WO2006035895A1 - 細胞内小核の検出方法 - Google Patents

細胞内小核の検出方法 Download PDF

Info

Publication number
WO2006035895A1
WO2006035895A1 PCT/JP2005/018005 JP2005018005W WO2006035895A1 WO 2006035895 A1 WO2006035895 A1 WO 2006035895A1 JP 2005018005 W JP2005018005 W JP 2005018005W WO 2006035895 A1 WO2006035895 A1 WO 2006035895A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
micronuclei
micronucleus
cell
test
Prior art date
Application number
PCT/JP2005/018005
Other languages
English (en)
French (fr)
Inventor
Hirobumi Suzuki
Atsushi Miyawaki
Original Assignee
Olympus Corporation
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation, Riken filed Critical Olympus Corporation
Priority to EP05788187A priority Critical patent/EP1801207A4/en
Publication of WO2006035895A1 publication Critical patent/WO2006035895A1/ja
Priority to US11/729,529 priority patent/US20070207452A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • G01N33/5017Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity

Definitions

  • the present invention relates to a method for detecting micronuclei in cells.
  • a reverse mutation test using bacteria is characterized by detecting a mutation occurring at the gene level and having a relatively high positive predictive rate. Therefore, if the result of this test is positive, it is likely that the substance is a carcinogen.
  • Chromosome aberration tests are based on the induction of structural and numerical abnormalities of chromosomes, and the background of detecting carcinogens that have been judged to be negative by reverse mutation tests such as benzene and jetylstilbestrol. is there.
  • chromosome analysis and chromosomal aberration tests require a high degree of skill and time, so there are difficulties in speediness, and numerical abnormalities are polyploidy in which the basic number of chromosomes increases by an integral multiple. Since it is limited to detection, there is a limit that it is not possible to detect aneuploidy that increases or decreases in number of chromosomes leading to hereditary diseases.
  • Micronuclei are small nuclei with a size of less than 1/3 of the diameter of the main nucleus (also called macronucleus) left in the cytoplasm of daughter cells via cell division. Just a difference It is thought to be formed due to chromosomal non-segregation due to cell division inhibition, which is the origin of number. Observation of intracellular micronuclei is much easier than chromosomal analysis
  • In vitro micronucleus tests may be more suitable for routine tests than chromosomal aberration tests.
  • micronucleus test has been standardized as an in vivo test using bone marrow erythrocytes such as mice in the past, and there remains a problem that a test protocol as an alternative to the chromosomal aberration test has not been established. .
  • mutagenicity tests There are various methods for mutagenicity tests. Among them, as a test using gene mutagenicity as an index, the ⁇ reverse mutagenesis test using bacteria '' and as a test using chromosomal aberration inducing ability as an index, ⁇ A “chromosomal aberration test using cultured mammalian cells” is performed, and if a positive result is obtained in either of them, a “micronucleus test using rodents” is to be performed.
  • One group 5 or more per sex.
  • test substance is a solid, dissolve it in an appropriate solvent or suspend it in a medium. If it is a liquid, administer it directly or dilute it with an appropriate solvent. If the test substance is a gas, dilute it with clean air. If the stability after preparation is known, use it within a stable period.
  • a solvent or vehicle is set as a negative control, and an appropriate known micronucleus inducer is set as a positive control.
  • gavage or intraperitoneal administration In principle, gavage or intraperitoneal administration.
  • the highest dose is the dose at which cytotoxicity is observed in the bone marrow, such as a decrease in immature erythrocytes, the dose at which any signs of toxicity are observed, or more than expected, or the upper limit of the technically applicable dose .
  • the maximum dose should be 2,000 mg / kg / day for single or repeated doses within 14 days, and 1,000 mg / kg / day for longer doses.
  • the highest dose should be the concentration that can be safely exposed.
  • Set 3 or more doses at appropriate intervals (generally 2), but 10 or less.
  • At least two specimen preparation periods should be set at appropriate intervals between 24 and 48 hours after administration, the animals are sacrificed, and bone marrow smears are prepared. If repeated administration is performed, the specimen should be prepared once every 18 to 24 hours after the final administration.
  • a sample For a single dose, prepare a sample with a minimum of two blood sampling periods at appropriate intervals between 36 and 72 hours after administration. If repeated administration is performed, the specimen should be prepared once every 24 to 48 hours after the last administration.
  • the frequency of appearance of immature erythrocytes relative to total erythrocytes is 200 or more per individual when using bone marrow, and 1,000 or more when using peripheral blood. Obtained by observing red blood cells.
  • the observed frequency of cells with micronuclei for immature erythrocytes and the frequency of occurrence of immature erythrocytes for all red blood cells are displayed in tabular form, and the average value for each group is also displayed.
  • 'Use cells in the logarithmic growth phase (3rd to 5th day of culture) and remove the culture medium in the culture vessel with an aspirator.
  • Atarizine orange staining Observe at 200x using a fluorescence microscope equipped with a B excitation illumination system. The Giemsa-stained specimen is observed at 400x magnification.
