WO2018143474A1 - 光導波型センサーおよび物質検出方法 - Google Patents

光導波型センサーおよび物質検出方法 Download PDF

Info

Publication number
WO2018143474A1
WO2018143474A1 PCT/JP2018/004017 JP2018004017W WO2018143474A1 WO 2018143474 A1 WO2018143474 A1 WO 2018143474A1 JP 2018004017 W JP2018004017 W JP 2018004017W WO 2018143474 A1 WO2018143474 A1 WO 2018143474A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
photodetector
light
waveguide sensor
Prior art date
Application number
PCT/JP2018/004017
Other languages
English (en)
French (fr)
Inventor
啓太 川森
田中 浩介
誠 森谷
尚史 小林
土屋 芳弘
長 勤
島沢 幸司
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018143474A1 publication Critical patent/WO2018143474A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical waveguide sensor and a substance detection method used for performing substance detection, substance analysis, concentration measurement, and the like in the medical field, biotechnology field, and the like.
  • an optical waveguide sensor that passes the inspection light through the optical waveguide provided in the sensor.
  • a sensing unit is provided on a part of the surface of an optical waveguide of a general optical waveguide sensor.
  • a coupler such as a prism or a grating is provided. The light emitted from the light source enters the optical waveguide through the coupler, and propagates while generating an evanescent wave on the surface of the optical waveguide.
  • a part of the evanescent wave is absorbed by the target substance existing around the sensing unit and the labeling substance bonded to the target substance, thereby reducing the intensity of the propagation light.
  • the propagating light is emitted to the outside of the optical waveguide by a decoupler such as a prism or a grating installed on the side opposite to the incident end of the optical waveguide, and the intensity is measured by a photodetector such as a photodiode provided outside. .
  • a decoupler such as a prism or a grating installed on the side opposite to the incident end of the optical waveguide
  • a photodetector such as a photodiode provided outside.
  • the sample to be detected binds or adsorbs to the substance modified on the surface of the noble metal film. Then, since the incident angle and the reflectance change, the presence or absence of the sample to be detected can be detected by detecting the change.
  • Patent Document 3 uses a reflection film formed on a glass substrate and an optical waveguide formed on the reflection film, and the reflection film is irradiated with inspection light through the substrate.
  • An optical guided mode sensor is disclosed.
  • this optical waveguide mode sensor when a substance adheres to the optical waveguide, the optical waveguide mode of light propagating in the optical waveguide changes, so that substance detection or the like can be performed.
  • inspection light is irradiated onto a reflective film made of a noble metal, surface plasmons are generated and the optical waveguide mode changes.
  • the order of the optical waveguide mode may change due to an increase in the thickness of the reflective film due to the adhesion of the substance.
  • an inclined groove (V-shaped groove) having a surface plasmon excitation layer is formed, and this groove also serves as a flow path for supplying a sample liquid, and for inspection from a certain direction.
  • a sensor chip capable of generating surface plasmons by light irradiation is disclosed. According to this configuration, the prism is unnecessary and the irradiation direction of the inspection light can be fixed, which contributes to downsizing of the apparatus and shortening of the inspection time.
  • it is necessary to form a V-shaped groove instead of the prism there is a limit to downsizing the apparatus.
  • the need for an optical member such as a lens or an optical fiber to connect the sensor chip to the light source or the light detector hinders miniaturization.
  • Patent Document 6 discloses a configuration that can detect multiple types of antigen-antibody reactions by branching incident light through a waveguide, guiding it to a plurality of sensors, and monitoring changes in the refractive index of the plurality of sensors. .
  • this configuration requires various optical members such as a power splitter for branching incident light and a fiber array for propagating the branched light, so the configuration is complicated and the manufacturing process is complicated. At the same time, it is difficult to reduce the size of the apparatus.
  • a plurality of target substances can be measured simultaneously from the viewpoint of speeding up measurement and reducing costs.
  • influenza testing it is desirable to be able to detect multiple types of antibodies such as type A and type B simultaneously
  • allergy testing it is desirable to be able to detect antibodies to various foods and environmental substances simultaneously.
  • a plurality of optical paths including a light source, an optical waveguide, and a photodetector are required in order to simultaneously detect a plurality of target substances.
  • the same number or more detectors as the target substance are required outside the sensor body including the optical waveguide, and, as long as the incident light is not branched, the same number as the target substance as in the case of the photodetector.
  • the above light source is also required. This increases the cost of the sensor and can increase the time required for inspection. Furthermore, the downsizing of the sensor may be hindered by installing a plurality of photodetectors and a plurality of light sources outside the sensor body.
  • the sensor body of the SPR sensor including the surface plasmon generator, the light source, and the photodetector are separated from each other and are connected via optical members such as an optical fiber and a lens.
  • the optical member becomes an obstacle to downsizing and cost reduction, and the process of connecting these optical members with high positional accuracy is complicated. That is, in these configurations, the light source, various optical members for light guide, the waveguide (incident end portion and outgoing end portion) of the sensor body, and the photodetector are aligned (positioned) with high accuracy. It is difficult. Even if it is possible to perform alignment and bonding with high accuracy, it is necessary to perform the bonding process by the number of each member, which increases the manufacturing cost and becomes an obstacle to cost reduction. Such difficulty in alignment and joining becomes more prominent as the sensor becomes smaller. That is, there is a trade-off relationship between downsizing of the apparatus and high-precision alignment and simplification of bonding.
  • the sensor described in Patent Document 8 has a configuration that requires a photodetector and an optical system to detect a signal, and since these are provided separately from the sensor body, they cannot be reduced in size (patent) (See paragraphs [0077] and [0078] of document 8).
  • the sensor described in Patent Document 9 has a configuration that requires a photodetector and an optical system to detect signals, and is provided separately from the sensor main body. Accordingly, since the drive system is also necessary, the size cannot be reduced (see FIGS. 4 and 5 and paragraphs [0028] and [0029] of Patent Document 9).
  • the sensor described in Patent Document 10 is not applicable to an indicator or a solvent with low transparency because the indicator layer itself containing the indicator or the solvent containing the sample is a waveguide through which light passes.
  • a method for measuring a plurality of substances with a plurality of photo-sensitive elements corresponding to each substance is described.
  • the guide in the waveguide is measured.
  • This change in waveguide efficiency also affects the amount of light incident on other photo-sensitive elements. Therefore, even if it is attempted to detect the presence and concentration of a plurality of substances by the method of Patent Document 10, the sensitivity is deteriorated.
  • the sensor described in Patent Document 11 is a configuration that requires a photodetector and an optical system to detect a signal, and is provided separately from the sensor main body, so that the size of the sensor is reduced. (See paragraphs [0119] and [0120] of Patent Document 11).
  • an object of the present invention is to provide an optical waveguide sensor which can realize the miniaturization of the entire apparatus and can reduce the cost and is easy to manufacture.
  • a feature of the present invention is that a core portion that is a waveguide through which light propagates, a cladding portion that is partially provided around at least a portion of the core portion, and a sensing that is provided along a portion of the core portion
  • the optical waveguide sensor including a sensor body including a portion, a photodetector having a light receiving surface, and a light source including a laser diode that generates inspection light incident on the core portion
  • the light receiving surface of the photodetector is It exists in the place arrange
  • the core portion which is a waveguide through which light propagates, a clad portion surrounding the core portion, a concave portion provided in a part of the clad portion, and along the core portion in the concave portion
  • the core portion is At least at a position adjacent to the metal film, the test light is disposed so as to be substantially parallel to the film surface of the metal film, and the concave portion holds or distributes the specimen at a position in contact with the metal film.
  • the light source is located directly opposite the incident end without interposing any other member between the incident end of the core portion.
  • an optical waveguide sensor that can realize downsizing of the entire apparatus and can be reduced in cost, and can be easily manufactured.
  • An analysis unit 16 is connected to the photodetector 5. Although schematically shown in the drawing, the analysis unit 16 may be formed on a substrate on which the sensor body 3 is mounted, for example.
  • a coupler (coupler) 6 is mounted on the incident end 1 a of the core portion 1 of the sensor body 3, and a light source 7 is disposed facing the coupler 6.
  • the light source 7 is made of, for example, a laser diode and is supported by a support member (not shown).
  • the coupler 6 includes a grating, a prism coupler, and the like.
  • the inspection light (laser light) 8 emitted from the light source 7 is incident on the core portion 1 of the sensor main body 3 via the coupler 6 and passes through the core portion 1 from the incident end 1a side to the end portion 1b side. Proceeds (propagates) toward The photodetector 5 is made of, for example, a photodiode or a phototransistor and has a light receiving surface 5a.
  • the light receiving surface 5a faces the surface of the core portion 1, and as described above, the path (traveling direction) in the core portion 1 of the inspection light 8 incident on the core portion 1 from the light source 7 through the coupler 7 is as described above. And substantially parallel to each other.
  • the plane including the path (traveling direction) of the inspection light 8 in the core portion 1 and the light receiving surface 5a of the photodetector 5 are substantially parallel to each other.
  • the sensing unit 4 is provided along a part of the core unit 1.
  • the sensing unit 4 captures a target substance (a sample to be inspected, for example, an antigen) that is a detection target of the optical waveguide sensor.
  • a target substance a sample to be inspected, for example, an antigen
  • a layered member containing an antibody for example, a layered member containing an antibody.
  • a target substance eg, an antigen such as a virus
  • a fluid specimen eg, protein, drug, mineral, etc.
  • a capture substance antibody that binds to this target substance
  • the sensing unit 4 is configured by being fixed to the surface of the unit 1.
  • the bond between the antibody and the surface of the core part 1 in the sensing part 4 may be a hydrophobic bond or a covalent bond.
  • a labeling substance for example, a spherical bead made of gold, platinum, palladium, polymer, or the like and having an average particle diameter of 10 nm to 5000 nm
  • another antibody for example, by hydrophobic bonding or covalent bonding.
  • a labeled antibody is prepared by binding an antibody to aluminum spherical beads having an average particle diameter of 30 nm to 1000 nm.
  • the part (sample pad) where the labeled antibody thus prepared is arranged is arranged upstream of the sensing unit 4 in the specimen supply direction. That is, the specimen is configured to be supplied to the sensing unit 4 after passing through the portion (sample pad) where the labeled antibody is disposed.
  • the target substance is in a state of being bonded to the surface of the core portion 1 in a state of being bound to the labeling substance and the two antibodies.
  • the labeling substance and the target substance are fixed to the surface of the core portion 1 by binding the target substance to the two antibodies.
  • the marker substance fixed together with the target substance on the surface of the core part 1 is formed of a material that absorbs light. Therefore, when the labeling substance is fixed together with the target substance and the antibody on the sensing unit 4, at least a part of the evanescent wave (not shown) of the inspection light 8 passing through the core part 1 is absorbed by the labeling substance. The intensity of the inspection light 8 after passing through the sensing unit 4 is reduced.
  • the photodetector 5 is disposed on the downstream side of the sensing unit 4 in the light traveling direction, and the light receiving surface 5a is substantially parallel to the light traveling direction (path). In addition, it faces the surface of the core portion 1.
  • the photodetector 5 detects a part of the inspection light 8 passing through the core portion 1 and measures its intensity. As described above, when the two antibodies, the labeling substance, and the target substance adhere to the surface of the core part 1, the intensity of the inspection light 8 passing through the core part 1 is reduced due to the labeling substance absorbing light. That is, when the photodetector 5 detects a decrease in the intensity of the test light 8, the analysis unit 16 determines from the detection data that the target substance is present in the sample. On the other hand, if the intensity of the inspection light 8 detected by the photodetector 5 is not reduced, the analysis unit 16 determines that the target substance does not exist in the sample.
  • the sensing unit 4 and the light receiving surface 5a of the photodetector 5 are arranged on the surface of the core unit 1 through which the inspection light 8 propagates, so that the structure is simple and the manufacturing is easy.
  • the target substance can be detected and analyzed with high accuracy.
  • the reaction space 9 including the sensing unit 4 is surrounded as shown in FIG. It is preferable to arrange the upper clad part 2 (the upper part of the clad part 2) having the recess 2a. Since the concave portion 2a has a concave shape with respect to the surface of the core portion 1 on which the sensing portion 4 is provided, it can be said to be a reverse concave portion or a downward concave portion.
  • the optical waveguide sensor of the present embodiment includes a core portion 1 and a clad portion 2 that is partially provided around at least a portion of the core portion 1 and surrounds a portion of the core portion 1. 3, a sensing unit 4 along a part of the core unit 1 is provided near the center of the surface of the core unit 1 that is not covered by the cladding unit 2.
  • the sensor body 3 is placed on the substrate 10.
  • the photodetector 5 is formed on the substrate 10 at a position facing the vicinity of the end (termination) 1b opposite to the incident end 1a where the inspection light 8 enters, and the sensor body 3 of the substrate 10 is mounted.
  • the light receiving surface 5a of the photodetector 5 is located on the surface side where the light is applied.
  • the surface of the substrate 10 on which the sensor body 3 is mounted and the light receiving surface 5a of the photodetector 5 may be located in the same plane.
  • the photodetector 5 is not provided on the surface of the core portion 1. Other configurations are substantially the same as those of the first embodiment.
  • a specimen that has passed through a portion where a labeled antibody is disposed (a sample pad (not shown)) is supplied to the sensing unit 4 and the test light 8 is sent from the light source 7 via the coupler 6 to the core unit.
  • a part of the inspection light 8 after passing through the sensing unit 4 is detected and its intensity is measured by the photodetector 5.
  • the presence or amount of the target substance in the specimen can be detected by the decrease in the intensity of the test light 8.
  • the photodetector 5 is formed inside the substrate 10, and the light receiving surface 5 a is exposed on the surface on which the sensor body 3 is mounted. Since it is substantially parallel to the plane including the path of the working light 8, the arrangement and alignment of the photodetector 5 are further simplified.
