WO2006033199A1 - 平面アンテナ装置 - Google Patents

平面アンテナ装置 Download PDF

Info

Publication number
WO2006033199A1
WO2006033199A1 PCT/JP2005/013381 JP2005013381W WO2006033199A1 WO 2006033199 A1 WO2006033199 A1 WO 2006033199A1 JP 2005013381 W JP2005013381 W JP 2005013381W WO 2006033199 A1 WO2006033199 A1 WO 2006033199A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable capacitance
capacitance element
planar antenna
control
antenna element
Prior art date
Application number
PCT/JP2005/013381
Other languages
English (en)
French (fr)
Inventor
Tsukasa Takahashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006033199A1 publication Critical patent/WO2006033199A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present invention relates to a planar antenna device, and more particularly to a planar antenna device suitable for application to a wireless communication device such as a mobile phone.
  • FIG. 11 shows a plate-like inverted F antenna used for a mobile phone or the like as a conventional example.
  • This plate-like inverted F antenna has a planar antenna element 1101 and a feed line 1102 that feed part 1
  • this plate-like inverted F antenna includes a short stub 1103 for grounding the antenna element 1101 to the ground plane 1104.
  • This plate-like inverted F antenna has a resonance frequency determined by the perimeter of the antenna element 1101 and a frequency that becomes 1Z4 of the sum wavelength of the vertical length (W) and the horizontal length (L) of the antenna element 1101. Resonates.
  • the antenna element 1101 resonates at a frequency at which the perimeter of the antenna element 1101 is 1Z2 of the wavelength. Normally, the antenna dimensions are determined so as to resonate in free space at the frequency used.
  • Fig. 12 shows the frequency characteristics of the antenna VSWR in free space.
  • VSWR is an abbreviation for voltage standing wave ratio, and the smaller this value, the more efficiently power can be transmitted to the next-stage circuit.
  • the minimum value of VSWR is 1.
  • the frequency used is 600 MHz, and the VSWR is about 1.1 at the frequency used.
  • FIGs. 13 and 14 are a diagram showing the state of a telephone call and a lateral force, respectively, in a mobile phone.
  • the call state means holding the mobile phone housing 1304 (or 1402) with your hand and placing the receiver sound hole 1306 opened in the housing so that you can hear the sound from the receiver.
  • the distance between the antenna and the human body is the closest distance between the power feeding unit of the antenna and the head of the human body including the ears in a call state.
  • the distance from the human body is indicated as Sp. It is a part.
  • FIG. 15 shows the frequency characteristics of the VSWR when the conventional antenna is in a talking state.
  • Patent Document 1 discloses a method of matching a shifted resonance frequency with a use frequency.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-307344
  • Patent Document 1 when the VSWR at the resonance frequency greatly deviates,
  • the VSWR cannot be returned as small as free space, resulting in a problem that the communication quality deteriorates without the mismatch loss being resolved.
  • Fig. 16 shows the V of the antenna when the method disclosed in Patent Document 1 is applied.
  • the frequency characteristics of SWR are shown.
  • the VSWR at the operating frequency is about 3.2, which is relatively high.
  • the object of the present invention is to solve the above-described problems, and even in a wireless communication device such as a mobile phone, the impedance mismatch occurring when the human body is approaching can be eliminated in a short time, and the power loss due to the impedance mismatch can be reduced
  • An object is to provide an antenna device.
  • a planar antenna device of the present invention includes a planar antenna element, and in a planar antenna in which a resonance frequency is determined based on a peripheral length of the antenna element, the resonance frequency is controlled at a peripheral portion of the antenna element.
  • the first variable capacitance element means which is loaded between the antenna element and the ground plane at a possible position and mainly controls the resonance frequency, and the antenna element at a position where the voltage standing wave ratio at the resonance frequency can be controlled.
  • a second variable capacitance element means for controlling the voltage standing wave ratio at the resonance frequency which is loaded between the main plate and the main plate! / ⁇
  • a detection means for detecting either the reception power or the reception sensitivity of the reception signal of the antenna element force, and the first variable capacitance so that the value detected by the detection means is maximized. It is preferable to include element means and control means for controlling the second variable capacitance element means.
  • the detection means for detecting any one of the power reflected when power is supplied to the antenna element, the voltage obtained by detecting the reflected power, the reflection coefficient, and the voltage standing wave ratio, and the detection means It is preferable to include control means for controlling the first variable capacitance element means and the second variable capacitance element means so that the detected value is minimized.
  • the first detection means for detecting either the reception power or the reception sensitivity of the reception signal of the antenna element force, and the power reflected when the antenna element is fed and the reflected power are detected.
  • a second detection means for detecting any one of a voltage, a reflection coefficient, and a voltage standing wave ratio; and a value detected by the first detection means is maximized, and is detected by the second detection means. It is preferable that the first variable capacitance element means and the control means for controlling the second variable capacitance element means are provided so that the measured value is minimized.
  • the detection means detects whether the impedance is matched or mismatched, and when the impedance is mismatched, the variable capacitance element means is controlled.
  • the first variable capacitance means can mainly control the resonance frequency
  • the second variable capacitance means can mainly control the voltage standing wave ratio at the resonance frequency.
  • the storage unit stores a capacitance value of the first variable capacitance element and the second variable capacitance element in which the antenna element is matched or a voltage giving the capacitance value, and the control unit controls the first variable capacitance element.
  • the control unit controls the first variable capacitance element.
  • variable capacitance element means when the impedance is mismatched, the variable capacitance element means is controlled using the control information read from the storage means, so that the impedance matching state can be achieved in a short time. Power loss due to impedance mismatch Can be reduced.
  • control means completes the control processing of any value to be detected by the first detection means or the second detection means, and stores the other control information corresponding to the control information at that time It is preferable to control the value detected by the other detection means using the control information read out from the means.
  • the storage means stores in advance control information for matching the antenna element force impedance with respect to a distance from a human body, and the control means stores V or a deviation stored in the storage means. It is preferable to start the control process using the control information as initial control information.
  • control process is started in a state where the impedance deviation is small, and the time required to obtain the impedance matching state can be shortened.
  • input means for inputting information on the force at which the antenna element is in the state or the distance between the antenna element and the human body to the control means by a user.
  • variable matching means is a variable capacitor
  • control information is a capacitance value of the variable capacitor
  • variable matching means is a variable capacitance diode
  • control information is a control voltage applied to the variable capacitance diode
  • variable matching means can be a variable capacitor or a variable capacitor, and can be easily brought into an impedance matching state by being controlled by a capacitance value or a control voltage.
  • variable matching means includes a plurality of capacitors having different capacities and a switch means for selectively switching the plurality of capacitors.
  • the first variable capacitance element means for mainly controlling the resonance frequency is provided at the periphery of the planar antenna element at a position where the resonance frequency can be controlled.
  • the second variable capacitor element means for controlling the voltage standing wave ratio at the resonance frequency is loaded at a position where the voltage standing wave ratio at the resonance frequency can be controlled and loaded between the plane antenna element and the ground plane.
  • FIG. 1 is a configuration diagram of a planar antenna shown in a first embodiment of the present invention.
