WO2006029808A1 - Abgasanlage eines kfzs mit dieselmotor - Google Patents

Abgasanlage eines kfzs mit dieselmotor Download PDF

Info

Publication number
WO2006029808A1
WO2006029808A1 PCT/EP2005/009821 EP2005009821W WO2006029808A1 WO 2006029808 A1 WO2006029808 A1 WO 2006029808A1 EP 2005009821 W EP2005009821 W EP 2005009821W WO 2006029808 A1 WO2006029808 A1 WO 2006029808A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust system
filter unit
particulate
exhaust
particle
Prior art date
Application number
PCT/EP2005/009821
Other languages
English (en)
French (fr)
Inventor
Marco Ranalli
Original Assignee
Arvinmeritor Emissions Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004045178A external-priority patent/DE102004045178A1/de
Application filed by Arvinmeritor Emissions Technologies Gmbh filed Critical Arvinmeritor Emissions Technologies Gmbh
Priority to DE502005005277T priority Critical patent/DE502005005277D1/de
Priority to CNB2005800315195A priority patent/CN100497893C/zh
Priority to US11/663,009 priority patent/US7628008B2/en
Priority to EP05783753A priority patent/EP1789661B1/de
Priority to KR1020077008022A priority patent/KR100876373B1/ko
Priority to JP2007531658A priority patent/JP4448541B2/ja
Publication of WO2006029808A1 publication Critical patent/WO2006029808A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/8653Simultaneous elimination of the components characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1805Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body
    • F01N13/1811Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration
    • F01N13/1816Fixing exhaust manifolds, exhaust pipes or pipe sections to each other, to engine or to vehicle body with means permitting relative movement, e.g. compensation of thermal expansion or vibration the pipe sections being joined together by flexible tubular elements only, e.g. using bellows or strip-wound pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust system of a motor vehicle with a diesel engine, which has a particle filter unit.
  • Such particle filters are intended to reduce the particulate emissions of the exhaust gases.
  • the particle filter units have as their core a substrate, in particular of SiC, which is accommodated in its own outer housing, wherein the exhaust pipe opens downstream and upstream of the particulate filter unit in the housing.
  • the particulate filter insert itself i.
  • the substrate must be regenerated from time to time by burning off the particles accumulated on the filter surface.
  • One of the most promising possibilities of regeneration is to introduce fuel into the exhaust gas, preferably in vapor form, immediately before the particulate filter unit, in order, among other things, not to cool the exhaust gas too much. This is described, for example, in EP 1 369 557 A1.
  • the particulate filter units flourish ⁇ cheaper.
  • the high cost of the particulate filter units arise, for example, by the very expensive SiC material of the substrate and by the complex storage of the substrate via bearing mats in the outer housing of the Dieselpumblefilteremheit.
  • the effort is, inter alia, that the particle filter units are to be mounted as close to the engine or provided with heaters because of the NO 2 - oxidation effect.
  • the NO 2 -oxidation effect is that carbon with the NO 2 in the exhaust gas at temperatures above 23O 0 C oxidized, with nitrogen and CO 2 is formed.
  • this regeneration effect which is less effective than combustion with oxygen, should be exploited in the particle filter unit.
  • the invention provides these desired advantages in an exhaust system of the type mentioned in that upstream of the particulate filter unit, a close-coupled particulate receiving memory is arranged, which is a subset of the
  • Exhaust gas flow contained particles binds and flows through the other subset of the particles contained in the exhaust stream to the particle filter unit, wherein the
  • Particulate storage is located so close to the engine that it is regenerated due to the NO 2 -Oxidations bins in operation.
  • the invention provides a particle receiving reservoir structurally separate and arranged outside the particle filter unit, which binds a part of the particles and "converts" them via the NO 2 oxidation effect.
  • the filter cartridge of the particulate filter unit (substrate) and the insert in the particulate trap are separated by at least 300 mm, and the particulate trap steadily absorbs a subset of the incoming particulate to release a portion of it as CO 2 Particles do not have to be taken up by the particle filter unit, so that it fills much slower with particles and must be regenerated much less often. This allows the particulate filter unit to be located much farther from the engine than is actually desired.
  • the particulate receiving memory is preferably independent of the degree of filling, i. from the amount of particles in it, always a certain subset of exhaust gas including particles through, which are collected only in the particle filter unit. That is, the particle receiving memory can not lock.
  • the P are to be collected in the pre-filter and get only smaller particles to the main filter.
  • the particle storage tank should be able to store particles as large and small as possible and allow large particles to pass through even with a high degree of filling. This effect also means that it can not come to a high back pressure (back pressure) due to a near-engine, almost completely filled with soot filter in the exhaust system according to the invention.
  • the particulate receiving reservoir is only able to bind a smaller amount of particulates than the particulate filter unit.
  • the particulate receiving store is preferably so - A -
  • the particulate receiving memory structurally relatively small, so that it can actually be arranged very close to the engine. With increasing proximity to the motor, however, it has a higher temperature, which in turn improves the NO 2 oxidation effect, so that the particle receiving storage device has a high performance in relation to the particle holding capacity.
  • the smaller size and lower weight make smaller requirements for storage in the near-engine range.
  • higher quality material can be used.
  • the arrangement of the particle filter unit remote from the engine allows the use of more cost-effective substrate material, in particular cordierite.
  • the particulate receiving reservoir is preferably fluidically connected or structurally separated by an exhaust gas pipeline with the particulate filter unit.
  • the exhaust pipe of course, has a much smaller outer cross-section than the particulate filter unit.
  • a vibration decoupling device is provided in the exhaust gas pipeline, which interconnects the sections with the particulate filter unit and the particulate receiving reservoir.
  • This vibration decoupling device is already known per se, it preferably separates the main section of the exhaust system from the so-called underbody section. This embodiment makes it even more cost-effective to carry out the particle filter unit, which is then extensively decoupled from the engine by a vibration-reducing effect, as regards the material of the substrate as well as the integration into the outer housing and the design of the outer housing itself.
  • the preferred embodiment provides that the particulate receiving accumulator is disposed in the manifold region or immediately adjacent thereto.
  • the particle filter unit should be positioned in the underfloor section of the exhaust gas purification device, where more space is available for this large-volume unit.
  • the particle receiver storage should be located immediately in front of the turbocharger, to its
  • a regeneration device Downstream of the particle storage reservoir and, if possible, immediately upstream of the particle filter unit, a regeneration device can optionally be provided, which regenerates the particle filter unit intermittently and preferably sensor-controlled, depending on the degree of loading of the substrate. This should lead to the most complete regeneration of the substrate in the particle filter unit.
  • the regeneration device is in particular a fluid or fuel introduction system in which e.g. CO or HC is introduced for catalytic exothermic oxidation and combustion of the accumulated carbon.
  • a fluid evaporator may be used.
  • This oxidation catalyst can be designed either as an upstream unit or as a section of the particulate filter unit.
  • An oxidation catalytic converter can also be assigned to the particle accumulation accumulator in order to increase the exhaust gas temperature in the particle accumulation accumulator. Again, of course, a portion of the memory material would be coated accordingly, or it can be preceded by the Pismeaufhahme Grande earlier a separate Oxidations ⁇ catalyst.
  • the invention also provides advantages in exhaust systems with Abgas ⁇ recirculation, via the exhaust gas can be supplied to the engine again. Namely, the particulate receiving accumulator is preferably disposed in the exhaust system such that the recirculated exhaust gas passes through the particulate accumulation accumulator. This means that provided with less particulate exhaust gas and especially still hot exhaust gas can be returned to the engine.
