Aerogel-enthaltener Brandschutzwerkstoff
Gegenstand der Erfindung ist ein Verbundwerkstoff, der hydrophobe Aerogelpartikel, anorganisches Bindemittel und ein Dispergiermittel enthält, ein Verfahren zur Herstellung dieses Verbundwerkstoffs sowie die Verwendung dieses Verbundwerkstoffes als Wärmedämmender Werkstoff und als Brandschutzwerkstoff.
Beim Bau von Gebäuden aller Art werden im Innen- und Außenbau im weitesten Sinne keramische Materialien eingesetzt, Sande aller Art, die durch keramische Binder gebunden werden (beispielsweise Portland¬ zement, Gips). Beispiele sind Ziegel (poröse Ziegel, Hohllochziegel, Ziegel mit Dämmstofffüllung), Kalksandsteine, Bimssteine, Porenbeton, EPS-Beton. Die Bauwerkstoffe müssen unterschiedlichsten Anfor¬ derungen in der Praxis genügen: Tragfähigkeit, vor allem Druck¬ belastung, Wärmeschutz, Schutz vor Feuchtigkeit bei gleichzeitiger guter Klimatisierung des Gebäudes, Brandschutz usw. Die eingesetzten Werkstoffe müssen wirtschaftlich hergestellt werden und leicht auf Baustellen zu verarbeiten sein. Bausteine aus diesen Werkstoffen sollten am besten mit konventionellen Bindern (Mörtel) zusammengefügt werden können und eine ausreichende Haftfestigkeit für Putze aller Art bieten. Die zunehmenden Forderungen nach Materialien mit hoher Wärmedämmung hat beispielsweise zur Entwicklung von sehr leichtem Porenbeton geführt, aber auch zur Entwicklung von Styropor gefülltem Beton (EPS-Beton).
Mit den so genannten Leichtbau Werkstoffen können spezifische Dichten von 0,400 bis 0,800 g/cm3 erzielt werden und Wärmeleitfähigkeiten mit Werten von 0,1 bis 0,4 W/Km.
Es sind bereits einige Verbundwerkstoffe aus keramischen Bindern und hydrophoben Aerogelen bekannt. Üblicherweise werden deshalb hydrophobe Aerogelpartikel für diese Verbundwerkstoffe verwendet, da der resultierende Verbundwerkstoff eine geringe Feuchtigkeitsaufnahme aufweist. Bei den bisher bekannten Herstellungsverfahren dieser Verbundwerkstoffe muss das Bindemittel in ausreichender Menge zuerst in wässrige Lösung oder Dispersion gebracht werden, um eine breiartige Masse zu erhalten. Erst in diese breiartige Masse kann dann das hydrophobe Aerogel eingerührt werden. Das hydrophobe Aerogel kann bei den bisher bekannten Verfahren deshalb nicht zuerst in Wasser dispergiert werden, da aufgrund der geringen Dichte und der Hydrophobizität des hydrophoben Aerogels dieses auf dem Wasser aufschwimmt und deshalb nicht direkt in Wasser dispergiert werden kann.
Ein weiterer Nachteil des Standes der Technik ist es, dass das hydrophobe Aerogel nicht als Dispersion bei der Herstellung der Verbundwerkstoffe eingesetzt werden kann, sondern als leichtes, feinteiliges Granulat eingesetzt werden muss. Dies kann gerade auf beispielsweise Baustellen oder auch bei der Herstellung von Bauteilen aus dem Verbundwerkstoff von erheblichem Nachteil sein.
DE 44 41 567 Al beschreibt ein Verbundmaterial, das Aerogelpartikel und mindestens ein anorganisches Bindemittel enthält. Das Verbund¬ material enthält kein Dispergiermittel. Die Aerogelpartikel können in
dem beschriebenen Verfahren nur zeitgleich mit dem anorganischen Bindemittel oder nach dem Bindemittel in die wässrige Lösung gegeben werden. Mit einem Aufschwimmen der hydrophoben sehr leichten Aerogelpartikel muss bei dem beschriebenen Verfahren gerechnet werden.
