WO2006041102A1 - トランスの駆動装置及び駆動方法 - Google Patents

トランスの駆動装置及び駆動方法 Download PDF

Info

Publication number
WO2006041102A1
WO2006041102A1 PCT/JP2005/018805 JP2005018805W WO2006041102A1 WO 2006041102 A1 WO2006041102 A1 WO 2006041102A1 JP 2005018805 W JP2005018805 W JP 2005018805W WO 2006041102 A1 WO2006041102 A1 WO 2006041102A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
load
voltage
phase
capacitance
Prior art date
Application number
PCT/JP2005/018805
Other languages
English (en)
French (fr)
Inventor
Akira Mizutani
Yasuhide Matsuo
Original Assignee
Tamura Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation filed Critical Tamura Corporation
Priority to JP2006540954A priority Critical patent/JPWO2006041102A1/ja
Priority to DE112005002201T priority patent/DE112005002201T5/de
Priority to US11/572,598 priority patent/US20080290812A1/en
Publication of WO2006041102A1 publication Critical patent/WO2006041102A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a transformer such as a piezoelectric transformer that transforms an alternating voltage using a resonance phenomenon of a piezoelectric vibrator, and more particularly to a driving device and a driving method thereof.
  • Piezoelectric transformers are designed to input a low voltage and output a high voltage by utilizing the resonance phenomenon of a piezoelectric vibrator.
  • the feature of the piezoelectric transformer is that the energy density of the piezoelectric vibrator is higher than that of the electromagnetic type. Therefore, it can be downsized, so it is used for cold cathode tube lighting, LCD backlight lighting, small AC adapters, small high voltage power supplies, and so on.
  • a technique using a cold cathode tube as a liquid crystal knock light and using a piezoelectric transformer for lighting the cold cathode tube is known (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-200174
  • a plurality of cold cathode tubes are used as a liquid crystal backlight, and a piezoelectric transformer is provided in each cold cathode tube.
  • a piezoelectric transformer is provided in each cold cathode tube.
  • an object of the present invention is to provide a transformer driving device and a driving method capable of making the load current constant while having a simple configuration.
  • the drive device applies a drive voltage to the primary side of a transformer having a load connected to the secondary side.
  • the frequency of the drive voltage is the impedance of the load. This is the series resonance frequency given by the equivalent circuit on the output side of the drive device when the impedance is infinite (claim 1).
  • open control or feedback control may be used. As a result, the load current can be kept constant with a simple configuration.
  • the present inventor stated that "when the output side of the drive device is a transformer and a load force, the equivalent circuit on the output side of the drive device is a series resonance circuit (RLC series circuit) and this series resonance circuit. "It is represented by the load connected in parallel to the C component of the circuit.” And "When the drive voltage of the series resonance frequency when the impedance of the load is infinite is applied to the transformer, the current flowing through the load is It became constant regardless of the impedance of the load. The present invention has been made based on this finding.
  • the equivalent circuit includes an inductance, a resistance, a first capacitance, and a second capacitance connected in series, and the second capacitance.
  • the impedance of the load is connected in parallel with the capacitor.
  • the impedance of the load may include an inductance component and a capacitance component.
  • the second capacitance is obtained by connecting a secondary side capacitance of the transformer and a stray capacitance of the load in parallel.
  • the load current related to the impedance of the load is constant.
  • the series resonance frequency is a series resonance angular frequency ⁇
  • the inductance is L
  • the resistance is R
  • the first capacitance is
  • the drive device includes a current phase detection unit that detects a phase of a load current flowing through the load, a voltage phase detection unit that detects a phase of the drive voltage, and the voltage phase detection unit. And a frequency control unit that controls the frequency of the drive voltage so that the phase of the drive voltage detected in step 90 is advanced by 90 degrees with respect to the phase of the load current detected by the current detection unit.
  • the equivalent circuit on the output side of the drive device is connected in parallel to the series resonance circuit (RLC series circuit) and the C component of the series resonance circuit. It is expressed by the continued load.
  • the drive voltage of the series resonance frequency of the equivalent circuit when the load impedance is infinite is applied to the transformer, the load current becomes constant regardless of the load impedance.
  • the phase of the load current is delayed by 90 degrees with respect to the drive voltage. That is, when the phase of the load current is 90 degrees behind the drive voltage, the frequency of the drive voltage (hereinafter referred to as “drive frequency”) is the series resonance of the equivalent circuit when the load impedance is infinite. Match the frequency.
  • the drive frequency when the drive frequency is made constant by open control, strictly speaking, the characteristics of each component of the drive device and each component of the equivalent circuit vary depending on the voltage, current, temperature, time, and the like. As a result, the drive frequency and the series resonance frequency change. Therefore, by detecting the phase of the drive voltage and load current and controlling the drive voltage so that the phase of the drive voltage advances 90 degrees with respect to the load current (ie, by feedback control), the load The current can be made constant with high accuracy.
  • the drive device is such that in the drive device, the transformer is a piezoelectric transformer.
  • the transformer may be an electromagnetic (coiled) transformer, but a piezoelectric transformer is advantageous for reducing size and weight.
  • each constant value L, C, etc.
  • each constant value can be realized with higher accuracy than the electromagnetic type.
  • the drive device is such that the load is a discharge tube.
  • the discharge tube includes a hot cathode tube (hot cathode fluorescent tube), a mercury lamp, a sodium lamp, a metal nitride lamp, neon and the like.
  • the discharge tube may be a cold cathode tube.
  • Negative resistance appears in part in the current-voltage characteristics of discharge tubes including cold cathode tubes.
  • This negative resistance is a property that the voltage at both ends of the cold cathode tube decreases as the current flowing through the cold cathode tube increases.
  • the output impedance and the cold cathode tube are connected in series to an AC voltage source consisting of a drive unit and a transformer, the load straight line and the current-voltage characteristics of the cold cathode tube described above
  • the operating point of the cold cathode tube is determined.
  • some cold cathode tubes exhibit a negative resistance, so if the output impedance of the AC voltage source is low, multiple operating points of the cold cathode tubes occur.
  • the operation of the cold cathode tube becomes unstable.
  • a transformer and a driving device when viewed from a cold cathode tube, they become a constant current source. This is because the current flowing through the cold cathode tube is constant regardless of the impedance of the cold cathode tube. Therefore, the output impedance of the AC voltage source can be regarded as almost infinite. As a result, the cold-cathode tube operates stably because there is only one operating point of the cold-cathode tube.
  • each cold cathode tube is independent of the impedance of each cold cathode tube. Since the current flowing through the lamp can be made uniform, uneven brightness of the knocklight can be suppressed.
  • the drive method according to the present invention is obtained by retaking the drive device according to the present invention as a method invention. That is, the driving method according to the present invention applies a driving voltage to the primary side of a transformer having a load connected to the secondary side. Then, an equivalent circuit including the transformer and the load is created, and the series resonance frequency given by the equivalent circuit when the impedance of the load is infinite is used as the frequency of the drive voltage. Also good. The phase of the load current flowing through the load is detected, the phase of the drive voltage is detected, and the phase of the detected drive voltage is advanced 90 degrees with respect to the phase of the detected load current. You can control the frequency!
  • the present invention provides a method for finding an operating condition for increasing the output impedance of a piezoelectric transformer (high voltage transformer) used in a knocklight inverter.
  • a piezoelectric transformer high voltage transformer
  • it is driven at the series resonance frequency on the secondary side of the piezoelectric transformer, including the stray capacitance between the high-voltage terminal of the cold-cathode tube mounted in the knocklight house and GND.
  • the inverter is driven at a frequency resonated with the stray capacitance between the high-voltage terminal of the cold-cathode tube mounted in the knock light house and GND and the inductance component on the secondary side of the piezoelectric transformer.
  • the piezoelectric transformer can be brought close to a constant current source, and the deviation of the individual tube currents flowing in the cold cathode tube can be reduced without controlling the individual tube currents. It is possible to provide a low cost, low brightness non-uniformity backlight inverter.
  • the transformer drive device is a drive device that applies a drive voltage to a primary side of a transformer having a load connected to a secondary side.
  • the transformer has a function as a constant current source for the load, and the transformer is continuously resonated by being applied with the driving voltage having a resonance frequency when the impedance of the load is infinite. By generating a state, it functions as the constant current source.
  • the voltage at the resonance frequency when the load impedance is infinite is applied to the primary side of the transformer.
  • the transformer functions as a constant current source upon application of the voltage at the resonance frequency, and the output impedance of the transformer when the transformer is viewed from the load side is increased.
  • the resonance frequency may be determined by an inductance component and a capacitance component of the transformer appearing in an ideal transformer circuit, and a parallel capacitance component of a stray capacitance of the load and a secondary side-line capacitance of the ideal transformer. Is desirable.
  • the ideal transformer is assumed to understand the operation of the transformer, and the operation of the ideal transformer is the actual basic operation of the transformer.
  • the frequency is ⁇
  • the transactance component of the transformer is L ′
  • the capacitance is C ′.
  • the secondary line capacitance is C
  • the stray capacitance of the load is C '
  • the winding ratio of the ideal transformer is ⁇ .
  • the frequency ⁇ is
  • a frequency control unit that maintains a resonance state by performing control to advance the phase of the drive voltage by 90 degrees with respect to the phase of the load current flowing through the load.
  • the load driving method according to the present invention is a driving method in which a driving voltage is applied to a primary side of a transformer having a load connected to a secondary side.
  • the transformer is operated as the constant current source by applying the drive voltage having a resonance frequency when the load impedance is infinite to the transformer.
