WO2006030780A1 - 可視光を吸収する薄片状酸化チタンの製造方法 - Google Patents

可視光を吸収する薄片状酸化チタンの製造方法 Download PDF

Info

Publication number
WO2006030780A1
WO2006030780A1 PCT/JP2005/016835 JP2005016835W WO2006030780A1 WO 2006030780 A1 WO2006030780 A1 WO 2006030780A1 JP 2005016835 W JP2005016835 W JP 2005016835W WO 2006030780 A1 WO2006030780 A1 WO 2006030780A1
Authority
WO
WIPO (PCT)
Prior art keywords
titania
titanium oxide
nitrogen
visible light
organic
Prior art date
Application number
PCT/JP2005/016835
Other languages
English (en)
French (fr)
Inventor
Taki Matsumoto
Nobuo Iyi
Yoshiro Kaneko
Kenji Kitamura
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US11/662,504 priority Critical patent/US7651675B2/en
Publication of WO2006030780A1 publication Critical patent/WO2006030780A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0018Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings uncoated and unlayered plate-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a method for producing flaky titanium oxide for photocatalyst that absorbs visible light.
  • a photocatalyst causes charge separation in itself upon irradiation with light, and oxidizes or reduces the partner by giving the generated electrons and / or holes to other substances, that is, photocatalysis. It is a substance that induces various redox reactions.
  • the nitrogen-doped titanium oxide reported so far is obtained by heat-treating ordinary titanium oxide for several hours at a high temperature of 500 to 800 ° C in a nitrogen or ammonia stream. Yes.
  • Such a high temperature and high nitrogen concentration condition was indispensable for introducing a sufficient amount of nitrogen into the titanium oxide to change the band gap.
  • the heat treatment process at such a high temperature generally causes a decrease in the activity of the photocatalyst.
  • the photocatalytic reaction is a reaction on the surface of the catalyst, so a high specific surface area is required to achieve high activity S, and the high-temperature heat treatment process for a long time causes the photocatalyst to be densified and dramatically increases the specific surface area. To lower.
  • the photocatalytic activity of titanium oxide is greatly influenced by its crystallinity, and in general, the anatase type, which is a quasi-stable type, is said to have the highest activity (Non-patent Document 3).
  • the transition to the rutile type which is the most stable crystal form of titanium oxide.
  • Patent Document l WO01 / 010552
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2003-190809
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-340288
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-97868
  • Non-Patent Document 2 R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,
  • Non-Patent Document 3 K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, Y. Butsugani, J. Mater. Sci. 29 (1994) 5911
  • the titanium oxide photocatalyst that has been conventionally driven only by ultraviolet light can be driven by visible light, which is the main component of sunlight.
  • the high-temperature heat treatment process necessary for nitrogen doping reduces the original photocatalytic activity of titanium oxide, so that a titanium oxide photocatalyst that can be driven with high efficiency under sunlight can be obtained. Was difficult.
  • titanium oxide having a high surface area and a specific surface area is doped with a sufficient amount of nitrogen to exhibit light absorption in the visible light region under mild conditions such as a layer without densification or a rutile transition. If this can be achieved, it can be expected that a titanium oxide photocatalyst that can be driven with extremely high efficiency under sunlight will be obtained, but such a method has not been developed.
  • the present invention provides a band gap by a simple and mild chemical technique that does not involve densification, destruction of the structure of the structure, rutile transition, and the phenomenon of reducing the photocatalytic activity of the titanium oxide photocatalyst. It provides a practical and extremely simple chemical synthesis method for doping titanium oxide with a sufficient amount of nitrogen to develop visible light excitation by change.
  • the present invention synthesizes a layered titania organic composite having an organic ligand exchangeable with a hydroxyl group between layers, or a titania organic composite having a similar structure by a sol-gel method using a hydrophobic solvent. This is a method for producing flaky titanium oxide for photocatalyst that absorbs visible light, which is obtained by treating this with ammonia water.
  • the method of the present invention it is possible to dope titanium oxide with a sufficient amount of nitrogen to exhibit catalytic ability in the visible light region, while providing a tissue structure having a high specific surface area.
  • the crystallization state of titanium oxide can be arbitrarily adjusted, it is possible to provide a photocatalyst that can be driven with extremely high efficiency under sunlight.
  • the method of the present invention itself is an operation that is extremely simple and under mild conditions, it can be said that the method is highly significant from the viewpoint of industrial productivity and cost.
  • a feature of the method of the present invention is that a titania / organic composite obtained by a sol-gel method in which a titanium alkoxide is reacted in a liquid is used as a precursor of a titanium oxide photocatalyst. It is possible to design the size, shape, and structure of the material at the precursor stage. In other words, the process of titania generation and the nitrogen doping process are completely independent. Good for photocatalysts such as small size and high specific surface area It is possible to provide visible light driving characteristics to nitrogen oxide by nitrogen doping while constructing a preferable form in the formation process of titania and further maintaining the form, so that the method of the present invention is compared with the conventional titanium oxide photocatalyst. It can be expected to obtain a highly efficient and highly efficient visible light responsive photocatalyst.
  • a titania / organic composite composed of titania and various organic ligands is synthesized by a sol-gel method in which a titanium alkoxide is reacted in a liquid phase to form a precursor, which is immersed in aqueous ammonia.
  • the organic ligand is replaced with a hydroxyl group by a ligand exchange reaction, and at the same time, a high concentration of ammonium is introduced between the layers of the titania layered structure.
  • a nitrogen-doped titanium oxide photocatalyst capable of driving visible light is provided.
