WO2006038367A1 - 物質吸着検知方法およびセンサ - Google Patents

物質吸着検知方法およびセンサ Download PDF

Info

Publication number
WO2006038367A1
WO2006038367A1 PCT/JP2005/013863 JP2005013863W WO2006038367A1 WO 2006038367 A1 WO2006038367 A1 WO 2006038367A1 JP 2005013863 W JP2005013863 W JP 2005013863W WO 2006038367 A1 WO2006038367 A1 WO 2006038367A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
optical waveguide
substance
light
crystal resonator
Prior art date
Application number
PCT/JP2005/013863
Other languages
English (en)
French (fr)
Inventor
Kazunari Shinbo
Futao Kaneko
Keizo Kato
Yasuo Ohdaira
Takahiro Kawakami
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2006539170A priority Critical patent/JP4500967B2/ja
Priority to US10/591,196 priority patent/US7843570B2/en
Publication of WO2006038367A1 publication Critical patent/WO2006038367A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a substance adsorption detection method and sensor using a piezoelectric element.
  • Patent Document 2 the evanescent field generated by guiding light through the optical waveguide is absorbed by the adsorbing substance, and the substance absorption is detected by the attenuation of the guided light.
  • the method is known.
  • Patent Document 3 a metal thin film is deposited on an optical waveguide, and when the surface plasmon is excited on the metal thin film by the guided light, the guided light is attenuated and further measured.
  • a known method for detecting substance adsorption by measuring the emitted light using the fact that surface plasmon excitation conditions change with substance adsorption.
  • Patent Document 1 JP-A-7-43285
  • Patent Document 2 JP-A-9 61346
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-108612
  • Patent Document 1 makes it possible to detect a small amount of gas adsorbed on a gas-sensitive thin film by utilizing the so-called QCM (Quartz Crystal Microbalance) of the crystal resonator!
  • QCM Quadrat Crystal Microbalance
  • the present invention uses a piezoelectric element, and a substance adsorption detection method and sensor capable of accurately and simultaneously detecting the amount of change in the adsorption mass of the substance to be detected and the amount of change in the optical characteristics associated therewith.
  • the purpose is to provide.
  • an optical waveguide layer in which a clad having a low refractive index medium force and a core having a high refractive index medium force are stacked is provided on a crystal resonator, and the oscillation characteristics of the crystal resonator are provided. And measuring light guided through the optical waveguide layer as an optical waveguide.
  • the substance adsorption detection method of the present invention includes a crystal, an electrode formed on one side of the crystal, and a transparent conductive material having a higher refractive index than that of the crystal formed on the other side of the crystal.
  • a quartz resonator is formed from a powerful optical waveguide electrode, and oscillation characteristics of the quartz resonator and light guided using the optical wave electrode as an optical waveguide are measured.
  • the substance adsorption detection method of the present invention comprises a crystal and an electrode force crystal resonator formed on both sides of the crystal, and the oscillation characteristics of the crystal resonator and the inside of the crystal resonator are optically transmitted. It is characterized by measuring light guided as a waveguide.
  • the substance adsorption detection method of the present invention is characterized in that a metal film is provided on the optical waveguide.
  • the substance adsorption detection method of the present invention includes a surface acoustic wave element, an optical waveguide provided in the surface acoustic wave element, a propagation characteristic of the surface acoustic wave of the surface acoustic wave element, and the piezoelectric internal portion. It is characterized by measuring the guided light.
  • the substance adsorption detection method of the present invention comprises forming a metal colloid layer on a quartz crystal resonator or surface acoustic wave device, measuring the adsorption mass with the crystal resonator or surface acoustic wave device, It is characterized by measuring the optical properties of the layer.
  • the substance adsorption detection method of the present invention is characterized in that a sensitive material layer whose optical characteristics change due to substance adsorption is provided.
  • the sensor of the present invention has a structure in which a clad made of a low refractive index medium and a core having a high refractive index medium force are laminated on a quartz resonator, and an optical waveguide layer serving as an optical waveguide for guiding light is provided. It is characterized by the installation. [0016] Further, the sensor of the present invention includes a crystal, an electrode formed on one side of the crystal, and a transparent conductive material force having a higher refractive index than that of the crystal formed on the other side of the crystal. It is characterized by comprising a crystal resonator composed of an optical waveguide electrode serving as an optical waveguide for guiding light.
  • the crystal and the electrode force formed on both sides of the crystal also constitute a crystal oscillator, and the oscillation characteristics of the crystal resonator and the inside of the crystal resonator serve as an optical waveguide. And measuring the light guided.
  • the sensor of the present invention is characterized in that a metal thin film is provided on the optical waveguide.
  • the sensor of the present invention is characterized in that a surface acoustic wave element and an optical waveguide are formed on the surface acoustic wave element.
  • the senor of the present invention is characterized by comprising a crystal resonator or a surface acoustic wave device and a metal colloid layer formed on the crystal resonator or the surface acoustic wave device.
  • the senor of the present invention is characterized in that a sensitive material layer whose optical characteristics are changed by substance adsorption is provided.
  • a change in emitted light due to a change in propagation loss caused by adsorption of a substance to be detected on the core surface of the optical waveguide, and oscillation characteristics of the crystal resonator It is possible to easily detect and identify a substance to be detected by utilizing the fact that both change. For example, when substances other than the detection target substance are adsorbed at the same time, it is impossible to identify only by the oscillation characteristics of the crystal unit in the sensor, but by measuring the refractive index by changing the optical characteristics at the same time. You can see that different media are adsorbed.
  • the quartz can be used as a cladding and the electrode as a core.
  • quartz it is possible to use quartz as a core.
  • the surface acoustic wave element with the optical waveguide, it is possible to observe the light propagated through the waveguide while measuring the propagation characteristics of the surface acoustic wave. Thereby, the adsorption of the substance can be detected.