  • micronuclei Observe 2000 cells for each concentration and determine the frequency of cells with micronuclei. [0024] The classification of micronuclei follows.
  • MN-1 Mononuclear cells containing micronuclei that are less than 1/10 of the main nucleus
  • MN-2 mononuclear cells containing 1/10 to 1/3 of the main nucleus
  • MN-3 mononuclear cell containing 1/3 to 1/2 micronuclei of main nucleus
  • Mu-MN Mononuclear cells with multiple micronuclei
  • MN-T Total number of mononuclear cells with micronuclei (total of the above four items), the most important item
  • Mu-M Multinucleated cells (including cells that are strongly damaged! /)
  • total count Total number of cells counted (this time around 2000) •
  • the cytoplasm and nucleus are stained with different fluorescence (for example, FITC for the former and PI for the latter), and in the cytoplasmic region. Is calculated in the same way as above.
  • Cytochalasin B which binds to the end of the actin filament and inhibits the polymerization reaction that forms the actin monomer force filament, is added to the test cell immediately after cell division is started,
  • a technique that ensures that micronuclei are always generated via cell division by limiting the population for calculating the frequency of occurrence to only two-nucleus cells at the time of detection is mainly used in Europe and the United States. ing.
  • micronuclei around the macronuclear region in the cytoplasm are removed. Therefore, the micronuclei (white circles of the micronuclei in Fig. 1) are detected in the observation Z measurement direction, and do not overlap with the fluorescence of the macronuclei. Or, micronuclei that exist in the lower part and micronuclei that exist in the area overlapping with the nucleus (black circles in Fig. 1) are not detected.
  • the macronuclei in the entire observation area of cells are thought to reach 1Z3 to 1Z2 in mammalian cells, which means that the number of micronuclei in the whole cell is not accurately measured by conventional methods. become.
  • the present invention provides the following micronucleus detection method.
  • a gene encoding a single or multiple nuclear-related protein and a gene encoding a fluorescent protein are fused and introduced into a cultured cell to generate a mother cell that is expressed in the cell.
  • performing treatment for mutagenicity tests performing limited excitation such that the micronucleus region emits fluorescence in a limited manner, and quantitatively measuring the amount of fluorescence according to the nuclear-related protein component
  • a method for detecting intracellular micronuclei which enables detection in living cells without fixing cells to be measured.
  • nucleus-related protein is a protein specific to a nuclear membrane in the method according to (1).
  • FIG. 1 is a diagram showing the arrangement and observation state of micronuclei around a large nucleus region in the cytoplasm.
  • FIG. 2 is a diagram showing the state of excitation and observation images in the measurement of micronuclei.
  • a gene in which a nuclear-related protein and a fluorescent protein are fused is introduced into a mammalian cultured cell such as Chinese nomster lung (CHL) in advance, so that the cell is stably introduced into the cell.
  • CHL Chinese nomster lung
  • a micronucleus test is performed as in the conventional technique.
  • excitation is performed according to the fluorescent protein introduced as it is, nuclear-related regions are measured, and counting is performed in the same way as in the conventional method.
  • the micronuclei are measured and calculated in a culture vessel such as a multiwell plate without preparing a fixed specimen.
  • a culture vessel such as a multiwell plate
  • additional measurements such as cytochalasin B can be made. It is possible to reliably count micronuclei generated through cell division without using a complex compound.
  • the fluorescent protein used in the present invention has properties such that the fluorescence is attenuated or the fluorescent color is changed by irradiation with a certain amount of light such as visible light.
  • a certain amount of light such as visible light.
  • light is focused on the region of the nucleus of the fusion protein-expressing mother cell (Fig. 2A) to attenuate the fluorescence only in the region of the nucleus (Fig. 2B), or the fluorescence color is changed.
  • the conventional method it is possible to detect small nuclei that cannot be detected by hiding them in the conventional method (Fig. 2C). For this reason, it is possible to calculate all the micronuclei generated in the whole cell region, compared with the conventional method, and it is possible to quantify the toxicity and mutagenicity of the chemical substance more accurately.
  • a micronucleus test in the same manner as in the conventional method by establishing a mother cell using the nuclear membrane component as an index as the above-mentioned nuclear-related protein.
  • it can be detected as a fluorescence amount that is more uniform than the nuclear region detected using normal nucleic acid components as an index and is proportional to the area of the nucleus. Therefore, it is possible to measure and calculate micronuclei with higher reproducibility and quantitativeness.
  • the present invention has the following effects.
  • Micronuclei can be detected only by light irradiation under certain conditions. Therefore, since the optical system construction is simple, continuous processing and automation become easy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、単一もしくは複数の核関連蛋白をコードする遺伝子と蛍光蛋白をコードする遺伝子とを融合し培養細胞に導入して細胞内に発現させた母細胞を生成し、被検物質の毒性もしくは突然変異原性試験のための処理を施し、小核領域が限定的に蛍光を発するような限定的励起を行い、核関連蛋白成分に応じた蛍光量を定量的に測定することにより、測定対象の細胞の固定を行うことなく生細胞中における検出を可能としたことを特徴とする細胞内小核の検出方法を提供する。