  • the titania / organic composite as a precursor can be used in various ways as long as it is a substance in which an organic ligand exchangeable with a hydroxyl group is coordinated with titania. It is particularly desirable to synthesize by the “sol-gel method” in which titanium alkoxide is reacted in a solution, which can be expected to be combined.
  • titanium alkoxides include all titanium alkoxides such as titanium ethoxide, titanium methoxide, titanium isopropoxide, and titanium-n-butoxide.
  • Various organic solvents can be used as a solvent for the reaction, but the product after titanium alkoxide control of high reactivity and immersion in aqueous ammonia loses the organic ligand and is replaced with a hydroxyl group. Therefore, since it moves from the organic solvent phase to the aqueous phase, it is preferable to use a hydrophobic solvent with a low compatibility with water from the viewpoint of ease of separation of the product and at any time.
  • Examples of such substances include various carboxylic acids.
  • carboxylate carboxylic acid ion
  • titanium alkoxide By mixing carboxylic acid and titanium alkoxide, carboxylate (carboxylic acid ion) is coordinated to titanium alkoxide. After this, by introducing water into the solution, hydrolysis and polycondensation reactions occur, and the titania / carboxylate complex in which carboxylate is coordinated to titania. You can get a body.
  • the carboxylic acid is not limited to a specific one, and a plurality of different carboxylic acids may be mixed and used.
  • FIG. 1 (A) schematically shows the structure of the layered titaure / carboxylate complex thus obtained.
  • Such self-organization by the interaction of organic matter is a phenomenon seen in the synthesis of various inorganic / organic composites other than this method.
  • the coordinated carboxylate was replaced with a hydroxyl group, and at the same time, as shown schematically in FIG. Is introduced between layers of the titania layered structure.
  • the preferred ammonia water is concentrated ammonia water from room temperature to less than 100 ° C. When the temperature is 100 ° C or higher, ammonia is vaporized from the ammonia water, which is not preferable.
  • the ammonia water treatment substance After the ammonia water treatment substance is dried, it is heated, and nitrogen is doped into titania by decomposition of ammonium, and is crystallized into anatase, so that nitrogen is doped and the flakes that can be driven by visible light A titanium oxide photocatalyst can be obtained. If the heating temperature is too low, crystallization into anatase will be insufficient and nitrogen will not be sufficiently incorporated into the titanium oxide grade. On the other hand, if it is too high, densification and crystallization into rutile occur, and the incorporated nitrogen is released, which is also not preferable.
  • the heat treatment temperature is preferably 400 ° C or higher and about 500 ° C or lower, which is a temperature region not involving the rutile transition.
  • the solving means of the present invention is the force as described above. explain. In order to show the superiority of the present invention, Comparative Examples 1, 2, 3, and 4 are shown.
  • the sol comprising a titania / isostearate complex, concentrated aqueous ammonia (28 wt 0/0) and combined mixed and stirred for 2 hours at 60 ° C. After stirring, the aqueous phase portion was taken out with a separatory funnel, and the product was centrifuged and washed with aqueous ammonia five times. The resulting solid was dried at 120 ° C. When the IR absorption spectrum was measured, the absorption peak attributed to isostearate disappeared completely, and a peak attributed to the hydroxyl group appeared instead. A peak attributed to ammonium was also observed (Figure 3b). When XRD was measured, crystallization was not observed and it was a monolayer (Fig. 4a).
  • Example 1 The heat treatment temperature of Example 1 was set to 350 ° C. In this case, the specific surface area is 112m 2 g- 1 and strong absorption in the visible light range is also observed (Fig. 5a), but the crystallinity of anatase is lower than that of Example 1 (Fig. 4b) and visible. The photocatalytic ability under light was lower compared to Example 1 (Fig. 7a).
  • Example 1 The heat treatment temperature of Example 1 was set to 550 ° C. In this case, although the specific surface area is 7 m 2 g- 1 , which is almost the same as in Example 1, the incorporated nitrogen was released at this heat treatment temperature, and no strong absorption in the visible light range was observed. (Figure 5c). The crystal form was anatase. Figure 4d) The photocatalytic ability under visible light was lower compared to Example 1 ( Figure 7c).
  • ST-01 was treated with the same ammonia water and heat treatment as in Example 1, but the carboxylate was not coordinated. ST-01 was not doped with a sufficient amount of nitrogen. Absorption in the strong visible light region as seen in Fig. 5 was not exhibited (Fig. 5e), and the photocatalytic activity under visible light was lower than that in Example 1 (Fig. 7e).
  • Titanium oxide doped with nitrogen obtained by the present invention exhibits high photocatalytic activity under visible light irradiation, and can be expected to be a photocatalyst that can be driven with high efficiency under sunlight. Further, according to the production method of the present invention, it is possible to easily produce nitrogen oxide S-doped titanium oxide in which the size, shape, structure, and crystallization state are controlled.
  • FIG. 1 is a schematic view showing that a titania / ammonium complex is formed by treating a titania / organic complex with aqueous ammonia in the production method of the present invention.
  • FIG. 2 is a drawing-substituting photograph in which the zonore obtained in Example 1 is observed with a scanning electron microscope.
  • FIG. 3 shows an IR absorption spectrum (a) of the sol obtained in Example 1 and an IR absorption spectrum (b) after treatment with ammonia water.
  • FIG. 4 is an XRD measurement pattern after heating the substance after treatment with aqueous ammonia in Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 5 is a graph showing the relationship between the wavelength and absorbance of titanium oxide obtained in Example 1 and Comparative Examples 1 to 4.
  • FIG. 6 is a drawing-substituting photograph in which the substance after heating in Example 1 is observed with a scanning electron microscope.
  • FIG. 7 is a graph showing the results of evaluating the photocatalytic activity of titania of Example 1 and Comparative Examples 1 to 4 under visible light irradiation.