  • the equivalent circuit on the output side of the drive device when the frequency of the drive voltage applied to the primary side of the transformer connected to the load on the secondary side is made infinite to the impedance of the load.
  • the load current can be made constant regardless of the impedance of the load with a simple configuration. Therefore, even if the load impedance varies, the load current can be kept constant.
  • the drive frequency and the series resonance frequency are controlled. Even if changes, the load current can be made constant accurately.
  • the transformer is a piezoelectric transformer and the load is a plurality of cold cathode tubes, Lightweight, non-uniform brightness, and LCD backlight.
  • the configuration is such that the secondary output impedance of the transformer is increased without adding components, so that even when individually connected to a plurality of loads, the current flowing through each load is controlled. This makes it possible to reduce the deviation of the current flowing through each load.
  • FIG. 1 shows a first embodiment of a drive device according to the present invention
  • FIG. 1 [1] is an actual circuit diagram
  • FIG. 1 [2] is an equivalent circuit diagram of FIG. 1 [1]
  • 1 [3] is an equivalent circuit diagram of FIG. 1 [2]
  • FIG. 1 [4] is a vector diagram showing the relationship between drive voltage and load current.
  • description will be made based on this drawing.
  • the drive device 10 of the present embodiment applies a drive voltage Vd to the primary side of the piezoelectric transformer 11 having a load 12 connected to the secondary side. And the angular frequency ⁇ of the drive voltage Vd is
  • Piezoelectric transformer 11 is provided with primary electrodes 22, 23 and secondary electrode 24 on piezoelectric vibrator 21, and the primary side is polarized in the thickness direction ([1] vertical direction in Fig. 1), and the secondary side Is polarized in the length direction (Fig. 1 [1] left and right direction) and these are housed in a resin case (not shown).
  • the primary electrodes 22 and 23 are opposed to each other with the piezoelectric vibrator 21 interposed therebetween.
  • the piezoelectric vibrating body 21 is made of piezoelectric ceramics such as a bag and has a plate shape (cuboid shape).
  • the primary electrodes 22 and 23 are provided up to half the length of the end force, and the secondary electrode 24 is provided at the other end.
  • a drive voltage Vd with a natural resonance frequency fr determined by the length dimension is input to the primary side, a strong mechanical vibration is caused by the inverse piezoelectric effect, and a high output voltage V commensurate with the vibration due to the piezoelectric effect. Is output from the secondary side. Output voltage V. Is applied to load 12.
  • the load current I is not related to the impedance Z of the load 12 with a simple configuration.
  • the piezoelectric transformer 11 includes capacitances C 1, C 2, C ′, inductance L ′, and resistance R ′.
  • the drive voltage Vd is the drive voltage E '.
  • Capacitance C ′ is the stray capacitance of load 12.
  • the equivalent circuit of FIG. 1 [2] can be expressed by the equivalent circuit of FIG. 1 [3] in which the load 12 side force is also viewed from the piezoelectric transformer 11 side.
  • ⁇ E ′
  • L ⁇ 2 L ′
  • C C′Z ⁇ 2
  • the equivalent circuit of Fig. 1 [3] is an inductance L, a resistance R,
  • Capacitance C and capacitance C are connected in series, and load 12
  • impedance Z is connected. In addition to the resistance component, impedance Z
  • Fig. 1 [1] is a simple force with the accompanying parts omitted, even if those components are connected, they must be finally represented by the equivalent circuit of Fig. 1 [3]. Can do.
  • the total current output from the driving device 10 is the current flowing through I and the capacitance C.
  • the load 12 is constant regardless of the impedance ⁇ .
  • the phase of the load current I is 90 degrees behind the driving voltage ⁇ .
  • FIG. 2 shows the effect of the drive device of FIG. 1
  • FIG. 2 [1] is an equivalent circuit diagram
  • FIG. 2 [2] is a current-voltage characteristic diagram of a cold cathode tube. The following description is based on FIGS. 1 and 2.
  • the load 12 in FIG. 1 [1] is paraphrased as the cold cathode tube 12.
  • the driving device 10 and the piezoelectric transformer 11 in FIG. 1 [1] are replaced with an AC voltage source 13 and its output impedance ⁇ . Therefore, the output impedance ⁇ and the ⁇ ⁇ cold cathode tube 12 are connected to the AC voltage source 13 in series.
  • the load straight line is given by the following equation.
  • V -Z I + V (11)
  • the cold cathode tube 12 has a negative resistance in part of its current-voltage characteristics. This negative resistance is the property that the voltage V across the terminal decreases as the load current I increases.
  • the operating point of the cold-cathode tube 12 is to be set to P (I, V). But,
  • the AC voltage source 13 side when the AC voltage source 13 side is viewed from the cold cathode tube 12, the AC voltage source 13 side is a constant current source. This is because the load current I flowing in the cold cathode tube 12 that is not related to the impedance ⁇ of the cold cathode tube 12 is constant. Therefore, AC voltage
  • the output impedance ⁇ of source 13 can be regarded as almost infinite. As a result, the slope of the load line ⁇
  • the cold-cathode tube 12 Since the operating point of the cold-cathode tube 12 is only one ⁇ ⁇ ⁇ due to the increase of, the cold-cathode tube 12 operates stably.
  • FIG. 3 is a block diagram showing a second embodiment of the drive device according to the present invention.
  • 4 [1] is a circuit diagram showing an example of the 45 ° shift circuit in FIG. 3
  • FIG. 4 [2] is a circuit diagram showing an example of the switching circuit in FIG.
  • description will be given based on these drawings.
  • FIG. 3 the same parts as those in FIG.
  • the driving device 30 of the present embodiment includes a current phase detection circuit 31, a 45 ° shift circuit 32, 33,
  • D—FZF D flip-flop 34, integrator 35, VCO (voltage controlled oscillator) 36, switching circuit 37, LPF (low pass filter) 38, etc.
  • the current phase detection circuit 31 is composed of, for example, a resistor inserted between the cold cathode tube 12 and the GND terminal, and outputs a phase signal a having the same phase as the load current I.
  • the -45 ° shift circuits 32 and 33 rotate the phase of the phase signal a from the current phase detection circuit 31 by -45 degrees, respectively, by a total of -90 degrees. Since the ⁇ 45 ° shift circuits 32 and 33 have the same configuration, the ⁇ 45 ° shift circuit 32 will be described with reference to FIG. 4 [1].
  • — 45 ° shift circuit 32 is a circuit in which a buffer circuit 323 is connected to the output side of an integrating circuit composed of a resistor 321 and a capacitor 322. Resistor 321 resistance is R, Capacitor 322 capacitance
  • the phase is 45 degrees behind the input voltage Vi of the shift circuit 32 by 45 degrees.
  • Vo (l / 2-j / 2) Vi ⁇ ' ⁇ (12)
  • the D-FZF 34 is a general one having a D input terminal, a CLK input terminal, and a Q output terminal, and stores the state of the D input signal at the rising edge of the CLK input signal.
  • the D input terminal is ⁇ level
  • the CLK input terminal changes from L level to ⁇ level
  • the Q output terminal changes to ⁇ level.
  • the D input terminal is at the L level
  • the Q output terminal force level is reached when the CLK input terminal changes from the L level to the ⁇ level.
  • the integrator 35 integrates a difference voltage between the Q output signal c of the D—FZF 34 and the reference voltage Vref.
  • the reference voltage Vref is approximately halfway between the H level voltage and the L level voltage of the Q output signal c. At this time, when the duty ratio of the Q output signal c is approximately 50%, the output voltage d of the integrator 35 is constant with respect to time.
  • VC036 has a function of changing the frequency value of the output signal in accordance with the voltage value of the input signal, and specifically generates a frequency signal e having a frequency corresponding to the output voltage d of the integrator 35. To do.
  • the switching circuit 37 applies the drive voltage Vd to the piezoelectric transformer 11 by being turned on / off by being energized by the frequency signal e from the VC 036.
  • the switching circuit 37 is a general full-bridge circuit composed of transistors 371-374.
  • Transistor 371 is a p-channel power MOSFET, which is turned on when inverted signal Ze of frequency signal e from VC036 is at L level and turned off when it is also at H level.
  • the transistor 372 is an n-channel power MOSFET, which is turned on when the inverted signal Ze of the frequency signal e from the VC036 is at the H level and turned off when the inverted signal Ze is also at the L level.
  • the transistor 373 is a p-channel power MOSFET, which is turned off when the frequency signal e from the VC036 is H level, and is turned on when the frequency signal e is also L level.
  • the full bridge circuit shown in Fig. 4 [2] is only an example, and a push-pull circuit, for example, may be used instead of the full bridge circuit.
  • the LPF 38 has, for example, the coil 375 force shown in FIG. 4 [2], removes third-order or higher harmonic components included in the drive voltage Vd, and passes the fundamental wave of the drive voltage Vd.
  • FIG. 5 is a timing chart showing the operation of D-FZF in FIG.
  • FIG. 6 is a graph showing the drive frequency output current characteristics of the piezoelectric transformer in FIG.
  • the operation of the drive device 30 will be described with reference to FIGS.
  • the equivalent circuit on the output side of the driving device 30 is, as described above, the series resonance circuit (RLC series circuit) and the series circuit. It is represented by a cold cathode tube 12 connected in parallel to the C component of the resonant circuit. Then, the drive voltage Vd having the series resonance frequency ⁇ ⁇ 2 ⁇ is applied to the piezoelectric transformer.
  • the load current I of 12 is constant regardless of the impedance of the cold cathode tube 12. At this time, negative
  • the load current I is 90 degrees behind the drive voltage Vd. That is, the drive voltage V
  • the drive frequency is a series of equivalent circuits.
  • the current phase detection circuit 31 has the same phase as the load current I.
  • the phase signal a becomes the output signal a ′ in the ⁇ 45 ° shift circuit 32 and further becomes the output signal b in the ⁇ 45 ° shift circuit 33.
  • the phase of the output signal b is 90 degrees behind the phase signal a, the phase is inverted with respect to the drive voltage Vd.
  • the output signal b is input to the CLK input terminal of the D-FZF34. Meanwhile, from VC036 The inputted frequency signal e is input to the 0 input terminal of 0 ⁇ 734 through the conductor 39. Since the phase of the frequency signal e is also inverted with respect to the drive voltage Vd, the output signal b and the frequency signal e are normally in phase. However, if for some reason the output signal b and the frequency signal e are out of phase, the D-FZF 34, etc. will operate as follows.
  • the drive device 30 detects the phase of the drive voltage Vd and the load current I and drives it.
  • the frequency of the drive voltage Vd is controlled so that the phase of the voltage Vd advances 90 degrees with respect to the load current I.
  • the present invention is not limited to the first and second embodiments.
  • an electromagnetic transformer may be used instead of the piezoelectric transformer.
  • a load having a negative resistance may be used, or another general load may be used.
  • the drive voltage Vd is applied to the drive device 10 on the primary side of the transformer 11 to which the load 12 is connected on the secondary side.
  • the transformer 11 functions as a constant current source for the load 12.
  • the transformer 11 functions as the constant current source by applying a driving voltage Vd having a resonance frequency when the impedance of the load 12 is infinite and continuously generating a resonance state. It is.