  • FIG. 2 is a graph showing the frequency characteristics of VSWR after adjustment by the first variable capacitor according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing the frequency characteristics of VSWR after adjustment by the second variable capacitor according to the first embodiment of the present invention.
  • FIG. 4 is a circuit block configuration diagram of the planar antenna device shown in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the frequency characteristics of VSWR in a call state after adjustment by the first and second variable capacitance elements shown in the first embodiment of the present invention.
  • FIG. 6 is a circuit block diagram of a planar antenna device shown in the second embodiment of the present invention.
  • FIG. 7 is a circuit block diagram of a planar antenna device shown in a third embodiment of the present invention.
  • FIG. 8 is a diagram showing a table of variable capacitance values stored in the storage unit according to the third embodiment of the present invention and matched to the distance between the antenna and the human body.
  • FIG. 9 is a circuit block diagram of a planar antenna device shown in a fourth embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a planar antenna shown in a fifth embodiment of the present invention.
  • FIG.12 Diagram showing frequency characteristics of VSWR in free space of a conventional planar antenna
  • ⁇ 13 Diagram showing the frontal power of the human body during a call
  • FIG. 15 Diagram showing frequency characteristics of VSWR in a conventional flat antenna communication state.
  • FIG. 16 Frequency characteristics of VSWR after applying the method disclosed in Patent Document 1 in a conventional flat antenna communication state.
  • FIG. 1 is a diagram showing a configuration of a planar antenna used in the first embodiment according to the present invention.
  • the planar antenna element 101 is connected to the ground plane 104 via the first variable capacitance element means 102 that mainly controls the resonance frequency at a position where the resonance frequency can be controlled at the periphery of the antenna element. Has been.
  • planar antenna element 101 is provided at a position where the voltage standing wave ratio at the resonance frequency can be controlled, via the second variable capacitor element means 103 that mainly controls the voltage standing wave ratio at the resonance frequency. Connected to 104. Furthermore, the planar antenna element 101 is provided with the feeding unit 1 05 ⁇ Koo!
  • the frequency used is 600 MHz.
  • the VSWR at the operating frequency is impedance matched to about 1.1!
  • the resonance frequency force S is approximately 524 MHz as shown in FIG. 15 due to the proximity of the human body, and the VSWR of the antenna at the operating frequency increases to approximately 21.
  • the resonance frequency can be adjusted by adjusting the first variable capacitance element means 102 as shown in FIG.
  • the resonance frequency is about 524 MHz to 600 MHz. Further, by adjusting the second variable capacitance element means 103, as shown in FIG. 3, the resonance frequency also slightly changes. The voltage standing wave ratio mainly at the resonance frequency can be reduced.
  • the VSWR at the resonance frequency is about 3.3 force about 1.0.
  • FIG. 4 is a diagram showing a circuit block configuration of the planar antenna device according to the first embodiment of the present invention.
  • the planar antenna element 101 shown in FIG. 1 is connected to the radio reception unit 403 via the reception power detection unit 402.
  • the control unit 404 is connected to the received power detection unit 402.
  • Radio reception section 403 performs reception processing such as AZD conversion, demodulation, and decoding on the signal of reception frequency fr received by planar antenna 401.
  • the reception power detection unit 402 detects the power of the signal having the reception frequency fr received by the planar antenna 401 and outputs a voltage value obtained by detecting the reception power to the control unit 404.
  • the control unit 404 measures the voltage value obtained by detecting the power of the reception signal output from the reception power detection unit 402, and the first variable capacitance element means 102 in FIG. And the capacitance values Crl and Cr2 of the second variable capacitance element means 103 are controlled. As a result, impedance matching can be achieved for the planar antenna element 101.
  • Received power detection unit Measures the voltage value obtained by detecting the received power detected by 402, It is sent to the control unit 404.
  • the controller 404 changes the capacitance values Crl and Cr2 of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. 1 to change the first variable capacitor element means 102 and the second variable capacitor element 102.
  • the capacitance values Crl and Cr2 of the element means 103 are set.
  • control unit 404 performs control processing so that the voltage value detected by the received power detection unit 402 is maximized.
  • an impedance matching state is established during reception as shown in FIG.
  • FIG. 6 is a diagram showing a circuit block configuration of the planar antenna device according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the planar antenna element 101 shown in FIG. 1 is connected to the wireless transmission unit 603 via the reflected power detection unit 602.
  • the control unit 604 is connected to the reflected power detection unit 602.
  • Radio transmission section 603 performs transmission processing such as encoding, modulation, and DZA conversion on the signal transmitted to the communication partner! / !, and the signal after transmission processing is transmitted through reflected power detection section 602 in a plane. Transmit from antenna element 101 as a radio wave of transmission frequency ft.
  • the reflected power detection unit 602 includes a directional coupler inside, and if there is an impedance mismatch with respect to the planar antenna element 101 during transmission, reflection occurs at the portion where the mismatch occurs.
  • the reflected signal power is split by a directional coupler, and the voltage value obtained by detecting the reflected power is measured. The measured voltage value is output to the control unit 604.
  • the control unit 604 detects the power of the reflected signal output from the reflected power detection unit 602.
  • the pressure value is measured, and the capacitance values Ctl and Ct2 of the first variable capacitance element means 102 and the second variable capacitance element means in FIG. 1 are controlled so that the voltage value is minimized. Thereby, impedance matching can be achieved for the planar antenna element 101.
  • control unit 604 Next, a processing procedure in control unit 604 will be described.
  • the reflected power detection unit 602 measures the voltage value obtained by detecting the reflected power, and sends the value to the control unit 604.
  • the capacitance values Ctl and Ct2 of the first variable capacitance element means 102 and the second variable capacitance element means 103 in FIG. 1 are changed to change the first variable capacitance element means 102 and the second variable capacitance element 102.
  • the capacitance values Ctl and Ct2 of the element means 103 are set.
  • control unit 604 performs control processing so that the voltage value detected by the reflected power detection unit 602 is minimized.
  • FIG. 7 is a block diagram showing a circuit configuration of a planar antenna device according to the third embodiment of the present invention.
  • the planar antenna element 101 shown in FIG. 1 is connected to the switching switch 702.
  • the switching switch 702 is switched so as to be connected to the wireless transmission unit 704 via the reflected power detection unit 703 during transmission and to the wireless reception unit 706 via the reception power detection unit 705 during reception.
  • the control unit 707 is connected to the reflected power detection unit 703, the received power detection unit 705, and the storage unit 708.
  • Radio transmission section 704 performs transmission processing such as encoding, modulation, and DZA conversion on a signal to be transmitted to a communication partner, and the signal after transmission processing is reflected power detection section 703 and switching switch 702. Is transmitted as a radio wave having a transmission frequency of ft from the planar antenna element 101 via.
  • the reflected power detection unit 703 includes a directional coupler inside, and if an impedance mismatch occurs in the planar antenna element 101 at the time of transmission, reflection occurs at a portion where the mismatch occurs.
  • the reflected signal power is split by a directional coupler, and the voltage value obtained by detecting the reflected power is measured. The measured voltage value is output to the control unit 707.
  • Received power detection section 705 detects the power of the reception frequency fr signal received by planar antenna element 101, and outputs a voltage value obtained by detecting the received power to control section 707.
  • Radio receiving section 706 performs reception processing such as AZD conversion, demodulation, and decoding on the signal of reception frequency fr received by planar antenna element 101.
  • the storage unit 708 has impedance values (control information) of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. It is remembered.