Abstract

 酸化チタンに窒素をドープすることにより太陽光の主成分である可視光でも駆動できるようになるが、従来の方法では、窒素ドープに必要な高温加熱処理過程が、酸化チタン本来の光触媒能を低下させてしまうため、太陽光下で高い効率で駆動できる酸化チタン光触媒を得る事は困難であった。  薄片状チタニアに有機配位子が配位し、層状構造を形成するチタニア/有機複合体を、アンモニア水に浸漬することによって、層間の有機配位子を配位子交換反応によって水酸基に置換し、同時にアンモニウムを層状構造のチタニアの層間に導入する事によって得られたチタニアとアンモニウムの複合体を、400°C以上、ルチル転移を伴わない温度領域で加熱して、アンモニウムの熱分解により窒素をチタニアにドープするとともにアナターゼに結晶化させる。

Description

明 細 書
可視光を吸収する薄片状酸化チタンの製造方法
技術分野
[0001] 本発明は、可視光を吸収する光触媒用薄片状酸化チタンの製造方法に関する。
背景技術
[0002] 光触媒は光の照射によって自身の中で電荷分離を生じ、生成した電子またはホー ル、あるいはその双方を他の物質に与える事によって、相手を酸化したり還元したり する、すなわち、光によって様々な酸化還元反応を誘起する物質である。
[0003] 近年、光触媒が環境浄化用途、防汚 '防曇 '殺菌用途、さらには水分解による水素 製造ゃグレッツエル (Graetzel)セル (非特許文献 1)に代表される光—電気エネルギー 変換デバイスの材料としても注目されており、その高い光触媒能や製造コストの面か ら、酸化チタンが最も広く一般的に使われている。
[0004] 酸化チタンが光照射によって電荷分離を生じるのは、光半導体としての特性を有す るためであり、そのバンドギャップは約 3.2eVである。したがって、通常の酸化チタンは このバンドギャップのエネルギーに相当する 380nm以下の紫外領域の光照射によつ てのみ励起し、光触媒として駆動する事が可能である。
[0005] 光触媒の実用的な用途を考えると、その駆動にはもっぱら太陽光が用いられる事 になる。し力 ながら、従来の酸化チタン光触媒が利用可能な紫外領域の光は、地 上の太陽光スペクトルの 3〜5。/0にしかすぎず、高い効率での光触媒の駆動には限 界があった。
[0006] したがって、酸化チタン光触媒の利用できる光の波長をより長波長側に持っていく 事ができれば、太陽光の主成分である可視光を利用できるようになり、太陽光下での 高レ、効率での光触媒の駆動が期待できる。
[0007] 近年、可視光で駆動可能な酸化チタン光触媒として、窒素をドープした酸化チタン が報告されている(非特許文献 2、特許文献:!〜 6)。酸化チタンの酸素原子の一部を 窒素原子に置換する事によって、酸化チタンのバンドギャップが狭くなり、紫外光に 加え、より波長の長い可視域の光によっても励起して電荷分離を生じ、光触媒能が 発現する。
[0008] これまで報告されている窒素ドープ型酸化チタンは、通常の酸化チタンを、窒素あ るいはアンモニア気流中、 500〜800°Cといった高温で数時間加熱処理する事によ つて得られている。このような高温かつ窒素濃度の高い条件は、バンドギャップを変 ィ匕させるのに十分な量の窒素を酸化チタンに導入するために不可欠であった。
[0009] し力 ながら、このような高温での加熱処理過程は、一般的には光触媒の活性を低 下させる原因となる。光触媒反応は触媒表面での反応であるため、高い活性を発現 させるためには高い比表面積が求められる力 S、長時間の高温加熱処理プロセスは光 触媒の緻密化を引き起こし、比表面積を劇的に低下させる。
[0010] また、酸化チタンの光触媒活性はその結晶性にも大きく左右され、一般的には準安 定型であるアナターゼ型が最も高活性であるとされているが(非特許文献 3)、高温で の加熱処理過程を経る事によって、酸化チタンの最も安定な結晶型であるルチル型 へと転移をする。
[0011] 特許文献 l : WO01/010552号公報
特許文献 2:特開 2002— 255554号公報
特許文献 3 :特開 2002— 361097号公報
特許文献 4:特開 2003— 190809号公報
特許文献 5:特開 2003 - 340288号公報
特許文献 6:特開 2004— 97868号公報
非特許文献 1 : B. O ' Regan, M. Graetzel, Nature 353(24)737(1991)