  • the optical waveguide sensor according to the third embodiment of the present invention shown in FIG. 4 has a configuration substantially similar to that of the optical waveguide sensor according to the second embodiment, and the sensing unit 4 in the traveling direction of the inspection light 8.
  • a high refractive index layer 11 is formed inside the cladding portion 2 between the core portion 1 and the light receiving surface 5 a of the photodetector 5.
  • the effective refractive index n3 of the high refractive index layer 11 is larger than the effective refractive index n2 of the cladding part 2, and more preferably equal to or higher than the effective refractive index n1 of the core part 1.
  • the inspection light 8 propagating through the core portion 1 can be efficiently guided to the light receiving surface 5a of the photodetector 5. Accordingly, the reliability of the detection of a part of the inspection light 8 and the measurement of the intensity thereof by the photodetector 5 having the light receiving surface 5a substantially parallel to the plane including the path of the inspection light 8 in the core 1 is high. high.
  • Other configurations are the same as those of the second embodiment.
  • a photodiode (photodetector 5) is formed inside the substrate 10, and the light receiving surface 5a is exposed on the surface of the substrate 10, so that the surface of the substrate 10 is highly refracted.
  • a film of an index material (not shown, but a film of dielectric or polymer, etc.) is formed by sputtering, chemical vapor deposition (CVD), ion beam deposition (IBD), or the like.
  • CVD chemical vapor deposition
  • IBD ion beam deposition
  • a photoresist layer (not shown) is partially formed on the portion of the photorefractive material film that covers the light receiving surface 5 a of the photodetector 5.
  • etching wet etching, reactive ion etching (RIE), ion beam etching (IBE), etc.
  • RIE reactive ion etching
  • IBE ion beam etching
  • a portion of the high refractive index material film not covered with the photoresist layer is removed. That is, the photorefractive material film and the photoresist layer are laminated only on the region including the light receiving surface 5a of the photodetector 5. Therefore, the clad portion 2 is formed on the surface of the substrate 10 including the laminated portion of the photorefractive material film and the photoresist layer by sputtering, chemical vapor deposition (CVD), ion beam deposition (IBD), or the like. To do.
  • the photoresist layer is removed, and at the same time, the cladding layer on the photoresist layer is also removed.
  • the photorefractive index layer 11 is formed only on the region including the light receiving surface 5a of the photodetector 5 and the periphery thereof is surrounded by the cladding layer 2 is formed.
  • the core part 1 and the sensing part 4 are formed, and the coupler 6 and the light source 7 are further arranged to form the optical waveguide sensor of this embodiment.
  • the optical waveguide sensor according to the fourth embodiment of the present invention shown in FIG. 5 has a substantially similar configuration to that of the optical waveguide sensor according to the third embodiment, and instead of the high refractive index layer 11, the grating structure portion 12. Is provided. Even in this configuration, the inspection light 8 propagating through the core portion 1 can be efficiently guided to the light receiving surface 5a of the photodetector 5, and a part of the inspection light 8 detected by the photodetector 5 and its intensity can be detected. High measurement reliability.
  • Other configurations are the same as those of the third embodiment.
  • the grating structure portion 12 can be formed by forming the cladding portion 2 on the surface of the substrate 10 including the light detection portion 5 and then partially performing processing for forming a grating.
  • the grating structure portion 12 can also be formed by a method (photolithography method) according to the method for forming the high refractive index layer 11 of the third embodiment.
  • a prism structure portion, a half mirror, or the like may be provided instead of the grating structure portion 12 or in addition to the grating structure portion 12.
  • the coupler 6 is not provided in the configuration substantially the same as that of the optical waveguide sensor of the first embodiment.
  • the light source 7 is arranged so that the part directly faces and opposes the incident end of the core part 1. That is, the light source 7 is directly opposed to the incident end 1a without interposing any other member between the incident end 1a of the core 1 and the light emitting portions of the light source 7 are, for example, at intervals of 0 to 10 ⁇ m. It faces the incident end 1a of the core 1.
  • a configuration in which a substrate that supports the light source 7 and a substrate that supports the sensor body 3 are fixed to each other, or these substrates are integrated.
  • the sensor body 3, the light source 7, and the photodetector 5 can be easily configured as a single unit that is substantially integrated (not separated from each other).
  • the distance between the light source 7 and the core portion 1 is small (for example, about 0 to 10 ⁇ m)
  • the entire optical waveguide sensor can be downsized, and almost all of the light emitted from the light source 7 can be reduced. All can be incident on the core portion 1 to increase energy efficiency.
  • Other configurations are substantially the same as those of the first embodiment.
  • the optical waveguide sensor according to the sixth embodiment of the present invention shown in FIG. 7 has a configuration substantially similar to that of the optical waveguide sensor according to the first embodiment.
  • These photodetectors 5 are connected to the analysis unit 16. According to this configuration, by comparing the measured values of the intensity measured by detecting a part of the inspection light 8 in each of the two adjacent photodetectors 5 without interposing a sensing unit therebetween, the analysis unit 16 can determine the inherent propagation loss of the optical waveguide of this optical waveguide sensor.
  • the propagation loss referred to here is a rate at which the intensity decreases with the progress of light, and is expressed in units of dB / cm, for example.
  • Obtaining the inherent propagation loss of the optical waveguide may be performed in advance before performing the process of actually detecting the substance in the specimen, and may be recognized as the inherent performance of each optical waveguide.
  • a plurality of photodetectors 5 can be provided for one optical waveguide because the light receiving surface 5a of each photodetector is connected to the path (traveling direction) of the inspection light 8 in the core portion 1. This is because they are located substantially in parallel.
  • the inherent propagation loss of the optical waveguide can be easily obtained.
  • Other configurations are substantially the same as those of the first embodiment.
  • the optical waveguide sensor according to the seventh embodiment of the present invention shown in FIG. 8 has a configuration similar to that of the optical waveguide sensor according to the sixth embodiment, and a plurality of photodetectors 5 are arranged inside the core unit 1. Are arranged on the upstream side and the downstream side of the sensing unit 4 in the traveling direction of the inspection light 8. Therefore, the photodetector 5, the sensing unit 4, and the photodetector 5 are arranged in this order along the traveling direction of the inspection light 8 inside the core unit 1. Other configurations are substantially the same as those of the sixth embodiment.
  • the analysis unit 16 can determine the inherent propagation loss of the optical waveguide of the optical waveguide sensor.
  • the analysis unit 16 compares the detected values.
  • a decrease in strength due to light absorption by the labeling substance for example, beads
  • the measurement value of the light intensity by the upstream photodetector 5 is O x
  • the measurement value of the light intensity by the downstream photodetector 5 is O x + 1
  • a specimen containing the target substance is supplied.
  • the ratio O x + 1 / O x of both measurements of the before the ratio O x + 1 / O x of both measurements after the sample including the target material is supplied becomes small.
  • the measurement of the intensity of the test light before supplying the specimen containing the target substance is shown as a dot-patterned bar graph 1 th as compared to the measured value O x by the optical detector 5, the measured value O x + 1 by the second optical detector 5 located downstream of the sensing portion 4 is smaller.
  • This propagation loss is represented by the ratio O x + 1 / O x as shown by the dot pattern bar graph in FIG. 9B.
  • the preparation work for setting the reference value in this way is called reference measurement.
  • the presence / absence of the target substance can be determined based on the ratio O x + 1 / O x of the measurement values obtained by the plurality of photodetectors 5. .
  • the reference measurement is performed and the reference value is set, but the reference measurement and the reference value setting are not necessarily required. That is, the measurement value itself of the optical detector 5 monitors only specific O x + 1 / O x measurements without considering the ratio O x + 1 / O when detecting a decrease in x (for example, in Figure 9B hatching containing If you move from a bar graph to a bar graph with a horizontal line), you can consider that the target substance exists.
  • the ratio of the measurement O x and O x + 1 of the two photodetectors 5 sandwiching the sensing unit 4 is monitored, the light intensity reference value for determining the presence or absence of the target substance may not be set in advance.
  • the presence / absence of the target substance can be detected by the change in the ratio O x + 1 / O x . Therefore, it is not necessary to perform preparation work (reference measurement) for setting the reference value.
  • the analysis unit 16 can also determine the amount of the target substance according to the magnitude of the variation amount of the ratio O x + 1 / O x .
  • the optical waveguide sensor according to the eighth embodiment of the present invention shown in FIG. 10 has a configuration in which the sixth embodiment and the seventh embodiment are combined.
  • one sensing unit 4 and four photodetectors 5 are arranged side by side along the traveling direction of the inspection light 8 inside the core unit 1.
  • positioned on the upstream and downstream sides of the sensing part 4 are mixed. ing.
  • the fourth photodetectors 5 are arranged in order.
  • the four photodetectors 5 are connected to the analysis unit 16.
  • Other configurations are substantially the same as those of the sixth embodiment.
  • the inherent propagation loss of the optical waveguide is obtained by comparing the measured values of the adjacent photodetectors 5 without interposing a sensing unit therebetween, as in the sixth embodiment. Can do.
  • the seventh embodiment by monitoring the fluctuation of the ratio O x + 1 / O x between the measured values of the photodetectors 5 arranged on the upstream side and the downstream side of the sensing unit 4, the seventh embodiment and Similarly, the presence or absence of the target substance can be detected. As the number of photodetectors 5 increases, the accuracy of measurement and analysis improves.
  • the optical waveguide sensor according to the ninth embodiment of the present invention shown in FIG. 11 is a further development of the eighth embodiment in which the sixth embodiment and the seventh embodiment are combined. That is, in the present embodiment, two sensing units 4 and five photodetectors 5 are arranged side by side along the traveling direction of the inspection light 8 inside the core unit 1. Specifically, the first light detector 5, the first sensing unit 4, the second light detector 5, and the third light detection along the traveling direction of the inspection light 8 inside the core unit 1. 5, the second sensing unit 4, the fourth photodetector 5, and the fifth photodetector 5 are arranged in this order. The five photodetectors 5 are connected to the analysis unit 16. Other configurations are substantially the same as those of the sixth embodiment.
  • the optical waveguide sensor of the present embodiment has a plurality of sensing units 4, and each sensing unit 4 can be provided with a capture substance (for example, an antibody) that binds to a different target substance. Accordingly, it is possible to detect a plurality of substances using one optical waveguide. Based on the measurement result of the intensity of the inspection light by the two photodetectors 5 positioned on the upstream side and the downstream side across the one sensing unit 4, the analysis unit 16 is similar to the seventh embodiment, The presence or absence of the target substance in the sample supplied to the sensing unit 4 can be determined. In this embodiment, it can be considered that two units capable of performing the same substance detection as in the seventh embodiment are arranged side by side.
  • each photodetector 5 detects a part of the test light 8 and obtains a measured value of its intensity.
  • the inherent propagation loss of the optical waveguide can be obtained. If a plurality of photodetectors 5 are arranged at equal intervals along the traveling direction of the inspection light 8, the propagation loss between adjacent photodetectors 5 is basically constant ( It is assumed that the loss due to the photodetector 5 itself is negligible). Accordingly, as shown by the dot-patterned bar graph in FIG.
  • the measured values of the respective photodetectors 5 sequentially decrease at a constant rate from the incident end 1a side to the terminal end 1b side of the optical waveguide.
  • the measurement value of each photodetector 5 is 90% of the measurement value of the photodetector 5 adjacent to the adjacent upstream side.
  • the ratio O x + 1 / O x of the measurement values is constant (0.9).
  • a specimen for actually detecting the target substance is supplied through each sensing unit 4 and a part of the inspection light 8 is detected by each photodetector 5 as shown by the hatched bar graph in FIG. 12A.
  • the strength was measured, the analysis portion 16, as indicated by hatching containing a bar graph of FIG. 12B, determining the ratio O x + 1 / O x measurements of adjacent photodetector 5.
  • the ratio O 3 / O 2 between the measurement values of the second photodetector and the third photodetector 5 and the measurement of the fourth photodetector and the fifth photodetector 5 are measured.
  • the ratio O 5 / O 4 between the values is approximately 0.9, but the ratio O 2 / O 1 between the measured values of the first photodetector 5 and the second photodetector 5 is about 0.8.
  • the ratio O 4 / O 3 between the measured values of the third photodetector and the fourth photodetector 5 is also about 0.8. From this result, between the second photodetector and the third photodetector 5, and between the fourth photodetector and the fifth photodetector 5, almost only by the propagation loss of the optical waveguide. It can be seen that the light intensity is reduced.
  • the ratio O 2 / O 1 between the measured values of the first photodetector and the second photodetector 5 and the ratio O of the measured values of the third photodetector and the fourth photodetector 5 are compared.
  • 4 / O 3 is small (about 0.8). Therefore, between the first photodetector 5 and the second photodetector 5 and between the third photodetector 5 and the fourth photodetector 5, not only the propagation loss of the optical waveguide. It can be seen that the light intensity is also reduced by other factors. Therefore, between the first sensing unit 4 located between the first photodetector 5 and the second photodetector 5, and between the third photodetector 5 and the fourth photodetector 5.
  • the target substance bound to the labeling substance is captured by the capture substance (for example, an antibody), and the labeling substance absorbs light. That is, from the result shown in FIG. 12B, it can be considered that the target substance in the first sensing unit 4 and the target substance in the second sensing unit 4 were included in the sample.
  • the capture substance for example, an antibody
  • the ratio O 2 / O 1 between the measurement values of the first photodetector 5 and the second photodetector 5 is not small (about 0.9)
  • a labeling substance that absorbs light is not fixed to the first sensing unit 4 located between the first photodetector 5 and the second photodetector 5. That is, it can be considered that the target substance that is combined with the labeling substance and captured by the capturing substance of the first sensing unit 4 is not included in the sample.
  • the ratio O 4 / O 3 between the measured values of the third photodetector 5 and the fourth photodetector 5 is not small (approximately 0.9)
  • it binds to the labeling substance.
  • the target substance captured by the capture substance of the second sensing unit 4 is not contained in the specimen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