  • the particulate receiving accumulator should be located upstream of a cooler located in an exhaust gas recirculation line, possibly even upstream of a bypass valve upstream of the radiator. This reduces the load on the cooler and valve caused by particles.
  • the NO x catalyst for example an SCR catalyst (Selective Catalytic Reduction) or an LNT catalytic converter (Lean NO x -Trap), also called storage catalytic converter, is connected downstream of the particle receiver reservoir.
  • SCR catalyst Selective Catalytic Reduction
  • LNT catalytic converter Lean NO x -Trap
  • a preferred embodiment of the particulate receiving memory is to use a foamed ceramic or metal insert to store the particulates.
  • FIG. 1 is a schematic view of a motor vehicle diesel engine with a er ⁇ inventive exhaust system
  • FIG. 2 shows a flow chart of a motor vehicle diesel engine with an exhaust system according to a second embodiment.
  • FIG. 1 shows a diesel engine 10 of a motor vehicle and a downstream exhaust system 12.
  • the exhaust system 12 has a manifold section 16 extending up to a flange 14, and a downstream of the manifold. merabitess 16 subsequent underbody section 18, which are connected to each other via a vibration decoupling device 20.
  • an exhaust pipe with a first pipe section 22 connects, which leads to a particulate receiving accumulator 24, which is arranged close to the engine in the exhaust system 12.
  • the particle receiving storage 24 includes an insert 26 made of foamed ceramic or metal, which is arranged in an outer housing 28 of the Pumblefact ⁇ memory 24. Upstream of the insert 26 is an oxidation catalyst 30. Usually, however, the oxidation catalyst 30 is omitted because the upstream portion of the insert 26 is correspondingly coated. The oxidation catalyst 30 is thus normally integrated in the insert 26.
  • a turbocharger 32 Immediately downstream of the particulate receiving accumulator 24 sits a turbocharger 32 in the manifold section 16. Alternatively, the positions of the particulate accumulator 24 and turbocharger 32 could also be reversed. Also in the manifold section 16, namely after the particulate receiving accumulator 24 and the turbocharger 32, a NO x catalyst 33 is arranged. Due to the downstream position of the NO x catalyst 33 to the particle receiving reservoir 24, the former is less heavily loaded with nitrogen oxides, since the particle Aufhahmeawning 24 already reduces a certain amount of NO x .
  • the NO x - catalyst 33 is, for example, an SCR catalyst (Selective Catalytic Reduction) or an LNT catalyst (Lean NO x -Trap), also called storage catalyst.
  • urea in aqueous solution or, in the case of solid, in particular ammonium carbamate is used as the reducing agent.
  • NO x is temporarily stored.
  • the reducing agent for regenerating the accumulator is provided engine-generated during short rich operating phases. Between the regeneration phases, the nitrogen oxides are stored in the form of nitrates on the catalyst.
  • the turbocharger 32 may of course also be dispensed with or arranged downstream of the NO ⁇ catalytic converter 33.
  • FIG. 1 shows three possible arrangements of urea injection nozzles 80, 82, 84.
  • the injection nozzle 80 can be located upstream of the particle receiving accumulator 24, immediately upstream of the turbocharger 32 (nozzle 82) or immediately upstream of the NO ⁇ catalyst 33 designed as an SCR catalytic converter (nozzle 84).
  • the arrangements upstream of the accumulator 24 or the turbocharger 32 have the advantage that accumulator 24 or turbocharger 32 lead to more uniform distribution of the urea.
  • the vibration decoupling device 20 is made of such a flexible material that the engine vibrations introduced into the elbow section 16 are as far as possible not forwarded to the subfloor section 18 or at least greatly attenuated to this section.
  • the underbody portion 18 includes an elongate exhaust conduit 34 leading to a particulate filter unit 36.
  • the particulate filter unit 36 is a conventional diesel particulate or soot filter, with a substrate or filter cartridge 38 made of cordierite and an upstream oxidation catalyst 40.
  • the particle filter unit 36 is closed to the outside through its own outer housing 42, which has significantly larger cross-sectional dimensions than the exhaust pipe 34 and the adjoining pipe section 36 of the exhaust pipe.
  • the outer housing 28, 42 are thus widely spaced and separated by at least one simple exhaust pipe 34.
  • a regeneration device 43 for the particulate filter unit 36 Immediately upstream of the oxidation catalytic converter 40 sits a regeneration device 43 for the particulate filter unit 36, with an evaporator 44 for introduced diesel fuel.
  • the regeneration device 43 could also be integrated into the particle filter unit 36.
  • the exhaust gas flows via the pipe 22 into the oxidation catalyst 30 and then into the insert 26.
  • This is designed so that it receives and stores a subset of the particles located in the exhaust gas, in particular soot particles.
  • the insert 26, regardless of its degree of particle filling, always allows exhaust gas to flow through it, including particles which are not bound by the insert 26.
  • the particle absorption capacity of the insert 26 is thus limited.
  • the insert 26 in order for the insert 26 to pass particles in each case, it has channels which have a larger diameter than the largest soot particles present in the exhaust gas.
  • the irregular inner walls of the insert can be imagined as walls which have ab ⁇ , upstream, open gills on which particles can accumulate regardless of their size.
  • the exhaust gas and thus the particulate receiving accumulator 24 have a high temperature during operation. This high temperature, which is beyond 250 ° C, promotes itself
  • Particle receiving memory 24 is continuously regenerated during operation.
  • the proposed oxidation catalyst 30 still increases the temperature in the exhaust gas and thus the temperature of the insert 26.
  • the insert 26 permanently absorbs less than 50% of the incoming particles and allows the remaining particles to flow through them.
  • the exhaust gas reaches the turbocharger 32.
  • the exhaust gas with the remaining particles passes through the Abgasrohrlei ⁇ ung 34 to the particulate filter unit 36, in the outer housing 42, if necessary, already the oxidation filter 40 may be housed. In the filter element 38 then almost all other particles are filtered out of the exhaust gas. These particles settle in inlet channels 50 and can not penetrate the intermediate walls to outlet channels 52.
  • the filter cartridge 38 Since the particulate filter unit 36 is disposed in the underbody portion 18, the filter cartridge 38 is brought to a much lower temperature than that Use 26. This means that the NO 2 oxidation effect takes place to a much lesser extent or, preferably, does not take place at all. It is therefore a targeted discontinuous regeneration of the particulate filter unit 36 necessary. If there was an NO 2 oxidation effect in the filter cartridge 38, there would be excessive carbon oxidation at the sites where carbon would first be oxidized, flow fluctuations, and eventually "hot spots" that could be detrimental to the filter cartridge.
  • vaporized fuel is introduced into the exhaust pipe 34 via the regeneration device 43 and a fuel introduction system 54.
  • the vaporized fuel contains HC and CO, which in the oxidation catalytic converter 40 leads to a catalytic oxidation of the fuel and significantly increases the exhaust gas temperature, which in turn leads to the combustion of the particles in the filter cartridge 38.
  • exhaust gas recirculation is provided.
  • the particle receiving reservoir 24 is located upstream or downstream of the turbocharger 32. Again, the separate, from the particulate receiving reservoir 24 spatially separated particulate filter unit 36 is provided in the underbody section.
  • the particle filter unit 36 in turn is a silencer 60 connected downstream.
  • an exhaust gas recirculation line 62 directs exhaust gas, which already has a smaller amount of particles due to the particulate receiving accumulator 24, to a radiator bypass valve 64. From there, exhaust gas can either pass through a radiator 66 or directly to a so-called EGR valve 68 stream.
  • the exhaust gas then passes via the exhaust gas recirculation line 62 into a Lufbxi foitechnisch 72 between the air inlet 74 and an air mass flow sensor 76, which an air temperature sensor 78 is connected downstream.
  • the particulate receiving memory 24 it is possible to return exhaust gas with significantly fewer particles than before the engine 10 again. This reduces the risk that the particles in systems of the air supply line 72, such as the air mass flow sensor 76 or the air temperature sensor 78, will cause damage. Also, the valves 64, 68 and the performance of the radiator 66 become reduced due to the lower particle or soot loading in the exhaust gas recirculation system. This results in a higher reliability and a longer service life of the parts in the air supply line 72 and in the exhaust system, which reduces the overall costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Silencers (AREA)