非特許文献 2 : R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001,
Vol.293,P269
非特許文献 3 : K. Kato, A. Tsuzuki, H. Taoda, Y. Torii, T.Kato, Y. Butsugani, J. Ma ter. Sci.29(1994)5911
発明の開示
発明が解決しょうとする課題
[0012] 以上のように、酸化チタンに窒素をドープする事によって、従来、紫外光でしか駆 動できなかった酸化チタン光触媒を、太陽光の主成分である可視光でも駆動できる ようになる力 従来の方法では、窒素ドープに必要な高温加熱処理過程が、酸化チ タン本来の光触媒能を低下させてしまうため、太陽光下で高い効率で駆動できる酸 化チタン光触媒を得る事は困難であった。
[0013] もし、高レ、比表面積を有する酸化チタンに、緻密化やルチル転移を伴わなレ、ような 穏和な条件で可視光域の光吸収が発現するのに十分な量の窒素をドープする事が できれば、太陽光下で極めて高い効率で駆動する酸化チタン光触媒が得られるもの と期待できるが、従来、このような手法は開発されていなかった。
課題を解決するための手段
[0014] 本発明は、高温加熱処理過程による緻密化、組織構造の破壊、ルチル転移といつ た酸化チタン光触媒の光触媒能を低下させる現象を伴うことなぐ簡易で穏和な化学 的手法によって、バンドギャップ変化による可視光励起を発現させるのに十分な量の 窒素を酸化チタンにドープするための、実用性に富んだ極めて簡便な化学的合成手 法を提供する。
[0015] 本発明は、層間に水酸基と交換可能な有機配位子を有する層状のチタニア有機 複合体、もしくは類似の構造を有するチタニア有機複合体を疎水溶媒を用いたゾル- ゲル法で合成し、これをアンモニア水で処理する事によって得られる、可視光を吸収 する光触媒用薄片状酸化チタンの製造方法である。
[0016] 本発明の手法を用いれば、酸化チタンに可視光域での触媒能が発現するのに充 分な量の窒素をドープする一方、高い比表面積を有する組織構造を付与することが 可能であり、また、酸化チタンの結晶化の状態を任意に調整する事が可能であるた め、太陽光下で極めて高い効率で駆動する事が可能な光触媒を提供する事が可能 である。また、本発明の手法自身は、極めて簡便かつ穏和な条件での操作であるた め、工業的な生産性とコストの面からも、その意義が大きいといえる。
[0017] また、本発明の手法の特徴として、チタンアルコキシドを液体中で反応させるゾル- ゲル法によって得られたチタニア/有機複合体を、酸化チタン光触媒の前駆体とする 点が挙げられ、チタニアのサイズ、形状、組織構造といった形態を前駆体の段階で 設計する事が可能である。すなわち、チタニアの生成過程と窒素ドープの過程が完 全に独立している事を特徴としている。微少サイズ、高比表面積といった光触媒に好 ましい形態をチタニアの生成過程において構築し、さらにその形態を維持したまま、 窒素ドープによる可視光駆動特性を酸化チタンに付与できるため、本発明の手法に よって従来の酸化チタン光触媒に比較して遙かに高性能、高効率な可視光応答型 光触媒を得る事が期待できる。
[0018] 本発明は、チタニアと種々の有機配位子からなるチタニア/有機複合体を、チタン アルコキシドを液相で反応させるゾル-ゲル法によって合成して前駆物質とし、これを アンモニア水に浸漬する事によって、有機配位子を配位子交換反応によって水酸基 に置換すると同時に高濃度のアンモニゥムを、チタニアの層状構造の層間に導入す る。本物質を特定の温度範囲で加熱処理する事により、窒素がドープされた可視光 駆動可能な酸化チタン光触媒を提供する。
[0019] 前駆体となるチタニア/有機複合体はチタニアに水酸基と交換可能な有機配位子 が配位した物質であれば様々なものを用いる事が可能である力 有機物との分子レ ベルでの複合化が期待できる、チタンアルコキシドを溶液中で反応させる「ゾル-ゲル 法」で合成する事が特に望ましい。チタンアルコキシドの例としては、チタンエトキシド 、チタンメトキシド、チタンイソプロポキシド、チタン- n-ブトキシドなどあらゆるチタンァ ルコキシドを用いる事ができる。反応に用いる溶媒は様々な有機溶媒を用いる事が できるが、チタンアルコキシドの高い反応性の制御、及びアンモニア水での浸漬操作 後の生成物は有機配位子を失い代わって水酸基に置換されるため、有機溶媒相か ら水相に移動してくるので、生成物の分離操作の容易さといつた観点から、水との相 溶性の低レ、疎水溶媒を用いる事が好ましレ、。