DE 38 14 968 Al beschreibt einen Dämmstoff, der aus den zwei Bestandteilen Silicaaerogelpartikel und Bindemittel besteht. Der beschriebene Dämmstoff weist eine nur geringe Druckfestigkeit auf.
DE 196 00 606 Al beschreibt einen handelsüblichen Styropor-gefüllten Beton.
EP 0 672 635 Al beschreibt Formkörper und deren Herstellung aus Silicaaerogelpartikeln mit Bindemittel. Die hydrophoben Areogelpartikel können in dem beschriebenen Verfahren erst nach Eintrag des Bindemittels zugefügt werden.
In der US 6,131,305 A wird das Problem des Aufschwimmens von hydrophoben Aerogelteilchen auf Wasser eindrücklich beschrieben. In der dort beschriebenen Erfindung wird dieser Effekt sogar zum Abscheiden von hydrophoben Aerogelteilchen ausgenutzt.
Die noch unveröffentlichte DE 102004046496 beschreibt ein Dispergiermittel, das für hydrophobe Aerogele in wässriger Lösung eingesetzt werden kann.
Viele bisher bekannte Verbundwerkstoffe mit hydrophoben Aerogelpartikeln enthalten organische Bestandteile. Dadurch eignen sich
diese per se nicht für den Brandschutz.
Außerdem weisen viele der hydrophobe Aerogelpartikel enthaltenen Verbundwerkstoffe nur geringe Druckfestigkeiten auf, so dass diese nicht für tragende Bauteile im Gebäudebau eingesetzt werden können.
Die der vorliegenden Erfindung zugrundeliegende Aufgabe ist es also, einen Verbundwerkstoff aus anorganischen Bindemitteln und hydrophoben Aerogelpartikeln bereitzustellen, in dem diese Aerogelpartikel ohne organische Hilfs- und Zusatzstoffe so fein dispergiert sind, dass der resultierende Verbundwerkstoff für den Brandschutz und gleichzeitig für tragende Elemente in Bauwerken geeignet ist.
Die vorgenannte Aufgabe wird in einer ersten Ausführungsform gelöst durch einen Verbundwerkstoff enthaltend a) 50 bis 80 Gew. % hydrophobe Aerogelpartikel, b) 10 bis 40 Gew. % anorganisches Bindemittel, und c) 5 bis 15 Gew.% anorganisches, hydrophiles Dispergiermittel mit einer Dichte in einem Bereich von 0,1 bis 2 g/cm3, das zu 70 bis 100 Gew.% aus SiO2 besteht, wobei mindestens 80 % der hydrophoben Aerogelpartikel nicht in direktem Kontakt mit dem anorganischen Bindemittel stehen.
Das anorganische Dispergiermittel liegt vorzugsweise in Pulverform vor, ist unreaktiv und mit Fluor dotiert.
Das Dispergiermittel ist vorzugsweise nicht transparent beziehungsweise undurchsichtig, da es dann in Produktionsprozessen
leichter visuell wahrgenommen und somit besser dosiert werden kann.
Das erfindungsgemäß eingesetzte Dispergiermittel fungiert praktisch als Sedimentationsbremse für die hydrophoben Aerogelpartikel, damit diese nach dem Eintrag in eine wässrige Lösung dispergiert bleiben.
Enthält der erfindungsgemäße Verbundwerkstoff zu viel anorganisches Bindemittel, nimmt die Wärmeleitfähigkeit so weit zu, dass der Verbundwerkstoff keinen Einsatz als Isolationsmaterial oder Brandschutzwerkstoff finden kann. Enthält der erfindungsgemäße Verbundwerkstoff hingegen zu viel hydrophobe Aerogelpartikel so nimmt die Festigkeit des Werkstoffes soweit ab, dass dieser beispielsweise nicht für tragende Bauteile eingesetzt werden kann.