  • the substance adsorption detection method and sensor of the present invention is a piezoelectric element (quartz vibrator or surface acoustic wave element) having an optical waveguide, and the adsorption mass of the substance can be detected by the piezoelectric element. Change power of the emitted light accompanying the optical characteristics of the adsorbed substance or the thin film for detection after substance adsorption can be observed with one element.
  • the above method can accurately detect the amount of change in adsorption mass and the amount of change in optical characteristic.
  • decomposition of the adsorbed material occurs due to light irradiation or if adsorption or desorption is promoted, it would be a large error if it was produced separately, but these should be integrated.
  • the present invention constitutes a crystal resonator having an optical waveguide, and observes oscillation characteristics of the crystal resonator and light emitted from the waveguide simultaneously or alternately.
  • FIG. 1 shows an example of the arrangement of sensors in the present embodiment.
  • a crystal resonator 10 including a crystal 1 and a pair of crystal oscillation electrodes 2 and 3 and low refraction on the crystal oscillation electrode 3 are shown.
  • a gas adsorbing portion comprising an optical waveguide layer 12 comprising a clad portion 4 made of a refractive index medium, a core 5 having a high refractive index medium force disposed thereon, and an adsorbent detecting thin film 7 disposed thereon 11.
  • a light incident prism 8 that is a light incident means for making light incident on the core 5 and a light emission prism 9 that is a light emission means for extracting light from the core 5 are configured.
  • the thin film 7 for detecting an adsorbed substance is formed of any material in which an organic functional substance force such as porphyrin is also formed and adsorbs the detected substance and the optical characteristics (complex dielectric constant) change accordingly. Can be used, but is not particularly necessary.
  • the clad part 4 of the low refractive index medium enables optical waveguide in the core part 5.
  • Core 5 consists of a higher refractive index media force than the outside that exposes cladding 4 and the element. Any material may be used for the clad 4 and the core 5 as long as they enable optical waveguide.
  • the crystal unit 10 can detect the amount of adsorption of the substance to be adsorbed.
  • the sensor element is exposed to a substance to be detected, and a change in the oscillation frequency of the crystal resonator 10 is observed during the exposure.
  • light is incident on the core 5 from the light source (not shown) through the light incident prism 8 to guide the light.
  • the incident angle of light is an angle within a range where light is totally reflected in the core 5 and light is guided.
  • an evanescent field is generated near the core surface outside the core (this distance is determined by the dielectric constant and incident angle of the interface medium). If this evanescent field occurs and there is a light-absorbing substance in the region, the evanescent field As light is absorbed, the light guided through the core 5 is attenuated.
  • the adsorbed material detection thin film 7 exists in the evanescent wave oozing area, and the adsorbed material detection thin film 7 that has adsorbed the detected material changes its light absorption characteristics with respect to that before adsorption. Since the absorption of the evanescent wave by the thin film 7 changes, the state of attenuation of the light emitted from the core 5 through the light emitting prism 9 also changes. This emitted light is measured by a photodetector (not shown). If the substance to be detected itself is light-absorbing, the adsorbent-detecting thin film 7 may not be light-absorbing.
  • the refractive index of the adsorbed substance detection thin film 7 is larger than the refractive index of the core 5, the light will leak from the core 5, and this will change the refractive index due to the adsorption of the detected substance. Therefore, a substance capable of changing the light confined by changing the light confinement and propagation loss in the core 5 may be used for the adsorbed substance detection thin film 7.
  • Incident light is absorbed by the adsorbed substance detection thin film 7 or the substance to be detected, or is white light or a single color including a wavelength at which the propagation loss changes due to adsorption of the substance to be detected and the emitted light intensity changes. Let it be light.
  • the spectrum or intensity of the light emitted from the core 5 changes as described above.
  • the mass of the sensor element is increased by the amount of adsorption of the substance to be detected.
  • the crystal unit 10 has a characteristic (QCM) in which the oscillation frequency changes depending on the mass of the deposits attached to the surface, the frequency decreases as the amount of gas to be detected increases. To do. That is, the frequency characteristics of the quartz crystal resonator 10 change in proportion to the mass of the gas to be detected adsorbed.
  • the adsorbed mass and light transmission characteristics observed for several detection target substances in advance is detected and identified by comparing the change relationship. As described above, it is possible to detect and identify the substance to be detected from the amount of adsorption of the substance to be detected, that is, the amount of change in the emitted light corresponding to the frequency change of the crystal resonator 10.
  • the optical waveguide layer 11 in which the clad 4 having a low refractive index medium force and the core 5 having a high refractive index medium force are stacked on the crystal resonator 10 is provided.
  • the oscillation characteristics of the quartz resonator 10 and the light guided by using the optical waveguide layer as an optical waveguide are measured.
  • the sensor of the present embodiment has a structure in which a clad 4 made of a low refractive index medium and a core 5 made of a high refractive index medium force are laminated on a crystal resonator 10, and an optical waveguide for guiding light An optical waveguide layer 11 is provided.
  • the change in the emitted light due to the change in the propagation loss accompanying the adsorption of the substance to be detected on the surface of the core 5 of the optical waveguide layer 11, and the oscillation characteristics of the crystal unit 10 It is possible to easily detect and identify a substance to be detected by utilizing the fact that both change. For example, when substances other than the detection target substance are adsorbed at the same time, it is impossible to identify only the oscillation characteristics of the crystal unit 10 in the sensor. By carrying out simultaneously, it can be known that different media are adsorbed.
  • the adsorption mass of the substance can be detected by the oscillation frequency characteristic of the crystal resonator 10, and the optical characteristics of the adsorbed substance or the thin film for detection 7 after the substance adsorption can be determined from the change in the emitted light accompanying the substance adsorption. It can be observed with the device.