[0020] チタニア/有機複合体を得るために、チタンアルコキシドの溶液中に、複合体を形 成する有機物を混合してから反応を行う。混合する有機物は、チタニアに配位して、 チタニア/有機複合体を構築すると同時に、後のアンモニア水での処理時に水酸基 と交換可能でなくてはならない。
[0021] このような物質としては各種のカルボン酸が挙げられる。カルボン酸とチタンアルコ キシドを混合する事によって、チタンアルコキシドにカルボキシラート(カルボン酸ィォ ン)が配位する。この後、溶液に水分を導入する事によって、加水分解、及び重縮合 反応が生じ、チタニアにカルボキシラートが配位したチタニア/カルボキシラート複合 体を得る事ができる。カルボン酸は特定のものに限定されず、異なる複数のカルボン 酸を混合して用いても良い。
[0022] 図 1 (A)に、このようにして得られる層状チタユア/カルボキシラート複合体の構造を 模式的に示す。薄片状のチタニアシートの表面にカルボキシラートが配位し、カルボ キシラート同士の疎水的な相互作用によってチタニアシートが組織化し層状構造を 形成する。このような有機物の相互作用による自己組織化は本手法以外の様々な無 機/有機複合体の合成で見られる現象である。
[0023] また、ここでは、チタンアルコキシドの二次元的な成長によって、薄片状のチタニア を得ているが、反応条件 (水の添加量、塩触媒の種類、有機配位子の量など)を変え 、成長の次元を変化させる事によって、鎖状(一次元成長)や球状(三次元成長)の チタニアを得る事も可能である。また、重縮合を促進させるための塩触媒を任意の反 応時間で失活させる事によって、生成するチタニアのサイズを制御する事も可能であ る。
[0024] 得られたチタニア/カルボキシラート複合体をアンモニア水で処理する事によって、 配位しているカルボキシラートを水酸基に置換すると同時に、図 1 (B)に模式的に示 すように、アンモニゥムをチタニアの層状構造の層間に導入する。カルボキシラートを 完全に除去すること、また充分な量のアンモニゥムを導入するといつた観点から、用 レ、るアンモニア水は室温から 100°C未満の濃アンモニア水が好ましレ、。温度が 100 °C以上ではアンモニア水からアンモニアが気化してしまうため好ましくない。
[0025] アンモニア水処理後の物質を乾燥した後、加熱し、アンモニゥムの分解により窒素 をチタニアにドープするとともに、アナターゼに結晶化させることによって、窒素がドー プされ、可視光で駆動可能な薄片状酸化チタン光触媒を得る事ができる。加熱温度 は低すぎるとアナターゼへの結晶化が不十分なうえ、窒素が充分に酸化チタンの格 子に取り込まれない。一方、高すぎると緻密化やルチルへの結晶化が生じる上、取り 込んだ窒素を放出してしまうため、やはり好ましくない。以上のような観点から、加熱 処理温度は、 400°C以上、ルチル転移を伴わない温度領域である 500°C程度以下 が好ましい。
[0026] 本発明の解決手段は、前述したとおりである力 以下、実施例に基づいて具体的に 説明する。また本発明の優位性を示すため、比較例 1、 2、 3、 4を示す。
実施例 1
[0027] 窒素雰囲気下、チタンテトライソプロボキシド(12.5mmol)とイソステアリン酸(6.25mm ol)を混合し, 0-キシレンにて全量 15mLに希釈した。一方、イソステアリン酸(1.25mmo 1)と n-へキシルァミン(1.25mmol)を混合し、 o_キシレンにて全量 10mLに希釈して重 縮合を促進させるための塩触媒溶液とした。両者を混合後、大気中に解放して撹拌 し、 25°Cに保持したまま大気中の水分を徐々に吸収させることによって反応を進行さ せ、チタニア/イソステアレート複合体からなるゾノレを得た。
[0028] 得られたゾルを走査型電子顕微鏡により生成物の形状を観察したところ、ごく薄い チタニアシートが積層した層状構造を形成していた(図 2)。また、 IR吸収スペクトルの 測定からチタニアシートにはイソステアレートが配位している事を確認した(図 3a)。