Abstract

Eine Abgasanlage für ein Kraftfahrzeug mit Dieselmotor (10) weist eine Partikelfiltereinheit (36) auf, wobei stromaufwärts der Partikelfiltereinheit (36) ein motornaher Partikelaufnahmespeicher (24) angeordnet ist, der eine Teilmenge der im Abgasstrom enthaltenen Partikel bindet und durch den eine andere Teilmenge der im Abgasstrom enthaltenen Partikel zur Partikelfiltereinheit (36) strömt. Der Partikelaufnahmespeicher (24) ist so nahe am Motor (10) angeordnet, daß er aufgrund des N02-Oxidationseffekts im Betrieb wenigstens teilweise regeneriert wird.

Description

Abgasanlage eines Kfzs mit Dieselmotor
Die Erfindung betrifft eine Abgasanlage eines Kfzs mit Dieselmotor, die eine Partikelfiltereinheit aufweist.
Derartige Partikelfilter, vereinfacht auch Rußfilter genannt, sollen die partikel¬ förmigen Emissionen der Abgase reduzieren. Die Partikelfiltereinheiten haben als Kernstück ein Substrat, insbesondere aus SiC, welches in einem eigenen Außengehäuse untergebracht ist, wobei die Abgasrohrleitung stromabwärts und stromaufwärts der Partikelfiltereinheit in das Gehäuse mündet. Der Partikel- filtereinsatz selbst, d.h. das Substrat, muß von Zeit zu Zeit regeneriert werden, indem die auf der Filteroberfläche angesammelten Partikel abgebrannt werden. Eine der vielversprechendsten Möglichkeiten der Regeneration besteht darin, unmittelbar vor der Partikelfiltereinheit Kraftstoff in das Abgas einzuleiten, möglichst in Dampfform, unter anderem um das Abgas nicht zu stark abzukühlen. Dies ist beispielsweise in der EP 1 369 557 Al beschrieben.
Darüber hinaus gibt es Bestrebungen, die Partikelfiltereinheiten kosten¬ günstiger zu gestalten. Die hohen Kosten der Partikelfiltereinheiten ergeben sich beispielsweise durch das sehr teure SiC-Material des Substrats und durch die aufwendige Lagerung des Substrats über Lagermatten im Außengehäuse der Dieselpartikelfilteremheit. Was die Einbindung in das Gehäuse anbelangt, so liegt der Aufwand unter anderem darin, daß die Partikelfiltereinheiten wegen des NO2- Oxidationseffekts möglichst nahe an dem Motor angebracht werden sollen oder mit Heizeinrichtungen versehen sind. Der NO2-Oxidationseffekt besteht darin, daß Kohlenstoff mit dem NO2 im Abgas bei Temperaturen oberhalb 23O0C oxidiert, wobei Stickstoff und CO2 entsteht. Dieser im Vergleich zur Verbrennung mit Sauerstoff weniger effektive Regenerationseffekt soll aber in der Partikelfiltereinheit ausgenutzt werden. Ordnet man allerdings die Partikel¬ filtereinheit motornah an, so sind aufgrund der hohen Schwingungen im motornahen Abschnitt der Abgasanlage extreme Anforderungen bezüglich der Lagerung des Substrats und der Haltbarkeit von Substrat und Gehäuse zu erfüllen. Darüber hinaus ist in der Abgasanlage nahe des Motors wenig Platz für die voluminösen Partikelfiltereinheiten vorgesehen. Es gibt folglich ein Bündel von sich teilweise widersprechenden und auf den ersten Blick ausschließenden Faktoren bezüglich der Ausführung und Anordnung der Partikelfiltereinheit im Hinblick auf eine kostengünstigere Ausbildung.
Ideen, in der Partikelfiltereinheit selbst, d.h. im selben Außengehäuse, einen Haupt- und einen Vorfilter unterzubringen, sind z.B. aus der US 5 053 062 und der EP 1 205 228 Al sowie der EP 0 957 241 Al bekannt. Diese Ideen sorgen aber nicht für eine wirklich deutliche Verringerung der Kosten einer Partikelfilter¬ einheit oder für eine deutlich vereinfachte Unterbringung der Abgasanlage im Fahrzeug.
Die Erfindung schafft diese angestrebten Vorteile bei einer Abgasanlage der eingangs genannten Art dadurch, daß stromaufwärts der Partikelfiltereinheit ein motornaher Partikelaufnahmespeicher angeordnet ist, der eine Teilmenge der im
Abgasstrom enthaltenen Partikel bindet und durch den eine andere Teilmenge der im Abgasstrom enthaltenen Partikel zur Partikelfiltereinheit strömt, wobei der
Partikelaufnahmespeicher so nahe am Motor angeordnet ist, daß er aufgrund des NO2-Oxidationseffekts im Betrieb regeneriert wird.
Im Gegensatz zum vorerwähnten Stand der Technik mit einem in der Partikel¬ filtereinheit nahe des Substrats angeordneten Vorfilter sieht die Erfindung einen Partikelaufnahmespeicher baulich getrennt und außerhalb der Partikelfiltereinheit angeordnet vor, der einen Teil der Partikel bindet und diese über den NO2- Oxidationseffekt „umgewandelt" wieder ausstößt. Der Filtereinsatz der Partikelfiltereinheit (Substrat) und der Einsatz in dem Partikelaufhahmespeicher sind in Größenordnungen von wenigstens 300 mm voneinander getrennt. Der Partikelaufnahmespeicher nimmt stetig eine Teilmenge der ankommenden Partikel auf, um einen Teil hiervon als CO2 wieder abzugeben. Diese Teilmenge an Partikeln muß von der Partikelfiltereinheit nicht mehr aufgenommen werden, so daß sich diese deutlich langsamer mit Partikeln füllt und auch deutlich seltener regeneriert werden muß. Dies erlaubt es, die Partikelfiltereinheit deutlich weiter von dem Motor entfernt anzuordnen als es eigentlich angestrebt wird. Mit zunehmendem Abstand vom Motor gibt es auch weniger Schwingungen in der Abgasanlage, so daß die Partikelfiltereinheit einerseits mit einem kosten¬ günstigeren Substrat ausgestattet sein kann und andererseits ein geringerer Aufwand für die Gehäuseeinbindung erforderlich ist. Durch die bauliche Trennung von Partikelaufnahmespeicher und Partikelfiltereinheit ist es möglich, diese Teile an völlig verschiedenen Orten im Fahrzeug unterzubringen, was aufgrund des ohnehin geringen, zur Verfügung stehenden Bauraums sehr erwünscht ist. Da es auch in dem Partikelaufnahmespeicher zu einer gewissen, wenn auch nicht aktiv durch eine separate Einrichtung initiierten Verbrennung einer gewissen Menge an Ruß kommt, wird bei der erfindungsgemäßen Abgas¬ anlage eine durch die Verbrennung hervorgerufene Erhöhung der Abgas- temperatur stromabwärts des Partikelaufnahmespeichers stattfinden.
Der Partikelaufnahmespeicher läßt bevorzugt unabhängig vom Füllgrad, d.h. von der Menge an Partikeln in ihm, immer eine gewisse Teilmenge an Abgas samt Partikel durch, die erst in der Partikelfiltereinheit aufgefangen werden. Das heißt, der Partikelaufnahmespeicher kann nicht verblocken. Insofern unterscheidet sich der Partikelaufhahmespeicher von einem herkömmlichen Vorfilter im Stand der Technik, bei dem größere Partikel im Vorfilter aufgefangen werden sollen und nur kleinere Partikel zum Hauptfilter gelangen. Der Partikelaufnahmespeicher soll möglichst große und kleine Partikel speichern können und auch bei einem hohen Füllgrad große Partikel durchlassen. Dieser Effekt führt auch dazu, daß es bei der erfindungsgemäßen Abgasanlage nicht zu einem hohen Gegendruck (back pressure) aufgrund eines motornahen, nahezu vollständig mit Ruß gefüllten Filters kommen kann.
Gemäß der bevorzugten Ausführungsform ist der Partikelaufnahmespeicher nur in der Lage, eine geringere Partikelmenge zu binden als die Partikelfilter- einheit. Der Partikelaufnahmespeicher ist darüber hinaus vorzugsweise so aus- - A -