Da die vorzugsweise verwendeten Silicaaerogele Wärmeleitfähigkeiten im Bereich von 10 bis 20 mW/km haben, übliche Baustoffe aber in der Regel Wärmeleitfähigkeiten im Bereich von mehr als 1 W/km, reduzieren sich die Wärmeleitfähigkeiten entsprechend dem Anteil an Aerogel, so dass Baustoffe entstehen, die praktisch in die Klasse der Dämmstoffe fallen.
Da Silicaaerogele vorzugsweise aus reinem Quarzglas bestehen, erfüllen die Verbundwerkstoffe die Brandschutzbestimmungen, sofern der Basiswerkstoff diese erfüllt.
Die Messung des Brandschutzfaktors erfolgt, indem eine Platte 150x150 mm2 mit einer Dicke von 7 cm wird auf einer Seite mit einem Gasbrenner kontinuierlich beheizt (1050 0C) und auf der Gegenseite die Temperatur gemessen wird. Bei den Brandschutzklasse F30, F60, F90
und F120 darf die Temperatur auf der Gegenseite nicht zur Entzündung von leicht brennbaren Materialien ansteigen (Wattebauschtest) und die Oberflächentemperatur darf sich auf der Gegenseite nicht um mehr als maximal 180 K erhöhen nach einer Zeit von 30, 60, 90 oder 120 Minuten. Die im Aerogel enthaltenden Verbundwerkstoff verwendeten Grundstoffe gehören alle in die Brandschutzklasse Al (DIN 41002 Teil 4).
Durch den Einsatz des Dispergiermittels kann unter anderem die Viskosität des Wassers honigzäh eingestellt. Die Viskosität liegt dann also in einem Bereich >5000 cps. Wird das hydrophobe Aerogel nun in diese wässrige Lösung des Dispergiermittels gegeben, umschließt das erfindungsgemäße Dispergiermittel dabei das hydrophobe Aerogel und befindet sich somit in direktem Kontakt mit diesem hydrophoben Aerogel. Durch diesen Effekt lässt sich das ansonsten hydrophobe und dadurch aufschwimmende Aerogel leicht in Wasser dispergieren.
Das erfindungsgemäße Dispergiermittel ermöglicht also eine Benetzung der hydrophoben Aerogelpartikel mit Wasser, ist aber an sich nicht reaktiv. Im Gegensatz hierzu müssen Bindemittel gesehen werden, die von Natur aus reaktiv sind. Sie binden ab zu festen Werkstoffen. Als Dispergiermittel ist also Kieselsäure wegen ihrer Reaktivität nicht geeignet. Auch überwiegend organische Materialien, insbesondere organische Tenside kommen als erfindungsgemäßes Dispergiermittel nicht in Betracht, da schon aus Brandschutzgründen jegliche organischen Rückstände im resultierenden Verbundwerkstoff vermieden werden müssen.
Das Dispergiermittel zeichnet sich vor allem dadurch aus, dass es mit Wasser praktisch bei Inkontaktbringen ein Gel bildet, zumindest aber innerhalb von 100 s, bevorzugt innerhalb von 10 s ein Gel bildet.
Das Dispergiermittel wird als hydrophil bezeichnet, da es einen statischen Kontaktwinkel gegen Wasser von weniger als 10 ° aufweist. Durch die Hydrophilie lässt sich das Dispergiermittel leicht in wässrige Lösung einbringen.
Das hydrophobe Aerogel weist mindestens einen statischen Kontaktwinkel gegen Wasser von 120°, bevorzugt von mindestens 150°, auf.
Vorteilhafterweise ist das Bindemittel Zement, Gips, Kalk, Lehm, Wasserglas und/oder Ton.
Der Verbundwerkstoff weist vorzugsweise eine Dichte in einem Bereich von 0,1 bis 1,4 g/cm3, insbesondere von 0,7 bis 1,4 g/cm3, auf. Alternativ kann die Dichte des Verbundwerkstoffes auch insbesondere in einem Bereich von 0,11 bis 0,45 g/cm3 liegen. Dadurch qualifiziert er sich als Leichtbaustoff und kann als solcher im Gebäudebau eingesetzt werden.
