を継続した後、接触部分酸化反応器からのガスの分析結果は以下の 通りであった。
メタン:水素:一酸化炭素:二酸化炭素:水分 =0.7:51.0:24.2:4.3:19.8(モ ル%)であり、合成ガス原料である水素と一酸ィ匕炭素との合計生成量は 5. INmV 時であった。水素と一酸ィヒ炭素との比率は約 2.1であり、合成ガス原料として適切で めつに。
[0033] (実施例)
従来例での装置に、水蒸気混合原料ガスの加熱器と酸素混合器との間に低温水 蒸気改質反応器および第 2加熱器を設置した。低温水蒸気改質反応器は、長さ 2m 、内径 50mmの管状の反応器であって、その内部には、ニッケルをアルミナに担持し た触媒からなる触媒床が形成されて!ヽる。
[0034] 従来例と同一流量の水蒸気混合天然ガスを 300°Cに加熱して低温水蒸気改質反 応器に供給し、低温水蒸気改質反応を行った。低温水蒸気改質反応器からの改質 ガスの分析結果は以下の通りであった。
メタン:水素:二酸化炭素:水分 =62.1:1.5:2.4:34.0(モル%)。
この改質ガス中には、メタン以外の炭化水素および一酸ィ匕炭素は実質的に認めら れなかった。
[0035] この改質ガスを第 2加熱器で加熱し、これに加熱された酸素をガス中の炭素 1モル 当たり 0.53モルカ卩えて、接触部分酸化反応器に送った。このときの酸素混合器での ガスの温度は、 500°Cであったが、酸素混合器から接触部分酸化反応器上流側まで の間で自己燃焼は起こらず、所定の接触部分酸化反応が維持された。
10時間反応を継続した後、接触部分酸化反応器からのガスの分析結果は以下の 通りであった。
[0036] メタン:水素:一酸化炭素:二酸化炭素:水分 =1.7:52.4:24.5:4.0:17.4(モ ル%)であり、合成ガス原料である水素と一酸ィ匕炭素との合計生成量は 5. INmV 時であった。水素と一酸ィヒ炭素との比率は約 2. 1であり、合成ガス原料として適切で めつに。
[0037] この実施例は、水蒸気改質反応器の出口ガスには、炭素数 2以上の炭化水素が含 まれないことから、酸素を混合する際の加熱温度を高くすることができ、結果として、 同一の合成ガス製造量を得るために必要な酸素供給量を低減できることを示して!/ヽ る。すなわち、従来例 2では、必要な炭素 1モル当たりの酸素量は 0. 6モルであった のに対して、実施例では 0. 53モルまで低減できた。
[0038] (比較例)
実施例を終了後、低温水蒸気改質反応器の触媒を接触部分酸化用触媒に交換し 低温部分酸化反応器に変更するとともに、水蒸気混合天然ガスの加熱器の直前に 酸素を供給できるようにした。すなわち、接触部分酸化反応を低温と高温との 2段で 行う装置構成とした。
[0039] 従来例、実施例と同じ脱硫した天然ガス 1. 73Nm3Z時に、水蒸気を 0. 95kgZ時 混合し、さらにこれに加熱された酸素を炭素 1モル当たり 0. 06モル添カ卩して 250°C に調節した混合ガスを低温部分酸化反応器に供給した。
[0040] 酸素混合器から低温部分酸化反応器の触媒床上までの間で自己燃焼が起こらな かったので、反応を維持しつつ、さらに低温部分酸ィ匕反応器力 の生成ガスに炭素 1モル当たり 0. 54モルの酸素を追加して、 500°Cに調節して高温部分酸化反応器 に供給した。したがって、合計酸素添加量は炭素 1モル当たり 0. 6モルである。高温 部分酸化反応器上流での自己燃焼は観察されなカゝつた。
[0041] 10時間反応後の低温部分酸ィヒ反応器からの生成ガスの分析結果は以下の通りで めつに。
メタン:水素:一酸化炭素:二酸化炭素:水分 = 54. 0 : 8. 5 : 0. 3 : 5. 5 : 31. 7 (モル
%)。
[0042] また、高温部分酸ィ匕反応器からの生成ガスの分析結果は以下の通りであった。
メタン:水素:一酸化炭素:二酸化炭素:水分 =0. 6 : 51. 2 : 24. 4 :4. 1 : 19. 7 (モ ル%)であった。合成ガス原料である水素と一酸ィ匕炭素との合計生成量は 5. INm3 Z時であった。水素と一酸ィ匕炭素との比率は約 2. 1であり、合成ガス原料に適切で あった。
この比較例から、接触部分酸化反応を 2段に組み合わせても、同一量の合成ガス 製造量を得るために必要な酸素量を低減する効果がな 、ことがわかる。
なお、本発明は、ナフサ、 LPG (液ィ匕石油ガス)などカゝら合成ガスを製造する場合 にも応用することができる。
また、図 1に示した装置における脱硫反応器 2、第 1熱交換器 6、第 2熱交換器 11、 混合器 12は必須ではなぐ省略することもできる。また、接触部分酸化反応器は 1段 ではなぐ 2段以上の多段であってもよぐまた接触部分酸化反応とオートサーマルリ フォーミング反応 (ATR)とを組み合わせた反応器であってもよ!/、。