装置全体の小型化を実現できるとともに低コスト化を可能にし、製造が簡単な光導波型センサーを提供する。光が伝播する導波路であるコア部1、コア部1の少なくとも一部の周囲に部分的に設けられているクラッド部2、およびコア部1の一部に沿って設けられているセンシング部4を含むセンサー本体3と、受光面5aを有する光検出器5と、コア部1に入射させる検査用光8を生成するレーザダイオードからなる光源7と、を含む光導波型センサーにおいて、光検出器5の受光面5aは、コア部1内における検査用光8の進路と実質的に平行に配置されている。

Description

光導波型センサーおよび物質検出方法
 本発明は、医療分野やバイオテクノロジー分野等において、物質検出や物質解析や濃度測定などを行うために用いられる光導波型センサーおよび物質検出方法に関する。
 医療分野やバイオテクノロジー分野等において、たんぱく質、DNA、糖鎖、有機分子、金属イオンなどを検出するセンサーとして、検査用光を、センサーに設けられた光導波路の内部を通過させる光導波型センサーが知られている。一般的な光導波型センサーの光導波路の表面の一部には、センシング部が設けられている。光導波路が形成される基板の一端には、プリズムやグレーティングなどのカップラ(結合器)が備えられている。光源から出射された光は、カップラを通して光導波路に入射し、光導波路の表面にエバネッセント波を生じさせながら伝搬する。エバネッセント波は、センシング部の周辺に存在する対象物質及び対象物質に結合されている標識物質により一部が吸収され、伝搬光の強度を低下させる。伝搬光は、光導波路の入射端とは反対側に設置されたプリズムやグレーティングなどのデカップラにより光導波路の外部に出射され、外部に設けられたフォトダイオードなどの光検出器により強度が測定される。この伝播光の強度の測定により、エバネッセント波の一部が対象物質及び標識物質によって吸収されることによる強度の低下を検知し、それに基づいて対象物質の有無や量が判定される。特許文献1にはカップラ及びデカップラとしてそれぞれプリズムを用いた光導波型センサーの例が示されており、特許文献2にはカップラ及びデカップラとしてそれぞれグレーティングを用いた光導波型センサーの例が示されている。
 また、光導波型センサーの他の例として、表面プラズモン共鳴(SPR;Surface Plasmon Resonance)を用いる表面プラズモン共鳴センサー(SPRセンサー)も知られている。従来のSPRセンサーは、ガラス等からなる透明な基板上に金や銀などの貴金属膜が形成され、基板の貴金属膜が形成された面と反対側の面に光学プリズムが密着して配置された構造を有している。このSPRセンサーでは、レーザー光あるいは白色光などの検査用光を、プリズムを通して基板に照射し、その反射光の強度を検出している。検査用光は、基板に対して全反射となる条件で入射される。このとき、検査用光が入射する面と反対側の面に形成された貴金属膜の表面には表面プラズモンが発生する。発生した表面プラズモンの波数と入射した検査用光の波数が一致すると共鳴を起こしてエバネッセント光を吸収するので、共鳴が起きる条件の近傍では、反射光の強度が著しく低下する。この共鳴条件は、光の入射角度を変化させることにより調整可能であり、表面プラズモンが発現する入射角や、表面プラズモンが発現している入射角付近における反射光の強度は、貴金属膜の表面上の付着物の厚さや誘電率によって変化する。これを利用して、貴金属膜の表面上に、被検出試料(対象物質)と結合あるいは吸着する物質を修飾しておくと、被検出試料が貴金属膜の表面に修飾された物質と結合あるいは吸着されると入射角や反射率の変化が生じるので、その変化を検知することにより被検出試料の有無の検出が可能である。
 このようなSPRセンサーでは、検査用光の入射角と検出した反射光の強度との関係から、被検出試料の有無を精度良く検出できる。そのため、このようなSPRセンサーは、プリズムへ照射する検査用光の角度を変えながら反射光を検出しており、検査用光の照射角度を連続的に変える機構が必要である。従って、このSPRセンサーでは、基板に取り付けられるプリズムと、検査用光の照射角度を変えるための機構とによって、装置の大型化と構成の複雑さが生じている。また、照射する検査用光の角度を変えながら反射光を検出することによって検査が行われるため、検査時間が長いという問題がある。さらに、特にサイズの小さい被検出試料を検出する際の感度が不十分である。
 これに対し、特許文献3には、ガラスからなる基板上に形成された反射膜と反射膜上に形成された光導波路を用い、基板を介して反射膜に検査用光が照射される構成の光導波モードセンサーが開示されている。この光導波モードセンサーでは、光導波路上に物質が付着すると光導波路内を伝搬する光の光導波モードが変化するため、物質検出等を行うことができる。例えば、貴金属からなる反射膜に検査用光を照射した場合には、表面プラズモンが発生して光導波モードが変化する。物質の付着による反射膜の厚さの増大により、光導波モードの次数が変化する場合もある。このような光導波モードセンサーは、検査用光の照射角度を変える必要が無いので検査時間が短くてすむが、プリズムを内蔵しているため装置の小型化は困難である。また、センサーと光源や光検出器とを接続するためにレンズや光ファイバー等の光学部材が必要であることが、小型化の妨げになっている。
 特許文献4には、表面プラズモン励起層を有する傾斜した溝(V字状の溝)が形成され、この溝が被検体液を送液する流路を兼ねており、一定の方向からの検査用光の照射で表面プラズモンを発生させることができるセンサーチップが開示されている。この構成によると、プリズムが不要であるとともに、検査用光の照射方向を固定できるため、装置の小型化と検査時間の短縮に寄与する。しかし、プリズムの代わりにV字状の溝を形成する必要があるため、装置の小型化には限界がある。また、センサーチップと光源や光検出器とを接続するためにレンズや光ファイバー等の光学部材が必要であることが小型化の妨げになっている。
 特許文献5に開示されているSPRセンサセルは、光の入射角度に依存することなく、光導波路コアとこれを覆う金属層を用いて表面プラズモンを発生させることができるため、装置の小型化が可能である。しかし、特許文献3~4に記載された発明と同様に、特許文献5に記載の発明でも、SPRセンサセルと光源および光検出器とを接続するために、光ファイバー等の光学的接続手段が必要であり、装置の十分な小型化は困難である。
 特許文献6には、入射光を導波路で分岐させて複数のセンサーに導き、複数のセンサーの屈折率の変化をモニターすることにより、多種類の抗原抗体反応を検出できる構成が開示されている。しかし、この構成では、入射光を分岐するためのパワースプリッタや分岐した光を伝播させるためのファイバアレイなどの様々な光学部材が必要であるため、構成が複雑であって製造工程が煩雑であるとともに、装置の小型化は困難である。
 特許文献7に記載されたSPRセンサーは、基板上にグレーティング構造体が形成され、このグレーティング構造体が検査用光を案内する構成であるが、グレーティング構造体が小型化の妨げになる。また、非特許文献1に記載されたSPRセンサーでは導波路中にプリズムが形成されており、このプリズムが小型化の妨げになる。
 また、特許文献8~11にも様々なセンサーの例が開示されている。
特開昭63-273042号公報 特開平9-61346号公報 特開2007-271597号公報 特開2013-24606号公報 特開2013-7687号公報 特開2007-263736号公報 特開2012-233779号公報 特表2003-507705号公報 特開2008-175826号公報 特公平6-43966号公報 特表2003-501654号公報
「小型SPRセンサのためのナノ機械構造体形成技術」東京大学 下山勲、http://www.nedo.go.jp/content/100080658.pdf
 物質の検出等を行うセンサーにおいて、測定の迅速化及び低コスト化の観点から、複数の対象物質を同時に測定できることが望まれる。例えばインフルエンザ検査においてはA型やB型などの複数の型の抗体の検出を同時に行えることが望まれ、アレルギーのテストにおいては様々な食品や環境物質の抗体の検出を同時に行えることが望まれる。しかしながら、従来の光導波型センサーを用いた測定方法では、複数の対象物質を同時に検出するためには、光源と光導波路と光検出器とを含む光路が複数系統必要である。特に、対象物質と同数、またはそれより多くの光検出器を、光導波路を含むセンサー本体の外部に必要があり、さらに、入射光を分岐させない限り、光検出器と同様に、対象物質と同数以上の光源も必要である。このことはセンサーのコストを上昇させる要因になり、かつ検査に必要な時間が伸びる要因にもなり得る。さらに、複数の光検出器及び複数の光源をセンサー本体の外部に設置することにより、センサーの小型化が阻害される可能性もある。
 また、特許文献3~4,6~7および非特許文献1に記載されたSPRセンサーでは、表面プラズモン発生部に向けて光を照射するために、プリズムやV字状溝やグレーティング構造体が必要であり、特にセンサーの厚さ方向の寸法が大きくなることは避けられない。
 特許文献3~7において、表面プラズモン発生部を含むSPRセンサーのセンサー本体と、光源および光検出器は互いに分離されており、光ファイバーやレンズ等の光学部材を介して接続されているため、これらの光学部材が小型化や低コスト化の障害になるとともに、これらの光学部材を位置精度良く接続する工程が煩雑である。すなわち、これらの構成では、光源と、導光用の様々な光学部材と、センサー本体の導波路(入射端部および出射端部)と、光検出器とを高精度にアライメント(位置合わせ)することは困難である。仮に高精度にアライメントして接合することが可能であったとしても、各部材の数だけ接合工程を行う必要があり、製造コストがかさみ、低コスト化の障害となる。このような高精度のアライメント及び接合の困難さは、センサーが小型化するほど顕著になる。すなわち、装置の小型化と高精度のアライメント及び接合の簡略化とはトレードオフの関係にある。
 一方、非特許文献1には、発光部と受光部を内蔵した装置が開示されているが、これは検査用光を空間(空気)内を伝播させる構成に限定され、検査用光を空間内ではなく誘電体からなるコア部内を伝播させる構成には応用できないものである。さらに、非特許文献1のセンサーの内部に、プリズムと可変波長フィルタに加えて発光部と受光部を配置することは困難であり、しかも光学的に高精度にアライメントすることは非常に困難であると考えられる。これらの配置を実現するためには、センサー全体が相当の大きさである必要があり、小型化や低コスト化や製造の容易さの妨げになる。
 また、特許文献8に記載されているセンサーは、信号を検出するために光検出器や光学系が必要な構成であり、それらはセンサー本体から分離して設けられるため、小型化ができない(特許文献8の段落[0077],[0078]を参照)。特許文献9に記載されているセンサーも、特許文献8と同様に信号を検出するために光検出器や光学系が必要な構成であり、それらはセンサー本体から分離して設けられ、さらに必要に応じて駆動系も必要な構成であるため、小型化ができない(特許文献9の図4,図5および段落[0028],[0029]参照)。特許文献10に記載されているセンサーは、指示薬や検体を含む溶媒を入れる指示薬層自体が光を通す導波路となっているため、透明度の低い指示薬や溶媒には適用できない。また、複数の物質をそれぞれの物質に対応する複数のフォト感応素子で測定する方法について述べられているが、指示薬層内(導波路内)で1つの反応が起こった際に導波路内の導波効率が大きく変化してしまうにもかかわらず、この導波効率の変化をモニターする方法については言及されていない。この導波効率の変化は他のフォト感応素子に入射する光量にも影響を与えてしまうため、特許文献10の方法で複数の物質の存在や濃度検知しようとしても感度が悪くなってしまう。特許文献11に記載されているセンサーも、特許文献8と同様に信号を検出するために光検出器や光学系が必要な構成であり、それらはセンサー本体から分離して設けられるため、小型化ができない(特許文献11の段落[0119],[0120]を参照)。
 そこで本発明の目的は、装置全体の小型化を実現できるとともに低コスト化を可能にし、製造が簡単な光導波型センサーを提供することにある。
 本発明の特徴は、光が伝播する導波路であるコア部、コア部の少なくとも一部の周囲に部分的に設けられているクラッド部、およびコア部の一部に沿って設けられているセンシング部を含むセンサー本体と、受光面を有する光検出器と、コア部に入射させる検査用光を生成するレーザダイオードからなる光源と、を含む光導波型センサーにおいて、光検出器の受光面は、コア部内における検査用光の進路と実質的に平行に配置されているところにある。
 また、本発明のもう1つの特徴は、光が伝播する導波路であるコア部、コア部の周囲を取り囲むクラッド部、クラッド部の一部に設けられた凹部、および凹部内においてコア部に沿って配置された、表面プラズモン発生用の金属膜を含むセンサー本体と、コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、を含む光導波型センサーにおいて、コア部は、少なくとも金属膜に隣接する位置で、金属膜の膜面に実質的に平行に検査用光を伝播させるように配置されており、凹部は、金属膜に接する位置で検体を保持または流通させることができ、光源は、コア部の入射端部との間に他部材を介在させることなく、入射端部と直接対向しているところにある。
 本発明によると、装置全体の小型化を実現できるとともに低コスト化を可能にし、製造が簡単な光導波型センサーを提供することができる。
本発明の第1の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 図1に示す光導波型センサーを概略的に示す、検査用光の進行方向に直交する方向に切断した断面図である。 本発明の第2の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第3の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第4の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第5の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第6の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第7の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 図8に示す光導波型センサーの光検出器による光の強度の測定例を示すグラフである。 図8に示す光導波型センサーの隣接する光検出器の測定値の比の例を示すグラフである。 本発明の第8の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第9の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 図11に示す光導波型センサーの光検出器による光の強度の測定例を示すグラフである。 図11に示す光導波型センサーの隣接する光検出器の測定値の比の例を示すグラフである。 図11に示す光導波型センサーの変形例の要部を概略的に示す平面図である。 本発明の第10の実施形態の光導波型センサーの要部を概略的に示す平面図である。 本発明の第11の実施形態の光導波型センサーの要部を概略的に示す平面図である。 本発明の第12の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 光源とコア部の入射端部との間の間隔の一例を示す説明図である。 光源とコア部の入射端部との間の間隔の他の例を示す説明図である。 本発明の第13の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第14の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 図19に示す光導波型センサーの光源を除いた構成を示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第15の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第16の実施形態の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第16の実施形態の変形例の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第16の実施形態の他の変形例の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。 本発明の第16の実施形態のさらに他の変形例の光導波型センサーを概略的に示す、検査用光の進行方向に沿って切断した断面図である。