Der Verbundwerkstoff weist vorzugsweise eine Druckfestigkeit in einem Bereich von 10 bis 40 MPa, besonders bevorzugt in einem Bereich von 15 bis 25 MPa, gemäß DIN 1048 bzw. DIN 12390-2 auf. Dadurch kann der erfindungsgemäße Verbundwerkstoff Einsatz in tragenden Bauteilen im Gebäudebau finden. Durch diese hohe Festigkeit sind resultierende Bauteile für den Gebäudebau auch beispielsweise in der Lage, Dübeln
genügend Halt zu geben. Dies ist bei Styropor-gefülltem Beton nicht der Fall. Erkennbar ist die Druckfestigkeit in MPa mit variierten Aerogel- Anteil in Figur 1. Einzelheiten sind den Ausführungsbeispielen zu entnehmen.
Die Körnung der im Verbundwerkstoff enthaltenen hydrophoben Aerogel partikel liegt vorteilhafterweise zwischen 0,1 und 5 mm. Die Körnung der hydrophoben Aerogel partikel ist dadurch gerade groß genug, um die entsprechende Wärmedämmeigenschaft zu verleihen und klein genug, damit der resultierende Verbundwerkstoff genügend Druckfestigkeit aufweist.
Das Dispergiermittel enthält vorzugsweise etwa 5 bis 15 Gew.%, besonders bevorzugt etwa 10 Gew.%, Ammoniumfluorid. Dies wird beim Dispergiermittel also nicht nur katalytisch eingesetzt, sondern in so ausreichender Menge, dass es spätestens beim Trocknen des Verbundwerkstoffs ausfällt. Der Vorteil des Einsatzes von Ammoniumfluorid war für den Fachmann überraschend, da Ammoniumfluorid bei der Herstellung von Silica-Gelen bislang eher mit Nachteilen wie der geringen Stabilität und Festigkeit und der fehlenden Transparenz der Erzeugnisse in Verbindung gebracht wurde.
Der Verbundwerkstoff weist bevorzugt ein Dispergiermittel mit einer mittleren Teilchengröße in einem Bereich von 100 bis 1000 nm, besonders bevorzugt in einem Bereich von 200 bis 500 nm auf. Das im Verbundwerkstoff enthaltene Dispergiermittel weist weiterhin vorzugsweise eine mittlere Porengröße in einem Bereich von 0,5 bis 3 μm, insbesondere in einem Bereich von 1 bis 2 μm auf. Insbesondere die großen Poren führen dazu, dass die verdampfende Flüssigkeit aus
dem Gelnetzwerk statt, wie bei üblichen Porengrößen im Bereich von ungefähr 1 MPa auf das Netzwerk auszuüben, nur Spannungen im Bereich von 1 kPa ausübt, dem das Netzwerk offensichtlich widerstehen kann.
Hydrophil im Sinne der Erfindung bedeutet, dass die Oberfläche einen statischen Kontaktwinkel gegenüber Wasser in Luft von weniger als 10° aufweist.
Der erhaltene Verbundwerkstoff eignet sich als wärmedämmender Werkstoff. Vorteilhafterweise entzündet sich der erfindungsgemäße Verbundwerkstoff bei einer Einwirkung von einer Temperatur von 1000 0C nicht innerhalb von 90 min. Dadurch erfüllt er die in Deutschland gültige Brandschutznorm F90 Brandschutzklasse und kann als Werkstoff im Brandschutz eingesetzt werden. Noch vorteilhafter ist es, wenn sich der Verbundwerkstoff nicht innerhalb von 120 min bei Einwirkung von ca. 1050 0C entzündet und dieser Stoff somit die in Deutschland gültige Brandschutznorm F120 Brandschutzklasse erfüllt.