Claims

請求の範囲
[1] 軽質炭化水素を含む原料ガスから一酸化炭素と水素を含む合成ガスを製造する製 法であって、
前記原料ガスに水蒸気を加えて低温水蒸気改質を行い、前記原料ガス中の炭素 数 2以上の炭化水素類をメタンに変換する工程と、
前記低温水蒸気改質の後、酸素を加えて接触部分酸化させる工程とを有する合成 ガスの製法。
[2] 前記低温水蒸気改質のための第 1の反応器での圧力を常圧〜 8MPa、入口温度 を 200〜500°C、出口温度を 300〜600°C、前記水蒸気の添加量を前記原料ガス 中の炭素 1モルに対して 0. 1〜3. 0モルとする請求項 1記載の合成ガスの製法。
[3] 前記接触部分酸ィ匕のための第 2の反応器での入口温度を 300°C以上、前記酸素 の添加量を前記原料ガス中の炭素 1モルに対して 0. 2モル以上とする請求項 1記載 の合成ガスの製法。
[4] 前記原料ガスが、天然ガス、ナフサまたは液ィ匕石油ガスである請求項 1記載の合成 ガスの製法。
[5] 軽質炭化水素類を含む原料ガス中の炭素数 2以上の炭化水素類をメタンに変換す る低温水蒸気改質反応器と、
前記低温水蒸気改質反応器力ゝらの生成ガスを一酸ィ匕炭素と水素を含む合成ガスと する接触部分酸化反応器と、を備えた合成ガスの製造装置。
[6] 前記低温水蒸気改質反応器と前記接触部分酸化反応器との間に設けられ、前記 低温水蒸気改質反応器からのガスを加熱する熱交換器を備えた請求項 5記載の合 成ガスの製造装置。
[7] 前記低温水蒸気改質反応器の前段に設けられた脱硫反応器と、
前記脱硫反応器と前記低温水蒸気改質反応器との間に設けられ、前記脱硫反応 器からのガスを加熱する熱交換器と、を備えた請求項 5記載の合成ガスの製造装置
PCT/JP2005/018880 2004-10-13 2005-10-13 合成ガスの製法および製造装置 WO2006041133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05793616A EP1808409A4 (en) 2004-10-13 2005-10-13 METHOD AND DEVICE FOR PREPARING SYNTHESEGAS
US11/577,152 US7867411B2 (en) 2004-10-13 2005-10-13 Method for producing synthesis gas and apparatus for producing synthesis gas
BRPI0516111-8A BRPI0516111A (pt) 2004-10-13 2005-10-13 método para produção de gás de sìntese e aparelho para produção de gás de sìntese
AU2005292828A AU2005292828B2 (en) 2004-10-13 2005-10-13 Method and apparatus for producing synthesis gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-298971 2004-10-13
JP2004298971A JP4781652B2 (ja) 2004-10-13 2004-10-13 合成ガスの製法および製造装置