  • the above method can accurately detect the amount of change in adsorption mass and the amount of change in optical characteristics. .
  • the adsorbed material is decomposed by light irradiation, or when adsorption or desorption is promoted, a force that causes a large error when the QCM and the optical waveguide are manufactured separately. Therefore, it is possible to measure in detail the photodecomposition and the adsorption phenomenon by light.
  • the crystal 1, the electrode 2 formed on one side of the crystal 1, and the higher refraction than the crystal 1 formed on the other side of the crystal 1 It is characterized by comprising a crystal resonator 10 made of a transparent conductive material having a high refractive index and composed of an electrode 3 as an optical waveguide electrode serving as an optical waveguide for guiding light.
  • the transparent conductive material having a sufficiently higher refractive index than that of the crystal 1 is used as the electrode 3, and the light is incident on the electrode 3, whereby the crystal 1 is the cladding part and the electrode 3 is the core part. It can be made to work as
  • crystal 1 or crystal 1 or crystal 1 is composed of crystal 1 and electrodes 2 and 3 formed on both sides of crystal 1.
  • the electrodes 2 and 3 are optical waveguides.
  • the electrodes 2 and 3 are metal thin films, or the electrodes 2 and 3 are transparent media and the crystal 1 is refracted more than the electrodes 2 and 3. If the refractive index is large, crystal 1 is used as the core, and if electrodes 2 and 3 are transparent media, and crystal 1 has a lower refractive index than electrodes 2 and 3, then crystal 2 and crystal 1 and electrode 3 It can be used as a core.
  • Example 2 will be described.
  • a metal thin film 6 having an appropriate thickness is installed between the core 5 and the adsorbed substance detection thin film 7.
  • the metal Surface plasmons can be excited on the thin film surface.
  • the transmitted light is attenuated at the wavelength that excites the surface plasmon.
  • the dielectric constant or film thickness of the adsorbed substance detection thin film 7 after adsorption of the detected substance is obtained, and the oscillation state of the crystal unit 10 is detected.
  • the adsorption detection thin film and the substance to be detected do not necessarily have to be light-absorbing.
  • the substance adsorption detection method of the above embodiment is characterized in that the metal thin film 6 is provided on the core 5.
  • the sensor of the present invention is characterized in that a metal thin film 6 is provided on the core 5.
  • surface plasmon can be resonantly excited in the metal thin film 6 by the evanescent wave generated in the vicinity of the core 5 by the guided light.
  • the guided light attenuates and the excitation conditions change sensitively due to the adsorption of substances. While measuring the characteristics, the oscillation characteristics of the crystal unit 10 can be observed.
  • LP local plasmon
  • this metal colloid is deposited on the quartz crystal resonator 10, and by simultaneously measuring the resonance wavelength of the LP and the oscillation frequency change of the quartz crystal resonator 10, an optical change accompanying the substance adsorption is performed. The mass change is measured in combination.
  • Figure 3 shows an example structure.
  • a gold (Au) colloid 17 as a metal colloid layer is deposited on a crystal resonator 10 in which the crystal 1 is sandwiched between a pair of electrodes 15 and 16.
  • the substance to be detected is adsorbed on the gold colloid 17, the mass change is made by the quartz crystal resonator 10, and the resonance wavelength (absorption peak wavelength) of LP in the gold colloid 17 and the refraction of the adsorbed substance are measured by measuring transmitted light or scattered light. Observe the rate. At this time, if the electrodes 15 and 16 are transparent, the transmitted light of the gold colloid thin film on the electrode can be observed. If the electrodes 15 and 16 are not transparent, the transmitted light of the colloidal gold thin film near the electrodes is measured.
  • the crystal resonator 10 including the crystal 1 and the electrodes 15 and 16 and the gold colloid 17 as a metal colloid layer formed on the crystal resonator 10 are provided. I have.
  • Example 4 a surface acoustic wave element 21 composed of a piezoelectric body 19 on a low refractive index substrate 18 and comb-shaped counter electrodes 20a and 20b, a light incident prism 8 and a light emitting prism 9 are used.
  • the refractive index of the piezoelectric body 19 is larger than that of the substrate 18.
  • the piezoelectric body 19 is caused to function as an optical waveguide.
  • the guided light A propagating through the optical waveguide is observed while measuring the propagation characteristics of the surface acoustic wave B at 20a and 20b.
  • a structure in which an optical waveguide is newly laminated on the piezoelectric body 19 or a sensitive material layer whose optical characteristics are changed by substance adsorption can be laminated.
  • the main action is the same as in the first embodiment.
  • the sensor according to the present invention can detect the adsorption mass of a substance based on the oscillation frequency characteristic of the crystal resonator 10 or the surface acoustic wave element 21 with one sensor element, and can observe the amount of change in the emitted light characteristic with respect to the adsorption mass. .
  • the senor may be in gas or liquid.
  • the present invention is not limited to the above embodiments and can be modified without departing from the spirit of the present invention.
  • the shape of the adsorbed substance detection thin film 7 is not particularly limited, and various substances can be detected by changing the material.
  • an adsorbent detection substance such as acidic nitrogen in a gas, a basic gas such as ammonia, an organic solvent gas, a liquid Detection and identification of biological substances in the medium can be considered. Furthermore, it can be used for environmental monitoring and process management.
  • FIG. 1 is a longitudinal sectional view showing a structure of a sensor in a first example of the present invention.
  • FIG. 2 is a longitudinal sectional view showing the structure of a sensor in a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing the structure of a sensor according to a third embodiment of the present invention.
  • FIG. 4 is a perspective view showing a structure of a sensor according to a fourth embodiment of the present invention.
  • the core of the core is the core of the core
  • Optical waveguide layer (optical waveguide), 16 electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 本発明は、被検知物質の吸着量に対する感応性薄膜の光学特性の変化量を利用した物質吸着検知方法及びセンサを提供する。水晶振動子10上に、クラッド4,コア5,吸着物質検知用薄膜7を順次積層し、光導波層12ひいてはガス吸着部11を構成する。また、コア5表面に光入射用プリズム8と光出射用プリズム9とを設ける。光導波層11のコア5表面に被検知物質が吸着することに伴い、伝搬損失が変化することによる出射光の変化と、水晶振動子10の発振特性が共に変化することを利用して、被検出物質の吸着質量の変化量とそれに伴う光学特性の変化量とを同時に正確に検出できる。