[0029] チタニア/イソステアレート複合体からなるゾルを、濃アンモニア水(28重量0 /0)と混 合し、 60°Cで 2時間撹拌した。撹拌後、分液ロートにて水相部分を取り出し、生成物 の遠心分離とアンモニア水による洗浄を 5回繰り返し、得られた固形物を 120°Cで乾 燥した。 IR吸収スペクトルを測定したところ、イソステアレートに帰属される吸収ピーク が完全に消失し、代わって水酸基に帰属されるピークが発現した。また、アンモニゥ ムに帰属されるピークも観察された(図 3b)。 XRDを測定したところ結晶化は観察さ れずァモノレファスであった(図 4a)。
[0030] アンモニア水処理後の物質を大気中、 450°Cで 2時間加熱処理したところ、得られ た物質は黄色に呈色し、通常の酸化チタンには見られない可視光域 (400〜500n m)の強い吸収が発現した(図 5b)。 XRDを測定したところ、アナターゼ酸化チタンに 帰属されるピークのみが観察された(図 4c)。走査型電子顕微鏡により生成物の形状 を観察したところ、薄片状の形状は加熱処理後も維持されており(図 6)、その面方向 の幅は 10 μ m程度であった。窒素吸着 BETを測定したところ比表面積は 8m2g_1であ つた。
[0031] 塩酸で pH = 3に調整した 0. 05mMメチレンブルー水溶液に、得られた酸化チタン を 0. 1重量%懸濁させ、遮光して 12時間撹拌した。この懸濁液を石英セルに入れ酸 素をバブリングしながら、直径 5mmの青色 LED20個を用いて可視光(470nm)を照 射した。メチレンブルーの分解量から可視光照射下での光触媒能を評価したところ、 顕著な分解が観察され、高レ、光触媒能を示した(図 7b)。
[0032] (比較例 1)
実施例 1の加熱処理温度を、 350°Cとした。この場合、比表面積は 112m2g— 1であり 、可視光域の強い吸収も観察されるが(図 5a)、アナターゼの結晶化度が実施例 1に 比較して低く(図 4b)、可視光下での光触媒能は実施例 1に比較して低かった(図 7a
[0033] (比較例 2)
実施例 1の加熱処理温度を、 550°Cとした。この場合、比表面積は 7m2g— 1で実施例 1とほぼ同程度であるものの、この加熱処理温度では取り込んだ窒素を放出してしま レ、、可視光域の強い吸収が観察されなかった(図 5c)。結晶型はアナターゼであった 力 図 4d)可視光下での光触媒能は実施例 1に比較して低かった(図 7c)。
[0034] (比較例 3)
市販のアナターゼ酸化チタン光触媒である ST— 01 (石原産業:比表面積 327m2g— は可視光域に吸収を持たず(図 5d)白色の粉末である。 ST— 01関して、実施例 1 と同様なメチレンブルーの分解量から可視光照射下での光触媒能を評価したところ、 可視光下での光触媒能は極めて低かった(図 7d)。
[0035] (比較例 4)
ST-01に実施例 1と同様なアンモニア水による処理と加熱処理を行つたが、カル ボキシラートが配位していなレ、 ST— 01では、充分な量の窒素がドープされないため 、実施例 1に見られたような、強い可視光域での吸収は発現せず(図 5e)、可視光下 での光触媒能は実施例 1に比較して低かった(図 7e)。
産業上の利用可能性
[0036] 本発明により得られる窒素がドープされた酸化チタンは、可視光照射下で高い光 触媒能を示し、太陽光下、高効率で駆動可能な光触媒となる事が期待できる。また、 本発明の製造方法によれば、サイズ、形状、組織構造、結晶化状態を制御した窒素 力 Sドープされた酸化チタンを簡便に製造できる。
図面の簡単な説明 [図 1]本発明の製造方法において、チタニア/有機物複合体をアンモニア水処理し てチタニアとアンモニゥムの複合体を形成する模式図である。
[図 2]実施例 1で得られたゾノレを走査型電子顕微鏡により観察した図面代用写真であ る。
[図 3]実施例 1で得られたゾルの IR吸収スペクトル(a)及びそのアンモニア水処理後 の IR吸収スペクトル(b)である。
[図 4]実施例 1、比較例 1、比較例 2でアンモニア水処理後の物質を加熱した後の XR D測定パターンである。
[図 5]実施例 1、比較例 1〜4で得られた酸化チタンの波長と吸光度の関係を示すグ ラフである。
[図 6]実施例 1で加熱した後の物質を走査型電子顕微鏡により観察した図面代用写 真である。
[図 7]実施例 1、比較例 1〜4のチタニアの可視光照射下での光触媒能を評価した結 果を示すグラフである。