  • the piezoelectric transformer 11 has a shape in which a primary electrode 22, 23 is formed on a half facing surface of a rectangular plate-shaped piezoelectric vibrating body 21, and a secondary electrode 24 is formed on the opposite end surface thereof. 22, 2 3 is polarized in the thickness direction (Fig. 1 [1] vertical direction), and the secondary side is polarized in the length direction (Fig. 1 [1] horizontal direction).
  • the piezoelectric transformer 11 is accommodated in a resin case (not shown).
  • the primary electrodes 22 and 23 are opposed to each other with the piezoelectric vibrator 21 interposed therebetween.
  • the piezoelectric vibrating body 21 has a piezoelectric ceramic force such as PZ T and has a rectangular plate shape.
  • primary electrodes 22 and 23 are provided from one end to half of the length, and a secondary electrode 24 is provided at the other end.
  • Vd of the natural resonance frequency fr determined by the length dimension is input to the primary side to the primary electrodes 22 and 23 of the piezoelectric transformer 11, strong mechanical vibration is caused by the reverse piezoelectric effect of the piezoelectric vibrator 21, and due to the piezoelectric effect.
  • a high output voltage Vo commensurate with the vibration is output to the secondary electrode 24 of the piezoelectric transformer 11.
  • the output voltage Vo is applied to the load 12.
  • the cold cathode tube 12 mounted in the backlight house is a cold cathode tube 12.
  • the resistance component Z of the cold cathode tube 12 as a load has a pure resistance.
  • the impedance Z of the cold cathode tube 12 Since capacitance may be included in addition to resistance, this is defined as the impedance Z of the cold cathode tube 12, and in the specification, the resistance component Z of the cold cathode tube 12 is defined as the impedance Z. Use.
  • the stray capacitance C 'and impedance Z of the cold cathode tube 12 are present on the secondary side of the ideal transformer.
  • the primary side of the piezoelectric transformer 11 The drive voltage of the drive device 10 applied to is represented by E.
  • the primary and secondary winding ratio of the ideal transformer 11 is set to 1: ⁇ . Note that there is no actual piezoelectric transformer 11 equivalent to the winding of a winding transformer, but the piezoelectric transformer also transforms the primary voltage to the secondary voltage, so the winding ratio Is used.
  • the resonance component of the inductance component and the line capacitance appearing on the secondary side of the ideal transformer shown in FIG. 1 [2] and the stray capacitance of the cold cathode tube 12 is used.
  • the equivalent circuit shown in Fig. 1 [3] has a second-order converted inductance component L, capacitance C, and resistance.
  • Equation (14) is
  • the impedance of the cold cathode tube becomes irrelevant, and the impedance of the cold cathode tube is reduced.
  • the transformer 11 in the drive device that applies the drive voltage to the primary side of the transformer 11 to which the load 12 is connected to the secondary side, the transformer 11 has a constant current with respect to the load 12.
  • the transformer 11 continues to be applied with the drive voltage Vd of the resonance frequency ⁇ when the impedance Z of the load 12 is infinite.
  • the resonance frequency ⁇ is the frequency of the transformer that appears in the circuit of the ideal transformer.
  • the resonance frequency is ⁇
  • the transactance component of the transformer is L ′
  • the capacitance is increased
  • the capacitance between the secondary side lines is C
  • the stray capacitance of the load is C ′
  • the winding ratio of the ideal transformer Is ⁇
  • the resonance frequency ⁇ is the resonance frequency
  • Equation (12) is obtained.
  • the transformer 11 may be configured to function as a constant current source by being applied to the transformer 11 and continuously generating a resonance state in the transformer 11.
  • FIG. 2 shows the effect of the drive device of FIG. 1
  • FIG. 2 [1] is an equivalent circuit diagram
  • FIG. 2 [2] is a current-voltage characteristic diagram of a cold cathode tube. The following description is based on FIGS. 1 and 2.
  • Impedance Z and cold cathode tube 12 are connected in series!
  • the load straight line is given by the following equation.
  • V — Z I + V ⁇ (16)
  • the resonance state is maintained by performing control to advance the phase of the drive voltage by 90 degrees with respect to the phase of the load current flowing through the cold cathode tube 12. This will be described in detail using specific examples.
  • the drive device of the present embodiment shown in FIG. 3 is described with reference numeral 30. This drive 3
  • 0 is the current phase detection circuit 31, -45 ° shift circuit 32, 33, D-FZF
  • LPF low-pass filter
  • the current phase detection circuit 31 is composed of, for example, a resistor inserted between the cold cathode tube 12 and the GND terminal, and outputs a phase signal a having the same phase as the load current I.
  • the ⁇ 45 ° shift circuits 32 and 33 adjust the phase of the phase signal a from the current phase detection circuit 31. Rotate each—45 degrees, total—90 degrees. Since the ⁇ 45 ° shift circuits 32 and 33 have the same configuration, the ⁇ 45 ° shift circuit 32 will be described with reference to FIG. 4 [1].
  • — 45 ° shift circuit 32 is a circuit in which a buffer circuit 323 is connected to the output side of an integrating circuit composed of a resistor 321 and a capacitor 322. Resistor 321 resistance is R, Capacitor 322 capacitance
  • the output voltage Vo of the ⁇ 45 ° shift circuit 32 can be approximated by the following equation.
  • the phase is 45 degrees behind the input voltage Vi of the shift circuit 32 by 45 degrees.
  • the D-FZF 34 is a general one having a D input terminal, a CLK input terminal, and a Q output terminal, and stores the state of the D input signal at the rising edge of the CLK input signal.
  • the D input terminal is ⁇ level
  • the CLK input terminal changes from L level to ⁇ level
  • the Q output terminal changes to ⁇ level.
  • the D input terminal is at the L level
  • the Q output terminal force level is reached when the CLK input terminal changes from the L level to the ⁇ level.
  • the integrator 35 integrates the difference voltage between the Q output signal c of the D—FZF 34 and the reference voltage Vref.
  • the reference voltage Vref is approximately halfway between the H level voltage and the L level voltage of the Q output signal c. At this time, when the duty ratio of the Q output signal c is approximately 50%, the output voltage d of the integrator 35 is constant with respect to time.
  • VC036 has a function of changing the frequency value of the output signal in accordance with the voltage value of the input signal, and specifically generates a frequency signal e having a frequency corresponding to the output voltage d of the integrator 35. To do.
  • the switching circuit 37 applies the drive voltage Vd to the piezoelectric transformer 11 by being turned on / off by being energized by the frequency signal e from the VC 036.
  • the switching circuit 37 is a general full-bridge circuit composed of transistors 371 to 374.
  • the Transistor 371 is a p-channel power MOSFET, which is turned on when inverted signal Ze of frequency signal e from VC036 is at L level and turned off when it is also at H level.
  • the transistor 372 is an n-channel power MOSFET, which is turned on when the inverted signal Ze of the frequency signal e from the VC036 is at the H level and turned off when the inverted signal Ze is also at the L level.
  • the transistor 373 is a p-channel power MOSFET, which is turned off when the frequency signal e from the VC036 is H level, and is turned on when the frequency signal e is also L level.
  • the full bridge circuit shown in Fig. 4 [2] is only an example, and a push-pull circuit, for example, may be used instead of the full bridge circuit.
  • the LPF 38 has, for example, the coil 375 force shown in FIG. 4 [2], removes the third and higher harmonic components contained in the drive voltage Vd, and passes the fundamental wave of the drive voltage Vd.
  • FIG. 5 is a timing chart showing the operation of D-FZF in FIG.
  • FIG. 6 is a graph showing the drive frequency output current characteristics of the piezoelectric transformer in FIG.
  • the operation of the drive device 30 will be described with reference to FIGS.
  • the phase of the load current I is delayed by 90 degrees with respect to the drive voltage Vd. That is,
  • the current phase detection circuit 31 has the same phase as the load current I.
  • the phase signal a becomes the output signal a ′ in the ⁇ 45 ° shift circuit 32 and further becomes the output signal b in the ⁇ 45 ° shift circuit 33.
  • the phase of the output signal b is 90 degrees behind the phase signal a, the phase is inverted with respect to the drive voltage Vd.
  • the output signal b is input to the CLK input terminal of the D—FZF34.
  • the frequency signal e output from the VC 036 is input to the 0 input terminal of 0 ⁇ 734 via the conductor 39. Since the phase of the frequency signal e is also inverted with respect to the drive voltage Vd, the output signal b and the frequency signal e are normally in phase. However, if for some reason the output signal b and the frequency signal e are out of phase, the D-FZF 34, etc. operates as follows.
  • the drive device 30 detects the phase of the drive voltage Vd and the load current I and drives it.
  • the frequency of the drive voltage Vd is controlled so that the phase of the voltage Vd advances 90 degrees with respect to the load current I.
  • the frequency controller that maintains the resonance state by performing control to advance the phase of the drive voltage by 90 degrees with respect to the phase of the load current flowing through the load has a current phase detection circuit 31, -45. ° Consists of shift circuits 32 and 33, DF / F34, integrator 35, VC036, and switching circuit 37.
  • a piezoelectric transformer is used as the transformer 11.
  • the present invention is not limited to this.
  • the present invention can be similarly applied to a case where a winding transformer using a ballast capacitor or a rear tuttle is used on the secondary side.
  • a piezoelectric transformer is used as the transformer, it is useful for reducing the size and weight. It is profit.
  • each constant value (L, C, etc.) can be realized with higher accuracy than the electromagnetic type.
  • the force using a cold cathode tube as the load 12 is not limited to this.
  • a hot cathode tube hot cathode fluorescent tube
  • a mercury lamp a mercury lamp
  • a sodium lamp a metal halide lamp
  • neon or the like
  • the secondary output impedance of the transformer is increased without adding components, even when individually connected to a plurality of loads, the current flows to the individual loads. It is possible to reduce the deviation of the current flowing through each load without controlling the current.
  • FIG. 1 shows a first embodiment of a drive device according to the present invention
  • FIG. 1 [1] is an actual circuit diagram
  • FIG. 1 [1] is an actual circuit diagram
  • Fig. 1 [2] is an equivalent circuit diagram of Fig. 1 [1]
  • Fig. 1 [3] is an equivalent circuit diagram of Fig. 1 [2]
  • Fig. 1 [4] shows the relationship between drive voltage and load current. It is a vector diagram.
  • FIG. 2 shows the effect of the drive device of FIG. 1
  • FIG. 2 [1] is an equivalent circuit diagram
  • FIG. 2 [2] is a current-voltage characteristic diagram of a cold cathode tube.
  • FIG. 3 is a block diagram showing a second embodiment of the drive device according to the present invention.
  • FIG. 4 is a circuit diagram illustrating an example of a 45 ° shift circuit in FIG. 3
  • FIG. 4 [2] is a circuit diagram illustrating an example of a switching circuit in FIG.
  • FIG. 5 is a timing chart showing the operation of D-FZF in FIG.
  • FIG. 6 is a graph showing the drive frequency-output current characteristics of the piezoelectric transformer in FIG. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