  • initial values of the capacitance values of the first variable capacitance element and the second variable capacitance element are stored.
  • the capacitance values of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. 1 that are impedance matched in free space are stored. These values are determined and stored in the mobile phone pre-shipment experiment.
  • the control unit 707 measures the voltage value obtained by detecting the reflected power output from the reflected power detection unit 703, and detects the reflected power using the capacitance value from the storage unit 708 as an initial value based on the measurement result.
  • the values Ctl and Ct2 of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. 1 are controlled so that the voltage value is minimized.
  • a voltage value obtained by detecting the power of the reception signal output from reception power detection section 705 is measured, and reception power is detected using the capacitance value from storage section 708 as an initial value based on the measurement result.
  • the values Crl and Cr2 of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. 1 are controlled so that the obtained voltage value becomes the maximum. As a result, impedance matching can be achieved for the planar antenna element 101.
  • FIG. 8 is a diagram showing a table of capacitance values of variable capacitance elements that are impedance-matched with respect to the distance to the human body stored in the storage unit 708.
  • the capacitance values of the first variable capacitance element means 102 and the second variable capacitance element means 103 in Fig. 1 that are impedance matched with the distance to the human body at the transmission frequency ft are stored. Further, the capacitance values of the first variable capacitance element means 102 and the second variable capacitance element means 103 in FIG. 1 that are similarly impedance matched at the reception frequency fr are stored in advance.
  • the capacitance of the first variable capacitance element means 102 at the transmission frequency ft is Ctl
  • the capacitance of the second variable capacitance element means 103 is Ct2
  • the capacitance of the first variable capacitance element means 102 at the reception frequency fr is The capacitance of Crl and the second variable capacitance element means 103 is Cr2.
  • control unit 707 Next, a processing procedure in control unit 707 will be described.
  • the transmission initial value is read from the storage unit 708, and the first variable capacitance element value Ct1 and the second variable capacitance element value Ct2 are set.
  • the reflected power detection unit 703 measures the voltage value obtained by detecting the reflected power, and sends the value to the control unit 707.
  • control unit 707 performs control processing so that the voltage value obtained by detecting the reflected power by the reflected power detection unit 703 is minimized.
  • the received power detection unit 705 measures the voltage value obtained by detecting the received power, and sends the value to the control unit 707.
  • control unit 707 by changing the capacitance values of the first variable capacitor element means 102 and the second variable capacitor element means 103 in FIG. 1, the first variable capacitor element means 102 and the second variable capacitor element means 103 are changed. Set the capacitance values Crl and Cr2. (8) By repeating the above (6) to (7), the control unit 707 performs control processing so that the voltage value obtained by detecting the received power by the received power detection unit 705 is maximized.
  • the impedance matching state is established during transmission and reception.
  • the initial value force control process having a large difference from the optimum value was started, and a large amount of processing time was spent before impedance matching.
  • impedance matching was performed at the transmission frequency ft.
  • control process at the time of transmission is performed after the control process at the time of transmission. Conversely, the control process at the time of transmission is performed after the control process at the time of reception. You can do this.
  • FIG. 9 is a block diagram showing a circuit configuration of a planar antenna device according to the fourth embodiment of the present invention.
  • the planar antenna element 101 is connected to the switching switch 902.
  • the switch 902 is switched so as to be connected to the wireless transmission unit 904 via the reflected power detection unit 903 at the time of transmission and to the wireless reception unit 906 via the reception power detection unit 905 at the time of reception.
  • the control unit 907 is connected to the reflected power detection unit 903, the received power detection unit 905, the storage unit 908, and the input unit 909 that allows the user to input the current state.
  • the input unit 909 includes a switch, a button, and the like, and notifies the control unit 907 whether the planar antenna is in a free space or a talking state when the user switches the switch.
  • the storage unit 908 has the capacitance values (control information) of the first variable capacitance element means 102 and the second variable capacitance element means 103 in FIG. 1 that are impedance matched with respect to the distance between the antenna and the human body in advance. It is remembered.
  • the storage unit 908 stores initial values of the capacitance values of the first variable capacitance element means 102 and the second variable capacitance element means 103.
  • the initial value the capacitance values of the first variable capacitance element means 102 and the second variable capacitance element means 103 in FIG. 1 that are impedance-matched in free space or in a call state are stored.
  • an average of the distance between the planar antenna and the human body is obtained in an experiment by a plurality of subjects, and a capacitance value that impedance matches with the distance is stored. These values are determined and stored in an experiment before shipping the mobile phone.
  • the control unit 907 reads the capacitance value stored in the storage unit 908 according to the content notified from the input unit 909, and uses the read capacitance value as an initial value for control. Note that the processing in the control unit 907 is the same as that in the third embodiment, and thus detailed description thereof is omitted.
  • the capacity for impedance matching is prepared in advance as an initial value in a call state, the initial value is selected according to the state, and the selected initial value is set.
  • the initial value force control process with a small difference from the optimum value is started, and the time required to reach the impedance matching state can be shortened.
  • the planar antenna element 1001 has different capacitance values C11 to C1N as the first variable capacitor element means 1002 that mainly controls the resonance frequency at the periphery of the antenna element at a position where the resonance frequency can be controlled. It is connected to the ground plane 1004 through a plurality of capacitors 1007 and a switching switch 1008.
  • planar antenna element 1001 is different from the second variable capacitance element unit 1003 that mainly controls the voltage standing wave ratio at the resonance frequency at a position where the voltage standing wave ratio at the resonance frequency can be controlled.
  • a plurality of capacitors 1009 having capacitance values C21 to C2N are connected to the ground plane 1004 through a switching switch 1010.
  • planar antenna element 1001 is connected to the feeder line 1006 in the feeder unit 1005. ing.
  • the switch to be turned on corresponds to the control information.
  • the circuit configuration of the planar antenna element of the fifth embodiment is the same as that of Embodiment 3 except that a planar antenna using a plurality of capacitors and a switching switch is used as the variable capacitance element. Description is omitted.
  • control information stored in advance in the storage unit is a switching switch, and thus detailed description thereof is omitted.
  • the switching switch that is turned on to be in an impedance matching state with respect to the distance between the planar antenna and the human body is stored in advance in the storage unit, and stored in the control.
  • the component reading and switching switch and switching the connected capacitor By controlling the component reading and switching switch and switching the connected capacitor, the matching capacitance is searched discretely instead of continuously, so the time required to reach the impedance matching state can be reduced. .
  • the reflected power detection unit detects the voltage obtained by detecting the reflected power.
  • the present invention is not limited to this, and the reflected power, the voltage obtained by detecting the reflected power, and the reflected power are detected. Try to detect the difference between the coefficient and the voltage standing wave ratio.
  • the power of the received signal is detected at the time of reception.
  • the present invention is not limited to this, and either the received signal or the reception sensitivity may be detected. .
  • the present invention relates to a planar antenna device, and is suitable for application to a wireless communication device such as a mobile phone.