Claims

請求の範囲
[1] 薄片状チタニアに有機配位子が配位し、層状構造を形成するチタニア/有機複合 体を、アンモニア水に浸漬することによって、層間の有機配位子を配位子交換反応 によって水酸基に置換し、同時にアンモニゥムを層状構造のチタニアの層間に導入 する事によって得られたチタニアとアンモニゥムの複合体を、 400°C以上、ルチル転 移を伴わない温度領域で加熱して、アンモニゥムの熱分解により窒素をチタニアにド ープするとともにアナターゼに結晶化させることを特徴とする可視光領域に光吸収を 示す、窒素がドープされた光触媒用酸化チタンの製造方法。
[2] チタニアと有機物からなる複合体は、チタンアルコキシドと有機物の混合溶液から、 チタンアルコキシドの加水分解と重縮合反応によって得られたものであることを特徴と する請求項 1記載の酸化チタンの製造方法。
[3] 有機物がカルボン酸であり、チタニアと有機物からなる複合体が層状構造を有する チタニアとカルボキシラートからなる複合体であることを特徴とする請求項 1記載の酸 化チタンの製造方法。
[4] 室温から 100°C未満のアンモニア水に浸漬することを特徴とする請求項 1記載の酸 化チタンの製造方法。
PCT/JP2005/016835 2004-09-13 2005-09-13 可視光を吸収する薄片状酸化チタンの製造方法 WO2006030780A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/662,504 US7651675B2 (en) 2004-09-13 2005-09-13 Process for producing flaky titanium oxide capable of absorbing visible light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004265318A JP4817219B2 (ja) 2004-09-13 2004-09-13 可視光を吸収する薄片状酸化チタンの製造方法
JP2004-265318 2004-09-13

Publications (1)

Publication Number Publication Date
WO2006030780A1 true WO2006030780A1 (ja) 2006-03-23

Family

ID=36060031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016835 WO2006030780A1 (ja) 2004-09-13 2005-09-13 可視光を吸収する薄片状酸化チタンの製造方法

Country Status (3)