In einer weiteren Ausführungsform wird die vorgenannte Aufgabe gelöst durch ein Verfahren zur Herstellung eines Verbundwerkstoffes, das dadurch gekennzeichnet ist, dass es die folgenden Schritte umfasst:
a) Vermengen eines hydrophilen Dispergiermittels in Wasser in einer Menge zur Einstellung einer Viskosität von mehr als 5000 cps, b) Einrühren von hydrophobem Aerogelgranulat und Homogenisierung der Dispersion, c) Zufügen eines Bindemittels, und d) Trocknen und Abbinden des Bindemittels.
Alternativ zum Schritt a) kann das hydrophile Dispergiermittel mit aufgeschäumtem Wasser vermengt werden. Die Aufschäumung wird durch Entspannungsmittel wie grenzflächenspannungsveringerende Substanzen, wie sie in Spülmittel enthalten sind, erreicht. Nach Durchführen der Schritte b) bis d) ergeben sich ultraleichte Baustoffe beispielsweise mit Dichten kleiner als 0,2 g/cm3.
Die Schritte sollten vorzugsweise für optimale Produkteigenschaften zeitlich voneinander getrennt und in der genannten Reihenfolge ausgeführt werden, da eine innige Vermengung und gleichmäßige Dispergierung der Aerogelpartikel nur so gewährleistet werden kann.
Bevorzugt wird jeder einzelne der Schritte des erfindungsgemäßen Verfahrens bei einer Temperatur in einem Bereich von 100C bis 45 0C, besonders bevorzugt bei Raumtemperatur, durchgeführt. Dadurch ergibt sich im Vergleich zu den bekannten Verfahren ein Vorteil, da bei diesen oftmals ein Wärmebehandlungsschrift zum Härten oder Trocknen oder zum Ausreagieren der Bindemittel notwendig ist.
Vorteilhafterweise ist Schritt a) abgeschlossen, bevor die übrigen Schritte durchgeführt werden. Dadurch kann eine gleichmäßigere Dispersion des hydrophoben Aerogels erreicht werden.
Die mittels dieses Verfahrens erhaltenen Verbundwerkstoffe eignen sich auch als Wärmedämmender Werkstoff.
Besonders bevorzugt eignen sich diese Verbundwerkstoffe auch als Brandschutzwerkstoffe.
Dadurch, dass beim erfindungsgemäßen Verfahren das hydrophobe Aerogelgranulat in das Wasser eingerührt werden kann, bevor das Bindemittel zugegeben werden muss, kann bei der Herstellung des erfindungsgemäßen Verbundwerkstoffs oder von Bauteilen, die aus dem erfindungsgemäßen Verbundwerkstoff bestehen, das hydrophobe Aerogel in Form einer Dispersion als Ausgangsmaterial eingesetzt werden. Dies hat zum einen den Vorteil, dass die bislang nicht zu unterschätzende Staubbelastung durch den direkten Einsatz von hydrophoben Aerogel bei frisch zuzubereitenden Verbundwerkstoffen, beispielsweise auf Baustellen, ausgeschlossen wird. Weiterhin lässt sich eine Dispersion bei der Herstellung der erfindungsgemäßen Verbund¬ werkstoffe wesentlich leichter dosieren und transportieren als das hydrophobe Aerogelgranulat. Dies ist vor allem bei hochautomatisierten Fertigungsprozessen von Fertigbauteilen vorteilhaft, da das hydrophobe Aerogel auf diese Weise beispielsweise in Rohren transportiert werden kann und leichter von volumenabhängigen Dosiersystemen verarbeitet werden kann.
Ausführungsbeispiele:
Es wurden Mischungen mit folgender Zusammensetzung hergestellt:
1. Mischung
48 Vol. % Aerogelgranulat (TL) (Cabot Cooperation, transluzentes Silica-Aerogel, Korngröße 0,4-4mm)
20 Vol. % Dispergiermittel (Das Dispergiermittel wurde analog der noch unveröffentlichten DE102004046496 hergestellt und bestand aus 1 Stoffmengenäquivalent TEOS (Tetraethyloxisilan), 5 Stoffmengenäquivalenten Ethanol, 4,5 Stoffmengenäquivalenten Wasser und 0,2 oder 0,4 Stoffmengenäquivalenten NH4F. Hierbei wurde die Lösung rasch gerührt und geliert innerhalb von 8 Sekunden nach Zugabe des NH4F, welches dann einige Stunden bei 60 0C getrocknet wurde und ein trockenes weißes Dispergiermittel ergab.)