明 細 書
トランスの駆動装置及び駆動方法
技術分野
[0001] 本発明は、圧電振動子の共振現象を利用して交流電圧を変圧する圧電トランスな どのトランスに関し、詳しくはその駆動装置及び駆動方法に関する。
背景技術
[0002] 圧電トランス (ソリッドフォーマ)は、圧電振動子の共振現象を利用することにより、低 電圧を入力し高電圧を出力するようにしたものである。圧電トランスの特長は、電磁型 に比べて圧電振動子のエネルギ密度が高い点にある。そのため、小型化が可能であ るので、冷陰極管点灯用、液晶バックライト点灯用、小型 ACアダプタ用、小型高電 圧電源用などに使われている。また、液晶ノ ックライトとして冷陰極管を用い、この冷 陰極管の点灯用として圧電トランスを用いる技術が知られている (例えば特許文献 1)
[0003] 特許文献 1 :特開平 10— 200174号公報
発明の開示
発明が解決しょうとする課題
[0004] 液晶バックライトとして、複数本の冷陰極管を使用し、各冷陰極管に圧電トランスを 設ける場合がある。この場合、個々の冷陰極管に流れる管電流を同じにしないと、バ ックライトの輝度むらが発生する。その解決方法として、個々の管電流を制御して同じ 電流値にする技術が考えられる。しかし、それでは、特別の制御回路が必要となるの で、その回路での電力損失による効率の低下、及び製造コストの増大を招いてしまう
[0005] そこで、本発明の目的は、簡単な構成でありながら負荷電流を一定にできる、トラン スの駆動装置及び駆動方法を提供することにある。
課題を解決するための手段
[0006] 本発明に係る駆動装置は、二次側に負荷が接続されたトランスの一次側に駆動電 圧を印加するものである。そして、前記駆動電圧の周波数は、前記負荷のインピーダ ンスを無限大にしたときにおける当該駆動装置の出力側の等価回路によって与えら れる直列共振周波数である (請求項 1)。駆動電圧の周波数を一定にするには、ォー プン制御でも、フィードバック制御でもよい。これにより、簡単な構成でありながら負荷 電流を一定にできる。
[0007] 以上のように、本発明者は、「駆動装置の出力側がトランス及び負荷力 なるとき、 当該駆動装置の出力側の等価回路は、直列共振回路 (RLC直列回路)と、この直列 共振回路の C成分に並列接続された負荷とで表わされる。」こと、及び「その負荷のィ ンピーダンスを無限大にしたときにおける直列共振周波数の駆動電圧をトランスに印 加すると、負荷に流れる電流が負荷のインピーダンスに関係なく一定になる。」ことを 見出した。上記本発明は、この知見に基づきなされたものである。
[0008] また本発明に係る駆動装置は、前記等価回路は、インダクタンスと、抵抗と、第一の 静電容量と、第二の静電容量とが直列に接続され、前記第二の静電容量に並列に 前記負荷のインピーダンスが接続されたものである。これは請求項 1における等価回 路を具体ィ匕したものである。負荷のインピーダンスには、抵抗成分の他に、インダクタ ンス成分や静電容量成分が含まれて 、てもよ ヽ。
[0009] また本発明に係る駆動装置は、前記第二の静電容量は、前記トランスの二次側の 静電容量と前記負荷の漂遊容量とが並列接続されたものである。このとき、負荷のィ ンピーダンスに関係なぐ負荷電流は一定となる。例えば、前記直列共振周波数を直 列共振角周波数 ω、前記インダクタンスを L、前記抵抗を R、前記第一の静電容量
0
を C、前記第二の静電容量を Cとしたとき、当該直列共振角周波数は、 ω
し 0 = l/ V
L{CC Z(C + C ) }] (ただし、 R 《 ΐΖω Cとする。)で与えられる。
し し 0 し
[0010] また本発明に係る駆動装置は、前記負荷に流れる負荷電流の位相を検出する電 流位相検出部と、前記駆動電圧の位相を検出する電圧位相検出部と、前記電圧位 相検出部で検出された駆動電圧の位相が前記電流検出部で検出された負荷電流 の位相に対して 90度進むように前記駆動電圧の周波数を制御する周波数制御部と 、を備えたものである。
[0011] 駆動装置の出力側がトランス及び負荷力もなるとき、当該駆動装置の出力側の等 価回路は、直列共振回路 (RLC直列回路)と、この直列共振回路の C成分に並列接 続された負荷とで表わされる。そして、負荷のインピーダンスを無限大にしたときにお けるその等価回路の直列共振周波数の駆動電圧をトランスに印加すると、負荷電流 が負荷のインピーダンスに関係なく一定になる。このとき、後述するように、負荷電流 は駆動電圧に対して位相が 90度遅れている。すなわち、駆動電圧に対して負荷電 流の位相が 90度遅れているとき、駆動電圧の周波数 (以下「駆動周波数」という。)は 、負荷のインピーダンスを無限大にしたときにおける等価回路の直列共振周波数に 一致する。
[0012] 一方、駆動周波数をオープン制御によって一定にする場合は、厳密に言えば、電 圧、電流、温度、時間等によって、駆動装置の各構成部品の特性や等価回路の各 成分が変化することにより、駆動周波数や直列共振周波数が変化してしまう。したが つて、駆動電圧及び負荷電流の位相を検出して、駆動電圧の位相が負荷電流に対 して 90度進むように、駆動電周波数を制御することにより(すなわちフィードバック制 御により)、負荷電流を精度良く一定にできる。
[0013] また本発明に係る駆動装置は、前記駆動装置において、前記トランスが圧電トラン スであるというものである。トランスは、電磁型 (卷線型)トランスでも良いが、圧電トラン スとすると小型化及び軽量化に有利である。また、圧電トランスとすると、各定数値 (L , C等)を電磁型よりも高精度に実現できる。
[0014] また本発明に係る駆動装置は、前記負荷が放電管であると 、うものである。放電管 には、後述する冷陰極管 (冷陰極蛍光管)の他に、熱陰極管 (熱陰極蛍光管)、水銀 灯、ナトリウム灯、メタルノヽライド灯、ネオン等が含まれる。
[0015] 前記放電管が冷陰極管であってもよ!/、ものである。
[0016] 冷陰極管を始め放電管の電流 電圧特性は、一部に負性抵抗が現れる。この負 性抵抗とは、冷陰極管に流れる電流が増えるほど、冷陰極管の両端の電圧が減る性 質である。また、駆動装置とトランスとからなる交流電圧源にその出力インピーダンス と冷陰極管とが直列に接続されていると考えた場合に、その負荷直線と前述の冷陰 極管の電流-電圧特性とから冷陰極管の動作点が定まる。しかし、冷陰極管は一部 に負性抵抗を呈するため、交流電圧源の出力インピーダンスが低いと、冷陰極管の 動作点が複数生じる。その結果、冷陰極管の動作が不安定となる。 [0017] 一方、本発明において、冷陰極管からトランス及び駆動装置を見た場合、これらは 定電流源となる。なぜなら、冷陰極管のインピーダンスに関係なぐ冷陰極管に流れ る電流が一定になるからである。そのため、交流電圧源の出力インピーダンスはほぼ 無限大とみなせる。その結果、冷陰極管の動作点がただ一つとなるので、冷陰極管 は安定に動作する。
[0018] また、本発明に係る駆動装置と冷陰極管とを一対一とし、これらを複数組み合わせ て液晶ディスプレイのバックライトを構成した場合に、各冷陰極管のインピーダンスに 関係なく各冷陰極管に流れる電流を均一にできるので、ノ ックライトの輝度むらを抑 制できる。
[0019] 本発明に係る駆動方法は、本発明に係る駆動装置を方法の発明として捉え直した ものである。すなわち、本発明に係る駆動方法は、二次側に負荷が接続されたトラン スの一次側に駆動電圧を印加するものである。そして、前記トランス及び前記負荷を 含めた等価回路を作成し、前記負荷のインピーダンスを無限大にしたときに前記等 価回路によって与えられる直列共振周波数を、前記駆動電圧の周波数とするもので あってもよい。前記負荷に流れる負荷電流の位相を検出するとともに、前記駆動電圧 の位相を検出し、検出された駆動電圧の位相が検出された負荷電流の位相に対し て 90度進むように、前記駆動電圧の周波数を制御するようにしてもよ!、ものである。
[0020] 換言すると、本発明は、ノ ックライトインバータに使用する圧電トランス (高圧トランス )の出力インピーダンスをより大きくする動作条件を見出す方法を提供する。つまり、 ノ ックライトハウスに実装された冷陰極管の高圧端子と GNDとの間の浮遊容量を含 む、圧電トランス二次側の直列共振周波数で駆動する。又は、ノ ックライトハウスに実 装された冷陰極管の高圧端子と GNDとの間の浮遊容量と、圧電トランス二次側のィ ンダクタンス成分と、によって共振した周波数でインバータを駆動する。これにより、圧 電トランスを定電流源に近づけることができ、個々の管電流を制御することなぐ冷陰 極管に流れる個々の管電流の偏差を低減することが可能となるので、効率が良ぐ安 価で、輝度むらの少な ヽバックライトインバータを提供できる。
[0021] さらに、本発明に係るトランスの駆動装置は、負荷が二次側に接続されたトランスの 一次側に駆動電圧を印加する駆動装置において、 前記トランスは、前記負荷に対して定電流源としての機能を有しており、 前記トランスは、前記負荷のインピーダンスを無限大にしたときにおける共振周波 数の前記駆動電圧が印加され継続して共振状態を生じることにより、前記定電流源と して機能することを特徴とするものである。
[0022] 本発明によれば、負荷のインピーダンスを無限大にしたときにおける共振周波数の 電圧をトランスの一次側に印加する。前記共振周波数の電圧の印加を受けて、前記 トランスは定電流源として機能し、前記負荷側から前記トランスを見た場合における 前記トランスの出力インピーダンスが増大されることとなる。
[0023] 前記共振周波数は、理想トランスの回路に現れる前記トランスのインダクタンス成分 及び静電容量成分と、前記負荷の浮遊容量と前記理想トランスの二次側線間容量の 並列容量成分により決められることが望ましいものである。前記理想トランスは、前記 トランスの動作を理解するために想定したものであり、前記理想トランスの動作は実際 の前記トランスの基本的動作となる。
[0024] 以上の構成によれば、前記トランスを理想トランスとして現したときに、前記理想トラ ンスのパラメータとして現れるインダクタンス成分及び静電容量、前記負荷の浮遊容 量のみを利用して、前記トランスに共振状態を生じさせることが可能となる。
[0025] この場合、前記周波数を ω、前記トランスのインタクタンス成分を L '、静電容量を C '
2次側線間容量を C 、前記負荷の浮遊容量を C '、理想トランスの卷線比を φとし
02 し
/こ 口ゝ
前記周波数 ωは、
[数 1]
Figure imgf000007_0001
であることが望ましい。
[0026] 前記トランスを駆動する駆動電圧の周波数を上記のように設定することにより、前記 トランスの出力イン一ダンスが最大限に増大することとなる。
[0027] また、前記負荷を流れる負荷電流の位相に対して前記駆動電圧の位相を 90度進 める制御を行うことにより、共振状態を維持する周波数制御部を有することが望まし いものである。
[0028] 前記駆動電圧の周波数をオープン制御によって一定にする場合は、厳密に言えば 、電圧、電流、温度、時間等によって、駆動装置及びトランスの各構成部品の特性が 変化することにより、前記トランスの共振状態が抑制される。そこで、前記負荷電流の 位相に対して前記駆動電圧の位相を 90度進める制御を行う(位相のフィードバック 制御)。これにより、前記トランスの共振状態が継続され、前記負荷側から見た前記ト ランスの出力インピーダンスは最大値を維持することとなる。
[0029] 本発明に係る負荷駆動方法は、負荷が二次側に接続されたトランスの一次側に駆 動電圧を印加する駆動方法にお!、て、
前記負荷のインピーダンスを無限大にしたときにおける共振周波数の前記駆動電 圧を前記トランスに印加することにより、前記トランスを前記定電流源として作動させる ことを特徴するものである。
発明の効果
[0030] 本発明によれば、二次側に負荷が接続されたトランスの一次側に印加する駆動電 圧の周波数を、負荷のインピーダンスを無限大にしたときにおける駆動装置の出力 側の等価回路によって与えられる直列共振周波数とすることにより、簡単な構成であ りながら、負荷のインピーダンスに関係なく負荷電流を一定にできる。したがって、負 荷のインピーダンスが変動しても、負荷電流を常に一定にできる。