geführt, daß er die kleinere Teilmenge (weniger als 50 Gewichtsprozent) der in ihn einströmenden Partikel bindet. Dies erlaubt es, den Partikelaufnahmespeicher baulich relativ klein auszuführen, so daß er tatsächlich sehr motornah angeordnet werden kann. Mit zunehmender Motornähe hat er jedoch eine höhere Temperatur, was wiederum den NO2-Oxidationseffekt verbessert, so daß der Partikel¬ aufnahmespeicher eine hohe Leistungsfähigkeit bezogen auf die Aufnahme¬ kapazität für Partikel aufweist. Die geringere Größe und das geringe Gewicht stellen für die Lagerung im motornahen Bereich geringere Anforderungen dar. Darüber hinaus kann aufgrund der geringeren Größe und des geringeren Volumenbedarfs höherwertiges Material verwendet werden. Umgekehrt erlaubt die motorferne Anordnung der Partikelfiltereinheit die Verwendung von kosten¬ günstigerem Substratmaterial, insbesondere Cordierit.
Der Partikelaufnahmespeicher ist, wie bereits erwähnt, vorzugsweise durch eine Abgasrohrleitung mit der Partikelfiltereinheit strömungsmäßig verbunden bzw. baulich getrennt. Die Abgasrohrleitung hat natürlich einen wesentlich gerin¬ geren Außenquerschnitt als die Partikelfiltereinheit.
Zwischen der Partikelfiltereinheit und dem Partikelaufnahmespeicher ist gemäß der bevorzugten Ausführungsform eine Schwingungsentkoppelungs- einrichtung in der Abgasrohrleitung vorgesehen, die die Abschnitte mit Partikel- filtereinheit und Partikelaufnahmespeicher miteinander verbindet. Diese Schwin- gungsentkoppelungseinrichtung ist per se bereits bekannt, sie trennt vorzugsweise den Kxürnmerabschnitt der Abgasanlage von dem sogenannten Unterboden¬ abschnitt. Diese Ausführungsform erlaubt es noch vielmehr, die dann weitgehend vom Motor schwingungsentkoppelte Partikelfiltereinheit kostengünstiger aus- zuführen, was das Material des Substrats als auch die Einbindung ins Außen¬ gehäuse und die Ausführung des Außengehäuses selbst anbelangt.
Die bevorzugte Ausführungsform sieht vor, daß der Partikelaufnahmespeicher im Krümmerbereich oder unmittelbar an diesen angrenzend angeordnet ist. Die Partikelfϊltereinheit sollte jedoch im Unterbodenabschnitt der Abgasreini¬ gungsvorrichtung positioniert sein, wo mehr Platz für diese großvolumige Einheit zur Verfügung steht.
In der Abgasanlage sitzt bevorzugt ein Turbolader. Der Partikelaufnahme- Speicher sollte unmittelbar vor dem Turbolader angeordnet sein, um dessen
Belastung durch Partikel zu verringern, oder unmittelbar nach diesem angeordnet sein. Diese Anordnung sorgt in jedem Fall dafür, daß der Partikelaufhahme- speicher motornah angeordnet ist.
Stromabwärts des Partikelaufhahmespeichers und möglichst unmittelbar stromaufwärts der Partikelfiltereinheit kann gegebenenfalls eine Regenerations¬ einrichtung vorgesehen sein, die die Partikelfiltereinheit diskontinuierlich und vorzugsweise vom Beladungsgrad des Substrats abhängig, sensorgesteuert regeneriert. Dies soll zu einer möglichst vollständigen Regeneration des Substrats in der Partikelfiltereinheit führen.
Die Regenerationseinrichtung ist insbesondere ein Fluid- oder Kraftstoff¬ einleitungssystem, bei dem z.B. CO oder HC zur katalytischen exothermen Oxidation und Verbrennung des sich angesammelten Kohlenstoffs eingeleitet wird.
Bevorzugt kann natürlich ein Fluidverdampfer eingesetzt werden.
Zur Erhöhung der Temperatur in der Partikelfiltereinheit ist dieser ein
Oxidationskatalysator zugeordnet.
Dieser Oxidationskatalysator kann entweder als vorgeschaltete Einheit oder als Abschnitt der Partikelfiltereinheit ausgeführt sein.
Auch dem Partikelaufhahmespeicher kann ein Oxidationskatalysator zugeord- net sein, um zur Erhöhung der Abgastemperatur im Partikelaufhahmespeicher zu fuhren. Auch hier wäre natürlich ein Teil des Speichermaterials entsprechend zu beschichten, oder es kann dem Partikelaufhahmespeicher ein eigener Oxidations¬ katalysator vorgeschaltet werden. Die Erfindung sorgt auch für Vorteile bei Abgasanlagen mit Abgas¬ rückführung, über die Abgas dem Motor wieder zugeführt werden kann. Der Partikelaufhahmespeicher ist nämlich vorzugsweise so in der Abgasanlage angeordnet, daß das rückgeführte Abgas den Partikelaufhahmespeicher passiert. Das bedeutet, daß mit weniger Partikeln versehenes Abgas und vor allem noch heißes Abgas wieder dem Motor zugeführt werden kann.
Der Partikelaufnahmespeicher sollte stromaufwärts eines in einer Abgas- rückführleitung sitzenden Kühlers angeordnet sein, möglichst sogar stromaufwärts eines dem Kühler vorgeschalteten Bypassventils. Damit wird die Belastung von Kühler und Ventil durch Partikel reduziert.
Ferner ist es vorteilhaft, wenn dem Partikelaufnahmespeicher ein NOx- Katalysator, z.B. ein SCR-Katalysator (Selective Catalytic Reduction) oder ein LNT-Katalysator (Lean NOx-Trap), auch Speicherkatalysator genannt, nach¬ geschaltet ist.
Eine bevorzugte Ausführungsform des Partikelaufnahmespeichers besteht darin, einen geschäumten Keramik- oder Metalleinsatz zum Speichern der Partikel zu verwenden.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung und aus den nachfolgenden Zeichnungen, auf die Bezug genommen wird. In den Zeichnungen zeigen:
- Figur 1 eine schematische Ansicht eines Kfz-Dieselmotors mit einer er¬ findungsgemäßen Abgasanlage und
- Figur 2 ein Flußdiagramm eines Kfz-Dieselmotors mit einer Abgasanlage gemäß einer zweiten Ausführungsform.
Figur 1 zeigt einen Dieselmotor 10 eines Kraftfahrzeuges und eine nach¬ geschaltete Abgasanlage 12. Die Abgasanlage 12 hat einen bis zu einem Flansch 14 reichenden Krümmerabschnitt 16 sowie einen sich stromabwärts des Krüm- merabschnitts 16 anschließenden Unterbodenabschnitt 18, die über eine Schwin- gungsentkoppelungseinrichtung 20 miteinander verbunden sind.
An den Dieselmotor 10 schließt sich eine Abgasleitung mit einem ersten Rohrabschnitt 22 an, der zu einem Partikelaufnahmespeicher 24 führt, welcher motornah in der Abgasanlage 12 angeordnet ist.
Der Partikelaufnahmespeicher 24 enthält einen Einsatz 26 aus geschäumtem Keramik oder Metall, der in einem Außengehäuse 28 des Partikelaufnahme¬ speichers 24 angeordnet ist. Stromaufwärts des Einsatzes 26 sitzt ein Oxidations- katalysator 30. Üblicherweise jedoch wird der Oxidationskatalysator 30 weggelassen, da der stromaufwärtige Teil des Einsatzes 26 entsprechend beschichtet ist. Der Oxidationskatalysator 30 ist also normalerweise in dem Einsatz 26 integriert.
Unmittelbar stromabwärts des Partikelaufnahmespeichers 24 sitzt ein Turbo¬ lader 32 im Krümmerabschnitt 16. Alternativ könnten die Positionen von Partikel- aufhahmespeicher 24 und Turbolader 32 auch vertauscht werden. Ebenfalls im Krümmerabschnirt 16, und zwar nach dem Partikelaufnahmespeicher 24 und dem Turbolader 32 ist ein NOx-Katalysator 33 angeordnet. Aufgrund der stromabwärtigen Lage des NOx-Katalysators 33 zum Partikelaufnahmespeicher 24 wird ersterer weniger stark mit Stickoxiden beladen, da der Partikel- aufhahmespeicher 24 schon eine gewisse Menge an NOx reduziert. Der NOx- Katalysator 33 ist z.B. ein SCR-Katalysator (Selective Catalytic Reduction) oder ein LNT-Katalysator (Lean NOx-Trap), auch Speicherkatalysator genannt. Bei SCR-Katalysatoren wird als Reduktionsmittel Harnstoff in wäßriger Lösung oder, bei Feststoff, insbesondere Ammoniumcarbamat verwendet. In LNT- Katalysatoren wird NOx temporär gespeichert. Das Reduktionsmittel zum Regenerieren des Speichers wird während kurzer fetter Betriebsphasen motorgeneriert zur Verfügung gestellt. Zwischen den Regenerationsphasen werden die Stickoxide in Form von Nitraten auf dem Katalysator gespeichert. Der Turbolader 32 kann alternativ natürlich auch entfallen oder stromabwärts des NOχ-Katalysätors 33 angeordnet sein. In Figur 1 sind drei mögliche Anordnungen von Harnstoffeinspritzdüsen 80, 82, 84 gezeigt. Die Einspritzdüse 80 kann stromaufwärts des Partikel¬ aufnahmespeichers 24, unmittelbar stromaufwärts des Turboladers 32 (Düse 82) oder unmittelbar stromaufwärts des als SCR-Katalysator ausgeführten NOχ- Katalysators 33 liegen (Düse 84). Die Anordnungen stromaufwärts des Speichers 24 oder des Turboladers 32 haben den Vorteil, daß Speicher 24 bzw. Turbolader 32 zur gleichmäßigeren Verteilung des Harnstoffs führen.