Landscapes

  • Transmitters (AREA)
  • Waveguide Aerials (AREA)

Abstract

 通話状態など人体近接時のインピーダンス不整合損失を短時間に軽減し、携帯電話等に応用できる平面アンテナ装置を提供する。  平面アンテナ素子101は、アンテナ素子の周縁部で、共振周波数を制御可能な位置に、主に共振周波数を制御する第1可変容量素子手段102を介して地板104に接続されている。平面アンテナ素子101は、共振周波数における電圧定在波比を制御可能な位置に、主に共振周波数における電圧定在波比を制御する第2可変容量素子手段103を介して地板104に接続されている。平面アンテナ素子101は、給電部105において、給電線106に接続されている。第1可変容量素子手段102と第2可変容量素子手段103の容量値を制御することによって、通話状態などの人体近接時にずれた共振周波数を使用周波数に調整し、不整合損失を軽減し、良好な通信品質を確保できる。

Description

明 細 書
平面アンテナ装置
技術分野
[0001] 本発明は、平面アンテナ装置に係り、例えば、携帯電話機等の無線通信装置に適 用して好適な平面アンテナ装置に関する。
背景技術
[0002] 図 11は、従来例として、携帯電話機等に用いられる板状逆 Fアンテナを示している
。この板状逆 Fアンテナは、平面状のアンテナ素子 1101と、給電線 1102が給電部 1
105にお!/ヽて接続されて!、る。
[0003] また、この板状逆 Fアンテナは、アンテナ素子 1101を地板 1104に接地するショー トスタブ 1103を備えている。この板状逆 Fアンテナは、アンテナ素子 1101の周囲長 により共振周波数が定まり、アンテナ素子 1101の縦の長さ (W)と横の長さ (L)との和 力 波長の 1Z4となる周波数で共振する。
[0004] 即ち、アンテナ素子 1101の周囲長が波長の 1Z2となる周波数で共振する。通常、 使用周波数において、自由空間で共振するようにアンテナ寸法が決定される。
一例として、自由空間におけるアンテナの VSWRの周波数特性を、図 12に示して いる。
[0005] なお、 VSWRとは電圧定在波比の略で、この値が小さいほど次段の回路へ効率よ く電力を伝送することができる。また、 VSWRの最小値は 1である。ここでは、使用周 波数を 600MHzとし、使用周波数において VSWRが約 1. 1となっている。
[0006] 通話状態の場合、アンテナ素子と人体との距離が近ぐ使用周波数においてインピ 一ダンスが整合状態からずれ、不整合状態となり不整合損失が増大し、通話品質が 大幅に劣化する、という不具合が起きる。
[0007] 図 13、図 14はそれぞれ携帯電話機における通話状態を人体の正面力も示した図 と、横力 示した図である。
通話状態とは、携帯電話機の筐体 1304 (または 1402)を手で保持し、レシ一から の音が聞こえるように筐体に開けられたレシーバ音孔部 1306を耳に当て、マイクへ 音が到達しやす!/、ように筐体に開けられたマイク音孔部 1307が口元に来るように、 筐体 1304 (または 1402)を地面に垂直方向から 60° 傾けた状態のことである。
[0008] また、アンテナと人体との距離とは、通話状態において、アンテナの給電部と耳を 含む人体頭部の最も近い距離のことで、図 13において、人体との距離は Spと示して いる部分である。
[0009] 図 15は、従来のアンテナの通話状態における VSWRの周波数特性を示している。
アンテナの共振周波数が使用周波数からずれ、使用周波数における VSWRが約 21 となっている。特許文献 1は、ずれた共振周波数を使用周波数に一致させる方法を 開示している。
特許文献 1:特開平 9— 307344号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、特許文献 1では、共振周波数における VSWRが大きくずれた場合、
VSWRを自由空間と同等に小さく戻すことができず、不整合損失が解消されずに通 話品質が劣化する、という不具合が生じる。
[0011] 一例として、図 16は、特許文献 1で開示された方法を適用した場合のアンテナの V
SWRの周波数特性を示している。使用周波数における VSWRは約 3. 2であり、比 較的高くなつている。
[0012] 本発明の目的は、以上の課題を解決し、携帯電話機等の無線通信機においても、 人体近接時に生じるインピーダンスの不整合を短時間で解消し、インピーダンス不整 合による電力損失を軽減できるアンテナ装置を提供することにある。
課題を解決するための手段
[0013] 本発明の平面アンテナ装置は、平面状のアンテナ素子を具備し、前記アンテナ素 子の周囲長に基づいて共振周波数が定まる平面アンテナにおいて、前記アンテナ 素子の周縁部で、共振周波数を制御可能な位置に、前記アンテナ素子と地板間に 装荷され、主に共振周波数を制御する第 1可変容量素子手段と、共振周波数におけ る電圧定在波比を制御可能な位置に、前記アンテナ素子と地板間に装荷され、主に 共振周波数における電圧定在波比を制御する第 2可変容量素子手段と、を備えて!/ヽ る。
[0014] ここで、前記アンテナ素子力 の受信信号の受信電力、受信感度のいずれかを検 出する検出手段と、前記検出手段により検出された値が最大となるように前記第 1可 変容量素子手段と前記第 2可変容量素子手段を制御する制御手段と、を備えるのが 好ましい。
[0015] また、前記アンテナ素子に給電したときに反射される電力、反射された電力を検波 した電圧、反射係数、電圧定在波比のいずれかを検出する検出手段と、前記検出手 段により検出された値が最小となるように前記第 1可変容量素子手段と前記第 2可変 容量素子手段を制御する制御手段と、を備えるのが好まし 、。
[0016] また、前記アンテナ素子力 の受信信号の受信電力、受信感度のいずれかを検出 する第 1検出手段と、前記アンテナ素子に給電したときに反射される電力、反射され た電力を検波した電圧、反射係数、電圧定在波比のいずれかを検出する第 2検出手 段と、前記第 1検出手段により検出された値が最大となるように、また、前記第 2検出 手段により検出された値が最小となるように、第 1可変容量素子手段と第 2可変容量 素子手段を制御する制御手段と、を備えるのが好まし 、。
[0017] 本発明によれば、検出手段では、インピーダンスが整合か不整合かを検出しており 、インピーダンスが不整合となっているときには、可変容量素子手段を制御する。第 1 可変容量手段により主に共振周波数を制御でき、第 2可変容量手段により主に共振 周波数における電圧定在波比を制御できる。これらを組み合わせて制御することによ り、インピーダンス整合状態とすることができ、インピーダンスの不整合による電力損 失を低減することができる。
[0018] また、前記アンテナ素子が整合状態となる第 1可変容量素子と第 2可変容量素子の 容量値またはその容量値を与える電圧を記憶した記憶手段を備え、前記制御手段 により、第 1可変容量素子手段と第 2可変容量素子手段を制御する際に、前記記憶 手段力 読み出した制御情報を用いて制御を行なうことが好まし 、。
[0019] 本発明によれば、インピーダンスが不整合となっているときには、前記記憶手段か ら読み出した制御情報を用いて可変容量素子手段を制御することにより、短時間に インピーダンス整合状態とすることができ、インピーダンスの不整合による電力損失を 低減することができる。
[0020] また、前記制御手段が、前記第 1検出手段または第 2検出手段により検出されたい ずれかの値の制御処理を完了し、そのときの制御情報に対応する他の制御情報を 前記記憶手段から読み出し、読み出した制御情報を用いて、他方の検出手段により 検出された値の制御を行なうことが好ま 、。
[0021] また、前記記憶手段が、人体との距離に対して前記アンテナ素子力インピーダンス 整合となる制御情報とを予め記憶し、前記制御手段が、前記記憶手段に記憶された V、ずれかの制御情報を初期制御情報として制御処理を開始するのが好まし 、。
[0022] この場合は、インピーダンスのずれが小さい状態で制御処理を開始することになり、 インピーダンス整合状態とするまでに要する時間を短縮できる。