[0031] また、駆動電圧と負荷電流との位相を検出し、駆動電圧の位相が負荷電流に対し て 90度進むように、駆動電圧の周波数を制御することにより、駆動周波数や直列共 振周波数が変化しても、負荷電流を精度良く一定にできる。
[0032] また、負荷が負性抵抗を呈する場合でも、負荷側から見た出力インピーダンスをほ ぼ無限大にできるので、負荷の動作点をただ一つに決めることができ、これにより負 荷の動作を安定ィ匕できる。
[0033] また、トランスを圧電トランス、かつ負荷を複数の冷陰極管とした場合は、小型かつ 軽量で、輝度むらの無 、液晶ディスプレイのバックライトを実現できる。
[0034] さらに本発明によれば、トランスの二次側出力インピーダンスを部品の追加なしに 増大する構成としたため、複数の負荷に個々に接続した場合にも、個々の負荷に流 れる電流を制御することなぐ個々の負荷に流れる電流の偏差を低減することができ る。
発明を実施するための最良の形態
[0035] 図 1は本発明に係る駆動装置の第一実施形態を示し、図 1 [1]は実際の回路図、 図 1 [2]は図 1 [1]の等価回路図であり、図 1 [3]は図 1 [2]の等価回路図であり、図 1 [4]は駆動電圧と負荷電流との関係を示すベクトル図である。以下、この図面に基づ き説明する。
[0036] 本実施形態の駆動装置 10は、二次側に負荷 12が接続された圧電トランス 11の一 次側に駆動電圧 Vdを印加するものである。そして、駆動電圧 Vdの角周波数 ωは、
0 負荷 12のインピーダンスを無限大にしたときに、駆動装置 10の出力側の等価回路に よって与えられる直列共振角周波数である。なお、負荷 12には、冷陰極管を用いて いる。
[0037] 圧電トランス 11は、圧電振動体 21に一次電極 22, 23と二次電極 24とを設け、一 次側を厚さ方向(図 1 [1]上下方向)に分極し、二次側を長さ方向(図 1 [1]左右方向 )に分極し、これらを榭脂ケース(図示せず)に収容したものである。一次電極 22, 23 は、圧電振動体 21を挟んで対向している。圧電振動体 21は、 ΡΖΤ等の圧電セラミツ タスからなり、板状 (直方体状)を呈している。圧電振動体 21の長さ方向において、一 端力もその長さの半分までに一次電極 22, 23が設けられ、他端に二次電極 24が設 けられて ヽる。一次側に長さ寸法で決まる固有共振周波数 frの駆動電圧 Vdを入力 すると、逆圧電効果により強い機械振動を起こし、圧電効果によりその振動に見合つ た高い出力電圧 V。が二次側から出力される。出力電圧 V。は負荷 12に印加される。
[0038] 駆動装置 10によれば、簡単な構成でありながら、負荷 12のインピーダンス Zに関 し 係なく負荷電流 I
しを一定にできる。したがって、負荷 12のインピーダンス Z
しが変動し ても、負荷電流 I
しを常に一定にできる。その理由について、以下に詳しく説明する。
[0039] 図 1 [1]に示す実際の回路は、図 1 [2]に示す等価回路で表わすことができる。図 1 [2]において、圧電トランス 11は、静電容量 C , C , C'、インダクタンス L'、抵抗 R'
Ol 02
、卷数比 1: φの理想トランス等に置き換えている。駆動電圧 Vdは、駆動電圧 E'とす る。静電容量 C 'は負荷 12の漂遊容量である。
[0040] そして、図 1[2]の等価回路は、更に負荷 12側力も圧電トランス 11側を見た図 1[3] の等価回路で表わすことができる。ここで、 Ε= φ E'、 L= φ 2L'、 C = C'Z Φ 2、 R= ¾\ ϋ =C +C 'である。図 1 [3]の等価回路は、インダクタンス Lと、抵抗 Rと、
L 02 L
静電容量 C と、静電容量 Cとが直列に接続され、静電容量 Cに並列に負荷 12のィ
02 L L
ンピーダンス Zが接続されたものである。インピーダンス Zには、抵抗成分の他に、ィ し し
ンダクタンス成分や静電容量成分が含まれていてもよい。なお、図 1[1]は付随する 部品等を省略して単純ィ匕している力 それらの部品等が接続されていたとしても、最 終的に図 1 [3]の等価回路で表わすことができる。
[0041] 図 1 [3]において、駆動装置 10から出力される全電流を I、静電容量 Cに流れる電 し
流を I、インピーダンス Zに流れる負荷電流を Iとする。つまり、
C L L
1=1 C +1 L …ひ)
である。また、 Zの両端の電圧は I Zであり、静電容量 Cの両端の電圧も I Zである し し し し し し から、
I =jcoC I Z ··· (2)
C L L L
である。ゆえに全電流 Iは、式(1), (2)から、
1 = 1 +1 =1 (1+jcoC Z ) ··· (3)
C L L L L
となる。一方、 L, C, Rによる電圧降下は、式(3)から、
{R+j L—lZ oC)}l
= {R+j(coL—lZ oC)}l (1+jcoC Z )
L L L
=RI (1+jcoC Z )+I j(coL—lZ oC) (1+jcoC Z )
L L L L L L
= {R— (coL— lZ oC) coC Z }l +j{ coC Z R+ (coL— 1/coC) }l …(4)
L L L L L L
となる。ゆえに、式 (4)から、
E={R-(WL-1/WC) ωΟ Ζ }l +j{ coC Ζ R+ (coL—lZ oC) }l +Ζ I
L L L L L L L L
••• (5)
となるので、負荷電流 Iは、式(5)から、 I =E/[{R+Z一(coL— lZ oC) coC Z }+j{coC Z R+ (coL— lZ oC) }]
L L L L L L
•••(6)
で与えられる。
[0042] ここで、
ω=ΐΖ [L{CC Z(C + C )}] = ω · · · (7)
L L 0
とする。この角周波数 ωは、図 1 [3]においてインピーダンス Ζを無限大にしたときの
0 し
、 L, R, C及び C力 なる直列共振回路の直列共振角周波数である。このとき、
(o)L—lZo)C)=lZ ) C · · · (8)
0 し
となるので、式(7) , (8)を式 (6)に代入して、
I I =E/{R+j(W C Z R+1/ω C )}
ω=ω0 0 L L 0 L …(9)
L
が得られる。通常、 R《 ΐΖω Cであるから、
0 し
I I C ) = -]ω C ·Ε ·'·(10)
し ω=ω0 0 し 0 し
となる。
[0043] したがって、駆動電圧 Εの角周波数が式 (7)で与えられるとき、負荷電流 Iは、式(1 し
0)から明らかなように、負荷 12のインピーダンス Ζに関係なく一定となる。このとき、 し
図 1 [4]に示すように、負荷電流 Iの位相は駆動電圧 Εよりも 90度遅れる。
[0044] 図 2は図 1の駆動装置の効果を示し、図 2[1]は等価回路図であり、図 2[2]は冷陰 極管の電流-電圧特性図である。以下、図 1及び図 2に基づき説明する。
[0045] ここでは、図 1[1]における負荷 12を冷陰極管 12と言い換える。図 2[1]では、図 1[ 1]における駆動装置 10及び圧電トランス 11を、交流電圧源 13及びその出力インピ 一ダンス Ζに置き換えている。そのため、交流電圧源 13に出力インピーダンス Ζと ο ο 冷陰極管 12とが直列に接続されている。
[0046] ここで、冷陰極管 12の両端電圧を V、冷陰極管 12に流れる負荷電流を I、交流電 し し 圧源 13の出力電圧を Vとすると、負荷直線は次式で与えられる。
ο
V =-Z I +V ·(11)
L o L o
[0047] 一方、図 2[2]に示すように、冷陰極管 12は、その電流 電圧特性の一部に負性 抵抗が現れる。この負性抵抗とは、負荷電流 Iが増えるほど両端電圧 Vが減る性質 し し
である。 [0048] ここで、図 2[2]において、冷陰極管 12の動作点を P (I , V )に定めたい。しかし、
Ρ Ρ
インピーダンス Ζ力 、さいと、負荷直線の傾きが小さくなるので、動作点 Ρの他に動 ο
作点 P'も生じてしまう。すると、動作点が複数存在することになるので、冷陰極管 12 の動作が不安定となる。
[0049] これに対し、本実施形態では、冷陰極管 12から交流電圧源 13側を見た場合、交 流電圧源 13側は定電流源となる。なぜなら、冷陰極管 12のインピーダンス Ζに関係 し なぐ冷陰極管 12に流れる負荷電流 Iが一定になるからである。そのため、交流電圧 し
源 13の出力インピーダンス Ζはほぼ無限大とみなせる。その結果、負荷直線の傾き ο
が大きくなることにより、冷陰極管 12の動作点がただ一つの Ρだけとなるので、冷陰 極管 12は安定に動作する。
[0050] 図 3は、本発明に係る駆動装置の第二実施形態を示すブロック図である。図 4[1] は図 3における 45° シフト回路の一例を示す回路図、図 4[2]は図 3におけるスィ ツチング回路の一例を示す回路図である。以下、これらの図面に基づき説明する。た だし、図 3において図 1と同じ部分は同じ符号を付すことにより説明を省略する。
[0051] 本実施形態の駆動装置 30は、電流位相検出回路 31、 一 45° シフト回路 32, 33、
D—FZF (Dフリップフロップ) 34、積分器 35、 VCO (電圧制御発振器) 36、スィッチ ング回路 37、 LPF (ローパスフィルタ) 38等を備えて!/、る。
[0052] 電流位相検出回路 31は、例えば冷陰極管 12と GND端子との間に挿入された抵 抗器からなり、負荷電流 Iと同位相の位相信号 aを出力する。
[0053] —45° シフト回路 32, 33は、電流位相検出回路 31からの位相信号 aの位相をそ れぞれ—45度ずつ、合計— 90度回転させる。—45° シフト回路 32, 33は同じ構成 であるので、— 45° シフト回路 32について図 4[1]に基づき説明する。— 45° シフト 回路 32は、抵抗器 321とコンデンサ 322とからなる積分回路の出力側に、バッファ回 路 323が接続されたものである。抵抗器 321の抵抗を R、コンデンサ 322の静電容
1
量を C、負荷電流 Iの角周波数を ωとしたとき、 ω = 1Z (R C )の関係を満たすよう
1 し 1 1
に各数値を選定する。
[0054] このとき、—45° シフト回路 32の出力電圧 Voは、次式によって近似できるので、
1
位相が 45° シフト回路 32の入力電圧 Viから 45度遅れる。 Vo = (l/2-j/2)Vi · ' · (12)
1 1
[0055] なお、厳密に言えば、角周波数 ωが変化すると、 ω = 1Z (R C )の関係が成り立
1 1
たなくなつて、位相回転量に誤差が生じる。しかし、実際の角周波数 ωの精度は ±0 . 5%程度となるため、—45° シフト回路 32での位相回転量の誤差は問題とならな い。
[0056] D— FZF34は、 D入力端子、 CLK入力端子及び Q出力端子を有する一般的なも のであり、 CLK入力信号の立ち上がりで D入力信号の状態を記憶する。つまり、 D入 力端子が Ηレベルのときは、 CLK入力端子が Lレベル→Ηレベルとなった時に、 Q出 力端子が Ηレベルになる。逆に、 D入力端子が Lレベルのときは、 CLK入力端子が L レベル→Ηレベルとなった時に、 Q出力端子力 レベルになる。
[0057] 積分器 35は、 D— FZF34の Q出力信号 cと基準電圧 Vrefとの差電圧を積分する。
基準電圧 Vrefは、 Q出力信号 cの Hレベル電圧と Lレベル電圧とのほぼ中間の値とす る。このとき、 Q出力信号 cのデューティ比がほぼ 50%となるとき、積分器 35の出力電 圧 dは時間に対して一定となる。
[0058] VC036は、入力信号の電圧値に対応して出力信号の周波数値を変える機能を有 し、具体的には積分器 35の出力電圧 dに対応した周波数からなる周波数信号 eを発 生する。
[0059] スイッチング回路 37は、 VC036からの周波数信号 eに付勢されてオン ·オフするこ とにより、圧電トランス 11に駆動電圧 Vdを印加する。例えば図 4[2]に示すように、ス イッチング回路 37は、トランジスタ 371〜374からなる一般的なフルブリッジ回路であ る。トランジスタ 371は、 pチャネルパワー MOSFETであり、 VC036からの周波数信 号 eの反転信号 Zeが Lレベルのときにオンし、同じく Hレベルのときにオフする。トラ ンジスタ 372は、 nチャネルパワー MOSFETであり、 VC036からの周波数信号 eの 反転信号 Zeが Hレベルのときにオンし、同じく Lレベルのときにオフする。トランジス タ 373は、 pチャネルパワー MOSFETであり、 VC036からの周波数信号 eが Hレべ ルのときにオフし、同じく Lレベルのときにオンする。トランジスタ 374は、 nチャネルパ ヮー MOSFETであり、 VC036からの周波数信号 eが Hレベルのときにオンし、同じ く Lレベルのときにオフする。そのため、トランジスタ 372, 373がオフからオンかつトラ ンジスタ 371, 374がオンからオフとなったとき、駆動電圧 Vd ( = 2Vcc)が圧電トラン ス 11に印加される。したがって、周波数信号 eと駆動電圧 Vdとは位相が 180度ずれ ている。なお、図 4[2]に示したフルブリッジ回路は一例に過ぎず、フルブリッジ回路 の代わりに例えばプッシュプル回路などを用いてもょ 、。
[0060] LPF38は、例えば図 4 [2]〖こ示すコイル 375力らなり、駆動電圧 Vdに含まれる 3次 以上の高調波成分を除去して、駆動電圧 Vdの基本波を通過させる。
[0061] 図 5は、図 3における D—FZFの動作を示すタイミングチャートである。図 6は、図 3 における圧電トランスの駆動周波数 出力電流特性を示すグラフである。以下、図 3 乃至図 6に基づき、駆動装置 30の動作を説明する。
[0062] 駆動装置 30の出力側が圧電トランス 11及び冷陰極管 12からなるとき、駆動装置 3 0の出力側の等価回路は、前述したように、直列共振回路 (RLC直列回路)と、この 直列共振回路の C成分に並列接続された冷陰極管 12とで表わされる。そして、その 直列共振周波数 ω Ζ2πの駆動電圧 Vdを圧電トランス
0 11に印加すると、冷陰極管
12の負荷電流 Iが冷陰極管 12のインピーダンスに関係なく一定になる。このとき、負 し
荷電流 Iは、駆動電圧 Vdに対して、位相が 90度遅れている。すなわち、駆動電圧 V し
dに対して負荷電流 Iの位相が 90度遅れているとき、駆動周波数は等価回路の直列 し
共振周波数 ω
0 Ζ2πに一致する。
[0063] 一方、駆動周波数をオープン制御によって一定にする場合は、厳密に言えば、電 圧、電流、温度、時間等によって、駆動装置 30の各構成部品の特性や等価回路の 各成分が変化することにより、駆動周波数や直列共振周波数が変化してしまう。した がって、駆動電圧 Vd及び負荷電流 Iの位相を検出して、駆動電圧 Vdの位相が負荷 し
電流 Iに対して 90度進むように、駆動電圧 Vdの周波数を制御することにより(すなわ し
ちフィードバック制御により)、負荷電流 I
しを精度良く一定にできる。
[0064] 更に詳しく説明する。まず、電流位相検出回路 31は、負荷電流 Iと同位相の位相 し
信号 aを出力する。位相信号 aは、—45° シフト回路 32で出力信号 a'となり、更に— 45° シフト回路 33で出力信号 bとなる。これにより、出力信号 bは、位相信号 aよりも 9 0度位相が遅れるので、駆動電圧 Vdに対して位相が反転して ヽる。
[0065] 出力信号 bは、 D—FZF34の CLK入力端子に入力される。一方、 VC036から出 力された周波数信号 eは、導線 39を介して0— 7 34の0入カ端子に入カされる。 周波数信号 eも駆動電圧 Vdに対して位相が反転して ヽるので、本来ならば出力信号 bと周波数信号 eとは同位相になる。しかし、何らかの理由によって、出力信号 bと周 波数信号 eとの位相がずれると、 D— FZF34等は次のように動作する。
[0066] 出力信号 bが周波数信号 eよりも位相が遅れると、図 5に示すように Q出力信号は H レベルとなり、積分器 35の出力電圧 dが上昇し、図 6に示すように VC036の周波数 信号 eの周波数が上昇する。その結果、出力信号 bの位相が進む。これとは逆〖こ、出 力信号 bが周波数信号 eよりも位相が進むと、図 5に示すように Q出力信号は Lレベル となり、積分器 35の出力電圧 dが低下し、図 6に示すように VC036の周波数信号 e の周波数が低下する。その結果、出力信号 bの位相が遅れる。
[0067] このように、駆動装置 30は、駆動電圧 Vd及び負荷電流 Iの位相を検出して、駆動 し
電圧 Vdの位相が負荷電流 Iに対して 90度進むように、駆動電圧 Vdの周波数を制 し
御する。
[0068] また、特許請求の範囲における「電流位相検出部」、「電圧位相検出部」、「周波数 制御部」は、それぞれ、「電流位相検出回路 31」、「導線 39」、「駆動装置 30のその 他の構成要素」に相当する。
[0069] なお、本発明は、言うまでもなぐ上記第一及び第二実施形態に限定されるもので はない。例えば、圧電トランスの代わりに電磁型トランスでもよい。冷陰極管の代わり に、例えば負性抵抗を有する負荷でもよいし、その他の一般の負荷でもよい。
[0070] 以上の実施形態では、圧電トランスの一次側に印加する駆動電圧の周波数に注目 した実施形態として説明したが、次に、圧電トランスの機能面力も本発明を捉えた実 施形態を本発明の他の実施形態として説明する。この実施形態を図 1〜図 6に基づ いて説明する。
[0071] 本発明の実施形態は図 1に示すように基本的構成として、負荷 12が二次側に接続 されたトランス 11の一次側に駆動電圧 Vdを駆動装置 10に印加するものであり、前記 トランス 11は、負荷 12に対して定電流源として機能するものである。前記トランス 11 は、負荷 12のインピーダンスを無限大にしたときにおける共振周波数の駆動電圧 Vd が印加され継続して共振状態を生じることにより、前記定電流源として機能するもの である。
[0072] 次に、前記トランスとして圧電トランス 11を用い、前記負荷として冷陰極官 21を用い た場合を具体的に説明する。本発明の実施形態の基本的動作を明らかにするため に、図 1 [1]に示す実際の回路を、図 1 [2]に示す、損失が零である理想トランスの回 路として現している。
[0073] 圧電トランス 11は、矩形板状の圧電振動体 21に半分の対向面に一次電極 22, 23 を形成し、その反対側の端面に二次電極 24を形成した形状であり、一次電極 22, 2 3側を厚さ方向(図 1 [1]上下方向)に分極し、二次側を長さ方向(図 1 [1]左右方向) に分極している。そして、圧電トランス 11は榭脂ケース(図示せず)に収容されている 。一次電極 22, 23は、圧電振動体 21を挟んで対向している。圧電振動体 21は、 PZ T等の圧電セラミックス力 なり、矩形板状を呈している。圧電振動体 21の長さ方向 において、一端からその長さの半分までに一次電極 22, 23が設けられ、他端に二次 電極 24が設けられている。一次側に長さ寸法で決まる固有共振周波数 frの駆動電 圧 Vdを圧電トランス 11の一次電極 22, 23に入力すると、圧電振動体 21の逆圧電効 果により強い機械振動を起こし、圧電効果によりその振動に見合った高い出力電圧 Voが圧電トランス 11の二次電極 24に出力される。出力電圧 Voは負荷 12に印加さ れる。
[0074] 図 1 [1]に示す実際の圧電トランス 11を理想トランスの回路として現すと、図 1 [2]に 示すように、圧電トランス 11の一次側にインダクタンス成分 L'と静電容量成分 C'と抵 抗成分 R'の直列回路と、線間容量 C が現れる。圧電トランス 11の二次側に線間容
01
量 C が現れる。また、バックライトハウスに実装された冷陰極管 12は、冷陰極管 12
02
の高圧端子と GND端子の間に存在する浮遊容量 C 'と抵抗成分 Zの等価的な並列
し し
回路として表される。なお、負荷としての冷陰極管 12の抵抗成分 Zには、純粋な抵
抗分に加えて静電容量が含まれていてもよいため、これを冷陰極管 12のインピーダ ンス Zとして定義し、明細書では冷陰極管 12の抵抗成分 Zをインピーダンス Zとし し し し て用いる。
[0075] 前記冷陰極管 12の浮遊容量 C 'とインピーダンス Zは、理想トランスの二次側に現
し し
れる圧電トランス 11の線間容量 C と並列に現れる。また、圧電トランス 11の一次側 に印加される駆動装置 10の駆動電圧を Eで表している。また、理想トランス 11の一次 と二次の卷線比を 1 : φに設定している。なお、実際の圧電トランス 11では、卷線型ト ランスの卷線に相当するものが存在しないが、圧電トランスにおいても一次側の電圧 を二次側の電圧に変圧するものであるから、卷線比を用いている。
[0076] 本発明の実施形態では、図 1 [2]に示す理想トランスの二次側に現れるインダクタ ンス成分及び線間容量と冷陰極管 12の浮遊容量の共振現象を利用するものである から、図 1 [2]に示す理想トランスの一次側を一次側に換算する、すなわち理想トラン スのパラメータを 2次換算した図 1 [3]に示す等価回路を考える。
[0077] 図 1 [3]に示す等価回路は、 2次換算したインダクタンス成分 Lと静電容量 Cと抵
2 2 抗成分 Rの直列回路と、並列接続された理想トランスの二次側の線間容量 C と冷
2 02 陰極管 12の浮遊容量 Cの並列容量 C との回路力 形成される。ここで、 2次換算し
し し 2
たパラメータであるインダクタ L,静電容量 C,抵抗 R及び並列容量 Cは次のように表
される。すなわち、 Ε= φ E,、 L= φ 2L,、 C = C,Z 4> 2、 R二 Φ ,、 C =C +C
L 02 L,とな る。
[0078] 本発明の実施形態においては、図 1 [3]に示す圧電トランス 11の二次側に現れる インダクタンス成分 Lと、静電容量 Cと、並列容量 Cによる共振を引き起す共振周波
数の駆動電圧 Eを圧電トランス 11の一次側に印加する。このときの共振周波数 ω は
0
[数 2]
ω =
c+c,
(12)
で表される。
[0079] このとき、冷陰極管 12に流れる負荷電流 Iを求めると、
[数 3]
Figure imgf000018_0001
(13)
となる。
式( 13)に式( 12)を代入すると、 [数 4]
Figure imgf000018_0002
(14)
となる。
通常、
[数 5]
く」 であるから、
式(14)は、
[数 6]
Figure imgf000018_0003
(15)
となる。
[0082] したがって、冷陰極管のインピーダンス Zに無関係となり、冷陰極管のインピーダン
ス Zに対して定電流源となる。
[0083] そこで、本発明の実施形態では、負荷 12が二次側に接続されたトランス 11の一次 側に駆動電圧を印加する駆動装置において、前記トランス 11は、前記負荷 12に対し て定電流源としての機能を有しており、前記トランス 11は、前記負荷 12のインピーダ ンス Zを無限大にしたときにおける共振周波数 ω の駆動電圧 Vdが印加され継続し し 0
て共振状態を生じることにより、前記定電流源として機能させた構成としたものである
[0084] 上述したように前記共振周波数 ω は、理想トランスの回路に現れる前記トランスの
0
インダクタンス成分及び静電容量成分と、前記負荷の浮遊容量と前記理想トランスの 二次側線間容量の並列容量成分により決められる。この場合、前記共振周波数を ω 、前記トランスのインタクタンス成分を L'、前記静電容量をび、前記二次側線間容量 を C 、前記負荷の浮遊容量を C '、理想トランスの卷線比を φとした場合、
02 し
前記共振周波数 ω は、
0
[数 7]
Figure imgf000019_0001
に設定する。この共振周波数 ω を、二次換算したパラメータで表すと、式(12)とな
0
る。
[0085] 以上の説明では、図 1 [2]に示す理想トランスを二次換算した図 1 [3]に示す等価 回路において、インダクタンス成分 L'と静電容量 C'と抵抗成分 R'とを直列回路で示 した場合について説明した力 これに限られるものではない。テブナンの定理を応用 して、静電容量 C'と線間容量 C02と浮遊容量 CL'の合成容量と、インダクタンス成分 L'の並列回路として表し、その並列回路における並列共振状態において、前記負荷 12のインピーダンス Zを無限大にしたときにおける共振周波数 ω の駆動電圧 Vdが