 以下、本発明の実施形態について図面を参照して説明する。
 [第1の実施形態]
 図1に、本発明の第1の実施形態の光導波型センサーを概略的に示している。この光導波型センサーは、光が伝播する誘電体からなる導波路であるコア部1と、コア部1の少なくとも一部の周囲に部分的に設けられており、コア部1の一部を囲むクラッド部2と、を含むセンサー本体3を有している。コア部1の、クラッド部2に覆われていない面には、中央部付近にセンシング部4が設けられ、検査用光が入射する入射端部1aと反対側の端部(終端部)1b付近に光検出器5が設けられている。光検出器5には分析部16が接続されている。図面中には模式的に示されているが、分析部16は、例えばセンサー本体3が搭載される基板に形成されていてよい。また、センサー本体3のコア部1の入射端部1aには結合器(カップラ)6が搭載されており、結合器6に対向して光源7が配置されている。光源7は例えばレーザダイオードからなり、図示しない支持部材によって支持されている。結合器6はグレーティングやプリズムカップラー等からなる。光源7から照射された検査用光(レーザ光)8は、結合器6を介して、センサー本体3のコア部1に入射して、コア部1内を入射端部1a側から終端部1b側に向かって進行(伝播)する。光検出器5は例えばフォトダイオードやフォトトランジスタ等からなり、受光面5aを有している。受光面5aは、コア部1の表面に面しており、前述したように光源7から結合器7を介してコア部1に入射した検査用光8のコア部1内における進路(進行方向)と、実質的に平行に位置している。言い換えると、コア部1内における検査用光8の進路(進行方向)が含まれる平面と、光検出器5の受光面5aとが、互いに実質的に平行である。センシング部4は、コア部1の一部に沿って設けられており、一例しては、この光導波型センサーの検出対象である対象物質(被検査試料、例えば抗原)を捕捉する捕捉物質(例えば抗体)を含む層状の部材である。
 次に、本実施形態の光導波型センサーを用いた物質検出方法の一例を説明する。この例では、流体状の検体(例えばタンパク質、薬品、鉱物など)に含まれている対象物質(例えばウィルス等の抗原)を検出するために、この対象物質と結合する捕捉物質(抗体)をコア部1の表面に固定してセンシング部4を構成する。センシング部4における抗体とコア部1の表面との結合は、疎水結合や共有結合であってよい。また、コア部1の表面に予めカルボン酸端末やビオチン端末を有する自己組織化単分子膜(SAM膜)を形成しておき、アミノカップリング法やビオチン-ストレプトアビジンの結合を利用して抗体を固定してセンシング部4を形成してもよい。
 一方、図示しないが、標識物質(例えば金、白金、パラジウム、ポリマー、などからなる、平均粒径10nm以上5000nm以下の球形のビーズ)に他の抗体を例えば疎水結合や共有結合によって結合させて標識抗体を作製しておく。例えば、平均粒径が30nm以上1000nm以下程度のアルミニウム製の球形のビーズに抗体を結合させて、標識抗体を作製する。こうして作製した標識抗体が配置されている部分(サンプルパッド)を、検体の供給方向におけるセンシング部4の上流側に配置する。すなわち、検体が、標識抗体が配置されている部分(サンプルパッド)を通過した後に、センシング部4に供給されるように構成する。
 このような構成の光導波型センサーを用いる本実施形態の物質検出方法によると、まず、検体を、標識物質(例えばビーズ)に抗体を結合させた標識抗体が配置されている部分(サンプルパッド)を通過させる。この時、検体中に対象物質が含まれている場合には、対象物質が、標識物質に結合された抗体に捕捉される。そして、検体中に含まれる対象物質と抗体と標識物質とが結合した状態で、光導波型センサーのセンシング部4に送られる。センシング部4では、抗体および標識物質と結合している検体中の対象物質が、コア部1の表面に固定された抗体とも結合する。すなわち、対象物質が、標識物質および2つの抗体と結合した状態でコア部1の表面に固着された状態になる。言い換えると、対象物質が2つの抗体と結合することによって、標識物質と対象物質とがコア部1の表面に固着された状態になる。
 コア部1の表面に対象物質とともに固着された標識物質は、光を吸収する材料から形成されている。従って、センシング部4に対象物質および抗体とともに標識物質が固着されていると、コア部1を通過する検査用光8のエバネッセント波(図示せず)の少なくとも一部が標識物質に吸収されるため、センシング部4を通り過ぎた後の検査用光8の強度は低下している。本実施形態の光導波型センサーでは、光の進行方向におけるセンシング部4の下流側に光検出器5が配置されており、その受光面5aは光の進行方向(進路)に実質的に平行であるとともに、コア部1の表面に対向している。この光検出器5が、コア部1を通る検査用光8の一部を検出してその強度を測定する。前述したように2つの抗体と標識物質と対象物質とがコア部1の表面に固着すると、標識物質が光を吸収することにより、コア部1を通る検査用光8の強度が低下する。すなわち、光検出器5がこの検査用光8の強度の低下を検知すると、分析部16がその検知データから、検体中に対象物質が存在すると判断する。これに対し、仮に光検出器5が検出する検査用光8の強度が低下していなければ、分析部16は検体中に対象物質が存在しないと判断する。このようにして、本実施形態の光導波型センサーによって検体中の対象物質の有無や量を知ることができる。特に、本実施形態の光導波型センサーでは、光検出器5の受光面5aが、コア部1内における検査用光8の進路を含む平面に実質的に平行であるため、光検出器5の配置や位置合わせが非常に簡単でありさほど精緻な作業は必要ではない。
 以上説明したように、本実施形態では、検査用光8が伝播するコア部1の表面にセンシング部4と光検出器5の受光面5aとを配置することにより、構造が簡単で製造が容易であり、しかも高精度に対象物質の検出や分析を行うことができる。
 なお、本実施形態の光導波型センサーにおいて、センシング部4への検体の供給を安定的かつ確実に行うために、図2に示すように、センシング部4を含む反応用の空間9を包囲する凹部2aを有する上側のクラッド部2(クラッド部2の上側部分)を配置することが好ましい。この凹部2aは、センシング部4が設けられているコア部1の表面に対して凹状の形状であるため、逆凹状の部分または下向きの凹状の部分と言える。
 [第2の実施形態]
 次に、図3に示す本発明の第2の実施形態の光導波型センサーについて説明する。第1の実施形態の光導波型センサーと同様の部分については、同一の符号を付与し説明の一部を省略する。本実施形態の光導波型センサーは、コア部1と、コア部1の少なくとも一部の周囲に部分的に設けられており、コア部1の一部を囲むクラッド部2と、を含むセンサー本体3を有し、コア部1の、クラッド部2に覆われていない面の中央部付近に、コア部1の一部に沿うセンシング部4が設けられている。このセンサー本体3が、基板10の上に載置されている。そして、検査用光8が入射する入射端部1aと反対側の端部(終端部)1b付近に対向する位置において、光検出器5が基板10に形成され、基板10のセンサー本体3が搭載されている面側に光検出器5の受光面5aが位置している。この時、基板10のセンサー本体3が搭載されている面と光検出器5の受光面5aとが同一面内に位置していてもよい。本実施形態では、コア部1の表面には光検出器5は設けられていない。その他の構成は第1の実施形態と実質的に同様である。
 本実施形態においても、例えば標識抗体が配置された部分(図示しないサンプルパッド)を通過させた検体をセンシング部4に供給するとともに、検査用光8を光源7から結合器6を介してコア部1に入射させ、センシング部4を通過した後の検査用光8の一部を検出してその強度を光検出器5によって測定する。この検査用光8の強度の低下によって、検体中の対象物質の有無や量を検知することができる。本実施形態の光導波型センサーでは、光検出器5が基板10の内部に形成されており、その受光面5aが、センサー本体3を搭載する面に露出しており、コア部1内における検査用光8の進路を含む平面に実質的に平行であるため、光検出器5の配置や位置合わせがさらに簡単である。
 [第3の実施形態]
 図4に示す本発明の第3の実施形態の光導波型センサーは、第2の実施形態の光導波型センサーと実質的に同様な構成において、検査用光8の進行方向におけるセンシング部4の下流側において、コア部1と光検出器5の受光面5aとの間のクラッド部2の内部に、高屈折率層11が形成されている。この高屈折率層11の実効屈折率n3はクラッド部2の実効屈折率n2より大きく、さらにコア部1の実効屈折率n1以上であることがより好ましい。すなわち、本実施形態ではn3>n2であり、さらにn3≧n1であることがより好ましい。この構成によると、コア部1を伝播する検査用光8を、効率良く光検出器5の受光面5aに導くことができる。従って、コア部1内における検査用光8の進路を含む平面に実質的に平行な受光面5aを有する光検出器5による検査用光8の一部の検出およびその強度の測定の信頼性が高い。その他の構成は第2の実施形態と同様である。
 本実施形態の一例としては、基板10の内部にフォトダイオード(光検出器5)を形成し、その受光面5aを基板10の表面に露出させた状態で、その基板10の表面に、高屈折率材料の膜(図示しないが、誘電体またはポリマー等の膜)をスパッタリング、化学気相成長法(CVD)、イオンビーム蒸着法(IBD)等によって形成する。そして、光屈折材料の膜のうち、光検出器5の受光面5aを覆っている部分の上に、部分的にフォトレジスト層(図示せず)を形成する。そして、エッチング(ウエットエッチング、反応性イオンエッチング(RIE)、イオンビームエッチング(IBE)等)によって、高屈折率材料の膜のうちフォトレジスト層に覆われていない部分を除去する。すなわち、光検出器5の受光面5aを含む領域の上にのみ光屈折材料の膜とフォトレジスト層が積層された状態にする。そこで、光屈折材料の膜およびフォトレジスト層の積層部分を含めて、基板10の表面上に、スパッタリング、化学気相成長法(CVD)、イオンビーム蒸着法(IBD)等によってクラッド部2を形成する。その後で、フォトレジスト層を除去し、それと同時にフォトレジスト層の上のクラッド層も除去する。こうして、光検出器5の受光面5aを含む領域の上にのみ光屈折率層11が形成されてその周囲をクラッド層2が包囲した構成が形成される。その後に、コア部1とセンシング部4が形成され、さらに結合器6と光源7が配置されて、本実施形態の光導波型センサーが形成される。
 [第4の実施形態]
 図5に示す本発明の第4の実施形態の光導波型センサーは、第3の実施形態の光導波型センサーと実質的に同様な構成において、高屈折率層11に代えてグレーティング構造部12が設けられている。この構成でも、コア部1を伝播する検査用光8を、効率良く光検出器5の受光面5aに導くことができ、光検出器5による検査用光8の一部の検出およびその強度の測定の信頼性が高い。その他の構成は第3の実施形態と同様である。グレーティング構造部12は、光検出部5を含む基板10の表面にクラッド部2を形成した後に、部分的にグレーティング形成のための加工を施すことによって形成することができる。または、第3の実施形態の高屈折率層11の形成方法に準じた方法(フォトリソグラフィ法)でグレーティング構造部12を形成することもできる。なお、図示しないが、本実施形態の変形例として、グレーティング構造部12の代わりに、またはグレーティング構造部12に加えて、プリズム構造部やハーフミラー等を設けてもよい。
 [第5の実施形態]
 図6に示す本発明の第5の実施形態の光導波型センサーでは、第1の実施形態の光導波型センサーと実質的に同様な構成において、結合器6は設けられず、光源7の発光部がコア部1の入射端部に直接に近接対向するように光源7が配置されている。すなわち、光源7は、コア部1の入射端部1aとの間に他部材を介在させることなく、入射端部1aと直接対向しており、光源7の発光部は例えば0~10μmの間隔でコア部1の入射端部1aと対向している。本実施形態では、図示しないが、光源7を支持する基板とセンサー本体3を支持する基板(例えば図3に示す基板10に相当する基板)とを互いに固定した構成や、それらの基板を一体化した構成にすることによって、センサー本体3と光源7と光検出器5とを、実質的に一体化した(互いに分離していない)1つのユニットとして携帯可能な構成にすることが容易である。特に、光源7とコア部1との間の間隔が小さい(例えば0~10μm程度である)と、光導波型センサー全体の小型化が可能であるとともに、光源7から出射した光のうちのほぼ全てをコア部1に入射させてエネルギー効率を高めることができる。その他の構成は第1の実施形態と実質的に同様である。
 [第6の実施形態]
 図7に示す本発明の第6の実施形態の光導波型センサーは、第1の実施形態の光導波型センサーと実質的に同様な構成において、複数の光検出器5が、コア部1の内部の検査用光8の進行方向におけるセンシング部4の下流側において、検査用光8の進行方向に沿って並んで配置されている。これらの光検出器5は分析部16に接続されている。この構成によると、間にセンシング部を介在させることなく隣接する2つの光検出器5のそれぞれにおける検査用光8の一部を検出して測定した強度の測定値を比較することで、分析部16が、この光導波型センサーの光導波路の固有の伝播損失を求めることができる。ここで言う伝播損失とは、光の進行に伴って強度が低下する割合であり、例えばdB/cmの単位で表される。光導波路の固有の伝播損失を求めることは、実際に検体中の物質を検出する処理を行う前に予め行って、個々の光導波路の固有の性能として認識しておいてもよい。このように1つの光導波路に対して複数の光検出器5を設けることができるのは、各光検出器の受光面5aが、コア部1内における検査用光8の進路(進行方向)と実質的に平行に位置しているからである。その結果、前述したように光導波路の固有の伝播損失を容易に求めることが可能になっている。その他の構成は第1の実施形態と実質的に同様である。
 [第7の実施形態]
 図8に示す本発明の第7の実施形態の光導波型センサーは、第6の実施形態の光導波型センサーに類似した構成であって、複数の光検出器5が、コア部1の内部の検査用光8の進行方向において、センシング部4を挟んでその上流側と下流側にそれぞれ配置されている。従って、コア部1の内部の検査用光8の進行方向に沿って、光検出器5、センシング部4、光検出器5の順番に並んで配置されている。その他の構成は第6の実施形態と実質的に同様である。本実施形態において、対象物質を含む検体を供給する前に、検査用光8の一部を検出してその強度を2つの光検出器5によってそれぞれ測定すると、第6の実施形態と同様に、分析部16が光導波型センサーの光導波路の固有の伝播損失を求めることができる。
 一方、対象物質を含む検体を供給した状態で、検査用光8の一部を検出してその強度を2つの光検出器5によってそれぞれ測定して、分析部16がそれらの検出値を比較すると、光導波路の固有の伝播損失に加えて、標識物質(例えばビーズ)による光の吸収に起因する強度の低下が求められる。ここで、上流側の光検出器5による光の強度の測定値をOとし、下流側の光検出器5による光の強度の測定値をOx+1とすると、対象物質を含む検体が供給される前の両測定値の比Ox+1/Oに比べて、対象物質を含む検体が供給された後の両測定値の比Ox+1/Oは小さくなる。