[0023] また、前記アンテナ素子がどのような状態にある力 または、前記アンテナ素子と人 体との距離の情報がユーザーにより前記制御手段に入力される入力手段を具備する のが好ましい。
[0024] この構成によれば、ユーザーにより入力された情報に対応する、記憶手段に予め 記憶された初期値を読み出すことにより、インピーダンスのずれが小さい状態で制御 処理を開始することになり、インピーダンス整合状態とするまでに要する時間を短縮 できる。
[0025] また、本発明の平面アンテナ装置は、前記構成において、前記可変整合手段を可 変容量コンデンサとし、制御情報を当該可変容量コンデンサの容量値とするのが好 ましい。
また、前記可変整合手段を可変容量ダイオードとし、制御情報を当該可変容量ダイ オードに印加する制御電圧とするのが好まし ヽ。
[0026] この構成によれば、可変整合手段を可変容量コンデンサや可変容量ダイオードとし 、容量値や制御電圧でそれぞれ制御することにより、簡易にインピーダンス整合状態 とすることができる。
[0027] また、前記可変整合手段が、容量の異なる複数のキャパシタと、前記複数のキャパ シタを選択的に切り替えるスィッチ手段と、を具備するのが好ましい。
[0028] この構成によれば、容量の異なる複数のキャパシタを選択的に切り替えることにより 、整合状態となる容量を連続的ではなく離散的に探索するので、短時間でインピー ダンス整合状態とすることができる。 発明の効果
[0029] 以上のように、本発明の平面アンテナ装置によれば、平面アンテナ素子の周縁部 で、共振周波数を制御可能な位置に、主に共振周波数を制御する第 1可変容量素 子手段を平面アンテナ素子と地板間に装荷し、共振周波数における電圧定在波比 を制御可能な位置に、主に共振周波数における電圧定在波比を制御する第 2可変 容量素子手段を平面アンテナ素子と地板間に装荷し、インピーダンス整合状態とな るように第 1可変容量素子、第 2可変容量素子の容量値をそれぞれ制御することによ つて、通話状態で生じるインピーダンスの不整合を短時間で解消し、インピーダンス の不整合による電力損失を低減することができる。
図面の簡単な説明
[0030] [図 1]本発明の第 1実施形態に示す平面アンテナの構成図
[図 2]本発明の第 1実施形態に示す第 1可変容量素子による調整後の VSWRの周波 数特性を示す図
[図 3]本発明の第 1実施形態に示す第 2可変容量素子による調整後の VSWRの周波 数特性を示す図
[図 4]本発明の第 1実施形態に示す平面アンテナ装置の回路ブロック構成図
[図 5]本発明の第 1実施形態に示す第 1、第 2可変容量素子による調整後の通話状 態における VSWRの周波数特性を示す図
[図 6]本発明の第 2実施形態に示す平面アンテナ装置の回路ブロック構成図
[図 7]本発明の第 3実施形態に示す平面アンテナ装置の回路ブロック構成図
[図 8]本発明の第 3実施形態に示す記憶部に記憶された、アンテナと人体との距離に 対して整合する可変容量の容量値のテーブルを示す図
[図 9]本発明の第 4実施形態に示す平面アンテナ装置の回路ブロック構成図
[図 10]本発明の第 5実施形態に示す平面アンテナの構成図
[図 11]従来の平面アンテナの構成図
[図 12]従来の平面アンテナの自由空間における VSWRの周波数特性を示す図 圆 13]通話状態を人体の正面力も示した図
圆 14]通話状態を人体の横力も示した図
[図 15]従来の平面アンテナの通話状態における VSWRの周波数特性を示す図 [図 16]従来の平面アンテナの通話状態において、特許文献 1で開示された方法を適 用した後の VSWRの周波数特性を示す図
符号の説明
101 平面アンテナ素子
102 第 1可変容量素子手段
103 第 2可変容量素子手段
104 地板
105 給電部
106 給電線
401 平面アンテナ
402 受信電力検出部
403 無線受信部
404 制御部
602 反射電力検出部
603 無線送信部
604 制御部
702 スィッチ
703 反射電力検出部
704 無線送信部
705 受信電力検出部
706 無線受信部
707 制御部
708 記憶部
902 スィッチ
903 反射電力検出部 904 無線送信部
905 受信電力検出部
906 無線受信部
907 制御部
908 記憶部
909 入力部
1001 平面アンテナ素子
1002 第 1可変容量素子手
1003 第 2可変容量素子手
1004 地板
1005 給電部
1006 給電線
1007 キヤノ ンタ
1008 スィッチ
1009 キャパシタ
1010 スィッチ
1101 平面アンテナ素子
1102 給電線
1103 ショートスタブ
1104 地板
1105 給電部
1301 平面アンテナ素子
1302 給電線
1303 ショートスタブ
1304 筐体
1305 給電部
1306 レシーバ音孔部
1307 マイク音孔部 1401 平面アンテナ素子
1402 筐体
Ctl 送信周波数における第 1可変容量素子の容量
Crl 受信周波数における第 1可変容量素子の容量
Ct2 送信周波数における第 2可変容量素子の容量
Cr2 受信周波数における第 2可変容量素子の容量
Ctl l〜CtlN 送信周波数における第 1可変容量素子の容量
Crl l〜CrlN 受信周波数における第 1可変容量素子の容量
Ct21〜Ct2N 送信周波数における第 2可変容量素子の容量
Cr21〜Cr2N 受信周波数における第 2可変容量素子の容量
C11〜C1N 第 1可変容量部における複数キャパシタ
C21〜C2N 第 2可変容量部における複数キャパシタ
W 板状逆 Fアンテナの幅
L 板状逆 Fアンテナの長さ
Sp アンテナと人体との距離
発明を実施するための最良の形態
[0032] 以下、本発明に係る平面アンテナ装置の実施の形態を、図面を参照して詳細に説 明する。
[0033] <第 1の実施形態 >
本発明の第 1の実施形態について、図 1から図 5、及び図 15を参照して説明する。 図 1は、本発明に係る第 1の実施形態に用いられる平面アンテナの構成を示す図で ある。
[0034] 図 1において、平面アンテナ素子 101は、アンテナ素子の周縁部で、共振周波数を 制御可能な位置に、主に共振周波数を制御する第 1可変容量素子手段 102を介し て地板 104に接続されている。
[0035] また、平面アンテナ素子 101は、共振周波数における電圧定在波比を制御可能な 位置に、主に共振周波数における電圧定在波比を制御する第 2可変容量素子手段 103を介して地板 104に接続されている。更に、平面アンテナ素子 101は、給電部 1 05【こお!ヽて、給電線 106【こ接続されて!ヽる。
[0036] ここで、上記の可変容量素子によるインピーダンスの動作を説明する。ここでは、使 用周波数を 600MHzとしている。自由空間においては、図 12のように、使用周波数 における VSWRが約 1. 1とインピーダンス整合して!/、る。
[0037] この状態から、通話状態にすると、人体近接によって、図 15のように、共振周波数 力 S約 524MHzとなり、使用周波数におけるアンテナの VSWRが約 21と大きくなる。こ のとき、第 1可変容量素子手段 102を調整することによって、図 2のように、共振周波 数を調整できる。
[0038] また、共振周波数は、約 524MHzから 600MHzとなっている。さらに、第 2可変容 量素子手段 103を調整することによって、図 3のように、共振周波数も少し変化する 力 主に共振周波数における電圧定在波比を小さくすることができる。
[0039] 図 3において、共振周波数における VSWRは約 3. 3力 約 1. 0となっている。これ らの可変容量素子を組み合わせて調整することにより、使用周波数におけるアンテ ナの VSWRを小さくし、アンテナの不整合損失を軽減することができる。
[0040] 図 4は、本発明に係る第 1の実施形態である平面アンテナ装置の回路ブロック構成 を示す図である。図 1で示した平面アンテナ素子 101は、受信電力検出部 402を介 して無線受信部 403に接続されている。また、制御部 404は、受信電力検出部 402 に接続されている。
[0041] 無線受信部 403は、平面アンテナ 401で受信された受信用周波数 frの信号に AZ D変換、復調、復号等の受信処理を行なう。受信電力検出部 402は、平面アンテナ 4 01で受信した受信用周波数 frの信号の電力を検出し、受信電力を検波した電圧値 を制御部 404に出力する。