Description

物質吸着検知方法およびセンサ
技術分野
[0001] 本発明は、圧電素子を用いた物質吸着検知方法およびセンサに関するものである 背景技術
[0002] 従来の吸着センサとして、特許文献 1に開示されるように、ガス感応性膜に吸着した NOガスに応じて水晶振動子の発振周波数の低下を利用することで、微量な NOガ
2 2 スを検出することができるセンサが知られて 、る。
[0003] また、特許文献 2に開示されるように、光導波路に光を導波させることで生じるエバ ネッセント場が吸着物質により吸収され、導波光が減衰することを用いて物質吸着を 検知する方法が知られて 、る。
[0004] また、特許文献 3に開示されるように、光導波路上に金属薄膜を堆積し、導波光に より金属薄膜上に表面プラズモンを励起すると導波光が減衰することを用い、さらに 被測定物質の吸着に伴い表面プラズモン励起条件が変化することを用い、出射した 光を測定することで物質吸着を検知する方法が知られている。
特許文献 1 :特開平 7— 43285号公報
特許文献 2:特開平 9 61346公報
特許文献 3:特開 2001— 108612号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、上記特許文献 1に開示される従来のセンサでは、水晶振動子の性質所謂 QCM (Quartz Crystal Microbalance)を利用することでガス感応性薄膜に吸着した 微量なガスを検知可能として!/、るが、これだけでは検知対象物質および吸着後の感 応性薄膜の光学特性を直接に知ることはできな 、と 、う問題があった。
[0006] また、上記特許文献 2および 3に開示される従来のセンサでは、どの程度の質量の 検知対象物質が素子に吸着して出射光の変化をもたらしている力を直接に知ること はできな!、と!/、う問題があった。
[0007] そこで本発明は上記問題点に鑑み、圧電素子を利用し、被検出物質の吸着質量 の変化量とそれに伴う光学特性の変化量とを同時に正確に検出できる物質吸着検 知方法およびセンサを提供することを目的とする。
課題を解決するための手段
[0008] 本発明の物質吸着検知方法は、水晶振動子上に、低屈折率媒体力 なるクラッドと 高屈折率媒体力 なるコアを積層した光導波層を設け、前記水晶振動子の発振特 性と、前記光導波層を光導波路として導波した光を測定することを特徴とする。
[0009] また、本発明の物質吸着検知方法は、水晶と、当該水晶の一側に形成された電極 と、前記水晶の他側に形成された前記水晶よりも高屈折率の透明導電性材料力 な る光導波電極とから水晶振動子を構成し、当該水晶振動子の発振特性と、前記光導 波電極を光導波路として導波した光を測定することを特徴とする。
[0010] また、本発明の物質吸着検知方法は、水晶と、当該水晶の両側に形成された電極 力 水晶振動子を構成し、当該水晶振動子の発振特性と、当該水晶振動子内部を 光導波路として導波した光を測定することを特徴とする。
[0011] また、本発明の物質吸着検知方法は、前記光導波路の上に金属膜を設けたことを 特徴とする。
[0012] また、本発明の物質吸着検知方法は、表面弾性波素子と、当該表面弾性波素子に 光導波路を設け、当該表面弾性波素子の表面弾性波の伝搬特性と、当該圧電体内 部を導波した光を測定することを特徴とする。
[0013] さらに、本発明の物質吸着検知方法は、水晶振動子または表面弾性波素子上に 金属コロイド層を形成し、当該水晶振動子または表面弾性波素子により吸着質量を 測定し、また金属コロイド層の光学特性を測定することを特徴とする。
[0014] さらに、本発明の物質吸着検知方法は、物質吸着によって光学特性が変化する感 応性材料層を設けたことを特徴とする。
[0015] 本発明のセンサは、水晶振動子上に、低屈折率媒体からなるクラッドと高屈折率媒 体力 なるコアを積層した構造であり、光を導波させる光導波路となる光導波層を設 けたことを特徴とする。 [0016] また、本発明のセンサは、水晶と、当該水晶の一側に形成された電極と、前記水晶 の他側に形成された前記水晶よりも高屈折率の透明導電性材料力 なり、光を導波 させる光導波路となる光導波電極とから構成された水晶振動子を備えたことを特徴と する。
[0017] また、本発明のセンサは、水晶と、当該水晶の両側に形成された電極力も水晶振 動子を構成し、当該水晶振動子の発振特性と、当該水晶振動子内部を光導波路とし て導波した光を測定することを特徴とする。
[0018] また、本発明のセンサは、前記光導波路の上に金属薄膜を設けたことを特徴とする
[0019] また、本発明のセンサは、表面弾性波素子と、当該表面弾性波素子に光導波路を 構成したことを特徴とする。
[0020] さらに、本発明のセンサは、水晶振動子または表面弾性波素子と、当該水晶振動 子または表面弾性波素子上に形成された金属コロイド層とを備えたことを特徴とする
[0021] さらに、本発明のセンサは、物質吸着によって光学特性が変化する感応性材料層 を設けたことを特徴とする。
発明の効果
[0022] 本発明における物質吸着検知方法及びセンサでは、光導波路のコア表面に被検 知物質が吸着することに伴い、伝搬損失が変化することによる出射光の変化と、水晶 振動子の発振特性が共に変化することを利用して、被検知物質の検知と識別を容易 に行うことができる。例えば、検知対象物質以外のものが同時に吸着されてくるような 場合には、センサにおける水晶振動子の発振特性のみでは識別不可能であるが、 光学特性の変化による屈折率測定を同時に行うことで異なる媒質が吸着していること を知ることができる。
[0023] また、水晶よりも十分に屈折率が大きい透明導電性材料を電極として用いることで、 水晶をクラッド、電極をコアとして作用させることができる。さらに、水晶をコアとして作 用させることちでさる。
[0024] また、前記コアの上に金属薄膜を設けていることによって、導波光によりコア近傍に 生じるエバネッセント波によって金属薄膜に表面プラズモンを共鳴励起できる。表面 プラズモンが励起されると導波光は減衰し、また励起条件は物質の吸着によって敏 感に変化するため、出射光を測定することでより高感度に光学特性の測定を行いな がら、水晶振動子の発振特性を観測できる。さらに、金属薄膜表面に物質吸着によ つて光学特性が変化する感応性材料を堆積しておくことで、微量物質の検出をより 良好に行うことができる。
[0025] さらに、表面弾性波素子に光導波路を設けていることによって、表面弾性波の伝搬 特性を測定しながら、導波路を伝搬した光を観測することができる。これによつて、物 質の吸着を検知することができる。
[0026] さらに、光を照射したときにローカルプラズモン (LP)を発生する金属コロイドの特性 を利用して、物質吸着に伴う透過光または散乱光の変化を測定できる。
[0027] さらに最上層に、被検知物質の吸着によって光学特性が変化し、それによつて伝 搬損失を大きく変化させる感応性材料を堆積しておくことで、微量物質の検出も良好 に行うことができる。
[0028] 本発明の物質吸着検知方法及びセンサは、光導波路を有する圧電素子 (水晶振 動子または表面弾性波素子)であって、圧電素子によって物質の吸着質量を検知で き、また物質吸着に伴う出射光の変化力 吸着物質または物質吸着後の検知用薄 膜の光学特性を一つの素子で観測できる。