Description

明 細 書
細胞内小核の検出方法
技術分野
[0001] 本発明は、細胞内の小核を検出する方法に関する。
背景技術
[0002] 医薬品、化学物質などの安全性評価において、発がん性の同定はマウスなどを用 いた長期の動物実験が基本であるが、こうした実験動物を用いた安全性試験は多大 な時間とコストがかかるため、細菌を用いる復帰突然変異試験やほ乳類培養細胞を 用いる染色体異常試験などの変異原性試験が実施されて!ヽる。
[0003] 細菌を用いる復帰突然変異試験は、遺伝子レベルで生じた突然変異を検出し、陽 性予測率が比較的高いという特徴を有する。したがって、この試験の結果が陽性の 場合は、発がん物質である可能性が高 、と考えられる。
[0004] しかし、この試験では検出されない発がん物質も多く存在し、遺伝子の突然変異と ともに腫瘍の発生 ·進展に深く関連して ヽるゲノムの損傷を検出するほ乳類培養細胞 を用いる染色体異常試験がその補完試験として組み合わされて、現在、各試験機関 で実施されている。
[0005] 染色体異常試験は染色体の構造的異常や数的異常の誘発を指標とし、ベンゼン、 ジェチルスチルベストロールなど復帰突然変異試験によっては陰性と判断されてき た発がん物質を検出してきた経緯がある。
[0006] しかし、染色体分析、染色体異常試験には高度な熟練と時間が要求されるため、 迅速性に難点があり、また、数的異常は染色体の基本数が整数倍で増加する倍数 性の検出に限定されるため、ヒトの遺伝性疾患につながる染色体数力 ^〜数本増減 する異数性を検出することができな 、と 、う限界がある。
[0007] そこで、染色体異常誘発物質を迅速に検出することを目的に、染色体異常試験の 代替として in vitro小核試験のバリデーシヨンが国内外で行われるようになって!/、る。
[0008] 小核は、細胞分裂を経由して娘細胞の細胞質に取り残された主核 (大核とも称され る)の直径の 1/3未満のサイズを示す小さな核で、染色体の構造異常だけでなぐ異 数性の成因となる細胞分裂阻害による染色体不分離にも起因して形成されると考え られている。細胞内の小核の観察は染色体分析に比べるとはるかに容易であるため
、 in vitro小核試験は染色体異常試験よりもルーチン試験に適していると考えられる。
[0009] 但し、小核試験は従来、マウスなどの骨髄赤血球を用いた in vivo試験として標準化 されており、染色体異常試験の代替としての試験プロトコールが確立されていないと いう問題点が残っている。
[0010] 労働省は微生物を用いる変異原性試験を補完し化学物質の発がん性スクリーニン グの精度向上を図る目的で、平成元年から「生体外小核試験の精度管理手法に関 する調査」として 5施設に委託し、チャイニーズノ、ムスター肺由来細胞株(CHL/IU ) 細胞を用いる in vitro小核試験の検討が行われてきた。その中で in vitro小核試験 の有効性が検討されるとともに、プロトコールの標準化が進められ「ほ乳類培養細胞 を用いる小核試験の基準 (第 2次案)」が作成されて!ヽる。
[0011] その間に実施された 66物質に関する in vitro小核試験の結果は、 in vitro染色体 異常試験の結果と 88.7%の高い一致率を示し、代替法として有用であることを示唆し TV、o〔マツンマ、外 (Matsushima'T.et al.) , 'Validation study of the in vitro micron ucleus test in a Chinese hamster lung cell line (CHL/IU).",ムタンェ不ンス (Mutagen esis) , 1999年,第 14卷, p. 569- 580〕。 このように近年、小核試験は、細菌を用いる 復帰突然変異試験、より感度の高いほ乳類培養細胞を用いる染色体異常試験に次 ぐ 3つ目の変異原性試験を in vivoで行う、という意義に加えて、より多くの化学物質 を評価し、スループット、定量性に富んだ汎用性の高い安全性試験として重要性が 増している。
[0012] 現在、日本国内における変異原性試験は、「化学物質の審査及び製造等の規制 に関する法律」に基づ ヽて、「げっ歯類を用いる小核試験」と、上記の「培養細胞を用 V、た in vitro小核試験」が実施されて!、る。
[0013] 例えば、「げっ歯類を用いる小核試験」についての技術内容は以下の通りである。
[0014] (1)げっ歯類を用いる小核試験
「小核試験の目的と適用範囲」
比較的簡便な短期間の試験により被験物質の遺伝毒性を検出し、それに基づくが ん原性及び次世代への遺伝的影響につ!、て予測することを目的とする。
変異原性試験には種々の方法があるが、このうち遺伝子突然変異誘発性を指標と する試験として、「細菌を用いる復帰突然変異試験」、及び染色体異常誘発性を指標 とする試験として、「ほ乳類培養細胞を用いる染色体異常試験」を行い、両者いずれ かで陽性の結果が得られた場合には、「げっ歯類を用いる小核試験」を行うこととされ ている。
[0015] 「動物及び観察細胞」
若い成熟げつ歯類を用い、骨髄又は末梢血の幼若赤血球を観察対象とする。一般 的にはマウス又はラットが用いられる力 ラットについては、骨髄を用いた場合に肥満 細胞の顆粒による疑似小核の出現、末梢血を用いた場合に脾臓で小核を持つ赤血 球が除去されることに注意し、より適切な観察方法を用いる。
「動物の性及び数」
1群、性あたり 5匹以上とする。
但し、毒性に明らかな性差が見られない場合には、片性のみ (5匹以上)の使用とす る。
[0016] 「被験物質の調製」
被験物質が固体の場合には適切な溶媒に溶解又は媒体に懸濁させ、液体の場合 には直接投与するか又は適切な溶媒で希釈して調製する。被験物質が気体の場合 には清浄な空気等を用いて希釈する。調製後の安定性が判明している場合には、安 定な期間内に使用し、不明な場合には用時に調製する。
「対照群」
陰性対照としては溶媒又は媒体を、陽性対照としては適切な既知小核誘発物質を 、それぞれ設定する。
[0017] 「投与経路」
強制経口投与又は腹腔内投与を原則とする。
但し、特定の暴露経路 (吸入暴露等)が想定される等、科学的な理由がある場合に はこの限りでない。
[0018] 「投与回数」 単回又は反復投与とする。
「用量段階」
最高用量は、幼若赤血球の減少等、骨髄で細胞毒性が認められる用量、何らかの 毒性兆候が認められる、若しくはそれ以上で致死が予想される用量又は技術的に投 与可能な上限の用量とする。
また、毒性兆候が現れない場合の最高用量は、単回又は 14日以内の反復投与に ついては 2,000 mg/kg/日、それを超える長期反復投与については 1,000 mg/kg/日 とする。
なお、被験物質が気体の場合は、安全に暴露できる濃度を最高用量とする。
適切な間隔 (公比 2を原則とするが、公比 10以下であればよい。)で 3段階以上の 用量を設定する。
「標本作製時期」
•骨髄を用いる場合
単回投与では、投与後 24〜48時間の間に適切な間隔をおいて最低 2回の標本作 製時期を設定し、動物を屠殺、骨髄塗沫標本を作製する。また、反復投与を行った 場合には、最終投与後 18〜24時間の間に 1回、標本作製を行う。
•末梢血を用いる場合
単回投与では、投与後 36〜72時間の間に適切な間隔をおいて最低 2回の採血時 期を設定し、標本を作製する。また、反復投与を行った場合には、最終投与後 24〜4 8時間の間に 1回、標本作製を行う。
「観察」
観察前に、陰性対照及び陽性対照を含め、すべてのスライド標本をコード化して、 処理条件がわ力 な 、状況で観察を行う。
個体当たり 2,000個以上の幼若赤血球を観察して、小核を有する細胞の出現頻度 を求める。
また、骨髄細胞の増殖抑制の指標として、全赤血球に対する幼若赤血球の出現頻 度を、個体当たり、骨髄を用いた場合には 200個以上、末梢血を用いた場合には 1, 000個以上の赤血球を観察することにより求める。 [0019] 「結果の表示」
個体ごとに、観察した幼若赤血球に対する小核を有する細胞の出現頻度及び全赤 血球に対する幼若赤血球の出現頻度を、表形式にて表示するとともに、群ごとの平 均値についても表示する。
[0020] 「結果の判定」
被験物質が充分な高用量まで適切に投与され、かつ陰性及び陽性対照群で期待 どおりの結果が得られていることを前提とし、陰性対照群の背景データの利用を含め 、適切な統計処理を用いることにより結果の判定を行う。なお、両性を用いた場合の 結果に明確な性差が認められなければ、両性のデータをまとめて統計処理を行って ちょい。
明確に陰性又は陽性と判断できな 、場合には、統計的な有意性のみが判断基準 ではないので、実験条件を考慮して再試験を実施し、最終的な判断をすることが望ま しい。
[0021] 「結果の評価」
いずれかの in vitro試験で陽性結果が認められ、かつ本試験で陰性結果となった 被験物質については、生体内運命に関する入手可能な知見等を利用して、判定結 果を考察する。
また、「培養細胞を用いた in vitro小核試験」についての技術内容は以下の通りで ある。
[0022] (2)培養細胞を用いた in vitro小核試験
「標本の調製」
'対数増殖期 (培養 3〜5日目)にある細胞を使用し、培養容器中の培養液をァスピレ 一ターで取り除く。
•培養容器に 0. 25%のトリプシン液を少量カ卩え、細胞表面を軽く洗い、液を取り除く
•新たにトリプシン液を加えて 37°Cで 5分間前後、置いた後、細胞が剥がれてきたら、 ピペッティングによって細胞を単離する。
'新しい培養液 (0. 25%トリプシン液の 1〜2倍量)の入った遠心管を用意し、前項で 単離した細胞をうつして 1 OOOrpmで 5分間、遠心する。
•ァスピレ ターで上清を除去し、新 ヽ培養液を加えて適当な密度の細胞浮遊液 (
30〜50 X 104個 Zmlを作製する。
•血球計算板にて細胞数をカウントする。
• 1 X 104個 Zmlの細胞密度溶液を調製し、 60mmシャーレに 5ml播種する。
' 37°C、 5%C02インキュベーターで培養する。
'培養終了後、培養液を遠心管に移し、直ちにプレートに 0. 25%トリプシン溶液 2ml を加え、数分間放置した後、ピペッティングにより細胞を剥離し、対応する遠心管に 移す。
•遠心(1000rpm、 5分間)した後、上清を捨て、 0. 075M、 KC1溶液を 3〜5mlカロえ 室温で 10分間、静置する。(低張処理)
•軽く撹拌し、直前に調製した 0. 5mlの冷却固定液 (冷却メタノール:酢酸 = 3 : 1)を 加えて半固定する。
•直ちに遠心(1000rpm、 5分間)して上清を捨て、新しい固定液を 5ml加えて再び 遠心する。同じ操作を 3回繰り返す。
•最後に固定液を 1%の酢酸を含むメタノールに置き換えて遠心する。
•前項の固定液で適当な濃度 (軽く濁る程度)の細胞浮遊液を作製し、清潔なスライド グラス上に一滴落とし、空気乾燥する。この際、倒立顕微鏡下で細胞密度などをチェ ックする。スライド作成枚数は通常、 2枚とし、細胞の状態により増減する。
'スライド標本上にアタリジンオレンジ溶液 (40 g/ml、 PBSで溶解)を滴下して、直 ちにカバーグラスを載せる。その後、余分な色素液をろ紙で除去して、蛍光顕微鏡を 用いて観察する。
「観察」
•アタリジンオレンジ染色: B励起照明系を備えた蛍光顕微鏡を用いて 200倍で観察 する。ギムザ染色を行った標本は、 400倍で観察する。
細胞質が良好に保存されており、かつ主核の形状が不整でない細胞のみを対象と する。
各濃度あたり、 2000個の細胞を観察し、小核を持つ細胞の出現頻度を求める。 [0024] 小核の分類は以下に従う。
MN-1:主核の 1/10以下の小核を含む単核細胞
MN-2:主核の 1/10〜1/3の小核を含む単核細胞
MN-3:主核の 1/3〜 1/2の小核を含む単核細胞
Mu-MN:複数の小核をともなった単核細胞
MN-T:小核をともなった単核細胞の合計 (上記 4項目の合計),もっとも重視さ れる項目
Mu-M:多核細胞(障害を強く受けて!/、る細胞を含む)
(Mu+MN:小核をともなった多核細胞,今回は Mu-Mに含めた) MP:分裂期中期細胞
total count:カウントした細胞の総計 (今回は 2000を目処に計測) •イメージングサイトメーターにおける自動計測においては、細胞質と核を異なる蛍光 (例えば前者を FITC、後者を PI)で染色し、細胞質領域中の小核を上記と同様に算 定することが行われている。
[0025] ·ァクチンフィラメントの端に結合してァクチン単量体力 フィラメントが形成される重 合反応を阻害する働きのあるサイトカラシン Bを、細胞分裂を開始した直後の被験細 胞に加えて、検出時に出現頻度を算定する母集団を 2核細胞のみに限定することに より、小核が必ず細胞分裂を経由して生じたものであることを確実にする手法も主に 欧米で多く用いられている。
発明の開示
[0026] [発明が解決しょうとする課題]
上記の従来技術では、げっ歯類を用いた小核試験、培養細胞を用いた in vitro小 核試験の何れにおいても、以下の課題がある。
[0027] まず、第 1の課題としては、現在、実施されて!、る染色方法にっ 、て、手法が煩雑 でしかも試験者による格差もあるため、各試験機関間の標準化が困難である。且つ、 自動計測を想定した際、現法の染色方法によっては核領域と細胞質領域との判別が 容易でないなどの理由により、定量性、再現性に課題がある。
[0028] また、第 2の課題としては、図 1に示すように、細胞質内の大核領域周辺の小核を 検出して!/、るので、観察 Z計測方向にぉ 、て大核の蛍光と重ならな 、小核(図 1の 小核のうち白色丸)は検出されるが、大核の上部、もしくは下部に存在する小核、大 核と重なる領域に存在する小核(図 1の小核のうち黒丸)は検出されない。 細胞全 体の観察領域に占める大核は、哺乳類細胞では、 1Z3〜1Z2にも達すると考えら れ、このことはつまり、従来法によっては細胞全体の小核数を正確に計測していない ことになる。
[0029] また、第 3の課題としては、サイトカラシン Bのような被験物質とは異なる化学物質を 試験系に加えることは、小核の出現頻度に全く影響がないとは言えず、被験物質と サイトカラシン Bとの相互作用の有無も考慮に入れると、被験物質そのものの毒性、 変異原性を検出、定量する上で、感度の低下に繋がる。
[0030] [課題を解決するための手段]
上記の課題を解決するために、本発明では以下の小核検出方法を提供する。 (1) 単一もしくは複数の核関連蛋白をコードする遺伝子と蛍光蛋白をコードする 遺伝子を融合し培養細胞に導入して細胞内に発現させた母細胞を生成し、被検物 質の毒性もしくは突然変異原性試験のための処理を施し、小核領域が限定的に蛍 光を発するような限定的励起を行い、核関連蛋白成分に応じた蛍光量を定量的に測 定することにより、測定対象の細胞の固定を行うことなく生細胞中における検出を可 能としたことを特徴とする細胞内小核の検出方法。
[0031] (2) (1)に記載の方法において、上記の核関連蛋白が、核膜に特異的な蛋白で あることを特徴とする細胞内小核の検出方法。
[0032] (3) (1)に記載の方法において、上記の融合蛋白発現母細胞の大核の領域に絞 つて光照射を行うことにより、大核領域のみの蛍光を減衰させることにより、細胞内の 大核を除いた小核のみに由来する蛍光を検出することを特徴とする細胞内小核の検 出方法。
[0033] [発明の効果]
本発明によれば、従来法の欠点を克服し、簡易高速に、高い定量性、再現性、正 確性を有した細胞内小核の検出が可能となる。また、将来の創薬市場を鑑みて、より 多くの被検化合物への試験が可能で、標準化にも優れることが期待できる。 図面の簡単な説明
[0034] [図 1]細胞質内の大核領域周辺の小核の配置と観察状態を示す図。
[図 2]小核の測定における励起と観察画像の状態を示す図。
発明を実施するための最良の形態
[0035] 以下、本発明の実施の形態を説明するが、本発明を限定するものではない。
[0036] この実施形態にお!、ては、まず、チャイニーズノヽムスター肺 (CHL)などの哺乳類培 養細胞に予め、核関連蛋白と蛍光蛋白を融合した遺伝子を導入し、安定に細胞内 に発現する細胞株を榭立する。この細胞株を母細胞に用いて、従来技術と同様に小 核試験を行う。化学物質との反応、固定標本の作成後、そのまま導入した蛍光蛋白 に応じた励起を行い、核関連領域を計測、従来法と同様に計数を行う。 この場合、 従来法のような染色を必要とせず、散乱光による細胞形態もしくは FITCなどの簡易な 染色から細胞領域を検出し、その領域における小核計測を行うことが可能となる。
[0037] ここで、上述したィヒ学物質との反応後、固定標本を作成せず、マルチウエルプレー トなどの培養容器中のまま、小核の計測、算定を行う。この場合、従来のエンドポイン トを測定点とした試験とは異なり、化学物質との反応中、どの時点で小核が生じたか の経時的な計測が可能であり、サイトカラシン Bなどの付加的な化合物を用いることな ぐ確実に、細胞分裂を経て生じた小核を算定することが可能となる。
[0038] また、上述した蛍光蛋白に応じた励起は、図 2に示すような方法で実施する。すな わち、本発明で使用する蛍光蛋白は、可視光などの一定の光照射により、その蛍光 を減衰するもしくは、その蛍光色を変化するなどの性質を有するものである。この場 合、計測時に、融合蛋白発現母細胞の大核の領域に絞って光照射を行う(図 2A)こ とにより、大核領域のみの蛍光を減衰させる(図 2B)、もしくは蛍光色を変化させること が出来、従来法では大核に隠れて検出し得な力つた小核が検出可能となる(図 2C) 。このため、従来法によるよりも、全細胞領域に生じた小核を全て算定することが可能 となり、より正確な化学物質による毒性、変異原性などを定量する事が可能となる。
[0039] また、上述した核関連蛋白として核膜成分を指標として母細胞を榭立して、従来法 と同様に小核試験を行うのが好ましい。この場合、通常の核酸成分などを指標として 検出した核領域よりもムラなく且つ、核の面積に比例した蛍光量として検出出来るた め、より再現性、定量性の高い小核計測、算定が可能となる。
[0040] 以上の実施形態によれば、本発明は以下のような効果を奏するといえる。
( 1)従来の小核試験においては、ギムザ染色あるいはアタリジンオレンジ、被検物 質との反応後、新たな蛍光染色を必要としたが、本発明によってはあらかじめ蛍光蛋 白を導入して核関連領域が蛍光を発することが出来るため、新たな染色工程を必要 としない。よって、細胞標本のような固定ィ匕処理を行うことなぐ簡易で高速に細胞内 小核を検出可能となる。
[0041] (2)従来法では計測方向に沿って大核領域上下に存在する小核は、大核領域に 隠れて検出することが不可能であつたが、本発明によれば、大核領域のみの蛍光を 減じるまたは蛍光色を変化させることが可能であるため、細胞内全領域に存在する小 核を検出可能である。これにより、定量性、再現性、正確性に著しく富んだ細胞内小 核検出が可能となる。
[0042] (3)化学物質との反応中から経時的に小核の発生を検出可能である。従って、サイ トカラシン Bなどの付加的化学物質を投与せずにバックグラウンドを排除でき、効率も 向上する。
[0043] (4)一定の条件下における光照射のみで小核検出が可能である。よって、光学シス テム構築が単純なため連続処理や自動化が容易となる。
[0044] (5)核関連蛋白を融合遺伝子に用いることにより、従来の核酸成分を指標に核染 色を施す際に生じるムラや偏りがない。よって、より定量的な小核検出、算定が可能と なる。

Claims

請求の範囲
[1] 単一もしくは複数の核関連蛋白をコードする遺伝子と蛍光蛋白をコードする遺伝子 とを融合し培養細胞に導入して細胞内に発現させた母細胞を生成し、被検物質の毒 性もしくは突然変異原性試験のための処理を施し、小核領域が限定的に蛍光を発す るような限定的励起を行い、核関連蛋白成分に応じた蛍光量を定量的に測定するこ とにより、測定対象の細胞の固定を行うことなく生細胞中における検出を可能としたこ とを特徴とする細胞内小核の検出方法。
[2] 請求項 1において、上記の核関連蛋白が、核膜に特異的な蛋白であることを特徴と する細胞内小核の検出方法。
[3] 請求項 1において、上記の融合蛋白発現母細胞の大核の領域に絞って光照射を 行うことにより、大核領域のみの蛍光を減衰させることにより、細胞内の大核を除いた 小核のみに由来する蛍光を検出することを特徴とする細胞内小核の検出方法。
PCT/JP2005/018005 2004-09-30 2005-09-29 細胞内小核の検出方法 WO2006035895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05788187A EP1801207A4 (en) 2004-09-30 2005-09-29 METHOD FOR DETECTING INTRA-CELLULAR MICRONUCLEUS
US11/729,529 US20070207452A1 (en) 2004-09-30 2007-03-29 Method of detecting micronucleus in cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004288924A JP2006101705A (ja) 2004-09-30 2004-09-30 細胞内小核の検出方法
JP2004-288924 2004-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/729,529 Continuation US20070207452A1 (en) 2004-09-30 2007-03-29 Method of detecting micronucleus in cell

Publications (1)

Publication Number Publication Date
WO2006035895A1 true WO2006035895A1 (ja) 2006-04-06

Family

ID=36119041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018005 WO2006035895A1 (ja) 2004-09-30 2005-09-29 細胞内小核の検出方法

Country Status (4)