 図9Aに示すグラフを参照して説明すると、対象物質を含む検体を供給する前の検査用光の強度の測定についてはドット柄の棒グラフで示しており、センシング部4の上流側に位置する1番目の光検出器5による測定値Oに比べて、センシング部4の下流側に位置する2番目の光検出器5による測定値Ox+1は小さくなっている。これが、1番目の光検出器5と2番目の光検出器5との間の間隔(距離)に応じた光導波路の固有の伝播損失による光の強度の低下である。この伝播損失は、図9Bにドット柄の棒グラフで示すように、比Ox+1/Oで表される。これが、検体中の対象物質の有無を判定するための基準値になる。このように基準値を設定するための準備作業をリファレンス測定という。
 図9Bにドット柄の棒グラフで示す基準値(比Ox+1/O)を設定した後に、検体をセンシング部4に供給して、光検出器5による検査用光8の一部の検出およびその強度の測定を行う。仮に、図9Aにハッチング入りの棒グラフで示すように、1番目の光検出器5による測定値Oも2番目の光検出器5による測定値Ox+1もリファレンス測定と同等であって、図9Bにハッチング入りの棒グラフで示す比Ox+1/Oもリファレンス測定と同等である場合には、光導波路の固有の伝播損失以外に光の損失はなく、標識物質によって光が吸収されていないことがわかる。これにより、分析部16は、検体中に対象物質が存在していないと判断する。一方、図9Aに横線入りの棒グラフで示すように、1番目の光検出器5による測定値Oがリファレンス測定と同等であって、2番目の光検出器5による測定値Ox+1がリファレンス測定よりも小さく、図9Bに横線入りの棒グラフで示す比Ox+1/Oがリファレンス測定(基準値)よりも小さい場合には、光導波路の固有の伝播損失以外に、標識物質によって光が吸収されて光の強度が低下していると考えられる。これにより、分析部16は、検体中に対象物質が存在していると判断する。このように、本実施形態では複数の光検出器5を用いているため、複数の光検出器5による測定値の比Ox+1/Oに基づいて、対象物質の有無を判定することができる。
 なお、前述した説明ではリファレンス測定を行って基準値を設定しているが、リファレンス測定および基準値の設定は必ずしも必要ではない。すなわち、各光検出器5の測定値自体は考慮せずに測定値の比Ox+1/Oのみを監視して、比Ox+1/Oの低下を検知したら(例えば図9Bのハッチング入りの棒グラフから横線入りの棒グラフに移行したら)、対象物質が存在するとみなすことができる。このようにセンシング部4を挟む2つの光検出器5の測定OとOx+1の比を監視すると、対象物質の有無を判定するための光の強度の基準値を予め設定していなくても、比Ox+1/Oの変動によって対象物質の有無を検知することができる。従って、基準値を設定するための準備作業(リファレンス測定)を行う必要がなくなる。なお、比Ox+1/Oの変動量の大きさに応じて、分析部16が対象物質の量を求めることも可能である。
 [第8の実施形態]
 図10に示す本発明の第8の実施形態の光導波型センサーは、第6の実施形態と第7の実施形態とを組み合わせた構成である。すなわち、本実施形態では、コア部1の内部の検査用光8の進行方向に沿って、1つのセンシング部4と4つの光検出器5とが並んで配置されている。そして、間にセンシング部を介在させることなく隣接する光検出器5の組み合わせと、センシング部4を挟んでその上流側と下流側とにそれぞれ配置されている光検出器5の組み合わせとが混在している。具体的には、コア部1の内部の検査用光8の進行方向に沿って、1番目の光検出器5、センシング部4、2番目の光検出器5、3番目の光検出器5、4番目の光検出器5の順番に並んで配置されている。4つの光検出器5は分析部16に接続されている。その他の構成は第6の実施形態と実質的に同様である。
 本実施形態によると、間にセンシング部を介在させることなく隣接する光検出器5の測定値同士を比較することにより、第6の実施形態と同様に、光導波路の固有の伝播損失を求めることができる。一方、センシング部4を挟んでその上流側と下流側とにそれぞれ配置されている光検出器5の測定値同士の比Ox+1/Oの変動を監視することにより、第7の実施形態と同様に対象物質の有無を検知することができる。そして、光検出器5の数が多いほど、測定および分析の精度が向上する。
 [第9の実施形態]
 図11に示す本発明の第9の実施形態の光導波型センサーは、第6の実施形態と第7の実施形態とを組み合わせた第8の実施形態をさらに発展させたものである。すなわち、本実施形態では、コア部1の内部の検査用光8の進行方向に沿って、2つのセンシング部4と5つの光検出器5とが並んで配置されている。具体的には、コア部1の内部の検査用光8の進行方向に沿って、1番目の光検出器5、1番目のセンシング部4、2番目の光検出器5、3番目の光検出器5、2番目のセンシング部4、4番目の光検出器5、5番目の光検出器5の順番に並んで配置されている。5つの光検出器5は分析部16に接続されている。その他の構成は第6の実施形態と実質的に同様である。
 本実施形態の光導波型センサーは複数のセンシング部4を有しており、各センシング部4にそれぞれ異なる対象物質と結合する捕捉物質(例えば抗体)を配置することができる。従って、1つの光導波路を利用して複数の物質の検出が可能である。1つのセンシング部4を挟んで上流側と下流側に位置する2つの光検出器5による検査用光の強度の測定結果に基づいて、分析部16は、第7の実施形態と同様に、そのセンシング部4に供給された検体中の対象物質の有無を判定することができる。本実施形態では、このように第7の実施形態と同様の物質検出を行うことができるユニットが2つ並んで配置されていると考えることができる。
 本実施形態においても、前述したように複数の光検出器5による光の強度の測定値の比を用いて物質検出を行うことが効果的である。その点について説明すると、第6の実施形態と同様に、対象物質を含む検体を供給する前に各光検出器5により検査用光8の一部を検出してその強度の測定値を求めることにより、光導波路の固有の伝播損失を求めることができる。仮に複数の光検出器5が検査用光8の進行方向に沿って等間隔に並んで配置されているとすると、隣り合う光検出器5同士の間の伝播損失は基本的に一定である(光検出器5自体による損失は無視できる程度であると仮定する)。従って、図12Aのドット柄の棒グラフで示すように、光導波路の入射端部1a側から終端部1b側に向かって、各光検出器5の測定値は一定の割合で順次低下する。一例では、各光検出器5の測定値は、隣接する上流側に隣接する光検出器5の測定値の90%になる。この場合、図12Bのドット柄の棒グラフで示すように、測定値の比Ox+1/Oは一定(0.9)である。
 そこで、実際に対象物質の検出を行う検体を、各センシング部4を通して供給し、図12Aのハッチング入りの棒グラフで示すように、各光検出器5によって検査用光8の一部を検出してその強度を測定し、分析部16は、図12Bのハッチング入りの棒グラフで示すように、隣接する光検出器5の測定値同士の比Ox+1/Oを求める。図12Bに示す例では、2番目の光検出器と3番目の光検出器5の測定値同士の比O/Oと、4番目の光検出器と5番目の光検出器5の測定値同士の比O/Oは概ね0.9であるが、1番目の光検出器と2番目の光検出器5の測定値同士の比O/Oは約0.8であり、3番目の光検出器と4番目の光検出器5の測定値同士の比O/Oも約0.8である。この結果から、2番目の光検出器と3番目の光検出器5との間、および4番目の光検出器と5番目の光検出器5との間では、ほぼ光導波路の伝播損失のみによって光の強度が低下していることがわかる。一方、1番目の光検出器と2番目の光検出器5の測定値同士の比O/Oと、3番目の光検出器と4番目の光検出器5の測定値同士の比O/Oは、小さく(約0.8)になっている。従って、1番目の光検出器5と2番目の光検出器5との間と、3番目の光検出器5と4番目の光検出器5との間では、光導波路の伝播損失のみならず、その他の要因によっても光の強度が低下していることがわかる。そこで、1番目の光検出器5と2番目の光検出器5との間に位置する1番目のセンシング部4と、3番目の光検出器5と4番目の光検出器5との間に値する2番目のセンシング部4とにおいて、標識物質と結合した対象物質が捕捉物質(例えば抗体)に捕捉されて、標識物質が光を吸収したことにより、強度が低下したと考えられる。すなわち、図12Bに示されている結果から、1番目のセンシング部4における対象物質と、2番目のセンシング部4における対象物質が、検体内に含まれていたと考えることができる。
 これに対し、図示しないが、仮に、1番目の光検出器5と2番目の光検出器5の測定値同士の比O/Oが小さくない(約0.9である)場合には、1番目の光検出器5と2番目の光検出器5との間に位置する1番目のセンシング部4に、光を吸収する標識物質が固着されていないと考えられる。すなわち、標識物質と結合されるとともに1番目のセンシング部4の捕捉物質に捕捉される対象物質が、検体中に含まれていないとみなすことができる。同様に、仮に、3番目の光検出器5と4番目の光検出器5の測定値同士の比O/Oが小さくない(約0.9である)場合には、標識物質と結合されるとともに2番目のセンシング部4の捕捉物質に捕捉される対象物質が、検体中に含まれていないとみなすことができる。
 このようにして、複数のセンシング部のそれぞれにおける対象物質の有無を検知することができる。1番目のセンシング部4における対象物質と、2番目のセンシング部4における対象物質とは、同じ物質であっても異なる物質であってもよく、それぞれの対象物質に応じた捕捉物質が配置されればよい。1番目のセンシング部4における対象物質と2番目のセンシング部4における対象物質とが同じ物質である場合には、物質検出の精度及び信頼性が向上する。1番目のセンシング部4における対象物質と2番目のセンシング部4における対象物質とが異なる物質である場合には、1系統の光路において同時に複数の物質の検出が可能になる。なお、図示されている例では、2つのセンシング部4と5つの光検出器5が設けられているが、センシング部4および光検出器5の数は限定されない。
 仮に、この光導波型センサーを用いて、隣接する光検出器5の測定値同士の比Ox+1/Oを用いることなく、図12Aのハッチング入りの棒グラフで示す個々の光検出器5の測定値自体に基づいて物質の有無を検出しようとしても、個々の光検出器5の測定値のみで物質の検出を精度良く行うことは容易ではない。光導波路の一部で、光の吸収などにより検査用光8の強度が低下すると、それよりも下流側の光検出器5における検査用光8の強度の測定値は全て小さくなる。従って、個々の光検出器5の測定値のみを見ても、それよりも上流側のどの位置で(どのセンシング部4で)光の強度低下(例えば光の吸収)が生じたかを知ることは容易ではない。このような場合には、リファレンス測定を行って、図12Aのドット柄の棒グラフで示す各光検出器5のそれぞれの基準値を求めておき、各光検出器5の測定値と基準値とを比べる必要がある。
 これに対し、1つの光検出器5の測定値と、それに隣接する上流側の光検出器(1つ前の光検出器)5の測定値とを対比すると、光導波路のどの位置で光の強度が低下したかを容易に知ることができる。特に、複数の光検出器5が均等な間隔で配置されていると、図12Bのドット柄の棒グラフで示すように、隣接する2つの光検出器5の測定値の比Ox+1/Oは、対象物質および標識物質が存在しない場合には一定(例えば0.9)である。従って、図12Bのハッチング入りの棒グラフで示すように、比Ox+1/Oが小さくなると、それらの2つの光検出器の間の位置(図12Bの例では1番目の光検出器と2番目の光検出器5との間と、3番目の光検出器と4番目の光検出器5との間)で、光の強度の低下(例えば光の吸収)が生じたことが容易に判るため、複数のセンシング部4のそれぞれにおける対象物質の検出が容易かつ高精度に行える。なお、隣接する2つの光検出器5の測定値の比Ox+1/Oの基準値(例えば0.9)は、概ね光導波路の固有の伝播損失を表している。これは、第6の実施形態と同様に、間にセンシング部4を介在させることなく隣接する光検出器5の測定値同士を比較することによって求めることができる。ただし、本実施形態では、リファレンス測定を行わず基準値を予め設定しなくても、測定値の比Ox+1/Oの変動を見ることにより、光の強度の低下(例えば光の吸収)および対象物質の検出とその位置を容易かつ高精度に知ることができる。すなわち、測定値の比Ox+1/Oの数値自体ではなく、測定値の比Ox+1/Oが小さくなっている部分を検知すればよい。本実施形態では、複数のセンシング部4で起こった複数の光吸収による絶対的な光強度の低下を考慮する必要はなく、1つの光導波路と1つの検査用光8を用いて、検体に含まれる複数の対象物質をそれぞれ検出することが可能である。
 図13には、本実施形態の変形例の要部が示されている。この変形例では、複数の光検出器5と複数のセンシング部4が、検査用光8の進行方向に沿って交互に配置されている。この構成でも、前述した例と同様に、特に隣接する2つの光検出器5の測定値の比Ox+1/Oの低下を検知することによって、分析部16が、どのセンシング部4において光の強度の低下(光の吸収)が生じたかを容易かつ高精度に求めることができ、それに基づいて当該センシング部4に対応する対象物質の存在を検知することができる。
 なお、説明を容易にするために、複数の光検出器5を等間隔に配置した例を示したが、これに限定されるわけではない。光導波路の固有の伝播損失は単位距離あたりの損失量として表されるため、隣接する光検出器5同士の間隔に応じた光の強度の低下量を算出すればよく、光検出器5の間隔が一定である必要はない。
 第6~9の実施形態(図7~12B)のように、1つの光導波路に対して複数の光検出器5を設けることができるのは、各光検出器5の受光面5aが、コア部1内における検査用光8の進路(進行方向)と実質的に平行に位置しているからである。このような構成により、光源7が1つであって、センサーの外部に複数の光検出器5が設けられていなくても、複数の対象物質を同時に検出できる。
 [第10の実施形態]
 図14に示す本発明の第10の実施形態の光導波型センサーは、クラッド部2の上に複数(図示されている例では2つ)のコア部1が平行に並べて配置された構成である。各コア部1にそれぞれセンシング部4と光検出器5が設けられており、各光検出器5は分析部16に接続されている。そして、図示しないが、それぞれのコア部1に対して第1の実施形態(図1)または第5の実施形態(図6)と同様な光源が配置されて、検査用光8をコア部に入射する。光源の数は1つであっても複数(例えばコア部1の数と同数)であってもよい。必要に応じて、第1の実施形態と同様な結合器が設けられる場合もある。本実施形態では、各コア部1に設けられたセンシング部4にそれぞれ異なる対象物質を捕捉する捕捉物質(例えば抗体)を配置することにより、1つの光導波型センサーで複数の対象物質を同時に検出することができる。あるいは、2つのセンシング部4に同一の対象物質を捕捉する捕捉物質をそれぞれ配置して、その対象物質の検出の信頼性を高めることができる。それ以外の構成は第1の実施形態と実質的に同様である。
 [第11の実施形態]
 図15に示す本発明の第11の実施形態の光導波型センサーは、第10の実施形態の光導波型センサーと類似した構成において、1つの光検出部5が複数(図示されている例では2つ)の光導波路1にまたがって配置されている。この光検出器5は分析部16に接続されている。この構成によると、構成が簡単になり、コストの低減が図れる。それ以外の構成は第10の実施形態と実質的に同様である。
 なお、前述した第2~11の実施形態においても、図2に示す構成と同様に、センシング部4を含む反応用の空間9を包囲する凹部2aを有する上側のクラッド部2(言い換えるとクラッド部2の上側部分)を配置することが好ましい。
 [第12の実施形態]
 次に、本発明に係る光導波型センサーの1種であるSPR(表面プラズモン共鳴)センサーについて説明する。図16に、本発明の第12の実施形態の表面プラズモン共鳴センサーを概略的に示している。この表面プラズモン共鳴センサーの構造について説明すると、光が伝播する誘電体からなる導波路であるコア部1と、コア部1の周囲を取り囲むクラッド部2とを含むセンサー本体3が、基板10の上に搭載されている。クラッド部2の一部には切り欠き状の凹部2bが設けられており、この凹部2b内においてコア部1に沿う位置に表面プラズモン発生部が形成されている。この凹部2bは、図2に示されている上側のクラッド部2の逆凹状の凹部2aとは異なり、表面プラズモン発生部を外部に露出させる切り欠き状の凹部である。本実施形態においてセンシング部に相当するのは表面プラズモン発生部であり、これは主に表面プラズモン発生用の金属膜13からなる。金属膜13としてはAg、Al、Au、Cu、Ir、Pt、Rh、またはそれらを含む合金が、発熱が小さいため好ましい。また密着性や化学装飾性を向上させるために積層構造の金属膜13を用いてもよい。金属膜13はコア部1に接していてもよく、あるいは、薄いクラッド部2を間に挟んでコア部1に近接していてもよい。後者の場合、間に介在するクラッド部2の厚さは100nm以下であることが好ましい。凹部2bは、クラッド部2の、コア部1からセンサー本体3の厚さ方向に見て基板10と反対側の位置に設けられている。従って、図16に示すコア部1を通る断面では、センサー本体3の厚さ方向に見て、基板10、クラッド部2の下側部分、コア部1、凹部2bを含むクラッド部2の上側部分の順番に位置している。
 さらに、コア部1の入射端部1aに検査用光を入射させるレーザダイオードからなる光源7と、コア部1の入射端部1aと反対側の端部である出射端部(終端部)1bと対向する、フォトダイオード5bを含む光検出器5とが設けられている。具体的には、光源7が搭載されている光源用基板10Aと、センサー本体3が搭載されている基板10と、光検出器5が搭載されている光検出器用基板10Bとが、順番に、かつ隙間なく連続的に接続されて、光源7とコア部1と光検出器5が1列に並んで配置されている。光源7は、コア部1の入射端部1aとの間に他部材を介在させることなく、入射端部1aと直接対向しており、光源7の発光部は、0~10μmの間隔でコア部1の入射端部1aと対向している。
 同様に、光検出器5は、コア部1の出射端部1bとの間に他部材を介在させることなく、出射端部1bと直接対向している。通常、光検出器5のフォトダイオード5bの受光面5aはコア部1の出射端部1bよりも大面積なので、光検出器5の受光面5aとコア部1の出射端部1bとの間の間隔は多少大きくてもよい。光検出器5は分析部16に接続されている。図面中には模式的に示されているが、分析部16は、例えばセンサー本体3が搭載される基板10に形成されていてもよい。
 この表面プラズモン共鳴センサーでは、光源7を作動させて検査用光8を入射端部1aからコア部1に入射させる。コア部1に入射した検査用光8は、少なくとも金属膜13(表面プラズモン発生部)に隣接する位置で、金属膜13の膜面に実質的に平行に伝播する。光源7からコア部1の入射端部1aへ向かう検査用光8の進行方向と、金属膜13に隣接する位置でコア部1内を伝播する検査用光8の進行方向は一致している。コア部1を検査用光8が伝播することにより、金属膜13には表面プラズモンが発生する。コア部1を透過した検査用光8は、光検出器5によって受光される。コア部1の出射端部1bから光検出器5へ向かう検査用光8の進行方向と、金属膜13に隣接する位置でコア部1内を伝播する検査用光8の進行方向は一致している。
 一方、上側のクラッド部2に設けられている凹部2bには検体が供給され、検体は金属膜13に接した状態で、凹部2b内に保持されるか、凹部2b内を流通させられる。この時、特定の対象物質(被検査試料)が検体に含まれていると、その被検査試料が金属膜13に付着する。こうして被検査試料が付着すると、金属膜13の表面近傍の屈折率が変化する。表面プラズモンの波数と検査用光8の波数とが一致すると、表面プラズモン共鳴が発現し、エバネッセント光の大部分が吸収されるため、伝播する検査用光8の強度が変化する。光検出器5が、受光した検査用光8の強度の変化を検知すると、それに基づいて、分析部16が、検体内に被検査試料が存在すると判定することができる。なお、検出すべき被検査試料に応じて、検査用光8の特性や金属膜13の特性や厚さ等を適宜に設定することにより、所望の被検査試料の検出を行うことができる。また、被検査試料を金属膜13に付着させることは、特定の抗体を金属膜13に修飾させて抗原抗体反応を生じさせることや、その他の様々な方法を利用することができる。このようにして、本実施形態のセンサーにより、表面プラズモン共鳴を利用した物質検出が行える。この構成では標識物質は必要ではない。
 このような表面プラズモン共鳴センサーにおいて、近年では、医療用途等のために被験者が家庭等で自らの血液や体液などを検体として容易に検査できるようにすることが望まれている。そのためには、センサーを容易に携帯可能な程度に大幅に小型化することが望まれている。例えば、センサーをスマートフォンと一緒に携帯してスマートフォンに接続して検査および分析を行えることが望ましく、そのためには、センサー全体がスマートフォン程度以下の寸法であることが好ましい。このように、従来のセンサー(例えば特許文献3~7および被特許文献1に開示されているセンサー)よりも遙かに小さなサイズにすることが望まれており、その要請に応えるために本発明の表面プラズモン共鳴センサーを提案する。
 具体的には、本実施形態の表面プラズモン共鳴センサーでは、センサー本体3と光源7と光検出器5とを一体化した1つのユニットとして携帯できるようにしている。そのために、光源7とコア部1と光検出器5が1列に並ぶように、光源用基板10Aと基板10と光検出器用基板10Bとが、順番に、かつ隙間なく連続的に接続されている。光源7とコア部1は、間に他部材を介在させることなく、発光部と入射端部1aとの間の間隔が0~10μmになるように近接している。光源7とコア部1の間隔が大きすぎると、小型化の妨げになるばかりでなく、図17Aに示すように光源7から出射した光8のうちの多くが、コア部1に入射せずに無駄になってしまう。そこで、両者の間隔を10μm以下にして、小型化を図るとともに、図17Bに示すように光源7から出射した光8のうちのほぼ全てをコア部1に入射させて、エネルギー効率を高めている。なお、この時のコア部1の入射端部1aの入射端面は、一例としては、偏光方向が保持されやすい矩形であり、その矩形の長辺の長さは10μm以下である。光源7とコア部1は密着していてもよい。また、コア部1の出射端部1bと光検出器5は、間に他部材を介在させることなく、密着または近接している。ただし、例えば受光面5aの面積が大きい光検出器5を用いることによって、コア部1の出射端部1bから出射された光8が光検出器5の受光面5a内に収まるようにすることは容易なので、出射端部1bと受光面5aとの間の間隔はさほど厳密に規定する必要はない。
 [第13の実施形態]
 図18に本発明の第13の実施形態の表面プラズモン共鳴センサーを示している。本実施形態の表面プラズモン共鳴センサーでは、1枚の基板10の上に光源7とセンサー本体3と光検出器5が搭載されている。光源7とコア部1と光検出器5のフォトダイオード5bは、基板10の上で1列に並んで密着または近接している。これにより、1つのユニットとしての取り扱いがより容易になり、また、部品点数の減少により低コスト化および製造工程の簡略化および短縮の効果がある。それ以外の構成については第12の実施形態と実質的に同じなので説明を省略する。
 [第14の実施形態]
 図19に本発明の第14の実施形態の表面プラズモン共鳴センサーを示し、図20にその光源を除くセンサー本体3およびセンサー本体3用の基板10の構成を示している。本実施形態の表面プラズモン共鳴センサーでは、光検出器5が基板10に形成され、基板10のセンサー本体3が搭載されている面側に光検出器5の受光面5aが位置している。より詳細な例では、光検出器5を構成するフォトダイオードが、センサー本体3が搭載されている基板10内に形成されている。光検出器5は、主に、基板10の形成時に半導体プロセス技術等の集積技術を用いてフォトダイオードを構成することによって、基板10内に形成されている。そして、光検出器5の受光面5aは基板10の上面(センサー本体3が搭載される面)に露出し、クラッド部2に接している。受光面5aは、検査用光8のコア部1内における進路(進行方向)と、実質的に平行に位置している。言い換えると、コア部1内における検査用光8の進路(進行方向)が含まれる平面と、光検出器5の受光面5aとが、互いに実質的に平行である。この構成によると、光検出器5を別部材として設けるのではなく、センサー本体3用の基板10に組み込んでいるため、コア部1と光検出器5をアライメントして接合する工程が不要であり、組み立て工程が簡略化および短縮できるとともに、1つのユニットとしての取り扱いがより容易になる。また、光検出器用基板が不要になり低コスト化が可能になる。図20に示す構成のセンサー本体3に、どのようにして光源7を取り付けるかは限定されず、いかなる形態で光源7を取り付けてもかまわない。一例として、図19に示す構成では、第12の実施形態と同様に、光源用基板10Aが基板10に接合され、光源用基板10A上に光源7が搭載されている。ただし、図18に示す構成と同様にセンサー本体3用の基板10の上に光源7を搭載した構成等であってもよい。図19,20に示すコア部1を通る断面では、センサー本体3の厚さ方向に見て、基板10、光検出器5、クラッド部2の下側部分、コア部1、クラッド部2の上側部分の順番に位置している。その他の構成は第12の実施形態と実質的に同じなので説明を省略する。
 [第15の実施形態]
 図21に本発明の第15の実施形態の表面プラズモン共鳴センサーを示している。本実施形態の表面プラズモン共鳴センサーでは、光検出器5を構成するフォトダイオードが、コア部1の上方に位置するクラッド部2(上側部分)内に形成されている。光検出器5は、主に、クラッド部2の形成時に半導体プロセス技術等の集積技術を用いてフォトダイオードを構成することによって、クラッド部2内に形成されている。この構成によると、第14の実施形態と同様に、組み立て工程が簡略化および短縮できるとともに、1つのユニットとしての取り扱いがより容易になる。また、光検出器用基板が不要になり低コスト化が可能になる。この構成において、光源7をどのようにして取り付けるかは限定されず、いかなる形態で光源7を取り付けてもかまわないが、光源用基板10Aが基板10に接合され、光源用基板10A上に光源7が搭載されている構成であってもよい。図18に示す構成と同様にセンサー本体3用の基板10の上に光源7を搭載した構成等であってもよい。図21に示すコア部1を通る断面では、センサー本体3の厚さ方向に見て、基板10、クラッド部2の下側部分、コア部1、クラッド部2の上側部分および光検出器5の順番に位置している。すなわち、光検出器5は、コア部1からセンサーの厚さ方向に見て凹部2bと同じ側(上側)のクラッド部2内に形成されている。その他の構成は第12の実施形態と実質的に同じなので説明を省略する。
 [第16の実施形態]
 図22に本発明の第16の実施形態の表面プラズモン共鳴センサーを示している。本実施形態の表面プラズモン共鳴センサーでは、光検出器5を構成するフォトダイオードが、クラッド部2の下側部分の下面に形成されている。すなわち、光検出器5は、コア部1からセンサーの厚さ方向に見て凹部2bと反対側(下側)のクラッド部2に接するように形成されている。そして、コア部1を伝播する検査用光8をクラッド部2の下側部分の下面の光検出器5に導くために、コア部1が入射端部1aと反対側で光検出器5に向かって(下方に)屈曲している。コア部1は入射端部1aからセンサー本体3の端部まで延びておらず、屈曲部1cにて終端している。屈曲部1cが方向転換手段として作用し、検査用光8をクラッド部2の下方の光検出器5に導く。この構成によると、第14~15の実施形態と同様に、組み立て工程が簡略化および短縮できるとともに、1つのユニットとしての取り扱いがより容易になる。また、光検出器用基板が不要になり低コスト化が可能になる。この構成においても、光源7を取り付ける形態は特に限定されない。また、センサー本体3をどのように支持するかは限定されない。もちろん、第12の実施形態と同様にセンサー本体3が基板10の上に搭載されてもよい。なお、屈曲部1cは、センサーの完成状態において、コア部1が下方に向かって屈曲しているような形状になっているが、実際の製造時には、クラッド部2とコア部1の各層の形成時にそれぞれ所望の形状にパターニングされることによって屈曲部1cが形成されるので、屈曲工程が行われるわけではない。その他の構成は第12の実施形態と実質的に同じなので説明を省略する。
 図23に本発明の第16の実施形態の変形例の表面プラズモン共鳴センサーを示している。本実施形態の表面プラズモン共鳴センサーでは、光検出器5を構成するフォトダイオードが、クラッド部2の下側部分の下面に形成されている。そして、コア部1を伝播する検査用光8をクラッド部2の下側部分の下面の光検出器5に導くために、コア部1にミラー14が設けられている。コア部1は入射端部1aからセンサー本体3の端部まで延びておらず、ミラー14により終端させられている。ミラー14が方向転換手段として作用し、検査用光8をクラッド部2の下方の光検出器5に導く。この構成でも前述した効果が得られる。また、図24に示す他の変形例のように、コアとクラッドの界面をミラーとして用いて、金属層を持たないミラー15をコア部1に設けてもよい。その他の構成は第12の実施形態と実質的に同じなので説明を省略する。さらに、図25に本発明の第16の実施形態のさらに他の変形例の表面プラズモン共鳴センサーを示している。本変形例の表面プラズモン共鳴センサーでは、コア部1を伝播する検査用光8をクラッド部2の下側部分の下面の光検出器5に導くために、コア部1にグレーティング構造部12が設けられている。コア部1の入射端部1aと反対側の端部近傍にグレーティング構造部12が設けられている。グレーティング構造部12が方向転換手段として作用し、検査用光8をクラッド部2の下方の光検出器5に導く。この変形例でも前述した効果が得られる。その他の構成は第1の実施形態と実質的に同じなので説明を省略する。
 以上説明した第12~16の実施形態において、凹部2bから、コア部1内の検査用光8の伝播方向に見て、各光検出器5はコア部1の入射端部1aと反対側に位置している。
 本発明では、表面プラズモン発生部(凹部2b内の金属膜13)に向けて光を照射するためのプリズムやV字状溝やグレーティング構造体等の光学部材は必要なく、さらに、表面プラズモン発生部を含むセンサー本体3と光源7や光検出器5とを接続するための光ファイバーやレンズ等の光学部材も必要としない。従って、構造が簡単で製造が容易であるとともに、センサーの厚さ方向の寸法もコア部1の長手方向の寸法も小さくでき、その結果、製造コストの低減や、各部材の光学的なアライメントの高精度化や、センサー全体の小型化が可能である。しかも、検査用光8が空間(空気)内を伝播するのではなく誘電体からなるコア部1内を伝播する構成であるため、伝播に伴う光の損失が小さい。そして、本発明によると、光源7や光検出器5を含めたセンサー全体を1つの小型のユニットとして取り扱うことが容易であり、携帯して手軽に操作することが可能な(例えば医療用の)検査機器を構成することができる。
1   コア部
1a  入射端部
1b  出射端部
1c  屈曲部
2   クラッド部
2a,2b   凹部
3   センサー本体
4   センシング部
5   光検出器
5a  受光面
5b  フォトダイオード
6   結合器(カップラ)
7   光源(レーザダイオード)
8   検査用光
9   空間
10,10A,10B  基板
11  高屈折率層
12  グレーティング構造部
13  金属膜(表面プラズモン発生部)
14  ミラー
15  金属層を持たないミラー

Claims (42)

  1.  光が伝播する導波路であるコア部と、前記コア部の少なくとも一部の周囲に部分的に設けられているクラッド部と、前記コア部の一部に沿って設けられているセンシング部と、を含むセンサー本体と、
     受光面を有する光検出器と、
     前記コア部に入射させる検査用光を生成するレーザダイオードからなる光源と、
     を含む光導波型センサーにおいて、
     前記光検出器の前記受光面は、前記コア部内における前記検査用光の進路と実質的に平行に配置されていることを特徴とする、光導波型センサー。
  2.  請求項1に記載の光導波型センサーにおいて、
     前記センサー本体は基板上に搭載されており、前記光検出器は前記基板に形成され、前記基板の前記センサー本体が搭載されている面側に前記光検出器の前記受光面が位置していることを特徴とする、光導波型センサー。
  3.  請求項2に記載の光導波型センサーにおいて、
     前記クラッド部の実効屈折率n2よりも大きい実効屈折率n3を有する材料が、前記コア部と前記受光面の間の少なくとも一部を形成していることを特徴とする、光導波型センサー。
  4.  請求項3に記載の光導波型センサーにおいて、
     前記コア部の実効屈折率をn1とすると、前記材料の実効屈折率n3はn3≧n1の関係を満たすことを特徴とする、光導波型センサー。
  5.  請求項2に記載の光導波型センサーにおいて、
     前記コア部と前記受光面の間の少なくとも一部にグレーティング構造を有することを特徴とする、光導波型センサー。
  6.  請求項1から5のいずれか1項に記載の光導波型センサーにおいて、
     前記光源は、前記コア部の、前記検査用光が入射する入射端部と対向しており、前記光源と前記入射端部との間の間隔は0~10μmであることを特徴とする、光導波型センサー。
  7.  請求項1から6のいずれか1項に記載の光導波型センサーにおいて、
     前記光検出器が2つ以上設けられていることを特徴とする、光導波型センサー。
  8.  請求項7に記載の光導波型センサーにおいて、
     前記センシング部が複数の前記光検出器に挟まれるように配置されていることを特徴とする、光導波型センサー。
  9.  請求項7に記載の光導波型センサーにおいて、
     複数の前記光検出器のうちの少なくとも一部が、前記検査用光の前記進路と平行な方向に沿って等間隔に並べて配置されていることを特徴とする、光導波型センサー。
  10.  請求項8に記載の光導波型センサーにおいて、
     前記センシング部が2つ以上設けられていることを特徴とする、光導波型センサー。
  11.  請求項1から10のいずれか1項に記載の光導波型センサーにおいて、
     複数のコア部を有することを特徴とする、光導波型センサー。
  12.  請求項11に記載の光導波型センサーにおいて、
     前記光検出器が複数のコア部に重なるように配置されていることを特徴とする、光導波型センサー。
  13.  請求項7に記載の光導波型センサーにおいて、
     1つの前記光検出器の信号強度Oと、前記光源側から見て前記1つの光検出器の次に位置する前記光検出器の信号強度をOx+1との比Ox+1/Oに基づいて、2つの前記光検出器の間に位置する前記センシング部における対象物質の有無および量の少なくとも一方を判定する分析部を有することを特徴とする、光導波型センサー。
  14.  請求項1から13のいずれか1項に記載の光導波型センサーにおいて、
     前記センシング部は、検出対象である対象物質の有無に応じて前記検査光の一部を吸収することを特徴とする、光導波型センサー。
  15.  請求項14に記載の光導波型センサーにおいて、
     前記センシング部には、前記対象物質と前記対象物質に結合された標識物質とを固着させるための捕捉物質が配置されており、前記標識物質は光吸収性を有することを特徴とする、光導波型センサー。
  16.  請求項1から13のいずれか1項に記載の光導波型センサーにおいて、
     前記センシング部は、前記コア部に沿って配置された表面プラズモン発生用の金属膜からなることを特徴とする、光導波型センサー。
  17.  請求項7から10のいずれか1項に記載の光導波型センサーを用いる物質検出方法であって、
     1つの前記光検出器の信号強度Oと、前記光源側から見て前記1つの光検出器の次に位置する前記光検出器の信号強度をOx+1との比Ox+1/Oに基づいて、2つの前記光検出器の間に位置する前記センシング部における対象物質の有無および量の少なくとも一方を判定することを特徴とする、物質検出方法。
  18.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光源は、前記コア部の前記入射端部との間に他部材を介在させることなく、前記入射端部と直接対向していることを特徴とする、光導波型センサー。
  19.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光源は、0~10μmの間隔で前記コア部の前記入射端部と対向していることを特徴とする、光導波型センサー。
  20.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光源から前記コア部の入射端部へ向かう検査用光の進行方向と、前記金属膜に隣接する位置で前記コア部内を伝播する検査用光の進行方向が一致していることを特徴とする、光導波型センサー。
  21.  請求項17から20のいずれか1項に記載の光導波型センサーにおいて、
     前記コア部の前記入射端部と反対側の端部である出射端部と対向するフォトダイオードを有する光検出器をさらに含み、前記光検出器は、前記コア部の前記出射端部との間に他部材を介在させることなく、前記出射端部と直接対向していることを特徴とする、光導波型センサー。
  22.  請求項17から21のいずれか1項に記載の光導波型センサーにおいて、
     前記コア部の前記入射端部と反対側の端部である出射端部と対向するフォトダイオードを有する光検出器をさらに含み、
     前記コア部の前記出射端部から前記光検出器へ向かう検査用光の進行方向と、前記金属膜に隣接する位置で前記コア部内を伝播する検査用光の進行方向が一致していることを特徴とする、光導波型センサー。
  23.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、
     前記コア部の前記入射端部と反対側の端部である出射端部と対向するフォトダイオードを有する光検出器と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光源が搭載されている光源用基板と、前記センサー本体が搭載されている基板と、前記光検出器が搭載されている光検出器用基板とが、順番に、かつ隙間なく連続的に接続されて、前記光源と前記コア部と前記光検出器が1列に並んで配置されていることを特徴とする、光導波型センサー。
  24.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、
     前記コア部の前記入射端部と反対側の端部である出射端部と対向するフォトダイオードを有する光検出器と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光源と前記光検出器は、前記センサー本体が搭載されている基板上に搭載されて、前記光源と前記コア部と前記光検出器が1列に並んで配置されていることを特徴とする、光導波型センサー。
  25.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部を伝播する検査用光を受光するフォトダイオードを有する光検出器と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記センサー本体は基板上に搭載されており、前記光検出器は前記基板に形成され、前記基板の前記センサー本体が搭載されている面側に前記光検出器の前記受光面が位置していることを特徴とする、光導波型センサー。
  26.  請求項25に記載の光導波型センサーにおいて、
     前記光検出器は、前記基板の前記センサー本体が搭載される面に露出して前記クラッド部に接していることを特徴とする、光導波型センサー。
  27.  請求項25または26に記載の光導波型センサーにおいて、
     前記センサー本体の厚さ方向に見て、前記基板、前記光検出器、前記クラッド部、前記コア部、前記クラッド部の順番に位置していることを特徴とする、光導波型センサー。
  28.  請求項25から27のいずれか1項に記載の光導波型センサーにおいて、
     前記凹部は、前記コア部から前記センサーの厚さ方向に見て前記基板と反対側に位置する前記クラッド部に設けられていることを特徴とする、光導波型センサー。
  29.  光が伝播する導波路であるコア部と、前記コア部の周囲を取り囲むクラッド部と、前記クラッド部の一部に設けられた凹部と、前記凹部内において前記コア部に沿って配置された、表面プラズモン発生用の金属膜と、を含むセンサー本体と、
     前記コア部を伝播する検査用光を受光するフォトダイオードを有する光検出器と、
     を含む光導波型センサーにおいて、
     前記コア部は、少なくとも前記金属膜に隣接する位置で、前記金属膜の膜面に実質的に平行に前記検査用光を伝播させるように配置されており、
     前記凹部は、前記金属膜に接する位置で検体を保持または流通させることができ、
     前記光検出器は前記クラッド部内に形成されていることを特徴とする、光導波型センサー。
  30.  請求項29に記載の光導波型センサーにおいて、
     前記光検出器は、前記コア部から前記センサーの厚さ方向に見て前記凹部と反対側の前記クラッド部内に形成されていることを特徴とする、光導波型センサー。
  31.  請求項29に記載の光導波型センサーにおいて、
     前記光検出器は、前記コア部から前記センサーの厚さ方向に見て前記凹部と同じ側の前記クラッド部内に形成されていることを特徴とする、光導波型センサー。
  32.  請求項29から31のいずれか1項に記載の光導波型センサーにおいて、
     前記コア部に、該コア部を伝播する検査用光を前記光検出器に導く方向転換手段が設けられていることを特徴とする、光導波型センサー。
  33.  請求項32に記載の光導波型センサーにおいて、
     前記方向転換手段は、ミラー、グレーティング部、または前記コア部の屈曲部であることを特徴とする、光導波型センサー。
  34.  請求項29から33のいずれか1項に記載の光導波型センサーにおいて、
     前記センサー本体が搭載されている基板と、該基板上に搭載されており前記コア部の入射端部に検査用光を入射させるレーザダイオードを有する光源と、をさらに含むことを特徴とする、光導波型センサー。
  35.  請求項29から34のいずれか1項に記載の光導波型センサーにおいて、
     前記センサー本体が搭載されている基板と、前記コア部の入射端部に検査用光を入射させるレーザダイオードからなる光源と、前記光源が搭載されており、前記基板と隙間なく連続的に接続されている光源用基板と、をさらに含むことを特徴とする、光導波型センサー。
  36.  請求項34または35に記載の光導波型センサーにおいて、
     前記光源は、前記コア部の前記入射端部との間に他部材を介在させることなく、該入射端部と直接対向していることを特徴とする、光導波型センサー。
  37.  請求項34から36のいずれか1項に記載の光導波型センサーにおいて、
     前記光源は、0~10μmの間隔で前記コア部の前記入射端部と対向していることを特徴とする、光導波型センサー。
  38.  請求項34から37のいずれか1項に記載の光導波型センサーにおいて、
     前記光源から前記コア部の入射端部へ向かう検査用光の進行方向と、前記金属膜に隣接する位置で前記コア部内を伝播する検査用光の進行方向が一致していることを特徴とする、光導波型センサー。
  39.  請求項29から38のいずれか1項に記載の光導波型センサーにおいて、
     前記凹部から、前記コア部内の検査用光の伝播方向に見て、前記光検出器は前記コア部の入射端部と反対側に位置していることを特徴とする、光導波型センサー。
  40.  請求項18から39のいずれか1項に記載の光導波型センサーにおいて、
     前記コア部の前記入射端部から前記凹部までの間に、前記コア部以外の光学部材は設けられていないことを特徴とする、光導波型センサー。
  41.  請求項18から40のいずれか1項に記載の光導波型センサーにおいて、
     前記金属膜は、前記凹部内において、前記コア部に接するように配置されていることを特徴とする、光導波型センサー。
  42. 請求項18から41のいずれか1項に記載の光導波型センサーにおいて、
     前記金属膜は、前記凹部内において、厚さが100nm以下のクラッド部を介して前記コア部と対向するように配置されていることを特徴とする、光導波型センサー。
     
PCT/JP2018/004017 2017-02-06 2018-02-06 光導波型センサーおよび物質検出方法 WO2018143474A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017019580 2017-02-06
JP2017-019580 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018143474A1 true WO2018143474A1 (ja) 2018-08-09

Family

ID=63040802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004017 WO2018143474A1 (ja) 2017-02-06 2018-02-06 光導波型センサーおよび物質検出方法

Country Status (1)

Country Link
WO (1) WO2018143474A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131568A (ja) * 2000-08-31 2002-05-09 Agere Systems Inc 光検出器アセンブリ
JP2002162346A (ja) * 2000-11-22 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象測定装置
WO2006038367A1 (ja) * 2004-10-04 2006-04-13 Niigata University 物質吸着検知方法およびセンサ
JP2007263736A (ja) * 2006-03-28 2007-10-11 Fdk Corp 表面プラズモン共鳴センサを用いた測定システム
US8349605B1 (en) * 2005-04-12 2013-01-08 Colorado State University Research Foundation Optical analyte sensor
JP2014185893A (ja) * 2013-03-22 2014-10-02 Nitto Denko Corp Sprセンサセルおよびsprセンサ
WO2014182893A1 (en) * 2013-05-08 2014-11-13 Colorado State University Research Foundation Hydrocarbon sensing methods and apparatus
JP2015503757A (ja) * 2012-01-17 2015-02-02 エフ.ホフマン−ラ ロッシュ アーゲー 結合親和性の検出に用いる装置
JP2015102459A (ja) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 センサ装置および測定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131568A (ja) * 2000-08-31 2002-05-09 Agere Systems Inc 光検出器アセンブリ
JP2002162346A (ja) * 2000-11-22 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象測定装置
WO2006038367A1 (ja) * 2004-10-04 2006-04-13 Niigata University 物質吸着検知方法およびセンサ
US8349605B1 (en) * 2005-04-12 2013-01-08 Colorado State University Research Foundation Optical analyte sensor
JP2007263736A (ja) * 2006-03-28 2007-10-11 Fdk Corp 表面プラズモン共鳴センサを用いた測定システム
JP2015503757A (ja) * 2012-01-17 2015-02-02 エフ.ホフマン−ラ ロッシュ アーゲー 結合親和性の検出に用いる装置
JP2014185893A (ja) * 2013-03-22 2014-10-02 Nitto Denko Corp Sprセンサセルおよびsprセンサ
WO2014182893A1 (en) * 2013-05-08 2014-11-13 Colorado State University Research Foundation Hydrocarbon sensing methods and apparatus
JP2015102459A (ja) * 2013-11-26 2015-06-04 シチズンホールディングス株式会社 センサ装置および測定方法

Similar Documents

Publication Publication Date Title
JP4533044B2 (ja) センサ
US6483096B1 (en) Integrated-optical chemical and biochemical sensor
JP3816072B2 (ja) 光導波路型センサおよびそれを用いた測定装置
US7586615B2 (en) Measuring unit
JP5180703B2 (ja) 検出方法、検出用試料セルおよび検出用キット
US20130063726A1 (en) Sensor and a method for characterising a dielectric material
JP2007286045A (ja) 検出装置、検出素子用基板、検出素子、検出素子用キット及び検出方法
WO2008075578A1 (ja) 表面プラズモンセンサ
KR20120035749A (ko) 광섬유 기반 lspr 및 sers신호의 동시 측정 센서 시스템
JP2007501403A (ja) 白色光反射干渉の分光変化規則に基づく光ファイバアレイバイオチップ
US10768108B2 (en) Surface plasmon resonance biosensor system
US20120322166A1 (en) Fluorescence detecting apparatus, sample cell for detecting fluorescence, and fluorescence detecting method
JP2009192259A (ja) センシング装置
JP6041390B2 (ja) 光共振器構造
WO2018143474A1 (ja) 光導波型センサーおよび物質検出方法
JP2007225354A (ja) 測定装置
JP4173725B2 (ja) エバネッセント波を利用したセンサー
JP2004077411A (ja) 表面プラズモン・センサー及びspr装置
JP2004061419A (ja) 測定装置
KR100922367B1 (ko) 광도파로 형태의 표면 플라즈몬 공명 센서
Tseng et al. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing
JP2002357544A (ja) 測定装置
KR101394372B1 (ko) 광도파로 형태의 표면 플라즈몬 공명 센서 및 그 제조방법
Beam et al. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films
JP4053236B2 (ja) 全反射減衰を利用したセンサー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18747269

Country of ref document: EP

Kind code of ref document: A1