[0029] 圧電素子と、光学特性を測定する素子を別々に作製して観測する場合に比べて、 上記の方法では吸着質量の変化量と光学特性の変化量を正確に検出できる。とりわ け、光照射によって吸着物質の分解が生じる場合や、吸着または脱離が促進される ような場合は、別に作製していた場合には大きな誤差となるが、これらを一体とするこ とでこのような光分解や光による吸着現象について、詳しく測定することができる。
[0030] また、いくつかの検知対象物質について吸着質量と光学特性の関係を観測してお くことにより、例えば吸着分子数あたり同じ光学物性の変化を与える質量の異なる物 質に対して、識別を行うことも可能である。
発明を実施するための最良の形態
[0031] 以下、添付図面を参照しながら、本発明における物質吸着測定方法およびその測 定方法を用いたセンサの好ましい各実施例を説明する。なお、これらの各実施例に おいて、同一箇所には同一符号を付し、共通する部分の説明は重複するため極力 省略する。
[0032] 本発明は、光導波路を有する水晶振動子を構成し、水晶振動子の発振特性と、導 波路から出射する光を同時または交互に観測するものである。
実施例 1
[0033] 図 1は、本実施例におけるセンサの配置例を示しており、水晶 1と一対の水晶発振 用電極 2, 3とからなる水晶振動子 10と、水晶発振用電極 3上の低屈折率媒質からな るクラッド部 4と、その上に配置した高屈折率媒質力もなるコア 5とからなる光導波層 1 2と、その上に配置した吸着物質検知用薄膜 7とからなるガス吸着部 11、コア 5に光を 入射するための光入射手段たる光入射用プリズム 8と、コア 5から光を取り出すための 光出射手段たる光出射用プリズム 9とから構成される。なお、このセンサ素子におい て、吸着物質検知用薄膜 7は、例えばポルフィリンなどの有機機能性物質力も形成さ れ、被検知物質を吸着しそれに伴って光学特性 (複素誘電率)が変化するあらゆる 材料を用いることができるが、特に無くても良い。
[0034] 低屈折率媒質のクラッド部 4は、コア部 5における光導波を可能とするものである。コ ァ 5は、クラッド 4および素子を暴露する外界よりも高屈折率の媒体力 成る。クラッド 4、コア 5の材質は、光導波を可能とするものであればどのようなものを用いてもよい。 コア 5に光を入射すると、光はコア内部で全反射しながら導波していく。この時、被検 知物質の吸着によるコア 5からの出射光の変化を観測する。さらに、水晶振動子 10は 被吸着物質の吸着量を検知することができる。
[0035] 次に、本発明の作用について説明する。
[0036] 被検知物質に本センサ素子を暴露し、その間水晶振動子 10の発振周波数の変化 を観測する。同時に、光源(図示せず)から光入射用プリズム 8を通してコア 5に光を 入射し光を導波させる。光の入射角度は、コア 5内で光が全反射し光が導波する範 囲内の角度とする。光がコア 5内を導波すると、コア外側のコア表面近傍 (この距離は 界面媒体の誘電率と入射角により決定される)にはエバネッセント場が生じる。このェ バネッセント場が生じて 、る領域に光吸収性の物質が存在すると、エバネッセント場 が吸収されることによってコア 5を導波する光は減衰する。吸着物質検知用薄膜 7は エバネッセント波の浸みだし領域内に存在しており、被検知物質を吸着した吸着物 質検知用薄膜 7が吸着前に対して光吸収特性が変化すると、吸着物質検知用薄膜 7 によるエバネッセント波の吸収が変化するため、コア 5から光出射用プリズム 9を通し て出射した光の減衰の様子も変化する。この出射光を光検出器 (図示せず)により測 定する。なお、被検知物質自体が光吸収性であれば、吸着物質検知用薄膜 7は光 吸収性でなくても良い。また、吸着物質検知用薄膜 7の屈折率がコア 5の屈折率より も大きくなればコア 5から光が漏れることになる力 これを用いて、被検知物質の吸着 により屈折率が変化し、これによつてコア 5における光閉じこめと伝搬損失を変えて出 射した光を変化できる物質を吸着物質検知用薄膜 7に用いても良い。なお、入射す る光は、吸着物質検知用薄膜 7または被検知物質によって吸収されるか、被検知物 質の吸着によって伝搬損失が変化し出射した光強度が変化する波長を含む白色光 または単色光とする。被検知物質が素子ひいては吸着物質検知用薄膜 7表面に吸 着すると、以上に記述したことから、コア 5から出射した光のスペクトルまたは強度が 変化する。このとき、本センサ素子の質量は、被検知物質の吸着量分増加することと なる。水晶振動子 10には、その表面に付着させた付着物の質量に応じて固有の発振 周波数が変化する性質 (QCM)があるため、被検知ガスの吸着量が増加するにつれ て、周波数は減少する。すなわち、吸着した被検知ガスの質量にほぼ比例して水晶 振動子 10の周波数特性が変化する。これらの出射光特性及び周波数特性は、被検 知物質の吸着量や種類に応じて固有の値を示すため、予めいくつかの検知対象物 質について観測しておいた吸着質量と光透過特性の変化の関係とを比較することに より、被検知物質の検出と識別を行う。以上のようにして、被検知物質の吸着量、す なわち水晶振動子 10の周波数変化に対応する出射光の変化量から、被検知物質の 検出と識別を行うことができる。
以上のように、上記実施例の物質吸着検知方法は、水晶振動子 10上に、低屈折率 媒体力もなるクラッド 4と高屈折率媒体力もなるコア 5を積層した光導波層 11を設け、 前記水晶振動子 10の発振特性と、前記光導波層を光導波路として導波した光を測 定するものである。 [0038] また、本実施例のセンサは、水晶振動子 10上に、低屈折率媒体からなるクラッド 4と 高屈折率媒体力 なるコア 5を積層した構造であり、光を導波させる光導波路となる 光導波層 11を設けたものである。
[0039] 上記の構成によれば、光導波層 11のコア 5表面に被検知物質が吸着することに伴 い、伝搬損失が変化することによる出射光の変化と、水晶振動子 10の発振特性が共 に変化することを利用して、被検知物質の検知と識別を容易に行うことができる。例え ば、検知対象物質以外のものが同時に吸着されてくるような場合には、センサにおけ る水晶振動子 10の発振特性のみでは識別不可能であるが、光学特性の変化による 屈折率測定を同時に行うことで異なる媒質が吸着していることを知ることができる。
[0040] さらに最上層に位置するコア 5の表面に、被検知物質の吸着によって光学特性が 変化し、それによつて伝搬損失を大きく変化させる感応性材料を堆積しておくことで、 微量物質の検出も良好に行うことができる。
[0041] また、水晶振動子 10の発振周波数特性によって物質の吸着質量を検知でき、また 物質吸着に伴う出射光の変化から、吸着物質または物質吸着後の検知用薄膜 7の 光学特性を一つの素子で観測できる。
[0042] そして、水晶振動子 10と光学特性を測定する素子を別々に作製して観測する場合 に比べて、上記の方法では吸着質量の変化量と光学特性の変化量を正確に検出で きる。とりわけ、光照射によって吸着物質の分解が生じる場合や、吸着または脱離が 促進されるような場合は、 QCMと光導波路を別に作製していた場合には大きな誤差 となる力 これらを一体とすることでこのような光分解や光による吸着現象について、 詳しく測定することができる。
[0043] さらに、いくつ力の検知対象物質について吸着質量と光学特性の関係を観測して おくことにより、例えば吸着分子数あたり同じ光学物性の変化を与える質量の異なる 物質に対して、識別を行うことも可能である。