[0042] 制御部 404は、受信電力検出部 402から出力された受信信号の電力を検波した電 圧値を測定し、電圧値が最大になるように、図 1における第 1可変容量素子手段 102 と第 2可変容量素子手段 103の容量値 Crl、 Cr2を制御する。これにより、平面アン テナ素子 101につ 、て、インピーダンス整合をとることができる。
[0043] 次に、制御部 404における処理手順について説明する。
(1)受信電力検出部 402で検出された受信電力を検波した電圧値を測定し、値を 制御部 404に送る。
(2)制御部 404において、図 1における第 1可変容量素子手段 102及び第 2可変 容量素子手段 103の容量値 Crl、 Cr2を変化させて、第 1可変容量素子手段 102及 び第 2可変容量素子手段 103の容量値 Crl、 Cr2を設定する。
(3)上記の(1)〜(2)を繰り返して、受信電力検出部 402で検出された電圧値が最 大となるように、制御部 404において制御処理を行なう。
(4)受信時の受信周波数 frにおける制御処理が完了する。このとき、受信周波数 fr において、インピーダンス整合状態になる。
[0044] このように、本実施の形態によれば、制御部 404における処理を行なうことにより、 図 5のように、受信時において、インピーダンス整合状態になる。これにより、通話状 態の受信時において、インピーダンスのずれを補正し、不整合損による電力損失を 低減することができると共に、良好な通信品質を確保することができる。
[0045] <第 2の実施形態 >
本発明の第 2の実施形態について、図 1、図 6を用いて説明する。図 6は、本発明に 係る第 2の実施形態である平面アンテナ装置の回路ブロック構成を示す図である。な お、以下の説明においては、第 1の実施形態と同一の部分には、同一の符号を付け て詳細な説明を省略する。
[0046] 図 1で示した平面アンテナ素子 101は、反射電力検出部 602を介して無線送信部 603に接続されている。また、制御部 604は、反射電力検出部 602に接続されている
[0047] 無線送信部 603は、通信相手に送信する信号に符号化、変調、 DZA変換等の送 信処理を行な!/ヽ、送信処理後の信号を反射電力検出部 602を介して平面アンテナ 素子 101から送信周波数 ftの電波として送信する。
[0048] 反射電力検出部 602は、内部に方向性結合器を含んでおり、送信時に平面アンテ ナ素子 101について、インピーダンスの不整合を生じていると、不整合を生じている 部分で反射が起こり、その反射信号の電力を方向性結合器によって分岐し、反射電 力を検波した電圧値を測定する。測定した電圧値は制御部 604に出力される。
[0049] 制御部 604は、反射電力検出部 602から出力された反射信号の電力を検波した電 圧値を測定し、電圧値が最小になるように、図 1における第 1可変容量素子手段 102 と第 2可変容量素子手段の容量値 Ctl、 Ct2を制御する。これにより、平面アンテナ 素子 101につ 、て、インピーダンス整合をとることができる。
[0050] 次に、制御部 604における処理手順について説明する。
(1)反射電力検出部 602で検出された反射電力を検波した電圧値を測定し、値を 制御部 604に送る。
(2)制御部 604において、図 1における第 1可変容量素子手段 102及び第 2可変 容量素子手段 103の容量値 Ctl、 Ct2を変化させて、第 1可変容量素子手段 102及 び第 2可変容量素子手段 103の容量値 Ctl、 Ct2を設定する。
(3)上記の(1)〜(2)を繰り返して、反射電力検出部 602で検出された電圧値が最 小となるように、制御部 604において制御処理を行なう。
(4)送信時の送信周波数 ftにおける制御処理が完了する。このとき、送信周波数 ft において、インピーダンス整合状態になる。
[0051] このように、本実施の形態によれば、制御部 604における処理を行なうことにより、 送信時において、インピーダンス整合状態になる。これにより、通話状態の送信時に おいて、インピーダンスのずれを補正し、不整合損による電力損失を低減することが できると共に、良好な通信品質を確保することができる。
[0052] <第 3の実施形態 >
本発明の第 3の実施形態について、図 1、図 7、図 8を用いて説明する。図 7は、本 発明に係る第 3の実施形態である平面アンテナ装置の回路構成を示すブロック図で ある。
[0053] 図 1で示した平面アンテナ素子 101は、切り替えスィッチ 702に接続されている。切 り替えスィッチ 702は、送信時には反射電力検出部 703を介して無線送信部 704〖こ 、受信時には受信電力検出部 705を介して無線受信部 706に接続されるように切り 替えられる。制御部 707は反射電力検出部 703と受信電力検出部 705と記憶部 708 に接続されている。
[0054] 無線送信部 704は、通信相手に送信する信号に符号化、変調、 DZA変換等の送 信処理を行ない、送信処理後の信号を反射電力検出部 703、切り替えスィッチ 702 を介して平面アンテナ素子 101から送信周波数 ftの電波として送信する。
[0055] 反射電力検出部 703は、内部に方向性結合器を含んでおり、送信時に平面アンテ ナ素子 101について、インピーダンスの不整合を生じていると、不整合を生じている 部分で反射が起こり、その反射信号の電力を方向性結合器によって分岐し、反射電 力を検波した電圧値を測定する。測定した電圧値は、制御部 707に出力される。
[0056] 受信電力検出部 705は、平面アンテナ素子 101で受信した受信用周波数 frの信 号の電力を検出し、受信電力を検波した電圧値を制御部 707に出力する。無線受信 部 706は、平面アンテナ素子 101で受信された受信用周波数 frの信号に AZD変換 、復調、復号等の受信処理を行なう。
[0057] 記憶部 708は、アンテナと人体との距離に対してインピーダンス整合する、図 1にお ける第 1可変容量素子手段 102と第 2可変容量素子手段 103の容量値 (制御情報) が予め記憶されている。
[0058] また、第 1可変容量素子、第 2可変容量素子の容量値の初期値が記憶されている。
初期値の一例として、自由空間においてインピーダンス整合する、図 1における第 1 可変容量素子手段 102と第 2可変容量素子手段 103の容量値が記憶される。これら の値は、携帯電話機の工場出荷前の実験において、決定され記憶される。
[0059] 制御部 707は、反射電力検出部 703から出力された反射電力を検波した電圧値を 測定、測定結果に基づいて、記憶部 708からの容量値を初期値として反射電力を検 波した電圧値が最小となるように、図 1における第 1可変容量素子手段 102及び第 2 可変容量素子手段 103の値 Ctl、 Ct2を制御する。
[0060] また、受信電力検出部 705から出力された受信信号の電力を検波した電圧値を測 定し、測定結果に基づいて、記憶部 708からの容量値を初期値として受信電力を検 波した電圧値が最大となるように、図 1における第 1可変容量素子手段 102及び第 2 可変容量素子手段 103の値 Crl、 Cr2を制御する。これにより、平面アンテナ素子 1 01につ 、て、インピーダンス整合をとることができる。
[0061] ここで、記憶部 708についてさらに具体的に説明する。図 8は、記憶部 708に記憶 された人体との距離に対してインピーダンス整合する可変容量素子の容量値のテー ブルを示す図である。 [0062] 送信周波数 ftにおいて、人体との距離に対してインピーダンス整合する、図 1にお ける第 1可変容量素子手段 102及び第 2可変容量素子手段 103の容量値が記憶さ れている。また、受信周波数 frにおいて、同様にインピーダンス整合する、図 1におけ る第 1可変容量素子手段 102及び第 2可変容量素子手段 103の容量値が予め記憶 されている。
[0063] ここでは、送信周波数 ftにおける第 1可変容量素子手段 102の容量を Ctl、第 2可 変容量素子手段 103の容量を Ct2、受信周波数 frにおける第 1可変容量素子手段 1 02の容量を Crl、第 2可変容量素子手段 103の容量を Cr2としている。