し 0
トランス 11に印加し、トランス 11に継続して共振状態を生じさせることにより、トランス 1 1を定電流源として機能させた構成としたものであってもよいものである。
[0086] 図 2は図 1の駆動装置の効果を示し、図 2[1]は等価回路図であり、図 2[2]は冷陰 極管の電流-電圧特性図である。以下、図 1及び図 2に基づき説明する。
[0087] 図 2[1]では、図 1 [1]における駆動装置 10及び圧電トランス 11を、交流電圧源 13 及びその出力インピーダンス Zに置き換えている。そのため、交流電圧源 13に出力 o
インピーダンス Zと冷陰極管 12とが直列に接続されて!、る。
o
[0088] ここで、冷陰極管 12の両端電圧を V、冷陰極管 12に流れる負荷電流を I、交流電 し し 圧源 13の出力電圧を Vとすると、負荷直線は次式で与えられる。
o
V =— Z I +V · (16)
L O L Ο
[0089] 図 2[2]に示すように、冷陰極管 12は、その電流 電圧特性の一部に負性抵抗が 現れる。この負性抵抗とは、負荷電流 Iが増えるほど両端電圧 Vが減る性質である。
し し
[0090] 図 2[2]において、冷陰極管 12の動作点を Ρ (Ι , V )に定めたい。しかし、インピー
Ρ Ρ
ダンス Ζ
ο力 、さいと、負荷直線の傾きが小さくなるので、動作点 Ρの他に動作点 P'も 生じてしまう。すると、動作点が複数存在することになるので、冷陰極管 12の動作が 不安定となる。図 1 [4]に示すように、負荷電流 Iの位相は駆動電圧 Εよりも 90度遅 し
れる。本発明の実施形態では、冷陰極管 12を流れる負荷電流の位相に対して前記 駆動電圧の位相を 90度進める制御を行うことにより、共振状態を維持させている。具 体例を用いて詳細に説明する。
[0091] 図 3に示す本実施形態の駆動装置には符号 30を付して説明する。この駆動装置 3
0は図 3に示すように、電流位相検出回路 31、—45° シフト回路 32, 33、 D—FZF
(Dフリップフロップ) 34、積分器 35、 VCO (電圧制御発振器) 36、スイッチング回路
37、 LPF (ローパスフィルタ) 38等を備えている。
[0092] 電流位相検出回路 31は、例えば冷陰極管 12と GND端子との間に挿入された抵 抗器からなり、負荷電流 Iと同位相の位相信号 aを出力する。
[0093] —45° シフト回路 32, 33は、電流位相検出回路 31からの位相信号 aの位相をそ れぞれ—45度ずつ、合計— 90度回転させる。—45° シフト回路 32, 33は同じ構成 であるので、— 45° シフト回路 32について図 4[1]に基づき説明する。— 45° シフト 回路 32は、抵抗器 321とコンデンサ 322とからなる積分回路の出力側に、バッファ回 路 323が接続されたものである。抵抗器 321の抵抗を R、コンデンサ 322の静電容
1
量を C、負荷電流 Iの角周波数を ωとしたとき、 ω = 1Z (R C )の関係を満たすよう
1 し 1 1
に各数値を選定する。
[0094] このとき、—45° シフト回路 32の出力電圧 Voは、次式によって近似できるので、
1
位相が 45° シフト回路 32の入力電圧 Viから 45度遅れる。
1
Vo = (l/2-j/2)Vi · ' · (16)
1 1
[0095] なお、厳密に言えば、角周波数 ωが変化すると、 ω = 1Z (R C )の関係が成り立
1 1
たなくなつて、位相回転量に誤差が生じる。しかし、実際の角周波数 ωの精度は ±0 . 5%程度となるため、—45° シフト回路 32での位相回転量の誤差は問題とならな い。
[0096] D— FZF34は、 D入力端子、 CLK入力端子及び Q出力端子を有する一般的なも のであり、 CLK入力信号の立ち上がりで D入力信号の状態を記憶する。つまり、 D入 力端子が Ηレベルのときは、 CLK入力端子が Lレベル→Ηレベルとなった時に、 Q出 力端子が Ηレベルになる。逆に、 D入力端子が Lレベルのときは、 CLK入力端子が L レベル→Ηレベルとなった時に、 Q出力端子力 レベルになる。
[0097] 積分器 35は、 D— FZF34の Q出力信号 cと基準電圧 Vrefとの差電圧を積分する。
基準電圧 Vrefは、 Q出力信号 cの Hレベル電圧と Lレベル電圧とのほぼ中間の値とす る。このとき、 Q出力信号 cのデューティ比がほぼ 50%となるとき、積分器 35の出力電 圧 dは時間に対して一定となる。
[0098] VC036は、入力信号の電圧値に対応して出力信号の周波数値を変える機能を有 し、具体的には積分器 35の出力電圧 dに対応した周波数からなる周波数信号 eを発 生する。
[0099] スイッチング回路 37は、 VC036からの周波数信号 eに付勢されてオン ·オフするこ とにより、圧電トランス 11に駆動電圧 Vdを印加する。例えば図 4[2]に示すように、ス イッチング回路 37は、トランジスタ 371〜374からなる一般的なフルブリッジ回路であ る。トランジスタ 371は、 pチャネルパワー MOSFETであり、 VC036からの周波数信 号 eの反転信号 Zeが Lレベルのときにオンし、同じく Hレベルのときにオフする。トラ ンジスタ 372は、 nチャネルパワー MOSFETであり、 VC036からの周波数信号 eの 反転信号 Zeが Hレベルのときにオンし、同じく Lレベルのときにオフする。トランジス タ 373は、 pチャネルパワー MOSFETであり、 VC036からの周波数信号 eが Hレべ ルのときにオフし、同じく Lレベルのときにオンする。トランジスタ 374は、 nチャネルパ ヮー MOSFETであり、 VC036からの周波数信号 eが Hレベルのときにオンし、同じ く Lレベルのときにオフする。そのため、トランジスタ 372, 373がオフからオンかつトラ ンジスタ 371, 374がオンからオフとなったとき、駆動電圧 Vd ( = 2Vcc)が圧電トラン ス 11に印加される。したがって、周波数信号 eと駆動電圧 Vdとは位相が 180度ずれ ている。なお、図 4[2]に示したフルブリッジ回路は一例に過ぎず、フルブリッジ回路 の代わりに例えばプッシュプル回路などを用いてもょ 、。
[0100] LPF38は、例えば図 4 [2]〖こ示すコイル 375力らなり、駆動電圧 Vdに含まれる 3次 以上の高調波成分を除去して、駆動電圧 Vdの基本波を通過させる。
[0101] 図 5は、図 3における D—FZFの動作を示すタイミングチャートである。図 6は、図 3 における圧電トランスの駆動周波数 出力電流特性を示すグラフである。以下、図 3 乃至図 6に基づき、駆動装置 30の動作を説明する。
[0102] 駆動装置 30の出力側に圧電トランス 11及び冷陰極管 12が接続される場合、上述 したように理想トランスを二次換算した等価回路は図 1 [3]に示すように表される。そ して、共振周波数 ω
0 Ζ2πの駆動電圧 Vdを圧電トランス 11の一次側に印加すると、 冷陰極管 12の負荷電流 Iが冷陰極管 12のインピーダンスに関係なく一定になる。こ し
のとき、負荷電流 Iは、駆動電圧 Vdに対して、位相が 90度遅れている。すなわち、 し
駆動電圧 Vdに対して負荷電流 Iの位相が 90度遅れているとき、駆動周波数は等価 し
回路の直列共振周波数 ω Ζ2 πに一致する。
0
[0103] 駆動周波数をオープン制御によって一定にする場合は、厳密に言えば、電圧、電 流、温度、時間等によって、駆動装置 30の各構成部品の特性や等価回路の各成分 が変化することにより、共振周波数が変化してしまう。したがって、駆動電圧 Vd及び 負荷電流 Iの位相を検出して、駆動電圧 Vdの位相が負荷電流 Iに対して 90度進む ように、駆動電圧 Vdの周波数を制御することにより(すなわちフィードバック制御によ り)、負荷電流 I
しを精度良く一定にできる。
[0104] 更に詳しく説明する。まず、電流位相検出回路 31は、負荷電流 Iと同位相の位相 し
信号 aを出力する。位相信号 aは、—45° シフト回路 32で出力信号 a'となり、更に— 45° シフト回路 33で出力信号 bとなる。これにより、出力信号 bは、位相信号 aよりも 9 0度位相が遅れるので、駆動電圧 Vdに対して位相が反転して ヽる。
[0105] 出力信号 bは、 D— FZF34の CLK入力端子に入力される。一方、 VC036から出 力された周波数信号 eは、導線 39を介して0— 7 34の0入カ端子に入カされる。 周波数信号 eも駆動電圧 Vdに対して位相が反転して ヽるので、本来ならば出力信号 bと周波数信号 eとは同位相になる。しかし、何らかの理由によって、出力信号 bと周 波数信号 eとの位相がずれると、 D— FZF34等は次のように動作する。
[0106] 出力信号 bが周波数信号 eよりも位相が遅れると、図 5に示すように Q出力信号は H レベルとなり、積分器 35の出力電圧 dが上昇し、図 6に示すように VC036の周波数 信号 eの周波数が上昇する。その結果、出力信号 bの位相が進む。これとは逆〖こ、出 力信号 bが周波数信号 eよりも位相が進むと、図 5に示すように Q出力信号は Lレベル となり、積分器 35の出力電圧 dが低下し、図 6に示すように VC036の周波数信号 e の周波数が低下する。その結果、出力信号 bの位相が遅れる。
[0107] このように、駆動装置 30は、駆動電圧 Vd及び負荷電流 Iの位相を検出して、駆動 し
電圧 Vdの位相が負荷電流 Iに対して 90度進むように、駆動電圧 Vdの周波数を制 し
御する。
[0108] ここに、前記負荷を流れる負荷電流の位相に対して前記駆動電圧の位相を 90度 進める制御を行うことにより、共振状態を維持する周波数制御部は、電流位相検出 回路 31,—45° シフト回路 32, 33、 D-F/F34,積分器 35、 VC036及びスイツ チング回路 37により構成される。
[0109] なお、以上説明した実施形態では、トランス 11として圧電トランスを用いたが、これ に限られるものではない。この圧電トランスに代えて、二次側にバラストコンデンサ或 いはリアタトルを用いた卷線型トランスを用いた場合にも本発明を同様に適用すること ができる。前記トランスとして圧電トランスを用いた場合には、小型化及び軽量化に有 利である。また、圧電トランスとすると、各定数値 (L, C等)を電磁型よりも高精度に実 現できる。
[0110] また前記負荷 12として冷陰極管を用いた力 これに限られるものではない。この冷 陰極管に代えて、熱陰極管 (熱陰極蛍光管)、水銀灯、ナトリウム灯、メタルハライド灯 、ネオン等を用いてもよいものである。
産業上の利用可能性
[0111] 以上説明したように本発明によれば、トランスの二次側出力インピーダンスを部品の 追加なしに増大する構成としたため、複数の負荷に個々に接続した場合にも、個々 の負荷に流れる電流を制御することなぐ個々の負荷に流れる電流の偏差を低減す ることがでさる。
図面の簡単な説明
[0112] [図 1]本発明に係る駆動装置の第一実施形態を示し、図 1 [1]は実際の回路図、図 1
[2]は図 1 [1]の等価回路図であり、図 1 [3]は図 1 [2]の等価回路図であり、図 1 [4] は駆動電圧と負荷電流との関係を示すベクトル図である。
[図 2]図 1の駆動装置の効果を示し、図 2[1]は等価回路図であり、図 2[2]は冷陰極 管の電流 電圧特性図である。
[図 3]本発明に係る駆動装置の第二実施形態を示すブロック図である。
[図 4]図 4[1]は図 3における 45° シフト回路の一例を示す回路図、図 4[2]は図 3 におけるスイッチング回路の一例を示す回路図である。
[図 5]図 3における D—FZFの動作を示すタイミングチャートである。
[図 6]図 3における圧電トランスの駆動周波数—出力電流特性を示すグラフである。 符号の説明
[0113] 10, 30 駆動装置
11 圧電トランス
12 負荷 (冷陰極管)
21 圧電振動体
22, 23 一次電極 電流位相検出回路, 33 45° シフト回路 D-F/F
積分器
VCO
スイッチング回路 LPF