[0044] なお、本実施例のセンサの別の構成は、水晶 1と、当該水晶 1の一側に形成された 電極 2と、前記水晶 1の他側に形成された水晶 1よりも高屈折率の透明導電性材料か らなり、光を導波させる光導波路となる光導波電極としての電極 3とから構成された水 晶振動子 10を備えたことを特徴とする。 [0045] 上記の構成によれば、水晶 1よりも十分に屈折率が大きい透明導電性材料を電極 3 として用い、電極 3に光入射することで、水晶 1をクラッド部、電極 3をコア部として作 用させることができる。
[0046] また、本実施例のセンサの別の構成は、水晶 1と、当該水晶 1の両側に形成された 電極 2および電極 3と力 構成された水晶振動子 10において、水晶 1または水晶 1と 電極 2および電極 3を光導波路とすることを特徴とする。
[0047] 上記の構成において水晶 1に光入射することで、電極 2および電極 3が金属薄膜の 場合または電極 2および電極 3が透明性の媒質でかつ電極 2および電極 3よりも水晶 1の屈折率が大きい場合には水晶 1をコアとして、また電極 2および電極 3が透明性 の媒質でかつ電極 2および電極 3よりも水晶 1の屈折率が小さい場合には電極 2から 水晶 1と電極 3にわたつてコアとして作用させることができる。
実施例 2
[0048] つぎに、実施例 2について説明する。本実施例では、図 2のようにコア 5と吸着物 質検知用薄膜 7の間に適切な厚さの金属薄膜 6を設置したものである。この場合、コ ァ 5、金属薄膜 6の膜厚と誘電率、吸着物質検知用薄膜 7の膜厚と誘電率、および外 界の誘電率で決定されるある波長と入射角度に対して、金属薄膜表面に表面プラズ モンが励起できる。この時透過光は、表面プラズモンを励起する波長において減衰 を受ける。この透過光の減衰量を理論計算することにより被検知物質吸着後の吸着 物質検知用薄膜 7の誘電率または膜厚を求めると共に、水晶振動子 10の発振の様 子を検出する。この場合、吸着検知用薄膜および被検知物質は必ずしも光吸収性で なくても良い。
[0049] 以上のように、上記実施例の物質吸着検知方法は、前記コア 5の上に金属薄膜 6を 設けたことを特徴とする。また、本発明のセンサは、前記コア 5の上に金属薄膜 6を設 けたことを特徴とする。
[0050] 以上の構成によれば、前記コア 5の上に金属薄膜 6を設けて 、ることによって、導波 光によりコア 5近傍に生じるエバネッセント波によって金属薄膜 6に表面プラズモンを 共鳴励起できる。表面プラズモンが励起されると導波光は減衰し、また励起条件は物 質の吸着によって敏感に変化するため、出射光を測定することでより高感度に光学 特性の測定を行 、ながら、水晶振動子 10の発振特性を観測できる。
[0051] さらに、金属薄膜 6表面に物質吸着によって光学特性が変化する感応性材料を堆 積しておくことで、微量物質の検出をより良好に行うことができる。
実施例 3
[0052] 近年、直径数十 nm程度の金属コロイドに光を照射したときに発生するローカルブラ ズモン (LP)を用いたセンサが提案されている。これは、金属コロイド表面に物質が吸 着したときに、物質の屈折率や膜厚に依存して LPの共鳴波長や光吸収強度または 光散乱強度が変化することを用いたものである。
[0053] 本実施例では、この金属コロイドを水晶振動子 10上に堆積し、 LPの共鳴波長と水 晶振動子 10の発振周波数変化を同時測定することで、物質吸着に伴う光学的変化' 質量変化を複合的に測定する。図 3に構造例を示す。水晶 1を一対の電極 15, 16で 挟み込んでなる水晶振動子 10上に、金属コロイド層としての金 (Au)コロイド 17を堆積 させる。この金コロイド 17上に被検知物質を吸着させ、水晶振動子 10により質量変化 を、さらに透過光または散乱光の測定により金コロイド 17における LPの共鳴波長(吸 収ピーク波長)および吸着物質の屈折率を観測する。この時、電極 15,16が透明であ れば電極上の金コロイド薄膜の透過光を観測できる。電極 15,16が透明でなければ、 電極近傍の金コロイド薄膜の透過光を測定する。
[0054] 以上のように本実施例のセンサでは、水晶 1と電極 15, 16とからなる水晶振動子 10 と、当該水晶振動子 10上に形成された金属コロイド層としての金コロイド 17とを備えて いる。
[0055] 上記の構成によれば、光を照射したときにローカルプラズモン (LP)を発生する金コ ロイド 17の特性を利用して、物質吸着に伴う透過光の変化を測定できる。この時、光 検出は散乱光を用いても良い。なお、質量検出手段として、表面弾性波素子を用い ても良い。
実施例 4
[0056] つぎに、実施例 4について説明する。本実施例では、図 4のように低屈折率基板 18 上の圧電体 19と櫛形対向電極 20a、 20bとからなる表面弾性波素子 21と、光入射用プ リズム 8および光出射用プリズム 9からなる。圧電体 19の屈折率は基板 18よりも大きく しておき、圧電体 19を光導波路として機能させる。圧電体 19に物質が吸着するとき、 2 0a、 20bで表面弾性波 Bの伝搬特性を測定しながら、光導波路を伝搬する導波光 A を観測する。なお、圧電体 19の上に、新たに光導波路を積層した構造やさらに物質 吸着によって光学特性が変化する感応性材料層を積層した構造とすることも可能で ある。主な作用は第 1実施例の場合と同じである。
[0057] 本発明におけるセンサは、 1つのセンサ素子で、水晶振動子 10または表面弾性波 素子 21の発振周波数特性によって物質の吸着質量を検知でき、吸着質量に対する 出射光特性の変化量を観測できる。これにより、従来のように二つのセンサを並べて 使用しなくてもよいので、被検知対象となる一点(一地点)に対してピンポイントかつ 正確な検出が可能である。
[0058] 以上の実施例において、センサは気体中にあっても液体中にあってもよい。
[0059] なお、本発明は、上記各実施例に限定されるものではなぐ本発明の趣旨を逸脱し ない範囲で変更可能である。吸着物質検知用薄膜 7の形状は特に限定されず、材 質を変更することで種々の物質を検知することが可能である。
産業上の利用可能性
[0060] 本発明の活用例として、吸着物質検知用物質を選択することにより、気体中におけ る酸ィ匕窒素などの酸ィ匕性ガス、アンモニアなどの塩基性ガスや有機溶媒ガス、液体 中の生体物質などの検出および識別が考えられる。さらに、環境モニターや工程管 理などにも利用できるものと考えられる。
図面の簡単な説明
[0061] [図 1]本発明の第 1実施例におけるセンサの構造を示す縦断面図である。
[図 2]本発明の第 2実施例におけるセンサの構造を示す縦断面図である。
[図 3]本発明の第 3実施例におけるセンサの構造を示す縦断面図である。
[図 4]本発明の第 4実施例におけるセンサの構造を示す斜視図である。
符号の説明
[0062] 1 水晶 (光導波路)
2 水晶発振用電極
3 水晶発振用電極 (光導波電極,光導波路) クラッド、
コア
金属薄膜
吸着物質検知薄膜 光入射用プリズム 光出射用プリズム 水晶振動子
吸着部
光導波層 (光導波路) , 16 電極
金コロイド (金属コロイド層) 基板
圧電体
a, 20b 櫛形対向電極 表面弾性波素子

Claims

請求の範囲
[1] 水晶振動子上に、低屈折率媒体力 なるクラッドと高屈折率媒体力 なるコアを積層 した光導波層を設け、前記水晶振動子の発振特性と、前記光導波層を光導波路とし て導波した光を測定することを特徴とする物質吸着検知方法。
[2] 水晶と、当該水晶の一側に形成された電極と、前記水晶の他側に形成された前記水 晶よりも高屈折率の透明導電性材料力もなる光導波電極とから水晶振動子を構成し 、当該水晶振動子の発振特性と、前記光導波電極を光導波路として導波した光を測 定することを特徴とする物質吸着検知方法。
[3] 水晶と、当該水晶の両側に形成された電極力 水晶振動子を構成し、当該水晶振動 子の発振特性と、当該水晶振動子内部を光導波路として導波した光を測定すること を特徴とする物質吸着検知方法。
[4] 前記光導波路の上に金属膜を設けたことを特徴とする請求項 1〜3記載の物質吸着 検知方法。
[5] 表面弾性波素子における表面弾性波の伝搬特性と、表面弾性波素子に設けた光導 波路を導波した光を測定することを特徴とする物質吸着検知方法。
[6] 水晶振動子または表面弾性波素子上に金属コロイド層を形成し、当該水晶振動子ま たは表面弾性波素子により吸着質量を測定し、また金属コロイド層の光学特性を測 定することを特徴とする物質吸着検知方法。
[7] 物質吸着によって光学特性が変化する感応性材料層を設けたことを特徴とする請求 項 1〜6記載の物質吸着検知方法。
[8] 水晶振動子上に、低屈折率媒体力 なるクラッドと高屈折率媒体力 なるコアを積層 した構造であり、光を導波させる光導波路となる光導波層を設けたことを特徴とする センサ。
[9] 水晶と、当該水晶の一側に形成された電極と、前記水晶の他側に形成された前記水 晶よりも高屈折率の透明導電性材料力 なり、光を導波させる光導波路となる光導波 電極とから構成された水晶振動子を備えたことを特徴とするセンサ。
[10] 水晶と、当該水晶の両側に形成された電極力 水晶振動子を構成し、当該水晶振動 子の発振特性と、当該水晶振動子内部を光導波路として導波した光を測定すること を特徴とするセンサ。
[11] 前記光導波路の上に金属膜を設けたことを特徴とする請求項 8〜10記載のセンサ。
[12] 表面弾性波素子における表面弾性波の伝搬特性と、表面弾性波素子内部を導波し た光を測定することを特徴とするセンサ。
[13] 水晶振動子または表面弾性波素子と、当該水晶振動子または表面弾性波素子上に 形成された金属コロイド層とを備えたことを特徴とするセンサ。
[14] 物質吸着によって光学特性が変化する感応性材料層を設けたことを特徴とする請求 項 8〜 13記載のセンサ。
PCT/JP2005/013863 2004-10-04 2005-07-28 物質吸着検知方法およびセンサ WO2006038367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006539170A JP4500967B2 (ja) 2004-10-04 2005-07-28 物質吸着検知方法およびセンサ
US10/591,196 US7843570B2 (en) 2004-10-04 2005-07-28 Crystal oscillator sensor and substance adsorption detection method using the sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-291090 2004-10-04
JP2004291090 2004-10-04

Publications (1)