[0064] 次に、制御部 707における処理手順について説明する。
(1)送信時には記憶部 708から送信初期値を読み出して、第 1可変容量素子値 Ct 1及び第 2可変容量素子値 Ct2を設定する。
(2)この状態で、反射電力検出部 703で反射電力を検波した電圧値を測定し、値 を制御部 707に送る。
(3)制御部 707において、図 1における第 1可変容量素子手段 102及び第 2可変 容量素子手段 103の容量値を変化させて、第 1可変容量素子手段 102及び第 2可 変容量素子手段 103の容量値 Ctl、 Ct2を設定する。
(4)上記(2)〜(3)を繰り返して、反射電力検出部 703で反射電力を検波した電圧 値が最小となるように、制御部 707にお 、て制御処理を行なう。
(5)送信時の送信周波数 ftにおける制御処理が完了する。このとき、送信周波数 ft において、インピーダンス整合状態になる。図 8より、送信周波数 ftにおける最適容 量値に対応する人体との距離が存在し、受信時にはその人体との距離の受信周波 数 frにおける容量値を読み出し、受信初期値として、第 1可変容量素子手段 102及 び第 2可変容量素子手段 103の容量値 Crl、 Cr2を設定する。
(6)この状態で、受信電力検出部 705で受信電力を検波した電圧値を測定し、値 を制御部 707に送る。
(7)制御部 707において、図 1における第 1可変容量素子手段 102及び第 2可変 容量素子手段 103の容量値を変化させて、第 1可変容量素子手段 102及び第 2可 変容量素子手段 103の容量値 Crl、 Cr2を設定する。 (8)上記の(6)〜(7)を繰り返して、受信電力検出部 705で受信電力を検波した電 圧値が最大となるように、制御部 707において制御処理を行なう。
(9)受信時の受信周波数 frにおける制御処理が完了する。このとき、受信周波数 fr において、インピーダンス整合状態になる。
[0065] このように、本実施の形態によれば、制御部 707における処理を行なうことにより、 送信時及び受信時において、インピーダンス整合状態になる。これにより、通話状態 の送信時及び受信時において、インピーダンスのずれを補正し、不整合損による電 力損失を低減することができると共に、良好な通信品質を確保することができる。
[0066] さらに、以前の処理方法では最適値との差が大きい初期値力 制御処理を始める ことになり、インピーダンス整合するまでに多くの処理時間を費やしていたが、送信周 波数 ftにおいてインピーダンス整合状態としたときの容量値に対応する受信周波数 f rにおける容量値を、受信時における制御処理の初期値とすることにより、最適値との 差が小さい初期値力 制御処理を始めることになり、インピーダンス整合状態とする までに要する時間を短縮することができる。
[0067] なお、上述の説明では、送信時の制御処理をした後で、受信時の制御処理を行な つているが、逆に、受信時の制御処理をした後で、送信時の制御処理を行なってもよ い。
[0068] <第 4の実施形態 >
本発明の第 4の実施形態について、図 1、図 9を用いて説明する。図 9は、本発明に 係る第 4の実施形態である平面アンテナ装置の回路構成を示すブロック図である。
[0069] 平面アンテナ素子 101は、切り替えスィッチ 902に接続されている。切り替えスイツ チ 902は、送信時には反射電力検出部 903を介して無線送信部 904に、受信時に は受信電力検出部 905を介して無線受信部 906に接続されるように切り替えられる。
[0070] 制御部 907は、反射電力検出部 903と、受信電力検出部 905と、記憶部 908と、ュ 一ザ一が現在の状態を入力できる入力部 909が接続されている。
[0071] 入力部 909は、スィッチやボタン等を備え、ユーザーがスィッチを切り替えることによ り、平面アンテナが自由空間または通話状態のいずれの状態であるかを制御部 907 に通知する。 [0072] 記憶部 908は、アンテナと人体との距離に対してインピーダンス整合する、図 1にお ける第 1可変容量素子手段 102と第 2可変容量素子手段 103の容量値 (制御情報) が予め記憶されている。
[0073] また、記憶部 908には、第 1可変容量素子手段 102、第 2可変容量素子手段 103 の容量値の初期値が記憶されている。初期値の一例として、自由空間または通話状 態においてインピーダンス整合する、図 1における第 1可変容量素子手段 102と第 2 可変容量素子手段 103の容量値が記憶される。
[0074] 通話状態の場合の初期値は、複数の被験者による実験で、平面アンテナと人体と の距離の平均を取り、その距離に対してインピーダンス整合する容量値が記憶される 。これらの値は、携帯電話機の工場出荷前の実験において、決定され記憶される。
[0075] 制御部 907は、入力部 909から通知された内容に応じて、記憶部 908に記憶され た容量値を読み出し、読み出した容量値を初期値として制御に用いる。なお、制御 部 907における処理は、実施の形態 3と同様なので、その詳しい説明は省略する。
[0076] このように本実施の形態によれば、通話状態にお!、てインピーダンス整合となる容 量を初期値として予め用意し、状態に応じて初期値を選択し、選択した初期値を用 いて制御処理を行なうことにより最適値との差が小さい初期値力 制御処理を始める ことになり、インピーダンス整合状態となるまでに要する時間を短縮することができる。
[0077] <第 5の実施形態 >
本発明の第 5の実施形態について、図 10を用いて説明する。図 10において、平面 アンテナ素子 1001は、アンテナ素子の周縁部で、共振周波数を制御可能な位置に 、主に共振周波数を制御する第 1可変容量素子手段 1002として、異なる容量値 C1 1〜C1Nを持つ複数のキャパシタ 1007と切り替えスィッチ 1008を介して地板 1004 に接続されている。
[0078] また、平面アンテナ素子 1001は、共振周波数における電圧定在波比を制御可能 な位置に、主に共振周波数における電圧定在波比を制御する第 2可変容量素子手 段 1003として、異なる容量値 C21〜C2Nを持つ複数のキャパシタ 1009と切り替え スィッチ 1010を介して地板 1004に接続されている。
[0079] また、平面アンテナ素子 1001は、給電部 1005において、給電線 1006に接続され ている。なお、ここでは、オンする切り替えスィッチが制御情報に相当する。
[0080] 第 5実施形態の平面アンテナ素子における回路構成は、可変容量素子として複数 のキャパシタと切り替えスィッチを用いた平面アンテナを用いて 、ること以外は、実施 の形態 3と同様なので、その詳しい説明は省略する。
[0081] また、制御部における処理は、記憶部に予め記憶されている制御情報がオンする 切り替えスィッチであること以外は、実施の形態 3と同様なので、その詳しい説明は省 略する。
[0082] 上記のように、本実施の形態によれば、平面アンテナと人体との距離に対してイン ピーダンス整合状態となるオンする切り替えスィッチを記憶部において予め記憶し、 制御の際には記憶部力 読み出し、切り替えスィッチを制御し、接続するキャパシタ を切り替えることによって、整合状態となる容量を連続的ではなく離散的に探索する ので、インピーダンス整合状態となるまでに要する時間を短縮することができる。
[0083] また、上述した各実施の形態において、反射電力検出部は反射電力を検波した電 圧を検出したが、本発明はこれに限らず、反射電力、反射電力を検波した電圧、反 射係数、電圧定在波比の ヽずれかを検出するようにしてもょ 、。
[0084] さらに、上述した各実施の形態において、受信時は受信信号の電力を検出したが 、本発明はこれに限らず、受信信号、受信感度のいずれかを検出するようにしてもよ い。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2004年 9月 22日出願の日本特許出願 No.2004-275466に基づくものであ り、その内容はここに参照として取り込まれる。
産業上の利用可能性
[0085] 本発明は、平面アンテナ装置に係り、例えば、携帯電話機等の無線通信装置に適 用して好適である。