Claims

請求の範囲
[1] 二次側に負荷が接続されたトランスの一次側に駆動電圧を印加する駆動装置にお いて、
前記駆動電圧の周波数は、前記負荷のインピーダンスを無限大にしたときにおける 当該駆動装置の出力側の等価回路によって与えられる直列共振周波数である、 ことを特徴とするトランスの駆動装置。
[2] 前記等価回路は、インダクタンスと、抵抗と、第一の静電容量と、第二の静電容量と が直列に接続され、前記第二の静電容量に並列に前記負荷のインピーダンスが接 続されたものである、
請求項 1記載のトランスの駆動装置。
[3] 前記第二の静電容量は、前記トランスの二次側の静電容量と前記負荷の漂遊容量 とが並列接続されたものである、
請求項 2記載のトランスの駆動装置。
[4] 前記直列共振周波数を直列共振角周波数 ω、前記インダクタンスを L、前記抵抗
0
を R、前記第一の静電容量を C、前記第二の静電容量を Cとしたとき、当該直列共振 し
角周波数は、
ω = 1Ζ [UCC Z (C + C ) }] (ただし、 Rくく ΐΖ ω Cとする。)
0 し し 0 し
で与えられる、
請求項 3記載のトランスの駆動装置。
[5] 二次側に負荷が接続されたトランスの一次側に駆動電圧を印加する駆動装置にお いて、
前記負荷に流れる負荷電流の位相を検出する電流位相検出部と、
前記駆動電圧の位相を検出する電圧位相検出部と、
前記電圧位相検出部で検出された駆動電圧の位相が前記電流検出部で検出され た負荷電流の位相に対して 90度進むように、前記駆動電圧の周波数を制御する周 波数制御部と、
を備えたことを特徴とするトランスの駆動装置。
[6] 前記トランスは圧電トランスである、 請求項 1乃至 5のいずれかに記載のトランスの駆動装置。
[7] 前記負荷は放電管である、
請求項 1乃至 6のいずれかに記載のトランスの駆動装置。
[8] 前記放電管は冷陰極管である、
請求項 7記載のトランスの駆動装置。
[9] 二次側に負荷が接続されたトランスの一次側に駆動電圧を印加する駆動方法にお いて、
前記トランス及び前記負荷を含めた等価回路を作成し、前記負荷のインピーダンス を無限大にしたときに前記等価回路によって与えられる直列共振周波数を、前記駆 動電圧の周波数とする、
ことを特徴とするトランスの駆動方法。
[10] 二次側に負荷が接続されたトランスの一次側に駆動電圧を印加する駆動方法にお いて、
前記負荷に流れる負荷電流の位相を検出するとともに、前記駆動電圧の位相を検 出し、
検出された駆動電圧の位相が検出された負荷電流の位相に対して 90度進むよう に、前記駆動電圧の周波数を制御する、
ことを特徴とするトランスの駆動方法。
[11] 負荷が二次側に接続されたトランスの一次側に駆動電圧を印加する駆動装置にお いて、
前記トランスは、前記負荷に対して定電流源としての機能を有しており、 前記トランスは、前記負荷のインピーダンスを無限大にしたときにおける共振周波 数の前記駆動電圧が印加され継続して共振状態を生じることにより、前記定電流源と して機能することを特徴とするトランスの駆動装置。
[12] 前記共振周波数は、理想トランスの回路に現れる前記トランスのインダクタンス成分 及び静電容量成分と、前記負荷の浮遊容量と前記理想トランスの二次側線間容量の 並列容量成分により決められることを特徴とする請求項 11に記載のトランスの駆動装 置。
[13] 前記共振周波数を ω、前記トランスのインタクタンス成分を L'、前記静電容量をび、 前記二次側線間容量を C 、前記負荷の浮遊容量を C '、理想トランスの卷線比を φ
02 し
とした場合、
前記共振周波数 ωは、
[数 1]
Figure imgf000028_0001
であることを特徴とする請求項 12に記載のトランスの駆動装置。
[14] 前記負荷を流れる負荷電流の位相に対して前記駆動電圧の位相を 90度進める制 御を行うことにより、共振状態を維持する周波数制御部を有することを特徴とする請 求項 11に記載のトランスの駆動装置。
[15] 負荷が二次側に接続されたトランスの一次側に駆動電圧を印加する駆動方法にお いて、
前記負荷のインピーダンスを無限大にしたときにおける共振周波数の前記駆動電 圧を前記トランスに印加することにより、前記トランスを前記定電流源として作動させる ことを特徴とするトランスの駆動方法。
[16] 理想トランスの回路の現れる前記トランスのインダクタンス成分及び静電容量成分と
、前記負荷の浮遊容量と前記理想トランスの二次側線間容量の並列容量成分により 前記共振周波数を設定して、前記駆動電圧を前記トランスに印加することを特徴とす る請求項 15に記載のトランスの駆動方法。
[17] 前記負荷を流れる負荷電流の位相に対して前記駆動電圧の位相を 90度進める制 御を行うことにより、前記トランスに生じる共振状態を維持させることを特徴とする請求 項 15に記載のトランスの駆動方法。
PCT/JP2005/018805 2004-10-13 2005-10-12 トランスの駆動装置及び駆動方法 WO2006041102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006540954A JPWO2006041102A1 (ja) 2004-10-13 2005-10-12 トランスの駆動装置及び駆動方法
DE112005002201T DE112005002201T5 (de) 2004-10-13 2005-10-12 Transformatorantrieb und Transformatorantriebsverfahren
US11/572,598 US20080290812A1 (en) 2004-10-13 2005-10-12 Transformer Driver and Transformer Driving Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004298337 2004-10-13
JP2004-298337 2004-10-13

Publications (1)

Publication Number Publication Date
WO2006041102A1 true WO2006041102A1 (ja) 2006-04-20

Family

ID=36148389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018805 WO2006041102A1 (ja) 2004-10-13 2005-10-12 トランスの駆動装置及び駆動方法

Country Status (4)

Country Link
US (1) US20080290812A1 (ja)
JP (1) JPWO2006041102A1 (ja)
DE (1) DE112005002201T5 (ja)
WO (1) WO2006041102A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134850B2 (en) * 2007-07-13 2012-03-13 Texas Instruments Incorporated Systems and methods for frequency control of a voltage converter
JP2020176878A (ja) * 2019-04-16 2020-10-29 株式会社タムラ製作所 電流検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534945B (zh) * 2018-03-22 2021-01-05 昆明理工大学 一种调制薄膜激光感生电压的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845679A (ja) * 1994-08-01 1996-02-16 Nobumi Hagiwara 冷陰極管点灯装置
JPH11289778A (ja) * 1998-03-31 1999-10-19 Murata Mfg Co Ltd 圧電トランスインバータ
JP2003164163A (ja) * 2001-11-20 2003-06-06 Hitachi Metals Ltd 圧電トランス駆動回路
JP2004146660A (ja) * 2002-10-25 2004-05-20 Nissin Electric Co Ltd 圧電トランスおよびそれを備えるイオン発生器
JP2004241266A (ja) * 2003-02-06 2004-08-26 Taiheiyo Cement Corp 冷陰極管の点灯駆動装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138876A (ja) * 1994-11-16 1996-05-31 Minebea Co Ltd 圧電トランスを使用した冷陰極管点灯装置
JP3061049B1 (ja) * 1999-04-09 2000-07-10 株式会社村田製作所 圧電トランスインバ―タ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845679A (ja) * 1994-08-01 1996-02-16 Nobumi Hagiwara 冷陰極管点灯装置
JPH11289778A (ja) * 1998-03-31 1999-10-19 Murata Mfg Co Ltd 圧電トランスインバータ
JP2003164163A (ja) * 2001-11-20 2003-06-06 Hitachi Metals Ltd 圧電トランス駆動回路
JP2004146660A (ja) * 2002-10-25 2004-05-20 Nissin Electric Co Ltd 圧電トランスおよびそれを備えるイオン発生器
JP2004241266A (ja) * 2003-02-06 2004-08-26 Taiheiyo Cement Corp 冷陰極管の点灯駆動装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134850B2 (en) * 2007-07-13 2012-03-13 Texas Instruments Incorporated Systems and methods for frequency control of a voltage converter
JP2020176878A (ja) * 2019-04-16 2020-10-29 株式会社タムラ製作所 電流検出装置
JP7430033B2 (ja) 2019-04-16 2024-02-09 株式会社タムラ製作所 電流検出装置

Also Published As

Publication number Publication date
JPWO2006041102A1 (ja) 2008-05-15
DE112005002201T5 (de) 2007-08-16
US20080290812A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US6566821B2 (en) Drive device and drive method for a cold cathode fluorescent lamp
US6144139A (en) Piezoelectric transformer inverter
JP3063645B2 (ja) 圧電トランスの駆動回路
JP3266279B2 (ja) 位相ロック回路
JPH0974236A (ja) 圧電トランス及びそれを用いた電力変換装置
US20070046216A1 (en) Cold cathode tube lighting device, tube current detecting circuit used in cold cathode tube lighting device, tube current controlling method and integrated circuit
WO2006041102A1 (ja) トランスの駆動装置及び駆動方法
JP3432646B2 (ja) 圧電トランス式冷陰極蛍光灯駆動装置
JPWO2006041102A6 (ja) トランスの駆動装置及び駆動方法
JP2002017090A (ja) 圧電トランスの駆動方法および駆動装置
KR100717671B1 (ko) 부동 구성으로 방전 램프를 구동하는 방법 및 장치
JPH1131479A (ja) 放電管及び放電管の放電方法
JPWO2006088176A1 (ja) 圧電トランスの駆動回路
US20040227434A1 (en) Piezoelectric transformer, power supply circuit and lighting unit using the same
JP2000032763A (ja) 容量性負荷を駆動するためのパワ―回路
KR100529229B1 (ko) 압전 변압기를 이용한 고효율 냉음극관용 인버터 시스템
JP2000307168A (ja) 圧電トランスおよび放電灯装置
TWI258162B (en) A three-phase electronic ballast with current equalization function
US6320301B1 (en) Piezoelectric-transformer inverter
JP4468846B2 (ja) 圧電トランス制御回路
JP2001078442A (ja) 圧電トランス式電源装置及びその駆動方法
JPH10174436A (ja) 圧電素子駆動回路
JP3029422B2 (ja) 電源装置
JPH09199289A (ja) 電源装置
JP2000068086A (ja) 無電極放電灯点灯装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11572598

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050022013

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006540954

Country of ref document: JP

RET De translation (de og part 6b)

Ref document number: 112005002201

Country of ref document: DE

Date of ref document: 20070816

Kind code of ref document: P

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607