Die Schwingungsentkoppelungseinrichtung 20 besteht aus solch flexiblem Material, daß die in den Krümmerabschnitt 16 eingeleiteten Motorschwingungen möglichst nicht in den Unterbodenabschnitt 18 oder zumindest stark gedämpft an diesen Abschnitt weitergeleitet werden. Der Unterbodenabschnitt 18 umfaßt eine langgestreckte Abgasrohrleitung 34, die zu einer Partikelfiltereinheit 36 führt. Bei der Partikelfiltereinheit 36 handelt es sich um einen üblichen Dieselpartikel- oder auch Rußfilter, mit einem Substrat oder Filtereinsatz 38 aus Cordierit und einem vorgeschalteten Oxidationskatalysator 40. Auch hier kann der Oxidations- katalysator 40 entfallen, wenn der stromaufwärtige Teil des Filtereinsatzes 38 entsprechend beschichtet ist. Die Partikelfiltereinheit 36 ist nach außen hin durch ein eigenes Außengehäuse 42 abgeschlossen, welches deutlich größere Querschnittsabmaße als die Abgasrohrleitung 34 und das sich anschließende Rohrstück 36 der Abgasrohrleitung hat. Die Außengehäuse 28, 42 sind somit weit voneinander beabstandet und durch wenigstens eine einfache Abgasrohrleitung 34 voneinander getrennt.
Unmittelbar stromaufwärts des Oxidationskatalysators 40 sitzt eine Regene- rationseinrichtung 43 für die Partikelfiltereinheit 36, mit einem Verdampfer 44 für eingeleiteten Dieselkraftstoff. Alternativ könnte die Regenerationseinrichtung 43 auch in die Partikelfiltereinheit 36 integriert sein.
hi die Abgasanlage 12 können natürlich auch noch weitere Filtereinheiten ein¬ gebaut werden, auf die es im folgenden jedoch nicht unmittelbar ankommt, weshalb sie zur Vereinfachung weggelassen wurden. Das Abgas strömt über die Rohrleitung 22 in den Oxidationskatalysator 30 und anschließend in den Einsatz 26. Dieser ist so ausgebildet, daß er eine Teilmenge der sich im Abgas befindlichen Partikel, insbesondere Rußpartikel, aufnimmt und speichert. Der Einsatz 26 läßt unabhängig von seinem Partikel- füllgrad immer Abgas durch sich hindurchströmen, unter anderem auch Partikel, die nicht vom Einsatz 26 gebunden werden. Die Partikelaufnahmekapazität des Einsatzes 26 ist also begrenzt. Damit der Einsatz 26 aber in jedem Fall Partikel durchläßt, besitzt er Kanäle, die einen größeren Durchmesser haben als die größten sich im Abgas befindlichen Rußpartikel. Man kann sich die unregel- mäßigen Innenwandungen des Einsatzes z.B. wie Wände vorstellen, die ab¬ stehende, stromaufwärts gerichtete, offene Kiemen haben, an denen sich Partikel unabhängig von ihrer Größe anlagern können.
Aufgrund der Nähe des Partikelaufnahmespeichers 24 zum Motor 10 haben das Abgas und damit der Partikelaufnahmespeicher 24 im Betrieb eine hohe Temperatur. Diese hohe Temperatur, die jenseits von 250°C liegt, fördert den sich
Im Einsatz 26 einstellenden Nθ2-Oxidationseffekt. Dieser führt dazu, daß der
Partikelaufnahmespeicher 24 stetig im Betrieb regeneriert wird.
Der vorgesehene Oxidationskatalysator 30 erhöht noch die Temperatur im Abgas und damit die Temperatur des Einsatzes 26. Der Einsatz 26 nimmt permanent weniger als 50 % der ankommenden Partikel auf und läßt die übrigen Partikel durch sich hindurchströmen. Das Abgas gelangt zum Turbolader 32.
Das Abgas mit den verbliebenen Partikel gelangt über die Abgasrohrleiτung 34 zur Partikelfiltereinheit 36, in deren Außengehäuse 42 ja ggf. bereits der Oxidationsfilter 40 untergebracht sein kann. Im Filtereinsatz 38 werden dann so gut wie alle übrigen Partikel aus dem Abgas ausgefiltert. Diese Partikel setzen sich in Einlaßkanälen 50 ab und können die Zwischenwände zu Auslaßkanälen 52 nicht durchdringen.
Da die Partikelfiltereinheit 36 im Unterbodenabschnitt 18 angeordnet ist, wird der Filtereinsatz 38 nur auf eine weitaus geringere Temperatur gebracht als der Einsatz 26. Das bedeutet, daß der NO2-Oxidationseffekt in deutlich geringerem Ausmaß oder, bevorzugt, überhaupt nicht stattfindet. Es ist deshalb eine gezielte diskontinuierliche Regeneration der Partikelfiltereinheit 36 notwendig. Wenn im Filtereinsatz 38 ein NO2-Oxidationseffekt vorliegen würde, käme es an den Stellen, an denen zuerst Kohlenstoff oxidiert werden würde, zu einer übermäßigen weiteren Kohlenstoffoxidation, zu Strömungsschwankungen und schließlich zu „hot spots", die schädigend für den Filtereinsatz werden können.
Sobald deshalb der Filtereinsatz 38 seine Aufnahmekapazität erschöpft hat, wird über die Regenerationseinrichtung 43 und ein Kraftstoffeinleitungssystem 54 verdampfter Kraftstoff in die Abgasrohrleitung 34 eingeleitet. Der verdampfte Kraftstoff enthält HC und CO, was im Oxidationskatalysator 40 zu einer kataly- tischen Oxidation des Kraftstoffs führt und die Abgastemperatur deutlich erhöht, was wiederum zur Verbrennung der Partikel im Filtereinsatz 38 führt.
Bei einer Ausführungsform nach Figur 2 ist eine Abgasrückführung vor- gesehen. Der Partikelaufnahmespeicher 24 sitzt stromaufwärts oder stromabwärts des Turboladers 32. Auch hier ist die separate, vom Partikelaufnahmespeicher 24 räumlich getrennte Partikelfiltereinheit 36 im Unterbodenabschnitt vorgesehen. Der Partikelfiltereinheit 36 wiederum ist ein Schalldämpfer 60 nachgeschaltet. Stromabwärts des Partikelaufnahmespeichers 24 lenkt eine Abgasrückführleitung 62 Abgas, das bereits eine geringere Menge an Partikeln aufgrund des Partikel¬ aufnahmespeichers 24 hat, zu einem Kühler-Bypassventil 64. Von dort aus kann Abgas entweder über einen Kühler 66 oder direkt zu einem sogenannten EGR- Ventil 68 strömen. Das Abgas gelangt dann über die Abgasrückführleitung 62 in eine Lufbxiführleitung 72 zwischen dem Lufteinlaß 74 und einem Luft-Massen- stromsensor 76, dem ein Luft-Temperatursensor 78 nachgeschaltet ist.
Durch den Partikelaufnahmespeicher 24 gelingt es, Abgas mit deutlich weniger Partikeln als bisher dem Motor 10 wieder zurückzuführen. Damit ver¬ ringert sich die Gefahr, daß die Partikel in Systemen der Luftzuführleitung 72 wie dem Luft-Massenstromsensor 76 oder dem Luft-Temperatursensor 78 zu Schäden führen. Auch die Ventile 64, 68 und die Leistungsfähigkeit des Kühlers 66 werden aufgrund der geringeren Partikel- oder Rußbeladung im Abgasrückführsystem verringert. Es ergibt sich eine höhere Zuverlässigkeit und eine höhere Lebens¬ dauer der Teile in der Luftzufuhrleitung 72 und in der Abgasanlage, was ins¬ gesamt die Kosten verringert.

Claims

Patentansprüche
1. Abgasanlage eines Kraftfahrzeugs mit Dieselmotor (10), die eine Partikelfiltereinheit (36) aufweist, dadurch gekennzeichnet, daß stromaufwärts der Partikelfiltereinheit (36) ein motornaher Partikelaufnahme¬ speicher (24) angeordnet ist, der eine Teilmenge der im Abgasstrom enthaltenen Partikel bindet und durch den eine andere Teilmenge der im Abgasstrom ent¬ haltenen Partikel zur Partikelfiltereinheit (36) strömt, wobei der Partikel- aufnahmespeicher (24) so nahe am Motor (10) angeordnet ist, daß er aufgrund des Nθ2-Oxidationseffekts im Betrieb wenigstens teilweise regeneriert wird.
2. Abgasanlage nach Anspruch 1 , dadurch gekennzeichnet, daß der Partikel¬ aufnahmespeicher (24) so ausgebildet ist, daß er unabhängig von seinem Füllgrad eine Teilmenge der im Abgasstrom enthaltenen Partikel zur Partikelfiltereinheit (36) gelangen läßt.
3. Abgasanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Partikelaufnahmespeicher (24) eine geringere Partikelmenge bindet als die Parti- kelfiltereinheit (36).
4. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß der Partikelaufnahmespeicher (24) über eine Abgasrohrleitung
(34) mit der Partikelfiltereinheit (36) strömungsmäßig verbunden ist.
5. Abgasanlage nach Anspruch 4, dadurch gekennzeichnet, daß zwischen dem Partikelaufnahmespeicher (24) und der Partikelfiltereinheit (36) eine Schwingungsentkoppelungseinrichtung (20) an einer zwischen Partikelaufnahme- Speicher (24) und Partikelfiltereinheit (36) angeordneten Abgasrohrleitung (34) vorgesehen ist.
6. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß der Partikelaufnahmespeicher (24) im Krümmerabschnitt (16) der Abgasanlage oder unmittelbar an diesen anschließend angeordnet ist.
7. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß die Partikelfiltereinheit (36) im Unterbodenabschnitt (18) der
AbgasanJage angeordnet ist.
8. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß in der Abgasanlage ein Turbolader (32) vorgesehen und der Partikelaufhahmespeicher (24) unmittelbar vor oder nach dem Turbolader (32) angeordnet ist.
9. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß die Partikelfiltereinheit (36) einen Cordierit aufweisenden Filtereinsatz (38) aufweist.
10. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß stromabwärts des Partikelaufiiahmespeichers (24) eine der
Partikelfiltereinheit (36) zugeordnete Regenerationseinrichtung (43) vorgesehen ist, die die Partikelfiltereinheit (36) diskontinuierlich regeneriert.
11. Abgasanlage nach Anspruch 10, dadurch gekennzeichnet, daß die Rege¬ nerationseinrichtung (43) ein Fluid-, insbesondere Kraftstoffeinleitungssystem
Figure imgf000015_0001
12. Abgasanlage nach Anspruch 11, dadurch gekennzeichnet, daß die Rege¬ nerationseinrichtung (43) einen Fluidverdampfer (44) umfaßt, um Dampf in das Abgas einzuleiten.
13. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß der Partikelfiltereinheit (36) ein Oxidationskatalysator (40) zur
Erhöhung der Temperatur in der Partikelfiltereinheit (36) zugeordnet ist.
14. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß dem Partikelaufnahmespeicher (24) ein Oxidationskatalysator (30) zur Erhöhung der Temperatur des Abgases im Partikelaufnahmespeicher (24) zugeordnet ist.
15. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß sie mit einer Abgasrückführung ausgestattet ist, über die Abgas dem Motor (10) zugeführt werden kann, wobei der Partikelaufnahmespeicher (24) so in der Abgasanlage angeordnet ist, daß das rückgeführte Abgas den Partikel¬ aufnahmespeicher (24) passiert.
16. Abgasanlage nach Anspruch 15, dadurch gekennzeichnet, daß der Parti¬ kelaufnahmespeicher (24) stromaufwärts eines in einer Abgasrückführleitung (62) sitzenden Kühlers (66) angeordnet ist.
17. Abgasanlage nach Anspruch 16, dadurch gekennzeichnet, daß der Parti¬ kelaufnahmespeicher (24) stromaufwärts eines in der Abgasrückrührleitung (62) angeordneten, dem Kühler (66) vorgeschalteten Bypassventils (64) sitzt.
18. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch ge¬ kennzeichnet, daß der Partikelaufnahmespeicher (24) einen geschäumten Keramik- oder Metalleinsatz zum Speichern der Partikel hat.
19. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein NOx-Katalysator (33) stromabwärts des
Partikelaufnahmespeichers (24) vorgesehen ist.
20. Abgasanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Partikelfiltereinheit (36) im Betrieb so entfernt von Dieselmotor (10) angeordnet ist, daß in ihr aufgrund zu tiefer Betriebstemperatur kein stetiger NO2-Oxidationseffekt stattfindet.
PCT/EP2005/009821 2004-09-17 2005-09-13 Abgasanlage eines kfzs mit dieselmotor WO2006029808A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502005005277T DE502005005277D1 (de) 2004-09-17 2005-09-13 Abgasanlage eines kfzs mit dieselmotor
CNB2005800315195A CN100497893C (zh) 2004-09-17 2005-09-13 带有柴油发动机的机动车的排气系统
US11/663,009 US7628008B2 (en) 2004-09-17 2005-09-13 Exhaust system of a motor vehicle with a diesel engine
EP05783753A EP1789661B1 (de) 2004-09-17 2005-09-13 Abgasanlage eines kfzs mit dieselmotor
KR1020077008022A KR100876373B1 (ko) 2004-09-17 2005-09-13 디젤 엔진을 구비한 자동차의 배기 시스템
JP2007531658A JP4448541B2 (ja) 2004-09-17 2005-09-13 ディーゼルエンジンを備える自動車の排気ガスシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004045178.8 2004-09-17
DE102004045178A DE102004045178A1 (de) 2004-09-17 2004-09-17 Abgasanlage eines Kfzs mit Dieselmotor
DE200520001257 DE202005001257U1 (de) 2004-09-17 2005-01-26 Abgasanlage eines Kfzs mit Dieselmotor
DE202005001257.2 2005-01-26

Publications (1)

Publication Number Publication Date
WO2006029808A1 true WO2006029808A1 (de) 2006-03-23

Family

ID=35134247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/009821 WO2006029808A1 (de) 2004-09-17 2005-09-13 Abgasanlage eines kfzs mit dieselmotor

Country Status (8)

Country Link
US (1) US7628008B2 (de)
EP (1) EP1789661B1 (de)
JP (1) JP4448541B2 (de)
KR (1) KR100876373B1 (de)
CN (1) CN100497893C (de)
DE (2) DE202005001257U1 (de)
ES (1) ES2313410T3 (de)
WO (1) WO2006029808A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066767A1 (en) 2006-11-29 2008-06-05 Corning Incorporated Partial wall-flow filter and diesel exhaust system and method
EP1992798A1 (de) * 2007-05-15 2008-11-19 Deere & Company Verbrennungsmotorsystem und Verfahren
AT504391B1 (de) * 2006-11-13 2008-12-15 Pankl Emission Control Systems Kombiniertes abgasreinigungssystem
FR2923532A3 (fr) * 2007-11-13 2009-05-15 Renault Sas Systeme de filtration de particules emises par un moteur a combustion interne.
WO2010012553A1 (de) * 2008-07-30 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasreinigungssystem für dieselmotoren von nutzkraftfahrzeugen
US20100175371A1 (en) * 2007-07-13 2010-07-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Method for regenerating at least one particle agglomerator and motor vehicle including an exhaust gas after-treatment system
WO2010108574A1 (de) * 2009-03-21 2010-09-30 Daimler Ag Abgasbehandlungseinrichtung und verfahren zum betreiben einer abgasbehandlungseinrichtung
FR2956698A1 (fr) * 2010-02-24 2011-08-26 Peugeot Citroen Automobiles Sa Element de ligne d'echappement et ligne d'echappement comportant un tel element d'echappement
EP2543837A1 (de) * 2010-03-05 2013-01-09 Toyota Jidosha Kabushiki Kaisha Abgasreiniger für einen verbrennungsmotor
US8673064B2 (en) 2008-05-29 2014-03-18 Corning Incorporated Partial wall-flow filter and method
CN103967561A (zh) * 2013-01-29 2014-08-06 康宁股份有限公司 部分壁流式过滤器和方法
EP2826974A4 (de) * 2012-03-13 2015-11-11 Isuzu Motors Ltd Abgasreinigungsvorrichtung
EP2530265A4 (de) * 2010-01-25 2015-12-02 Isuzu Motors Ltd Abgasreinigungsvorrichtung und abgasreinigungsverfahren für einen dieselmotor
EP2530268A4 (de) * 2010-01-25 2015-12-02 Isuzu Motors Ltd Abgasreinigungsvorrichtung und abgasreinigungsverfahren für einen dieselmotor
EP2686530B1 (de) * 2011-03-14 2019-05-22 Wärtsilä Finland Oy Verfahren zum betrieb eines motors, abgasanlage und oxidationskatalysator

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745568B1 (en) 2003-03-27 2004-06-08 Richard K. Squires Turbo system and method of installing
DE102005009686A1 (de) * 2005-03-03 2006-09-07 Volkswagen Ag Verfahren zur Abgasnachbehandlung bei Dieselmotoren oder dergleichen, und Vorrichtung zur Durchführung dieses Verfahrens
FR2884872B1 (fr) * 2005-04-25 2007-09-14 Renault Sas Procede de commande d'un moteur de vehicule pour reguler la temperature d'un filtre a particules
KR100684214B1 (ko) * 2005-06-23 2007-02-20 허찬회 내연기관의 흡기 및 배기장치
DE102005061958A1 (de) 2005-12-23 2007-07-05 Arvinmeritor Emissions Technologies Gmbh Partikelfilter für eine Abgasanlage
EP1878888B1 (de) * 2006-07-12 2010-01-27 Delphi Technologies, Inc. Fluiddosiervorrichtung
DE102007020042B4 (de) 2007-04-27 2010-04-08 Süd-Chemie AG Beschichteter Partikelfilter mit Wärmetauscherprinzip
DE102007032736A1 (de) * 2007-07-13 2009-01-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasnachbehandlung vor einem Turbolader
JP2011521877A (ja) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド 低背圧の多孔質ハニカムおよびその製造方法
GB2462798A (en) * 2008-06-03 2010-02-24 Johnson Matthey Plc Emission control
US20100037872A1 (en) * 2008-08-18 2010-02-18 Gm Global Technology Operating, Inc. Preventing egr system soot contamination
DE102008053669A1 (de) * 2008-10-29 2010-05-06 Emcon Technologies Germany (Augsburg) Gmbh Abgasanlage für ein Fahrzeug
US8596063B2 (en) * 2009-06-18 2013-12-03 GM Global Technology Operations LLC Exhaust treatment system for an internal combustion engine
FR2947004B1 (fr) * 2009-06-22 2015-12-11 Faurecia Sys Echappement Ligne d'echappement avec dispositif de traitement des oxydes d'azote.
EP3137744A1 (de) * 2009-09-15 2017-03-08 Zidat, Saïd Diagnosevorrichtung für ein partikelfilter
US8555625B2 (en) * 2009-11-13 2013-10-15 Pierce Manufacturing Company Exhaust system for firefighting vehicle
US8096125B2 (en) 2009-12-23 2012-01-17 Ford Global Technologies, Llc Methods and systems for emission system control
US8347611B2 (en) 2009-12-23 2013-01-08 Ford Global Technologies, Llc Methods and systems for emission system control
US8347609B2 (en) 2009-12-23 2013-01-08 Ford Global Technologies, Llc Methods and systems for emission system control
US8516799B2 (en) * 2009-12-23 2013-08-27 Ford Global Technologies, Llc Methods and systems for emission system control
DE102010015178A1 (de) 2010-04-16 2011-12-15 Daimler Ag Brennkraftmaschine und zugehöriges Betriebsverfahren
US8042527B2 (en) * 2010-08-05 2011-10-25 Ford Global Technologies, Llc Coordination of HP and LP EGR
ES2545871T3 (es) * 2011-03-28 2015-09-16 Haldor Topsøe A/S Procedimiento para la reducción de óxidos de nitrógeno y óxidos de azufre en el gas de escape procedente de un motor de combustión interna
US8607566B2 (en) * 2011-04-15 2013-12-17 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
JP5878860B2 (ja) * 2011-12-08 2016-03-08 エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド 排気ガス浄化機能を有するターボ過給式大型2ストロークディーゼルエンジン
CA2862258A1 (en) 2012-01-06 2013-07-11 Volvo Construction Equipment Ab Exhaust gas reduction device for heavy equipment
JP2013142363A (ja) * 2012-01-12 2013-07-22 Isuzu Motors Ltd ディーゼルエンジンの排気ガス浄化装置
JP6155541B2 (ja) * 2012-01-12 2017-07-05 いすゞ自動車株式会社 エンジンの排気ガス浄化装置
DE102013200361B4 (de) * 2012-03-09 2017-04-06 Ford Global Technologies, Llc Abgasnachbehandlungssystem, Kraftfahrzeug und Verfahren zur Abgasnachbehandlung
JP6074912B2 (ja) * 2012-05-11 2017-02-08 いすゞ自動車株式会社 排気ガス浄化システム及び排気ガス浄化方法
JP2013241859A (ja) 2012-05-18 2013-12-05 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
DE102014005153B4 (de) * 2014-04-08 2023-12-14 Andreas Döring Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
US10392994B2 (en) 2014-12-05 2019-08-27 Cummins, Inc. Reductant injection exhaust manifold
CN106321195A (zh) * 2015-06-17 2017-01-11 杨琦 一种柴油汽车金属颗粒捕集器的再生方法
US9816417B2 (en) * 2016-04-02 2017-11-14 II Dorian Francis Corliss Method for treating an exhaust gas
EP3315739B1 (de) * 2016-10-28 2019-02-13 Yara Marine Technologies AS System und verfahren die strömungsrate einer waschflüssigkeit eines abgas-wäscher-reinigungssystem eines hochseeschiffes zu bestimmen
JP7532035B2 (ja) * 2017-03-30 2024-08-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ターボを有するscr及びasc/doc近位連結システム
JP6435369B2 (ja) * 2017-04-26 2018-12-05 株式会社キャタラー 排ガス浄化システム及び自動推進車両
CN108625931A (zh) * 2018-05-03 2018-10-09 哈尔滨工程大学 低速机有效尾气处理装置
KR102107910B1 (ko) * 2018-11-22 2020-05-11 에이치에스디엔진 주식회사 선택적 무촉매 환원 및 선택적 촉매 환원 복합 시스템
US10940471B1 (en) * 2019-10-30 2021-03-09 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
US11071947B2 (en) 2019-10-30 2021-07-27 W. L. Gore & Associates, Inc. Catalytic efficiency of flue gas filtration
DE102020115714A1 (de) 2020-06-15 2021-12-16 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150918A (ja) * 1983-02-16 1984-08-29 Hitachi Ltd デイ−ゼルエンジンの排気ガス浄化装置
JPS59201916A (ja) * 1983-04-30 1984-11-15 Mitsubishi Motors Corp デイ−ゼル排ガス浄化装置
US4887427A (en) * 1985-10-28 1989-12-19 Nissan Motor Company, Limited Exhaust particle removing system for an engine
JP2001295627A (ja) * 2000-04-17 2001-10-26 Hino Motors Ltd 排気浄化装置
JP2001355431A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
EP1260684A2 (de) * 2001-05-24 2002-11-27 Isuzu Motors Limited Abgasreinigungsanlage für eine Dieselkraftmaschine
EP1353046A1 (de) * 2002-04-09 2003-10-15 Nissan Motor Co., Ltd. Vorrichtung und Verfahren zur Abgasreinigung für eine Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144106U (ja) * 1983-03-18 1984-09-26 日産自動車株式会社 排気微粒子捕集用トラツプの再生用バ−ナ−
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
US6301888B1 (en) * 1999-07-22 2001-10-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Low emission, diesel-cycle engine
US6708104B2 (en) * 2001-07-27 2004-03-16 Detroit Diesel Corporation Engine control based on exhaust back pressure
US20060021335A1 (en) * 2004-07-29 2006-02-02 Caterpillar, Inc. Exhaust treatment system having particulate filters
JP4042476B2 (ja) * 2002-06-14 2008-02-06 株式会社デンソー 内燃機関の排気ガス浄化装置
US6742335B2 (en) * 2002-07-11 2004-06-01 Clean Air Power, Inc. EGR control system and method for an internal combustion engine
US6651432B1 (en) * 2002-08-08 2003-11-25 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Controlled temperature combustion engine
US6981370B2 (en) * 2002-12-03 2006-01-03 Caterpillar Inc Method and apparatus for PM filter regeneration
US7127892B2 (en) * 2004-08-13 2006-10-31 Cummins, Inc. Techniques for determining turbocharger speed

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150918A (ja) * 1983-02-16 1984-08-29 Hitachi Ltd デイ−ゼルエンジンの排気ガス浄化装置
JPS59201916A (ja) * 1983-04-30 1984-11-15 Mitsubishi Motors Corp デイ−ゼル排ガス浄化装置
US4887427A (en) * 1985-10-28 1989-12-19 Nissan Motor Company, Limited Exhaust particle removing system for an engine
JP2001295627A (ja) * 2000-04-17 2001-10-26 Hino Motors Ltd 排気浄化装置
JP2001355431A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
EP1260684A2 (de) * 2001-05-24 2002-11-27 Isuzu Motors Limited Abgasreinigungsanlage für eine Dieselkraftmaschine
EP1353046A1 (de) * 2002-04-09 2003-10-15 Nissan Motor Co., Ltd. Vorrichtung und Verfahren zur Abgasreinigung für eine Brennkraftmaschine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 284 (M - 348) 26 December 1984 (1984-12-26) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 070 (M - 367) 30 March 1985 (1985-03-30) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 02 2 April 2002 (2002-04-02) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04 4 August 2002 (2002-08-04) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504391B1 (de) * 2006-11-13 2008-12-15 Pankl Emission Control Systems Kombiniertes abgasreinigungssystem
WO2008066767A1 (en) 2006-11-29 2008-06-05 Corning Incorporated Partial wall-flow filter and diesel exhaust system and method
EP1992798A1 (de) * 2007-05-15 2008-11-19 Deere & Company Verbrennungsmotorsystem und Verfahren
US7784274B2 (en) 2007-05-15 2010-08-31 Deere & Company Compact system for adding hydrocarbons to the exhaust of an internal combustion engine
US20100175371A1 (en) * 2007-07-13 2010-07-15 Emitec Gesellschaft Fur Emissionstechnologie Mbh Method for regenerating at least one particle agglomerator and motor vehicle including an exhaust gas after-treatment system
FR2923532A3 (fr) * 2007-11-13 2009-05-15 Renault Sas Systeme de filtration de particules emises par un moteur a combustion interne.
US8673064B2 (en) 2008-05-29 2014-03-18 Corning Incorporated Partial wall-flow filter and method
WO2010012553A1 (de) * 2008-07-30 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasreinigungssystem für dieselmotoren von nutzkraftfahrzeugen
US9784161B2 (en) 2008-07-30 2017-10-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust gas purification system for diesel engines of utility motor vehicles
WO2010108574A1 (de) * 2009-03-21 2010-09-30 Daimler Ag Abgasbehandlungseinrichtung und verfahren zum betreiben einer abgasbehandlungseinrichtung
EP2530268A4 (de) * 2010-01-25 2015-12-02 Isuzu Motors Ltd Abgasreinigungsvorrichtung und abgasreinigungsverfahren für einen dieselmotor
EP2530265A4 (de) * 2010-01-25 2015-12-02 Isuzu Motors Ltd Abgasreinigungsvorrichtung und abgasreinigungsverfahren für einen dieselmotor
FR2956698A1 (fr) * 2010-02-24 2011-08-26 Peugeot Citroen Automobiles Sa Element de ligne d'echappement et ligne d'echappement comportant un tel element d'echappement
EP2543837A4 (de) * 2010-03-05 2014-01-01 Toyota Motor Co Ltd Abgasreiniger für einen verbrennungsmotor
EP2543837A1 (de) * 2010-03-05 2013-01-09 Toyota Jidosha Kabushiki Kaisha Abgasreiniger für einen verbrennungsmotor
EP2686530B1 (de) * 2011-03-14 2019-05-22 Wärtsilä Finland Oy Verfahren zum betrieb eines motors, abgasanlage und oxidationskatalysator
EP2826974A4 (de) * 2012-03-13 2015-11-11 Isuzu Motors Ltd Abgasreinigungsvorrichtung
CN103967561A (zh) * 2013-01-29 2014-08-06 康宁股份有限公司 部分壁流式过滤器和方法
US9757675B2 (en) 2013-01-29 2017-09-12 Corning Incorporated Partial wall-flow filter and method
CN103967561B (zh) * 2013-01-29 2019-11-05 康宁股份有限公司 部分壁流式过滤器和方法

Also Published As

Publication number Publication date
CN100497893C (zh) 2009-06-10
EP1789661A1 (de) 2007-05-30
JP4448541B2 (ja) 2010-04-14
US7628008B2 (en) 2009-12-08
CN101023248A (zh) 2007-08-22
KR100876373B1 (ko) 2008-12-29
JP2008513656A (ja) 2008-05-01
ES2313410T3 (es) 2009-03-01
US20080034739A1 (en) 2008-02-14
EP1789661B1 (de) 2008-09-03
DE502005005277D1 (de) 2008-10-16
DE202005001257U1 (de) 2005-04-07
KR20070088605A (ko) 2007-08-29

Similar Documents

Publication Publication Date Title
EP1789661B1 (de) Abgasanlage eines kfzs mit dieselmotor
EP1892396B1 (de) Abgasnachbehandlungssystem
EP2037091B1 (de) Selbstreinigendes Abgasnachbehandlungssystem
DE102008010071A1 (de) Kompaktes Abgasnachbehandlungssystem
EP1892394A1 (de) Abgasnachbehandlungssystem
DE102006038289A1 (de) Abgasnachbehandlungssystem
EP1771644A1 (de) Abgassystem, insbesondere für eine brennkraftmaschine eines kraftfahrzeugs
DE102014200092B4 (de) Anordnung zur Reduzierung von Emissionen eines Dieselmotors
DE112013004164T5 (de) Abgaskomponenten-Befestigungssystem
DE102006061790A1 (de) Abgasanlage für eine Brennkraftmaschine
EP1405995B1 (de) Motorsystem mit Abgasturbolader und Abgasrückführung sowie Verfahren zu dessen Betrieb
DE202007010435U1 (de) Abgasanlage für Nutzfahrzeuge
DE102008017280A1 (de) Anordnung und Verfahren zur Beeinflussung des Umsatzverhaltens von Abgaskatalysatoren
DE102012023049A1 (de) SCR-Abgasnachbehandlungseinrichtung sowie Kraftfahrzeug mit einer solchen
DE102018122875A1 (de) Vorrichtung und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
EP3385520B1 (de) Abgasnachbehandlungsvorrichtung für einen verbrennungsmotor
DE102014207530A1 (de) Katalysatorbaugruppe, die Baugruppe enthaltende Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors, Baukastensystem für die Baugruppe, und Verfahren zur Herstellung der Baugruppe
EP2166203A1 (de) Vorrichtung zur Reinigung eines Abgasstroms einer Brennkraftmaschine eines Kraftfahrzeuges, insbesondere eines Nutzfahrzeuges
DE102004045178A1 (de) Abgasanlage eines Kfzs mit Dieselmotor
EP2659950B1 (de) Abgasnachbehandlungssystem
DE102009029182A1 (de) Abgasreinigungsvorrichtung
DE202005011603U1 (de) Dieselrußpartikelfilter
EP1749686B1 (de) Abgasanlage für Kraftfahrzeuge
EP3404225A1 (de) Abgasnachbehandlungsvorrichtung für eine brennkraftmaschine und verfahren zum aufheizen einer abgasnachbehandlungsvorrichtung
DE102017205696A1 (de) Abgasnachbehandlungssystem für einen Verbrennungsmotor sowie Verbrennungsmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005783753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007531658

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580031519.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1036/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077008022

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005783753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663009

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11663009

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005783753

Country of ref document: EP