Country Link
US (1) US20070207452A1 (ja)
EP (1) EP1801207A4 (ja)
JP (1) JP2006101705A (ja)
WO (1) WO2006035895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116737346A (zh) * 2023-08-14 2023-09-12 南京翼辉信息技术有限公司 一种大小核处理器调度配置系统及其实现方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269195A (ja) * 2000-03-27 2001-10-02 Olympus Optical Co Ltd 細胞の画像解析方法,装置、及び記録媒体
US20030022224A1 (en) * 2001-07-19 2003-01-30 Olympus Optical Co., Ltd. Method of detecting binding reaction between protein and test substance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9706414D0 (en) * 1997-03-27 1997-05-14 Univ Manchester Detection of DNA damage
JP2003093096A (ja) * 2001-09-20 2003-04-02 Olympus Optical Co Ltd 被検物質のdnaに対する脱メチル化作用を評価する方法
JPWO2004031385A1 (ja) * 2002-10-04 2006-02-02 麒麟麦酒株式会社 ヒト人工染色体(hac)ベクター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269195A (ja) * 2000-03-27 2001-10-02 Olympus Optical Co Ltd 細胞の画像解析方法,装置、及び記録媒体
US20030022224A1 (en) * 2001-07-19 2003-01-30 Olympus Optical Co., Ltd. Method of detecting binding reaction between protein and test substance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIRSCH-VOLDERS M ET AL: "Report from the In Vitro Micronucleus Assay Working Group.", ENVIRON MOL MUTAGEN., vol. 35, 2000, pages 167 - 172, XP002995274 *
See also references of EP1801207A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116737346A (zh) * 2023-08-14 2023-09-12 南京翼辉信息技术有限公司 一种大小核处理器调度配置系统及其实现方法
CN116737346B (zh) * 2023-08-14 2023-10-24 南京翼辉信息技术有限公司 一种大小核处理器调度配置系统及其实现方法

Also Published As

Publication number Publication date
US20070207452A1 (en) 2007-09-06
EP1801207A1 (en) 2007-06-27
JP2006101705A (ja) 2006-04-20
EP1801207A4 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
Wu et al. The diagnostic protocol for hereditary spherocytosis‐2021 update
Perfetto et al. Amine‐reactive dyes for dead cell discrimination in fixed samples
CN105548585A (zh) 通过差分带电荷微粒迁移率进行脂蛋白分析
WO2019223406A1 (zh) 利用红细胞dna损伤信号预测血液病转归的方法及其应用
CN110018143B (zh) 检测甲藻细胞凋亡的方法
Miller et al. Comparison of QIAGEN automated nucleic acid extraction methods for CMV quantitative PCR testing
WO2016175626A1 (ko) 미생물 검출, 동정 또는 계수 방법 및 이를 이용한 시스템
JP5344335B2 (ja) 染色体プロファイリングのための方法と装置
WO2009152428A1 (en) Quantitative analysis of in vivo mutation at the pig-a locus
JP2002005925A (ja) 破砕赤血球の測定方法
CN102313813B (zh) 从生物体液样本中富集与检测稀有细胞的整合方法
WO2006035895A1 (ja) 細胞内小核の検出方法
Reithmair et al. Isolation and characterization of urinary extracellular vesicles for MicroRNA biomarker signature development with reference to MISEV compliance
US10352926B2 (en) Automatable method for the identification, quantification and discrimination of specific signals in relation to non-specific signals in detection methods by means of a detector
CN108384857A (zh) ddPCR技术检测IDH1 R132H基因变异的引物、试剂盒及检测方法
CN111596053B (zh) Tpn分子在制备循环肿瘤细胞检测试剂中的用途及检测试剂和试剂盒
CN107132344A (zh) 一种基于高内涵技术定量分析醛类物质致细胞dna损伤的方法
CN113718020A (zh) 人白血病flt3基因内部串联重复突变检测的引物探针组合、试剂盒及应用
Rico et al. Impact of red blood cell lysing on rare event analysis
CN111528219A (zh) 一种用于t淋巴细胞亚群计数标准物质的冻干保护剂及其应用
JP2002533712A (ja) 遊離細胞標本の分析方法
Gunawardena et al. Comparison of Automated and Manual Reticulocyte Count in a cohort of patient’s samples in Haematology Laboratory of Colombo South Teaching Hospital, Sri Lanka
CN116067742B (zh) CTCs染色试剂盒和染色方法
CN107064086A (zh) 一种基于高内涵技术定量分析苯并[a]芘致细胞DNA损伤的方法
JP2002142800A (ja) 細胞の形態解析方法および記憶媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005788187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11729529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005788187

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11729529

Country of ref document: US