32 Vol. % Portlandzement (Heidelberg Cement CEM II)
In den nachfolgenden Mischungen wurden die gleichen Bestandteile in den genannten Mischungsverhältnissen eingesetzt.
2. Mischung
56 Vol. % Aerogelgranulat 20 Vol. % Dispergiermittel 24 Vol. % Portlandzement
3. Mischung
66 Vol.% Aerogelgranulat 20 Vol.% Dispergiermittel 14 Vol.% Portlandzement
4. Mischung
70 Vol.% Aerogelgranulat 15 Vol.% Dispergiermittel 15 Vol.% Portlandzement
5. Mischung
70 Vol.% Aerogelgranulat 20 Vol.% Dispergiermittel 10 Vol.% Fertig putzgips (FPG, Knauf Goldband)
6. Mischung
60 Vol.% Aerogelgranulat 20 Vol.% Dispergiermittel 20 Vol.% Fertigputzgips (s.o.)
7. Mischung
70 Vol.% Aerogelgranulat 15 Vol.% Dispergiermittel 15 Vol.% Fertig putzgips (s.o.)
8. Mischung
80 Vol.% Aerogelgranulat 10 Vol.% Dispergiermittel 10 Vol.% Fertig putzgips (s.o.)
051824wo HPJ/ko
9. Mischung
70 Vol.% Aerogelgranulat 15 Vol.% Dispergiermittel 15 Vol.% handelsüblicher Baugips (Fa. Rigips)
10. Mischung
70 Vol.% Aerogelgranulat
15 Vol.% Dispergiermittel
10 Vol.% handelsüblicher Baugips (s.o.)
5 Vol.% Anhydrit
11. Mischung
60 Vol.% Aerogelgranulat
10 Vol.% Dispergiermittel
20 Vol.% Portlandzement
10 Vol.% E-spheres™ (Keramische Hohlkugeln der Firma
Envirospheres™ Ltd., Australien)
12. Mischung
70 Vol.% Aerogelgranulat 20 Vol.% Dispergiermittel 10 Vol.% Fertigputzgips (s.o.)
13. Mischung
60 Vol.% Aerogelgranulat 20 Vol.% Dispergiermittel 20 Vol.% Fertigputzgips (s.o.)
14. Mischung
051824WO HPJ/ko
70 Vol.% Aerogelgranulat 15 Vol.% Dispergiermittel 15 Vol.% Fertigputzgips (s.o.)
15. Mischung
80 Vol.% Aerogelgranulat 10 Vol.% Dispergiermittel 10 Vol.% Fertigputzgips (s.o.)
16. Mischung
70 Vol.% Aerogelgranulat 15 Vol.% Dispergiermittel 15 Vol.% handelsüblicher Baugips (Fa. Rigips)
17. Mischung
70 Vol.% Aerogelgranulat
15 Vol.% Dispergiermittel
10 Vol.% handelsüblicher Baugips (s.o.)
5 Vol.% Anhydrit
a) Die Mischungen 1 bis 4 werden durch Einrühren des Dispergiermittels in Wasser, gefolgt vom Einrühren des Aerogelgranulates und anschließenden Einrühren des Portlandzements hergestellt. Bei Bedarf musste weiteres Wasser hinzugegeben werden, um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgte im Trockenschrank bei 40 0C für einen Tag. Die Druckprüfung nach DIN 1048 erfolgte nach etwa vierwöchiger Lagerung an Luft. Figur 1 zeigt bei den Zementproben mit 20%igen
051824WO HPJ/ko
Dispergiermittel (Mischungen 1 bis 3) das Ansteigen der Druckspannungen bei sinkenden Aerogelgranulatanteil. Dies bedeutet, dass der erfindungsgemäße Verbundwerkstoff Einsatz in tragenden Bauteilen im Gebäudebau finden kann.
b) Die Mischungen 5 bis 8 wurden durch Einrühren des Dispergiermittels in Wasser, gefolgt vom Einrühren des Aerogelgranulates und anschließendem Einrühren des Fertig putzgips hergestellt. Bei Bedarf musste weiteres Wasser hinzugegeben werden, um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgte im Trockenschrank bei 40 0C für einen Tag. Die Resttrocknung erfolgte an Luft.
Die Dichten der sich ergebenden Mischungen im trockenen Zustand sind in Tabelle 1 ersichtlich.
c) Die Mischungen 9 und 10 wurden durch Einrühren des Dispergiermittels in Wasser, gefolgt vom Einrühren des Aerogelgranulates und anschließendem Einrühren des Baugipses und des Anhydrits hergestellt. Bei Bedarf musste weiteres Wasser hinzugegeben werden, um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgte im Trockenschrank bei 40 0C für einen Tag. Die Resttrocknung erfolgt an Luft.
Die Dichten der sich ergebenden Mischungen im trockenen Zustand sind in Tabelle 1 ersichtlich.
d) Die Mischung 11 wurde durch Einrühren des Dispergiermittels in Wasser, gefolgt vom Einrühren des Aerogelgranulates und anschließendem Einrühren des Portlandzementes und der e-Spheres™ hergestellt. Bei Bedarf musste weiteres Wasser
051824wo HPJ/ko
hinzugegeben werden, um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgte im Trockenschrank bei 400C für einen Tag. Die Resttrocknung erfolgt an Luft.
Die Dichten der sich ergebenden Mischungen im trockenen Zustand sind in Tabelle 1 ersichtlich.
e) Die Mischungen 12 bis 15 wurden durch Einrühren des Dispergiermittels in aufgeschäumtes Wasser erzeugt. Die Aufschäumung wird erreicht durch Zugabe von grenzflächen- spannungsveringerende Substanzen wie handelsübliche Spülmittel. Gefolgt vom Einrühren des Aerogelgranulates und anschließenden Einrühren des Fertig putzgips hergestellt. Bei Bedarf muss weiteres Wasser hinzugegeben werden um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgt im Trockenschrank bei 40 0C für einen Tag. Die Resttrocknung erfolgt an Luft.
Erhalten wird nach der Trocknung ein ultraleichter Werkstoff mit einer Dichte kleiner als 0,200 g/cm3.
f) Die Mischungen 16 und 17 werden durch Einrühren des Dispergiermittels in aufgeschäumtes Wasser erzeugt. Die Aufschäumung wird erreicht durch Zugabe von grenzflächen- spannungsveringerende Substanzen wie handelsübliche Spülmittel. Gefolgt vom Einrühren des Aerogelgranulates und anschließenden Einrühren des Baugipses und des Anhydrits hergestellt. Bei Bedarf muss weiteres Wasser hinzugegeben werden um eine gießfähige Masse zu erhalten. Die Aushärtung erfolgt im Trockenschrank bei 40 0C für einen Tag. Die Resttrocknung erfolgt an Luft.
Erhalten wird nach der Trocknung ein ultraleichter Werkstoff mit einer Dichte kleiner als 0,200 g/cm3.
051824wo HPJ/ko
Der Brandschutztest an Materialien mit 60 und 70 Vol.% der obengenannten Dimension Aerogelgranulat ergab, dass die Materialien die Brandschutzklasse F120 erfüllen. Dies bedeutet, dass auf der heißen Seite kontinuierlich Temperaturen von 1050°C±50°C gemessen werden. Innerhalb von 120 Minuten stieg die Temperatur der Gegenseite nur von 23°C auf 33°C an, d.h. die Werkstoffe sind nahezu perfekte Isolatoren.
Tabelle 1:
051824wo HPJ/ko