Publications (1)

Publication Number Publication Date
WO2006041133A1 true WO2006041133A1 (ja) 2006-04-20

Family

ID=36148420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018880 WO2006041133A1 (ja) 2004-10-13 2005-10-13 合成ガスの製法および製造装置

Country Status (7)

Country Link
US (1) US7867411B2 (ja)
EP (1) EP1808409A4 (ja)
JP (1) JP4781652B2 (ja)
AU (1) AU2005292828B2 (ja)
BR (1) BRPI0516111A (ja)
WO (1) WO2006041133A1 (ja)
ZA (1) ZA200703432B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237710A1 (en) * 2006-04-05 2007-10-11 Genkin Eugene S Reforming apparatus and method for syngas generation
CN101679027B (zh) * 2007-04-18 2013-01-02 乔治洛德方法研究和开发液化空气有限公司 氢气生产方法
NZ560757A (en) * 2007-10-28 2010-07-30 Lanzatech New Zealand Ltd Improved carbon capture in microbial fermentation of industrial gases to ethanol
US8617270B2 (en) * 2008-12-03 2013-12-31 Kellogg Brown & Root Llc Systems and methods for improving ammonia synthesis efficiency
US20100187479A1 (en) * 2009-01-23 2010-07-29 Carbona Oy Process and apparatus for reforming of heavy and light hydrocarbons from product gas of biomass gasification
US20100327231A1 (en) * 2009-06-26 2010-12-30 Noah Whitmore Method of producing synthesis gas
ITMI20131564A1 (it) * 2013-09-23 2015-03-24 Rivoira S P A Sistema per la generazione di endogas
AR099983A1 (es) * 2014-04-08 2016-08-31 Haldor Topsoe As Proceso para calentar un reactor de pruebas avanzado
RU2664063C1 (ru) * 2017-08-08 2018-08-14 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ переработки природного/попутного газа в синтез-газ автотермическим риформингом

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122102A (ja) * 1984-11-20 1986-06-10 Jgc Corp 炭化水素の水蒸気改質法
JPH06219706A (ja) * 1993-01-26 1994-08-09 Mitsubishi Gas Chem Co Inc 断熱リホーマー反応器
JP2004203722A (ja) * 2002-12-25 2004-07-22 Tongrae Cho 天然ガス改質方法及び天然ガス改質装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942958A (en) * 1953-07-03 1960-06-28 Kellogg M W Co Process for the conversion of a normally gaseous hydrocarbon to carbon monoxide and hydrogen
US3264066A (en) * 1962-05-01 1966-08-02 Pullman Inc Production of hydrogen
JPH10273301A (ja) * 1997-03-28 1998-10-13 Daido Hoxan Inc 水素製造装置
US6267912B1 (en) * 1997-04-25 2001-07-31 Exxon Research And Engineering Co. Distributed injection catalytic partial oxidation process and apparatus for producing synthesis gas
GB9714744D0 (en) * 1997-07-15 1997-09-17 Ici Plc Methanol
US6048472A (en) * 1997-12-23 2000-04-11 Air Products And Chemicals, Inc. Production of synthesis gas by mixed conducting membranes
DE69925052T2 (de) * 1998-01-21 2006-03-02 Haldor Topsoe A/S Verfahren zur Herstellung von wasserstoffreichem Gas
DK173897B1 (da) * 1998-09-25 2002-02-04 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af et carbonhydridfødemateriale indeholdende højere carbonhydrider
US6221280B1 (en) * 1998-10-19 2001-04-24 Alliedsignal Inc. Catalytic partial oxidation of hydrocarbon fuels to hydrogen and carbon monoxide
US6726850B1 (en) * 2000-01-14 2004-04-27 Sebastian C. Reyes Catalytic partial oxidation using staged oxygen addition
AU2001236974A1 (en) * 2000-02-15 2001-08-27 Syntroleum Corporation System and method for preparing a synthesis gas stream and converting hydrocarbons
US20040077496A1 (en) * 2002-07-26 2004-04-22 Shizhong Zhao Catalyst
US6977067B2 (en) * 2003-02-12 2005-12-20 Engelhard Corporation Selective removal of olefins from hydrocarbon feed streams
AU2003903283A0 (en) * 2003-06-26 2003-07-10 H.A.C. Technologies Pty Ltd Reformate assisted combustion
US7449167B2 (en) * 2004-07-08 2008-11-11 Air Products And Chemicals, Inc. Catalyst and process for improving the adiabatic steam-reforming of natural gas
US7261751B2 (en) * 2004-08-06 2007-08-28 Conocophillips Company Synthesis gas process comprising partial oxidation using controlled and optimized temperature profile
US7585339B2 (en) * 2004-09-15 2009-09-08 Haldor Topsoe A/S Process for reforming ethanol to hydrogen-rich products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122102A (ja) * 1984-11-20 1986-06-10 Jgc Corp 炭化水素の水蒸気改質法
JPH06219706A (ja) * 1993-01-26 1994-08-09 Mitsubishi Gas Chem Co Inc 断熱リホーマー反応器
JP2004203722A (ja) * 2002-12-25 2004-07-22 Tongrae Cho 天然ガス改質方法及び天然ガス改質装置

Also Published As

Publication number Publication date
AU2005292828A1 (en) 2006-04-20
EP1808409A1 (en) 2007-07-18
US20070295937A1 (en) 2007-12-27
JP2006111477A (ja) 2006-04-27
EP1808409A4 (en) 2011-05-18
BRPI0516111A (pt) 2008-08-26
JP4781652B2 (ja) 2011-09-28
ZA200703432B (en) 2008-08-27
US7867411B2 (en) 2011-01-11
AU2005292828B2 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4422029B2 (ja) 炭化水素の製造
JP5191888B2 (ja) 合成ガスの製造方法及び変換方法
WO2006041133A1 (ja) 合成ガスの製法および製造装置
JP5721310B2 (ja) 酸素除去
CA3127978A1 (en) Chemical synthesis plant
JP2000185904A (ja) 高級炭化水素を含む炭化水素供給材料の自熱式改質方法
WO2009102383A1 (en) Hydrogenating pre-reformer in synthesis gas production processes
EP2861528B1 (en) Process for starting up a gas-to-liquid process
KR101957939B1 (ko) 가스 액화 공정의 시동 방법
US20070286797A1 (en) Process and device for producing hydrogen from organic oxygen compounds
US20230174376A1 (en) Production of Hydrocarbons
CN113474284A (zh) 化工设备中的并联重整
CN116133982A (zh) 低碳氢燃料
CA2852267C (en) Systems and methods for the use of fischer-tropsch tail gas in a gas to liquid process
WO2012154042A1 (en) A process for catalytic steam reforming of a feedstock comprising an oxygenated hydrocarbon and a hydrocarbon
JP2007320779A (ja) アンモニア合成用素ガスの製造方法および製造装置
CA3218971A1 (en) Heat exchange reactor for co2 shift
CN117425618A (zh) 具有减少的金属粉尘化的换热反应器
EA046288B1 (ru) Низкоуглеродное водородное топливо

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005793616

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005292828

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005292828

Country of ref document: AU

Date of ref document: 20051013

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11577152

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005793616

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11577152

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0516111

Country of ref document: BR