Country Link
US (1) US7651675B2 (ja)
JP (1) JP4817219B2 (ja)
WO (1) WO2006030780A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238406A (ja) * 2006-03-10 2007-09-20 Shinshu Univ 可視光で光触媒能を発現する薄片状窒素ドープ型酸化チタン
US8017542B2 (en) 2006-12-13 2011-09-13 Kawamura Institute Of Chemical Research Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021292A1 (en) * 2007-08-16 2009-02-19 The University Of Queensland Titanate photocatalyst
CN102481565B (zh) * 2009-06-01 2015-03-25 新日铁住金株式会社 具有可见光响应性且光催化活性优异的钛系材料及其制造方法
US20130115308A1 (en) * 2010-07-13 2013-05-09 Paul Gannon Doped material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794065B1 (en) * 1999-08-05 2004-09-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic material and photocatalytic article
JP3215698B1 (ja) 2000-01-31 2001-10-09 有限会社環境デバイス研究所 可視光応答材料及びその製造方法
JP2002361097A (ja) 2001-06-12 2002-12-17 Furukawa Co Ltd 可視光励起型酸化チタン光触媒およびその製造方法
JP3867036B2 (ja) 2001-10-15 2007-01-10 Jfeスチール株式会社 光触媒被膜を形成した複合材料の製造方法
JP2003340288A (ja) 2002-05-30 2003-12-02 Tosoh Corp 可視光応答性光触媒およびその製造方法
JP2004097868A (ja) 2002-09-05 2004-04-02 Jfe Steel Kk 光触媒および光触媒被膜を形成した複合材料の製造方法
JP4576526B2 (ja) * 2004-07-07 2010-11-10 国立大学法人京都大学 紫外及び可視光応答性チタニア系光触媒
US20060210798A1 (en) * 2005-03-16 2006-09-21 Clemens Burda Doped metal oxide nanoparticles and methods for making and using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO D. ET AL: "Sosuiba Sol-Gel-ho ni yoru Sojyo Titania/Carboxylate Nanocomposite Jiritsumaku no Gosei.", THE CERAMIC SOCIETY OF JAPAN NENKAI KOEN YOKOSHU., March 2004 (2004-03-01), pages 41, XP002998891 *
MATSUMOTO D.: "Sosuiba Sol-Gel-ho ni yoru Sojyo Yuki Shushoku Sanka Titanium no Gosei to Oyo.", SHOKUBAI, vol. 45, no. 6, September 2003 (2003-09-01), pages 457 - 459, XP002998890 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238406A (ja) * 2006-03-10 2007-09-20 Shinshu Univ 可視光で光触媒能を発現する薄片状窒素ドープ型酸化チタン
US8017542B2 (en) 2006-12-13 2011-09-13 Kawamura Institute Of Chemical Research Method for production of doped titanium oxide, doped titanium oxide, and visible light-responsive photocatalyst comprising the doped titanium oxide

Also Published As

Publication number Publication date
US7651675B2 (en) 2010-01-26
JP4817219B2 (ja) 2011-11-16
US20080003153A1 (en) 2008-01-03
JP2006075794A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
Noman et al. Synthesis and applications of nano-TiO 2: A review
Hu et al. Synthesis, structures and applications of single component core-shell structured TiO2: a review
Hirano et al. Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300° C from acidic solution by hydrolysis under hydrothermal condition
Liu et al. Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances
KR101954792B1 (ko) 단일 수열합성법을 이용한 금속 담지 이산화티타늄/그래핀 복합체의 제조방법 및 이에 의해 제조된 이산화티타늄/그래핀 복합체
Phuruangrat et al. Hydrothermal synthesis and characterization of Bi2MoO6 nanoplates and their photocatalytic activities
JP4698981B2 (ja) 繊維状酸化チタン粒子とその製造方法ならびに該粒子の用途
WO2008072595A1 (ja) ドーピング酸化チタンの製造方法、ドーピング酸化チタン及びこれを用いる可視光応答型光触媒
KR101065804B1 (ko) 균일한 아나타제형 이산화티탄 나노입자의 제조방법
Najafidoust et al. The role of Diethanolamine as stabilizer in controlling morphology, roughness and photocatalytic activity of ZnO coatings in sonophotodegradation of methylene blue
WO2006030780A1 (ja) 可視光を吸収する薄片状酸化チタンの製造方法
KR101183745B1 (ko) 전기 방사법을 이용한 이산화주석 나노입자를 함유하는 이산화티타늄 나노섬유 제조방법과 자외선하에서 광 촉매로서의 응용
CN111589447A (zh) 一种异质结纳米颗粒及其制备方法和应用
WO2008091053A1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
KR101677842B1 (ko) 광촉매와 흡착제의 기능을 모두 가지는 다기능 구리-이산화티타늄-폴리우레탄 및 이의 제조 방법
JP4862183B2 (ja) 光触媒用酸化チタンの製造方法及びチタニア/有機複合体の製造方法
Kaneva et al. Microwave-assisted and conventional sol-gel preparation of photocatalytically active ZnO/TiO 2/glass multilayers
JP3002186B1 (ja) 二酸化チタン系光触媒
KR20230096162A (ko) 용매열 방법을 이용한 흑연질화탄소 및 그래핀 복합체의 제조 방법
Pattnaik et al. Bi-tailored compounds for photocatalytic environmental applications: Current trends, advancements, challenges and future perspectives
CN108380194A (zh) 一种光催化剂及其制备方法和应用
KR20130033162A (ko) 가시광선 감응형 지르코늄 및 실리카 포함 이산화티탄 광촉매 및 그 제조방법
JP4132285B2 (ja) 複合金属酸化物及びその製造方法
Tan et al. Preparation of carbon-coated brookite@ anatase TiO 2 heterophase junction nanocables with enhanced photocatalytic performance
CN113477264B (zh) 一种羟基和氮掺杂的氟化铈可见光光催化剂及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11662504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 03-08-2007 )

WWP Wipo information: published in national office

Ref document number: 11662504

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05783177

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5783177

Country of ref document: EP