Publication Number Publication Date
WO2006038367A1 true WO2006038367A1 (ja) 2006-04-13

Family

ID=36142452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013863 WO2006038367A1 (ja) 2004-10-04 2005-07-28 物質吸着検知方法およびセンサ

Country Status (3)

Country Link
US (1) US7843570B2 (ja)
JP (1) JP4500967B2 (ja)
WO (1) WO2006038367A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
JP2012215541A (ja) * 2011-03-28 2012-11-08 Nitto Denko Corp Sprセンサセルおよびsprセンサ
JP2012220396A (ja) * 2011-04-12 2012-11-12 Seiko Epson Corp 検出装置
JP2013117545A (ja) * 2011-03-28 2013-06-13 Nitto Denko Corp Sprセンサセルおよびsprセンサ
WO2018143474A1 (ja) * 2017-02-06 2018-08-09 Tdk株式会社 光導波型センサーおよび物質検出方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016721A1 (ja) * 2004-08-11 2006-02-16 Nihon Dempa Kogyo Co., Ltd 感知装置
EP2274593A4 (en) * 2008-04-23 2014-07-23 Société De Commercialisation Des Produits De La Rech Appliquée Socpra Sciences Et Génie S E C INTEGRATED TRANSVERSAL ACOUSTIC SURFACE WAVE AND SURFACE PLASMON RESONANCE PERCEPTION DEVICE AND METHOD THEREFOR
WO2010130775A1 (en) * 2009-05-12 2010-11-18 Insplorion Ab Combination of electrodeless quartz crystal microbalance and optical measurements
CN107290241B (zh) * 2017-07-31 2023-07-14 成都信息工程大学 一种qcm湿度传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599827A (ja) * 1991-10-14 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> マルチヘツド型化学センサ
JP2002122600A (ja) * 2000-10-12 2002-04-26 Nippon Laser & Electronics Lab バイオセンサー用センサーチップ
JP2003043037A (ja) * 2001-07-27 2003-02-13 Inst Of Physical & Chemical Res ハイブリダイゼーション用基板、この基板の製造方法及び使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743285A (ja) 1993-07-27 1995-02-14 Nippon Telegr & Teleph Corp <Ntt> 化学ガスセンサ用材料及び化学ガスセンサ
JP3236199B2 (ja) 1995-08-25 2001-12-10 日本電気株式会社 平面光導波路型バイオケミカルセンサ
US7057732B2 (en) * 1999-01-25 2006-06-06 Amnis Corporation Imaging platform for nanoparticle detection applied to SPR biomolecular interaction analysis
JP4046450B2 (ja) 1999-10-12 2008-02-13 株式会社潤工社 表面プラズモン共鳴センサ
JP3513448B2 (ja) * 1999-11-11 2004-03-31 キヤノン株式会社 光プローブ
US6791691B2 (en) * 2001-10-19 2004-09-14 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuation in total internal reflection
JP2008513772A (ja) * 2004-09-15 2008-05-01 エイジェンシー フォー サイエンス, テクノロジー アンド リサーチ 表面プラズモン共鳴とクォーツクリスタルマイクロバランスセンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599827A (ja) * 1991-10-14 1993-04-23 Nippon Telegr & Teleph Corp <Ntt> マルチヘツド型化学センサ
JP2002122600A (ja) * 2000-10-12 2002-04-26 Nippon Laser & Electronics Lab バイオセンサー用センサーチップ
JP2003043037A (ja) * 2001-07-27 2003-02-13 Inst Of Physical & Chemical Res ハイブリダイゼーション用基板、この基板の製造方法及び使用方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
JP2012215541A (ja) * 2011-03-28 2012-11-08 Nitto Denko Corp Sprセンサセルおよびsprセンサ
JP2013117545A (ja) * 2011-03-28 2013-06-13 Nitto Denko Corp Sprセンサセルおよびsprセンサ
JP2012220396A (ja) * 2011-04-12 2012-11-12 Seiko Epson Corp 検出装置
WO2018143474A1 (ja) * 2017-02-06 2018-08-09 Tdk株式会社 光導波型センサーおよび物質検出方法

Also Published As

Publication number Publication date
US20080060438A1 (en) 2008-03-13
US7843570B2 (en) 2010-11-30
JPWO2006038367A1 (ja) 2008-05-15
JP4500967B2 (ja) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4500967B2 (ja) 物質吸着検知方法およびセンサ
JP5030059B2 (ja) センサ基板およびこれを用いた複合センサ
JP3910217B2 (ja) 化学センサ
JP3816072B2 (ja) 光導波路型センサおよびそれを用いた測定装置
US8564781B2 (en) SPR sensor
JP3159763U (ja) 表面プラズモン共鳴ファイバーセンサー
US6567753B2 (en) Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials
US20130063726A1 (en) Sensor and a method for characterising a dielectric material
KR100842119B1 (ko) 광섬유 수소 센서 및 이를 적용한 수소 농도 측정장치
JP2008500536A (ja) 寄生反射を低減する光呼掛け装置および寄生反射を除去する方法
CN102288583A (zh) 透射式金属光栅耦合spr检测芯片及检测仪
EP2499479A2 (en) Analytical system with photonic crystal sensor
Balaa et al. Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance
CN105334190A (zh) 光纤纤芯与包层交界面的Bragg光栅生化传感器及方法
JP2015212626A (ja) 電場増強素子、ラマン分光法、ラマン分光装置、および電子機器
CN101294900B (zh) 高精细度腔表面等离子体共振传感装置
CN105403535A (zh) 光纤包层表面Bragg光栅生化传感器及其制作方法
CN210923475U (zh) 一种基于光纤spr传感器的血清白蛋白检测系统
JP3903432B2 (ja) 測定装置
KR101621437B1 (ko) 다층 박막 구조와 나노 구조가 결합된 플라즈모닉 센서
Fallauto et al. Impact of optical fiber characteristics in SPR sensors for continuous glucose monitoring
KR101083605B1 (ko) 표면 플라즈몬 공명 센서
JP4173746B2 (ja) 測定装置
EP3051277A2 (en) Electric-field enhancement element, analysis device, and eletronic apparatus
JP2011112564A (ja) 光導波路型バイオケミカルセンサチップ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006539170

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10591196

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05766991

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 10591196

Country of ref document: US