Claims

請求の範囲
[1] 平面状のアンテナ素子を具備し、
前記アンテナ素子の周囲長に基づいて共振周波数が定まる平面アンテナにおいて 前記アンテナ素子の周縁部で、共振周波数を制御可能な位置に、前記アンテナ素 子と地板間に装荷され、主に共振周波数を制御する第 1可変容量素子手段と、 共振周波数における電圧定在波比を制御可能な位置に、前記アンテナ素子と地 板間に装荷され、主に共振周波数における電圧定在波比を制御する第 2可変容量 素子手段と、
を備えた平面アンテナ装置。
[2] 前記アンテナ素子力 の受信信号の受信電力、受信感度のいずれかを検出する 検出手段と、
前記検出手段により検出された値が最大となるように前記第 1可変容量素子手段と 前記第 2可変容量素子手段を制御する制御手段と、
を備えたことを特徴とする請求項 1に記載の平面アンテナ装置。
[3] 前記アンテナ素子に給電したときに反射される電力、反射された電力を検波した電 圧、反射係数、電圧定在波比のいずれかを検出する検出手段と、
前記検出手段により検出された値が最小となるように前記第 1可変容量素子手段と 前記第 2可変容量素子手段を制御する制御手段と、
を備えたことを特徴とする請求項 1に記載の平面アンテナ装置。
[4] 前記アンテナ素子力 の受信信号の受信電力、受信感度のいずれかを検出する 第 1検出手段と、
前記アンテナ素子に給電したときに反射される電力、反射された電力を検波した電 圧、反射係数、電圧定在波比のいずれかを検出する第 2検出手段と、
前記第 1検出手段により検出された値が最大となるように、また、前記第 2検出手段 により検出された値が最小となるように、第 1可変容量素子手段と第 2可変容量素子 手段を制御する制御手段と、
を備えたことを特徴とする請求項 1に記載の平面アンテナ装置。
[5] 前記アンテナ素子が整合状態となる前記第 1可変容量素子手段と前記第 2可変容 量素子手段の容量値またはその容量値を与える電圧を記憶した記憶手段を備え、 前記制御手段により、前記第 1可変容量素子手段と前記第 2可変容量素子手段を 制御する際に、前記記憶手段から読み出した制御情報を用いて制御を行なうことを 特徴とする請求項 2から 4に記載の平面アンテナ装置。
[6] 前記制御手段は、前記第 1検出手段または前記第 2検出手段の一方により検出さ れたいずれかの値の制御処理を完了し、そのときの前記制御情報に対応する他の 前記制御情報を前記記憶手段から読み出し、読み出した前記制御情報を用いて、 前記第 1検出手段又は前記第 2検出手段の他方により検出された値の制御をするこ とを特徴とする請求項 5に記載の平面アンテナ装置。
[7] 前記記憶手段は、人体との距離に対して前記アンテナ素子が整合状態となる制御 情報を予め記憶し、
前記制御手段は、前記記憶手段に記憶された!、ずれかの制御情報を初期制御情 報として制御処理を開始することを特徴とする請求項 5又は 6に記載の平面アンテナ 装置。
[8] 前記アンテナ素子がどのような状態にあるかの情報が、前記制御手段に入力される 入力手段を具備することを特徴とする請求項 2から 7のいずれかに記載の平面アンテ ナ装置。
[9] 前記可変容量素子手段を可変容量コンデンサとし、制御情報を当該可変容量コン デンサの容量値とすることを特徴とする請求項 2から 8のいずれかに記載の平面アン テナ装置。
[10] 前記可変容量素子手段を可変容量ダイオードとし、制御情報を当該可変容量ダイ オードに印加する制御電圧とすることを特徴とする請求項 2から 8のいずれかに記載 の平面アンテナ装置。
[11] 前記可変容量素子手段は、容量の異なる複数のキャパシタと、前記複数のキャパ シタを選択的に切り替えるスィッチ手段と、を具備することを特徴とする請求項 2から 8 の!、ずれかに記載の平面アンテナ装置。
PCT/JP2005/013381 2004-09-22 2005-07-21 平面アンテナ装置 WO2006033199A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-275466 2004-09-22
JP2004275466A JP2006093990A (ja) 2004-09-22 2004-09-22 平面アンテナ装置

Publications (1)

Publication Number Publication Date
WO2006033199A1 true WO2006033199A1 (ja) 2006-03-30

Family

ID=36089964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013381 WO2006033199A1 (ja) 2004-09-22 2005-07-21 平面アンテナ装置

Country Status (2)

Country Link
JP (1) JP2006093990A (ja)
WO (1) WO2006033199A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
EP2717384A1 (en) * 2012-10-04 2014-04-09 LG Innotek Co., Ltd. Communication terminal and antenna apparatus thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964652B1 (ko) * 2007-05-03 2010-06-22 주식회사 이엠따블유 다중 대역 안테나 및 그를 포함하는 무선 통신 장치
JP4642133B2 (ja) * 2007-08-02 2011-03-02 富士通株式会社 無線送受信装置
FR2967536A1 (fr) * 2010-11-15 2012-05-18 Univ Rennes Antenne compacte adaptable en impedance
KR101874892B1 (ko) 2012-01-13 2018-07-05 삼성전자 주식회사 소형 안테나 장치 및 그 제어방법
JP2013255199A (ja) * 2012-06-08 2013-12-19 Japan Radio Co Ltd 生体用アンテナ
WO2015068252A1 (ja) * 2013-11-08 2015-05-14 株式会社日立産機システム 平面アンテナ、アレイアンテナ、アンテナシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362402A (ja) * 1986-09-03 1988-03-18 Fujitsu Ltd 無線機用アンテナ
JPH06224618A (ja) * 1993-01-28 1994-08-12 Hitachi Ltd 自己インピーダンス可変アクティブアンテナ
JPH09307344A (ja) * 1996-05-13 1997-11-28 Matsushita Electric Ind Co Ltd 平面アンテナ
JPH10224142A (ja) * 1997-02-04 1998-08-21 Kenwood Corp 共振周波数切換え可能な逆f型アンテナ
JP2001136019A (ja) * 2000-10-05 2001-05-18 Nec Saitama Ltd 逆fアンテナおよびそれを用いた無線装置
JP2003298341A (ja) * 2002-03-29 2003-10-17 Toko Inc 同調型アンテナ
JP2004328128A (ja) * 2003-04-22 2004-11-18 Alps Electric Co Ltd アンテナ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362402A (ja) * 1986-09-03 1988-03-18 Fujitsu Ltd 無線機用アンテナ
JPH06224618A (ja) * 1993-01-28 1994-08-12 Hitachi Ltd 自己インピーダンス可変アクティブアンテナ
JPH09307344A (ja) * 1996-05-13 1997-11-28 Matsushita Electric Ind Co Ltd 平面アンテナ
JPH10224142A (ja) * 1997-02-04 1998-08-21 Kenwood Corp 共振周波数切換え可能な逆f型アンテナ
JP2001136019A (ja) * 2000-10-05 2001-05-18 Nec Saitama Ltd 逆fアンテナおよびそれを用いた無線装置
JP2003298341A (ja) * 2002-03-29 2003-10-17 Toko Inc 同調型アンテナ
JP2004328128A (ja) * 2003-04-22 2004-11-18 Alps Electric Co Ltd アンテナ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
GB2463536B (en) * 2008-09-22 2013-06-19 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
EP2717384A1 (en) * 2012-10-04 2014-04-09 LG Innotek Co., Ltd. Communication terminal and antenna apparatus thereof
US9130263B2 (en) 2012-10-04 2015-09-08 Lg Innotek Co., Ltd. Communication terminal and antenna apparatus thereof

Also Published As

Publication number Publication date
JP2006093990A (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
WO2006033199A1 (ja) 平面アンテナ装置
US8219143B2 (en) Mobile radio device
US6643497B1 (en) Portable telephone compensable for change of antenna impedance
KR100752280B1 (ko) 휴대단말기의 안테나주파수 자동매칭 장치
US7747226B2 (en) Portable electronic devices including multi-mode matching circuits and methods of operating the same
JP2006129358A (ja) 無線通信モジュール、通信端末、およびインピーダンス整合方法
EP3906615B1 (en) Voltage protection circuit to prevent power amplifier burnout, and electronic device having the same
WO2009087732A1 (ja) 携帯無線機
JP2005354502A (ja) アンテナ整合装置
US20100127945A1 (en) Apparatus for compensation of the impedance and the load phase of the antenna element
US20180048193A1 (en) Method and apparatus for sensing environment and optimizing power efficiency using an antenna
JPH09331206A (ja) Tdma方式用携帯電話機のアンテナ整合部
JP2007143031A (ja) アンテナ整合回路
JP2000353975A (ja) 携帯無線機及びその終端整合切替方法
JPH11251956A (ja) アンテナ整合調整回路
JP3131967B2 (ja) アンテナ回路
JP2006324984A (ja) 無線通信装置
JP2004363863A (ja) 携帯無線端末
JPH11308142A (ja) 携帯通信装置
CN110323548B (zh) 电子装置
KR20130113240A (ko) 임피던스 정합 장치
KR20130040629A (ko) 임피던스 조절 장치 및 그 방법
JP2008131516A (ja) 無線端末及びアンテナ制御方法
WO2005055445A1 (ja) 移動体通信端末装置
JPH09116457A (ja) インピーダンス整合装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase