WO2006026915A1 - Composition pharmaceutique et methode de traitement de l'hepatite avec des arginases - Google Patents

Composition pharmaceutique et methode de traitement de l'hepatite avec des arginases Download PDF

Info

Publication number
WO2006026915A1
WO2006026915A1 PCT/CN2005/001411 CN2005001411W WO2006026915A1 WO 2006026915 A1 WO2006026915 A1 WO 2006026915A1 CN 2005001411 W CN2005001411 W CN 2005001411W WO 2006026915 A1 WO2006026915 A1 WO 2006026915A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
pharmaceutical composition
arginase
composition according
use according
Prior art date
Application number
PCT/CN2005/001411
Other languages
English (en)
French (fr)
Inventor
Ning Man Cheng
Original Assignee
Bio-Cancer Treatment International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio-Cancer Treatment International Limited filed Critical Bio-Cancer Treatment International Limited
Priority to EP05783950A priority Critical patent/EP1803465A4/en
Priority to JP2007530572A priority patent/JP2008512399A/ja
Publication of WO2006026915A1 publication Critical patent/WO2006026915A1/zh
Priority to US11/680,631 priority patent/US20080299638A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals

Definitions

  • composition and method for treating hepatitis with arginase comprising
  • the present invention relates to pharmaceutical compositions and methods of use thereof.
  • the invention relates to a pharmaceutical composition capable of treating hepatitis. Background technique
  • Interferon It is a broad-spectrum antiviral agent that does not directly kill or inhibit the virus, but mainly produces cells through cell surface receptors.
  • the anti-viral protein inhibits the replication of hepatitis B and C virus, and also enhances the vitality of natural killer cells, macrophages and tau lymphocytes, thereby exerting an immunomodulatory effect and enhancing antiviral ability.
  • Interleukin-2 T cell growth factor, which has immune, antiviral and antitumor effects.
  • Nucleoside compounds For example, acyclovir is a synthetic acyclic guanidine nucleoside compound that inhibits the proliferation of various deoxyribonucleic acids.
  • Arabin adenosine It has a potential effect on hepatitis B virus both in vivo and in vitro. During the observation of the drug, some patients' DNA polymerases turned negative, and biochemical and liver tissue abnormalities also improved.
  • Others promote hepatocyte growth hormone, thymosin, anti-hepatitis ribonucleic acid, ribavirin, levamisole, lentinan, strong ning and phytohemagglutinin.
  • the efficacy of the above drugs is still not ideal, and it is easy to cause adverse side effects. Summary of the invention
  • one aspect of the present invention provides a more effective hepatitis therapeutic drug.
  • the present invention provides a medicament for selectively reducing arginine levels in a patient to treat hepatitis.
  • Another aspect of the present invention provides a pharmaceutical use of an enzyme that degrades arginine, i.e., an arginine degrading enzyme.
  • the arginine of the invention is reduced
  • the enzyme is an arginase or an arginine deiminase.
  • the arginine degrading enzyme of the invention is an isolated and substantially purified recombinant arginase.
  • the arginase of the invention is human arginase I.
  • the human arginase I of the present invention has substantially the same nucleotide sequence as SEQ ID NO: 1 or SEQ ID NO: 2, wherein the nucleotide sequence encodes It has an amino acid sequence substantially identical to SEQ ID NO: 3.
  • the recombinant arginase of the invention has a purity of from 80 to 100 °/. . In a more preferred embodiment, the recombinant arginase of the invention has a purity of from 90 to 100%.
  • the arginase enzyme of the invention is modified to have sufficiently high enzymatic activity and stability to maintain "adequate arginine deprivation" (hereinafter referred to as AAD: 3 days) in a patient. ).
  • a preferred modification method is to link the amino terminus of the arginase of the present invention to six histidines.
  • Another preferred modification is pegylation to increase the stability of the enzyme to minimize the immunoreactivity that occurs in a patient.
  • pegylation of the invention comprises covalently bonding arginase to at least one polyethylene glycol component via a coupling reagent.
  • the coupling agent is 2,4,6-trichlorotriazine (cyanuric chloride, CC) or succinimide propionic acid (SPA).
  • the modified arginase has an enzymatic activity of at least 250 I.UJmg. More preferably, it has an enzymatic activity of at least 300-350 LU./mg, and most preferably an enzyme activity of at least 500 I.U, /mg.
  • the enzyme is modified to have sufficient stability in serum or blood plasma and has a half-life of about at least three days.
  • the pharmaceutical preparations provided by the present invention are useful for treating hepatitis. In a more preferred embodiment, the pharmaceutical preparations provided by the present invention are useful for the treatment of hepatitis B.
  • the pharmaceutical composition of the invention comprises a recombinant arginase having a purity of from 80 to 100%.
  • the recombinant human arginase is any enzyme that degrades arginine, such as arginine deiminase or human Arginase I.
  • the enzyme is human arginase I having substantially the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, wherein the nucleotide sequence encodes SEQ ID NO: 3 Amino acid sequence.
  • the arginase has a sufficiently high enzymatic activity and stability that has been maintained in the patient for at least 3 days of AAD.
  • the arginase is also modified by pegylation to improve stability to minimize immune response.
  • the pharmaceutical composition of the invention is capable of reducing arginine levels in a patient's body.
  • the invention modulates hepatitis.
  • the pharmaceutical composition of the invention can treat hepatitis B.
  • the pharmaceutical compositions of the invention are further prepared in the form of a solid, a liquid, an emulsion, a suspension, a micelle, or a liposome.
  • the formulation of the pharmaceutical composition of the invention is in a form suitable for oral or injection.
  • Figure 1A, IB and 1C are the nucleotide sequence of human arginase I and its deduced amino acid sequence.
  • Figure 1A is the nucleotide sequence of the EcoRI/Miml to Xbal site of the plasmid p ⁇ (SEQ ID NO: 1) o nucleotide (nt) l-6, EcoRI/Mun1 site; nt 481-486, promoter 1 -35 region; nt 504-509, promoter region -10 region; nt544-549, promoter-35 region; nt 566-571, promoter region -10 region; nt 600-605, ribosome binding Site; nt 614-616, start codon; nt 632-637, Ndel locus; nt 1601-1603, stop codon; nt 1997-2002, Xbal locus.
  • Figure IB is the nucleotide sequence encoding the modified human arginase (SEQ ID NO: 2) and its corresponding encoded amino acid sequence (SEQ ID NO: 3).
  • Nucleotides 614-1603 in Figure 1A are the coding regions for the modified arginase amino acid sequence. N-terminal 6 histidine (SEQ ID NO: 4) Underlined. The translation stop codon is indicated by *.
  • Figure 1C is the coding nucleotide sequence (SEQ ID NO: 8) of normal human arginase I and its corresponding encoded amino acid sequence (SEQ ID NO: 9). Specific implementation
  • pegylated arginase refers to the arginase I of the present invention modified by pegylation (see the specification of patent application WO2004/001048) to improve the stability of the enzyme and Minimize immunoreactivity.
  • substantially identical as used in the present invention, whether it is a nucleotide sequence for DNA, a ribonucleotide sequence of RA, or an amino acid sequence of a protein, means that it is minute and non-phase with the actual sequence disclosed in the present invention. Sequence of changes in the sequence of the birth. Species having substantially the same sequence are considered to be equivalent to the disclosed sequences and are included within the scope of the appended claims. In this regard, “minor and inconsistent sequence changes” refers to sequences substantially identical to the DNA, RNA or protein disclosed herein and/or claimed herein, and the sequence functions disclosed and/or claimed herein. Equivalent.
  • Functionally equivalent sequences function in substantially the same manner, yielding compositions substantially identical to the nucleic acid and amino acid compositions disclosed herein and claimed.
  • functionally equivalent DNA encodes the same protein as those disclosed herein, or encodes a protein with a conservative amino acid change, such as replacing one non-polar residue with another non-polar residue, or One charged residue replaces another similarly charged residue.
  • a conservative amino acid change such as replacing one non-polar residue with another non-polar residue, or One charged residue replaces another similarly charged residue.
  • the term "sufficiently high enzyme activity” means that the recombinant human arginase has an enzyme specific activity of at least 250 LU./mg, preferably at least 300-350 LU./mg, more preferably at least 500 IU/mg.
  • the arginase has a specific activity of from 500 to 600 IU/mg.
  • stability refers to the stability of the arginase in vitro. More preferably, the stability refers to stability in the body. The rate of decrease in enzyme activity is inversely proportional to the plasma stability of the isolated purified recombinant human arginase. This relationship can be reflected in the half-life of human arginase in the blood plasma.
  • AAD excessive arginine deprivation
  • the term "half-life” as used in the present invention refers to the time required for the concentration of the arginase to be reduced to half in human plasma in vitro.
  • the present invention studies the toxicity of arginase to cells in human hepatoma cell line 2.2.15 transfected with hepatitis B virus gene, on HBsAg and HBeAg secretion and inhibition of HBV-DNA.
  • the anti-hepatitis B virus lamivudine produced by British Glaxo Wellcome was compared as a positive control.
  • the results showed that: half of the toxic concentration of PEGylated recombinant arginase (TC50) CPE method was 40 IU/ml for 8 days, and the maximum non-toxic concentration (TC0) was 20 ⁇ 0 IU/ml.
  • the secretion inhibition rate of cell HBeAg in the two batches of non-toxic concentration 20IU/ml was 68.69 ⁇ 8.89, IC50 was 6.37 ⁇ 0.45IU/ml, and SI was 6.30 ⁇ 0.45.
  • the secretion inhibition rate of cellular HBsAg was 29.81+27.35, IC50 was 10.72 IU/ml (-batch experiment), and SI was 3.73 (-batch experiment).
  • the IC50 of HBV-DNA dot blot hybridization in the cell culture supernatant was 13.18 ⁇ 0.45 IU/ml, and the selection index was 3.19 ⁇ 0.98.
  • the IC50 of intracellular HBV-DNA Southern Blot Sum was 19.79 ⁇ 7.95 IU/ml, and the selection index was 2.91 ⁇ 0.88.
  • the IC50 for intracellular HBV-DNA Southern Blot In Lane was 20,06 ⁇ 1.96 IU/ml, and the selection index was 2.00 ⁇ 0.20.
  • the half poisoning concentration (TC50) and the maximum non-toxic concentration (TC0) of the positive control lamivudine were 1198.97197.50 and 800 ⁇ ( ⁇ g/ml, respectively.
  • the maximum non-toxic concentration solution SOO g/ml was added to 2.2.15 cells. After 8 days of culture, there was no significant inhibition on the secretion of HBeAg and HBsAg.
  • the IC50 of HBV-DNA dot hybridization of cell culture supernatant was 113.76 g/ml, and the selection index SI was 10.54.
  • HBV-DNA Southern Blot Sum of cells The IC50 of inhibition was 88.78 ⁇ 6.37 g/ml, and the selection index SI was 13,54 ⁇ 0.97, which was consistent with many experiments and literatures, indicating that the experiment was reliable.
  • the results suggest that arginase secretes HBsAg and HBeAg to 2, 2.15 cells. Cellular HBV-DNA is significantly inhibited.
  • PEGylated recombinant human arginase (BCT-100), hereinafter referred to as "arginase".
  • the enzyme has the nucleotide sequences represented by ⁇ , ⁇ and 1C and the deduced amino acid sequence thereof.
  • Preparation method Please refer to the description of Examples 1-8 of WO2004/001048.
  • recombinant human arginase was obtained from Professor Ikemoto Masaki's laboratory in Japan (Kyoto University; address: 53 Kawahara-cho, Shogoin, Sak o-ku, Kyoto-shi, Kyoto 606-8507 Japan ).
  • the drug to be tested was prepared in MEM medium according to the designed dose group concentration. Storage conditions: 4 ⁇ refrigerator.
  • Positive control drug lamivudine British GlaxoSmithKline production, batch number: B008923, each tablet content 100mg, the drug is soaked in the culture solution, dissolved, centrifuged to precipitate. The experiment was prepared in MEM medium according to the designed dose group concentration. Storage conditions: 4 ⁇ refrigerator.
  • Hepatitis B virus (HBV) gene was transfected into human hepatoma cells (Hep G2).
  • the 2.2.15 cell line was constructed by Mount Sinai Medical Center in the United States.
  • HBsAg HBeAg solid phase radioimmunoassay kit Institute of Northern Immunology, China Isotope Corporation; ' Kanamycin, product of North China Pharmaceutical Factory;
  • the experiment was divided into a control group and a drug group with different drug concentrations.
  • the cells were digested and prepared into 200,000 cells per ml.
  • the culture plates were inoculated, and the cells were cultured in a 96-well plate at 100 ⁇ l per well, 37 C 5% C0 2 for 24 hours, and the cells were grown into a single layer and then subjected to an experiment.
  • Arginase was prepared in a 40 IU/ml solution with a medium, and diluted to 20, 10, 5, and 2.5 IU/ml in a 96-well cell culture plate for 5 dilutions, 3 wells per concentration, every 4 days.
  • TC50 Antilog- (B+- xC )
  • the experiment consisted of HBsAg, HBeAg positive control group, negative control group, cell control group and drug group with different drug concentration.
  • the culture solution was stored frozen at -20 Torr.
  • the test was repeated in two batches to determine HBsAg and HBeAg, respectively.
  • the cpm value per well was measured using a gamma counter.
  • Drug effect calculation Calculate the mean and standard deviation, P/N value and percent inhibition (%), half effective concentration (IC50) and selection index (SI) of cell control and experimental drug per concentration.
  • Cell control cpm-administration group cpm
  • IC50 Antilog (B + x C)
  • the t-test was used to calculate the statistical significance of the difference in cpm between HBsAg, HBeAg and the control group.
  • Example 4 - Arginase pair 2.2.15 cell DNA inhibition assay
  • 2.2.15 HBV-DNA extraction in cell supernatant 2.2.15 cells per 200,000 inoculated 24-well cell culture plates, 1 ml per well, add drugs 24 hours after inoculation, change the original concentration of drug solution every 4 days, add On the 8th day after drug administration, the supernatant was collected, precipitated by polyethylene glycol, cleavage by proteinase K, phenol: chloroform: isoamyl alcohol extraction, absolute ethanol precipitation of nucleic acid, etc., vacuum-dried, redissolved in TE buffer Sample in the middle.
  • Dot blotting Spotting: Take 20ul (DNA content 25ug), denatured, neutralized, and diluted to 1:8 dilution in 20X SSC buffer on nitrocellulose membrane, dry-baked, pre-hybridized, Hybridization, washing, autoradiography and other steps. Rinse the X-ray film in a conventional manner. The scanner scanned the light, measured the density with gel-pro software, and calculated the inhibition rate and IC50.
  • Southern blot 2.2.15 intracellular HBV-DNA extraction: 2.2.15 cells were cultured for 8 days after drug addition, the cells were aspirated and the cells were lysed by lysate, equal volume of phenol: chloroform: isoamyl alcohol extraction 2 times The nucleic acid was precipitated with absolute ethanol, vacuum-dried, redissolved in 20 ul of TE buffer, added to DNA sample buffer, and the sample was applied to agarose gel for electrophoresis. After electrophoresis, the cells were denatured, neutralized, and transferred. Bake film, hybridize, and expose with the dot blot hybridization membrane. Sweep The scanner was scanned, and the relative density was analyzed by gel-pro gel analysis software to calculate the inhibition rate and IC50. result
  • TC50 half toxic concentration
  • TC0 maximum non-toxic concentration
  • the half-toxic concentration (TC50) of the positive control lamivudine was: 1198.97 ⁇ 97.5 ( ⁇ g/ml.
  • the maximum non-toxic concentration (TC0) was: 800 ⁇ ( ⁇ g/ml. (See Table 1A.)
  • the first batch of arginase experiments 20, 10, 5, 2.5, 1.25 IU / ml concentration group in the 2.2.15 cell culture on the 8th day supernatant supernatant HBsAg inhibition rate were 49.16%, 47.97%, 42.29% and 37.18%, the half effective dose (IC 5Q ) was 10.72 IU/ml, and the selection index was 3.7.3.
  • the inhibition rate of the second batch of tests was low, and the maximum non-toxic concentration of 20 IU/ml did not inhibit the HBsAg by 50%.
  • the lamivudine was diluted 2 times from the maximum non-toxic concentration SOO g/ml, 400, 200, 100, 50 ⁇ / ⁇ was added to the 2.2.15 cell culture system, and the HBsAg and HBeAg titers were determined on the 8th day. Calculate the inhibitory effect (see Table 1B).
  • the average inhibition rate of HBsAg in the supernatant of 2.2,15 cell culture on the 8th day of the two batches of lamivudine at 800, 400, 200, 100, 50 g/ml was 8.23 ⁇ 3.02%, 12.99 ⁇ 0.46%. , 17.83 ⁇ 2.09%, 15.84 ⁇ 2.33% > 14.10 ⁇ 1.27 ° /. . No significant inhibition.
  • the toxicase concentration (TC50) of arginase is: 40 IU/ml, and the non-toxic concentration (TC0) is 20 ⁇ 0.
  • the half-toxic concentration (TC50) of the positive control lamivudine was: 1198.97 ⁇ 97.50 ⁇ / ⁇ 1; the non-toxic concentration (TC0) was: 300 ⁇ ( ⁇ g/ml.
  • the maximum non-toxic concentration of arginase was 20 IU/ml.
  • the two dilutions were added to 2.2.15 cells for 8 days.
  • the average inhibition rate of HBeAg secretion in the two batches was 68.69 ⁇ 8.89%, which was effective for half of HBeAg.
  • the concentration (IC50) was: 6.37 ⁇ 0.45 IU/ml, and the selection index (SI) was: 6.30 ⁇ 0.45.
  • the inhibition rate for HBsAg secretion was 29.81 ⁇ 27.35%, and the half effective concentration (IC50) for HBsAg: the first batch was 10.72 IU/ml, the selection index (SI) was 3.73, and the second batch was 20 IU/ml.
  • the inhibition rate is less than 50%, IC50 >20 IU/ml, SI: ⁇ K
  • the two batches of tests are not averaged.
  • the maximum non-toxic concentration of lamivudine 800 ⁇ ⁇ / ⁇ 1 was added to 2.2.15 cells for 8 days, and there was no significant inhibition on the secretion of HBeAg and HBsAg.
  • the half effective concentration and the selection index cannot be calculated.
  • arginase had a IC50 of 13.18 ⁇ 4.05 IU/ml for the hybridization of HBV-DNA spots in the cell culture supernatant for 8 days, and the selection index was 3.19 ⁇ 0.98.
  • the intracellular HBV-DNA Southern Blot was administered for 8 days.
  • the IC50 of Sum was 19.79 ⁇ 7.95 IU/ml, and the selection index was 2.19 ⁇ 0.88.
  • Intracellular HBV-DNA Southern Blot was administered for 8 days.
  • the IC50 of In Lane was 20.06 ⁇ 1.96 g/ml, and the selection index was 2.00 ⁇ 0.20.
  • the IC50 of lamivudine for HBV-DNA dot blot hybridization of cell culture supernatant is Ll 76 g/ml, SI is: 10.54.
  • the overall inhibition was determined by Southern blotting.
  • the IC50 of the two batches were 84.27 and 93.2 ⁇ g/ml, with an average of 88.78 ⁇ 6.37 g/ml, TC50 of 1189.97 g/ml, and SI of 14.23 and 12.85, respectively, with an average of 13.54 ⁇ . 0.97.
  • the formulation of the pharmaceutical composition of the present invention may be in the form of a solid, a solution, an emulsion, a dispersion, a capsule, a liposome or the like, wherein the formulation obtained in the practice of the present invention contains one or more modified human arginase As active ingredient, it is admixed with an organic or inorganic carrier or excipient suitable for enteral or parenteral administration.
  • the active ingredient may be an arginase, for example, associated with tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form of conventional non-toxicity suitable for the production of solid, semi-solid or liquid form preparations.
  • a pharmaceutically acceptable carrier In addition to adjuvants, stabilizers, thickeners and pigments and flavoring agents can also be used.
  • the amount of one or more arginase active ingredients contained in the pharmaceutical formulation is sufficient to produce the desired effect on the target process, condition or disease.
  • the pharmaceutical formulation containing the active ingredient of the present invention may be in a form suitable for oral administration, such as tablets, troches, lozenges, aqueous or oily suspensions, dispersion powders or granules, emulsions, hard or soft capsules, or syrups Or tincture.
  • Oral formulations can be prepared according to any method known in the art for the manufacture of pharmaceutical formulations. Tablets may be uncoated or may be coated by known techniques to delay Disintegration and absorption in the gastrointestinal tract, thereby providing a sustained action over a longer period of time. They can also be coated to form osmotic therapeutic tablets to control release.
  • the oral formulation can be a hard gelatin capsule in which the active ingredient is mixed with an inert solid diluent such as calcium carbonate, calcium phosphate, kaolin or the like. They may also be in the form of soft gelatin capsules in which the active ingredient is mixed with a water or oil medium such as peanut oil, liquid paraffin or olive oil.
  • the pharmaceutical formulation may also be a sterile injectable solution or suspension.
  • This suspension may be formulated according to known methods using a suitable dispersing or moisturizing or suspending agent.
  • the sterile injectable preparation may also be a sterile injection solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,4-butanediol. Innocent, hard-to-play oils are routinely used as solvents or suspension media.
  • Any mild, non-volatile oil may be used for this purpose, including synthetic mono- or diglycerides, fatty acids (including oleic acid), natural vegetable oils such as sesame oil, coconut oil, peanut oil, cottonseed oil, or synthetic fatty acid carriers, such as Ethyl oleate and the like. If necessary, buffers, glucose solution preservatives, antioxidants, etc. may be incorporated or they may be used as solutes to dissolve soluble enzymes.
  • the pharmaceutical formulation can also be used as an adjunctive therapeutic with other chemotherapeutic agents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

用精氨酸酶治疗肝炎的药物组合物和方法 技术领域
本发明涉及药物组合物及其使用方法。 具体地说, 本发明涉及一种 能够治疗肝炎的药物组合物。 背景技术
治疗肝炎的抗病毒药物有很多, 目前多用以下几种: (1)干扰素: 是 一种广谱抗病毒剂, 并不直接杀伤或抑制病毒, 而主要是通过细胞表面 受体作用使细胞产生抗病毒蛋白, 从而抑制乙肝、 丙肝病毒复制, 同时 还可以增强自然杀伤细胞、 巨噬细胞和 τ淋巴细胞的活力, 从而起到免 疫调节作用并增强抗病毒能力。 (2)白细胞介素 -2: 即 T细胞生长因子, 具有调节免疫、 抗病毒、 抗肿瘤作用。 (3)核苷类化合物: 如阿昔洛韦是 一种合成的无环嘌呤核苷类化合物, 可抑制多种脱氧核糖核酸病毒的增 殖。 (4)阿糖腺苷类: 体内、 体外均证明对乙肝病毒有潜在的作用。 经观 察用药期间部分患者的脱氧核糖核酸聚合酶阴转, 生化和肝组织异常也 有好转。(5)其他: 促肝细胞生长素、 胸腺肽、 抗乙肝核糖核酸、病毒唑、 左旋咪唑、 香菇多糖、 强力宁及植物血凝素等。 然而, 以上药物的疗效 仍未臻理想, 且易引起不良副作用。 发明内容
因此, 本发明的一个方面提供一种更有效的肝炎治疗药物。 具体地 说, 本发明提供一种选择性降低患者体内精氨酸水平的药物来治疗肝炎。
本发明的另一个方面是提供一种可降解精氨酸的酶 (即精氨酸降解 酶)在制药方面的应用。 在一个优选的实施方案中, 本发明的精氨酸降 解酶是精氨酸酶或精氨酸脱亚胺酶。 在一个优选的实施方案中, 本发明 的精氨酸降解酶是一种分离的且基本上纯化的重组精氨酸酶。 在一个更 优选的实施方案中, 本发明的精氨酸酶是人精氨酸酶 I。 在更优选的实施 方案中,本发明的人精氨酸酶 I基本上具有与 SEQ ID NO: 1或 SEQ ID NO: 2基本上相同的核苷酸序列, 其中, 所述核苷酸序列编码具有与 SEQ ID NO: 3基本上相同的氨基酸序列。在另一个优选的实施方案中, 本发明的 重组精氨酸酶的纯度为 80-100°/。。 在更优选的实施方案中, 本发明的重 组精氨酸酶的纯度为 90-100%。
在又一个实施方案中, 本发明的精氨酸酶经修饰具有足够高的酶活 性和稳定性以在患者体内保持 3 天的"足够的精氨酸剥夺"(adequate arginine deprivation,以下简称 AAD:)。 一个优选的修饰方法是将本发明的 精氨酸酶氨基末端连接 6个组氨酸。 另一个优选的修饰为聚乙二醇化 (pegylation)以提高所述酶的稳定性使患者发生的免疫反应性最小。 在更 优选的实施方案中, 本发明的聚乙二醇化包括透过一个偶联剂将精氨酸 酶与至少一个聚乙二醇组份共价结合。 在最优选的实施方案中, 偶联剂 是 2,4,6-三氯 三嗪(三聚氰氯, CC)或琥珀酰亚胺丙酸(SPA)。 经过修 饰的精氨酸酶具有至少 250 I.UJmg的酶活性。 更优选的是具有至少 300-350 LU./mg的酶活性, 最优选的是至少 500 I.U,/mg的酶活性。 在另 一个实施方案中, 所述酶被修饰成在血清或血桨中具有足够稳定性, 并 有大约至少三日的半衰期。
在另一个优选的实施方案中, 本发明提供的制药应用所制备的药品 可用来治疗肝炎。 在一个更优选的实施方案中, 本发明提供的制药应用 所制备的药品可用来治疗乙型肝炎。
本发明的另一方面涉及一种药物组合物, 包含一种分离的且基本上 纯化的重组精氨酸酶。 在一个具体的实施方案中, 本发明的药物组合物 包含的重组精氨酸酶的纯度为 80-100%。 在一个优选的实施方案中, 重 组人精氨酸酶是任何一种可降解精氨酸的酶, 例如精氨酸脱亚胺酶或人 精氨酸酶 I。 在更优选的实施方案中, 所述酶是基本上具有核苷酸序列 SEQIDNO:l或 SEQIDNO: 2的人精氨酸酶 I, 其中, 所述核苷酸序列编 码具有 SEQ ID NO: 3的氨基酸序列。 在优选的实施方案中, 所述的精氨 酸酶具有足够高的酶活性和稳定性已在患者体内保持至少 3天 AAD。 在 最优选的实施方案中, 所述精氨酸酶还通过聚乙二醇化修饰以改良稳定 性使免疫反应最小化。
在另一个优选的实施方案中, 本发明的药物组合物能够降低患者体 内精氨酸水平。 在一个更优选的实施方案中, 本发明的可调节肝炎。 在 一个最优选的实施方案中, 本发明的药物组合物可以治疗乙型肝炎。 在 另一个实施方案中, 本发明的药物组合物进一步被制备成固体、 液体、 乳状液、 悬浮液、 微胶粒、 或微脂体的形式。 在另一个实施方案中, 本 发明的药物组合物的配方是适用于口服或注射的形式。 附图说明
图 1A, IB和 1C是人精氨酸酶 I的核苷酸序列及其推导的氨基酸序 列。 图 1A是质粒 ρΑΒΙΟΙ的 EcoRI/Miml至 Xbal位点的核苷酸序列 (SEQ IDNO:l)o 核苷酸 (nt)l-6, EcoRI/Munl位点; nt 481-486, 启动子 1的 -35 区域; nt 504-509, 启动子 1的 -10区域; nt544-549, 启动子 2的 -35区域; nt 566-571 ,启动子 2的 -10区域; nt 600-605,核糖体结合位点; nt 614-616, 起始密码子; nt 632-637, Ndel位点; nt 1601-1603 , 终止密码子; nt 1997-2002, Xbal位点。 图 1B是经修饰的人精氨酸酶的编码核苷酸序列 (SEQ ID NO: 2)及其 相应编码的氨基酸序列 (SEQ ID NO: 3 )。 图 1A中核苷酸 614-1603是修 饰的精氨酸酶氨基酸序列的编码区。 N末端的 6组氨酸 (SEQ ID NO:4)标 记以下划线标示。 翻译终止密码子以 *标示。 图 1C是正常人精氨酸酶 I的编码核苷酸序列 (SEQ ID NO:8)及其 相应编码的氨基酸序列 (SEQ ID NO:9)。 具体实施方案
本发明所用术语"聚乙二醇化精氨酸酶"是指通过聚乙二醇化修饰的 本发明精氨酸酶 I (见专利申请 WO2004/001048的说明书), 以提高所述 酶的稳定性及使免疫反应性最小化。
本发明所用术语"基本相同"无论是针对 DNA的核苷酸序列, R A的 核糖核苷酸序列, 还是蛋白质的氨基酸序列, 均是指与本发明所揭示的实 际序列有微小的及非相因而生的序列变化的序列。具有基本相同序列的种 类被认为与所揭示序列相等价并包含在所附权利要求范围内。 在此方面, "微小的及非相因而生的序列变化 "是指与本文所揭示的和 /或权利要求的 DNA, RNA或蛋白质基本相同的序列与本文揭示的和 /或权利要求的序列 功能等价。功能等价序列以基本相同的方式起作用, 产生与本文所揭示的 和权利要求的核酸和氨基酸组合物基本相同的组合物。特别地, 功能相等 的 DNA编码与本文所揭示的那些蛋白质相同的蛋白质, 或者编码具有保 守氨基酸变化的蛋白质,所述变化如用一个非极性残基取代另一个非极性 残基, 或者用一个带电残基取代另一个相似带电的残基。这些变化包括本 领域技术人员已知的那些基本不改变蛋白质三级结构的变化。 术语"足够 高的酶活性"是指重组人精氨酸酶的酶比活性为至少 250 LU./mg, 优选至 少 300-350 LU./mg, 更优选至少 500 I.U./mg。 在一个优选的实施方案中, 所述精氨酸酶的比活性为 500— 600 I.U./mg。 术语"稳定性"是指所述精氨 酸酶在体外的稳定性。 更优选地, 所述稳定性是指在体内的稳定性。 酶 活性降低率与分离的纯化的重组人精氨酸酶的血浆稳定性成反比。 这种 关系可从人精氨酸酶在血桨中的半衰期反映出来。 ' 本发明所用术语"足够的精氨酸剥夺 (AAD)"是指体内精氨酸水平为 ΙΟ μΜ或低于 10 μΜ。本发明所用术语"半衰期 "是指所述精氨酸酶在体外 人血浆中的浓度降至一半所需的时间。
所有其他本说明书未提及的技术手段与术语释义等资料, 皆可在专 利申请 WO2004/001048和 WO2004/000349的说明书找到。
为研究精氨酸酶的抗乙型肝炎病毒的作用, 本发明在乙型肝炎病毒 基因转染的人肝癌细胞系 2.2.15细胞中, 研究了精氨酸酶对细胞的毒性, 对 HBsAg和 HBeAg分泌以及对 HBV-DNA的抑制作用。 并以英国葛兰 素威康公司生产的抗乙型肝炎病毒药拉米夫定作为阳性对照进行了比 较。 结果显示: 聚乙二醇化重组精氨酸酶的半数中毒浓度 (TC50) CPE 法加药 8天为 40IU/ml, 最大无毒浓度 (TC0)为 20±0 IU/ml。 无毒浓度 20IU/ml二批实验对细胞 HBeAg的分泌抑制率为 68.69±8.89, IC50为 6.37±0.45IU/ml, SI 为 6.30±0.45。 对细胞 HBsAg 的分泌抑制率为 29.81+27.35, IC50为 10.72IU/ml (—批实验), SI为 3.73(—批实验)。对细 胞培养上清液内 HBV-DNA斑点杂交 IC50为 13.18±0.45 IU/ml,选择指数 为 3.19±0.98。 对细胞内的 HBV-DNA Southern Blot Sum 的 IC50为 19.79±7.95 IU/ml,选择指数为 2.91士 0.88。对细胞内的 HBV-DNA Southern Blot In Lane的 IC50为 20,06±1.96 IU/ml, 选择指数为 2.00±0.20。 阳性对 照拉米夫定的半数中毒浓度 (TC50 ) 和最大无毒浓度 (TC0)分别为 1198.97197.50和 800±(^g/ml。最大无毒浓度药液 SOO g/ml加入 2.2.15细 胞培养 8天, 对 HBeAg和 HBsAg的分泌无明显抑制作用。 对细胞培养 上清液的 HBV-DNA斑点杂交的 IC50为 113.76 g/ml, 选择指数 SI为 10.54。 对细胞的 HBV-DNA Southern Blot Sum 抑制的 IC50 为 88.78±6.37 g/ml, 选择指数 SI为 13,54±0.97, 与多次实验和文献一致, 说明实验可靠。结果提示: 精氨酸酶对 2,2.15细胞分泌 HBsAg和 HBeAg 以及细胞 HBV-DNA明显抑制作用。 实施例 1 试验材料的准备
1.1 受试药
名称:聚乙二醇化重组人精氨酸酶 (BCT-100),以下简称"精氨酸酶"。 所述酶具有图 ΙΑ, ΙΒ和 1C所表示的核苷酸序列及其推导的氨基酸序列。 制备方法: 请参考 WO2004/001048 说明书实施例 1-8。 在 WO2004/001048的最早申请日之前, 可向 Ikemoto Masaki教授于日本的 实验室取得重组人精氨酸酶 (京都大学; 通信地址: 53 Kawahara-cho, Shogoin, Sak o-ku, Kyoto-shi, Kyoto 606-8507 Japan )。 待测药物实验时根 据所设计剂量组浓度用 MEM培养液配制。 保存条件: 4Ό冰箱保存。
1.2 阳性对照药:拉米夫定英国葛兰素威康公司生产,批号: B008923, 每片含量 100mg, 药物经培养液浸泡、 溶解, 离心去沉淀。 实验时根据 所设计剂量组浓度用 MEM培养液配制。 保存条件: 4Ό冰箱保存。
1.3 2.2.15细胞: 乙型肝炎病毒 (HBV)基因转染人肝癌细胞 (Hep G2) 的 2.2.15细胞系,美国 Mount Sinai医学中心构建, 我室引进后自行传代 培养。
1.4 试剂: Eagles MEM干粉、 G-418(Geneticin)、 酵母 t-RNA、蛋白酶 K,美国 GIBCO公司产品;
胎牛血清, 美国 Hyclone Lab公司产品;
L-谷氨酰胺, 京科化学试剂公司进口分装;
HBsAg HBeAg固相放免测定盒, 中国同位素公司北方免疫试剂研 究所; ' 卡那霉素, 华北制药厂产品;
聚乙二醇,瑞典 Fluka产品;
二甲基亚砜, SIGMA公司产品
d-32p-dCTP, 北京亚辉生物医学工程公司产品;
1.5 实验用品及仪器: 培养瓶, 丹麦 Tundcrn TM;
培养板%孔板、 24孔板、 6孔板美国 Coming公司产品;
二氧化碳孵箱, 美国 Shd-Lab产品;
γ-计数仪, 德国 BECKMAN产品;
扫描仪: MICROTEK产品;
gel-pro analyzer软件: MEDIA Cybemetice®产品;
1.6 细胞培养液及试剂配制
MEM培养液 100ml: 含胎牛血清 10%, 谷氨酰胺 0.03°/。, G418 380 g/ml, 卡那霉素 50 g/ml。
1.7 2.2.15细胞培养
在长满 2.2.15细胞的培养瓶内加 0.25%胰酶, 37°C消化 10分钟, 加 培养液吹散, 1:3传代, 10天长满。 实施例 2: 精氨酸酶对细胞毒性试验
实验分对照组和不同药物浓度药物组。 细胞消化, 配制成每毫升 20 万个细胞, 接种培养板, 96孔板每孔 100μ1, 37 C 5% C02培养 24小时, 细胞长成单层后进行实验。精氨酸酶用培养液配制成 40IU/ml溶液, 2倍 稀释 20、 10、 5、 2.5 IU/ml加入 96孔细胞培养板, 共 5个稀释度, 每浓 度 3孔, 每 4天换同浓度药液, 以观察细胞病变为指标, 8天或 4天显微 镜下观察细胞病变, 完全破坏为 4; 75%为 3; 50%为 2; 25%为 1; 充病 变为 0。 按 Reed- Muench法计算半数有毒浓度 (TC50)和最大无毒浓度 (TCO)0
50 - B
TC50 = Antilog- (B+― xC )
A ~ B
A=log>50%药物浓度 B=log<50%药物浓度 C=log稀释倍数
实施例 3: 精氨酸酶对 HBeAg、 HBsAg抑制试验
试验设 HBsAg、 HBeAg阳性对照组, 阴性对照组, 细胞对照组及不 同药物浓度药物组。 2.2.15细胞每毫升 20万个接种 24? L细胞培养板,每 孔 lml, 37°C 5% C02培养 24小时, 实验药液无毒浓度以下 2倍稀释, 5 个稀释度分别为精氨酸酶 20、 10、 5、 2.5、 1.25 IU/ml, 拉米夫定为 800、 400、 200、 100、 50μδ/ιη1, 每浓度 4孔, 37°C 5% C02培养, 每 4天换原 浓度药液培养,第 8天时收获培养液, -20Ό冰冻保存。 试验重复二批, 分 别测定 HBsAg和 HBeAg。 用 γ-计数仪测定每孔 cpm值。
药物效果计算:计算细胞对照及实验药每浓度 cpm均值及标准差, P/N值和抑制百分率(%),半数有效浓度 (IC50)及选择指数 (SI)。 细胞对照 cpm—给药组 cpm
①抗原抑制百分率(%)= xlOO
细胞对照 cpm
②计算药物抑制抗原半数有效浓度 (IC50):
50— B
IC50 = Antilog (B + x C)
A - B
A=iog>50%药物浓度 B=log<50%药物浓度 C=log稀释倍数 ③精氨酸酶在 2.2.15细胞培养内对 HBsAg和 HBeAg的选择指数 (SI), 按其对细胞毒性指标细胞病变 (SI)计算。
细胞病变毒性 TC50
SI =
IC50
④以 t检验法计算各稀释度 HBsAg、 HBeAg和对照组间 cpm差别的统 计学意义。
实施例 4: -精氨酸酶对 2.2.15细胞 DNA抑制实验
2.2.15细胞上清中 HBV— DNA提取: 2.2.15细胞每毫升 20万个接种 24孔细胞培养板,每孔 lml, 接种后 24小时加入药物, 每 4天换原浓度 药液培养, 加药后培养第 8天收取上清液, 经聚乙二醇沉淀、 蛋白酶 K 裂解、 苯酚: 氯仿: 异戊醇抽提、 无水乙醇沉淀核酸等步骤, 真空抽干, 重溶于 TE缓冲液中作样品。
斑点杂交: 点样: 取 20ul (DNA含量 25ug),经变性、 中和, 并以 20X SSC缓冲液对倍稀释至 1:8倍稀释于硝酸纤维素膜上,并经干烤、预杂交、 杂交、 洗膜、 放射自显影等步骤。 以常规方法冲洗 X光片。 扫描仪扫描 光片, 用 gel-pro软件测定密度, 计算抑制率及 IC50。
IOD-TIOD
2.2.15细胞培养液中 HBV-DNA抑制 = xl00%
CIOD
Southern blot: 2.2.15细胞内 HBV— DNA提取: 2.2.15细胞加药后培 养 8天, 吸除培养液收取细胞, 细胞经裂解液裂解, 等体积苯酚: 氯仿: 异戊醇抽提 2次, 加无水乙醇沉淀核酸, 真空抽干, 重溶于 20ulTE缓冲 液中, 加入 DNA样品缓冲液,将样品加于琼脂糖胶上电泳。 电泳后依次 经变性、 中和、 转膜后。 同斑点杂交膜一同进行烤膜、 杂交、 暴光。 扫 描仪扫描光片, 以 gel-pro凝胶分析软件分析相对密度, 计算抑制率及 IC50。 结果
细胞培养毒性按 Reed-Muench法计算半数有毒浓度 (TC50)和最大无 毒浓度 (TC0)。 对 HBsAg和 HBeAg抑制效果按所列公式计算, 对 HBV-DNA抑制效果以 gel-pro凝胶分析软件分析光片相对密度, 计算抑 制率及 IC50。
1.精氨酸酶在 2.2.15细胞培养中的细胞毒性
为观察精氨酸酶对乙型肝炎病毒基因转染的人肝癌 2.2.15细胞的毒 性, 在接种 2.2.15细胞后 24小时, 加 2倍稀释药液。 40 IU/ml开始: 20、 10、 5、 2.5 IU/ml, 4天换一次药液, 维持 8天, 用显微镜观察细胞病变, 镜检 CPE, 结果: 精氨酸酶对乙型肝炎病毒基因转染的人肝癌 2.2.15细 胞毒性实验 CPE法 (加药 8天): 二批实验半数中毒浓度 (TC50) 为 40 IU/ml, 最大无毒浓度 (TCO)为 20±(^g/ml。 阳性对照拉米夫定半数中毒浓 度 (TC50)为: 1198.97±97.5(^g/ml。最大无毒浓度 (TC0)为: 800±(^g/ml。(见 表 1A.)
2.精氨酸酶对 HBeAg、 HBsAg抑制试验
精氨酸酶和阳性对照药拉米夫定最大无毒浓度加入 2.2.15细胞培养 中, 第 8天测定 HBsAg和 HBeAg表达的 cpm值, 计算药物抑制效果。 实验结果见表 2.。
2.1.精氨酸酶对 HBeAg的抑制率 .
精氨酸酶两批实验: 自最大无毒浓度 20IU/ml, 2倍稀释 10、 5、 2.5、 1.25 IU/ml各浓度组对 2.2.15细胞培养第 8天上清液 HBeAg的平均抑制 率分别为: 20 IU/ml抑制 68.69±8.89%; 10 IU/ml抑制 60.73±17.49%; 5 IU/ml 抑制 53.96±20.36%; 2.5 IU/ml抑制 51.83±14.16°/。; 1.25 IU/ml抑制 37.34°/。。 平均半数有效浓度(IC50)为 6.37±0.45IU/mi,选择指数(SI)为 6.30±0.45。
2.2.精氨酸酶对 HBsAg的抑制率
精氨酸酶第 1批实验: 20、 10、 5、 2.5、 1.25 IU/ml各浓度组对 2.2.15 细胞培养第 8天上清液 HBsAg的抑制率分别为 49.16%, 47.97%, 42.29% 和 37.18%, 半数有效剂量(IC5Q) 为 10.72IU/ml, 选择指数为 3.7.3。 但 第 2批试验抑制率较低,最大无毒浓度 20IU/ml对 HBsAg抑制%未达 50%,
Figure imgf000013_0001
2.3.拉米夫定对 HBsAg和 HBeAg的作用
拉米夫定自最大无毒浓度 SOO g/ml开始 2倍稀释、 400、 200、 100、 50μ§/πι\加入 2.2.15细胞培养体系中,第 8天测定培养液 HBsAg和 HBeAg 滴度, 计算抑制效果(见表 1B)。
2.4.拉米夫定对 HBeAg的抑制率
两批试验拉米夫定 800、 400、 200、 100、 50 g/ml各浓度组对 2.2,15 细胞培养第 8 天上清液 HBsAg 的平均抑制率为:. 8.23±3.02%、 12.99±0.46%、 17.83±2.09%、 15.84±2.33%> 14.10±1.27°/。。 无明显抑制作 用。
2.5.拉米夫定对 HBsAg的抑制率
两批试验拉米夫定 800、 400、 200、 100、 50 g/ml各浓度组对 2.2.15 细胞培养第 8 天上清液 HBeAg的平均抑制率分别为 :4.65±6.58%、 4.05±5,73%、 5.67+4.70% > 8.60±4.88%、 3.45±3.95°/。。 无明显抑制作用。 11
表 1A.精氨酸酶在 2215细胞培养内对 HBsAg和 HBeAg的抑制作用 (%)
药 加
实验 药物浓 HBeAg (GPM) HBsAg (CPM) 物 药
批次 度 IU/ml IC50
抑制% SI 1C50 名 抑制%
天 SI
IU/ml IU/ml
20 74.9808 6.69 5.98 49.1558 10.72 3.73
1 8 10 73.0985 47.9651
5 68.3484 42.2871
精 2.5 61.8387 37.1787
20 62.4033 6.05 6.61 10.4731 >20.00- - 氨
10 48.3596 6.0761
酸 2 8 5 39.5618 1.4739
酶 2.5 41.8149 2.6703
1.25 37.3426 4.463
20 68.69±8.89 29.8 ]±27.35 第 1批 二批 10 60.73± 17.49 27.02±29.62 10.72
'5 53.96±20.36 21晝 28.86
实验 6.37+0.45 6.30+0.45
2.5 51.83±14.16 第 2批
19.92+24.40
平均 1.25 37.34 4.46 >20
未平均
表 IB.拉米夫定在 2215细胞培养内对 HBsAg和 HBeAg的抑制作用(%)
Figure imgf000015_0001
3.精氨酸酶和拉米夫定对 2.2.15细胞培养上清液 HBV-DNA的抑制作用 3.1精氨酸酶在 2.2.15细胞培养上清液中 HBV-DNA斑点杂交
精氨酸酶在 2.2.15细胞培养上清液中对 HBV-DNA的作用,加药后培 养 8天两批实验原液对 HBV-DNA的 IC50分别为 16.04、 10.31IU/ml, 平 均 IC50为 13.18±4.05 IU/ml,选择指数分别为 2.49、 3.88, 均: 3.19±0.98。 结果见(表 2. )。
表 2.精氨酸酶在 2.2.15细胞培养上清液中对 HBV-DNA的作用
Figure imgf000016_0001
2拉米夫定在 2.2.15细胞培养中对上清液中 HBV-DNA的作用
. 拉米夫定一批实验对 2.2.15细胞上清液内 HBV-DNA的作用, IC50为 13.76 g/ml, TC50为 1198.97±97.5(^g/ml,选择指数为 10.54。 结果见表 。
Figure imgf000016_0002
表 3.拉米夫定在 2.2.15细胞培养中对上清液中 HBV-DNA的作用 3.3.精氨酸酶和拉米夫定在 2.2.15细胞内对 HBV— DNA Southern Blot的 抑制作用
3.3.1精氨酸酶在 2.2.15细胞内对 HBV— DNA的 Southern Blot抑制作用 结果表明: 精氨酸酶加药后培养 8天对 2.2.15细胞内总 HBV-DNA Southern印迹测定的总的抑制作用: 二批实验 IC50 分别为 25.42、 14.17IU/ml, 平均 IC50为 19.79±7.95IU/ml,选择指数分别为 1.57、 2.82, 平均: 2.19±0.88。 对 2.2.15细胞内总 HBV-DNA Southern印迹测定的 In Lane的抑制作用: 二批实验 IC50分别为 21.45、 18.67IU/ml, 平均 IC50 为 20.06±1.96IU/ml,选择指数分别为 1.86、 2.14, 平均: 2,00±0.20。 结果 见表 4. 表 4.精氨酸酶在 2.2.15细胞内 HBV— DNA Southern Blot的抑制作用
Figure imgf000017_0001
3.3.2拉米夫定在 2.2.15细胞内 HBV— DNA的 Southern Blot抑制作用 - 结果表明: 拉米夫定对 2.2.15 细胞培养的细胞内总 HBV-DNA Southern 印迹测定总的抑制作用, 两批实验 IC50 分别为: 84,27和 93.28 g/ml, 平均为 88.78±6,37 g/ml, TC50为 1198.97 g/ml, SI分别为 14.23和 12.85, 平均为 13.54±0.97 (见表 5)。 表 5.拉米夫定在 2.2.15细胞内 HBV— DNA Southern Blot的抑制作用
Figure imgf000018_0001
讨论
本试验在乙型肝炎病毒转染人肝癌细胞 2215细胞系培养中观察了精 氨酸酶和抗乙型肝炎病毒阳性对照药物拉米夫定加药后培养 8天对细胞 的毒性, 对 HBsAg和 HBeAg分泌及细胞培养上清和细胞内 HBV-DNA 的抑制作用, 总结见表 6。
表 6.精氨酸酶和拉米夫定在 2.2.15细胞培养内对 HBV抑制作用总结表
Figure imgf000018_0002
注: ①第 1批实验, ②第 2批实验 1.精氨酸酶对 2.2.15细胞培养的毒性
精氨酸酶半数中毒浓度(TC50)为: 40 IU/ml,无毒浓度 (TC0)为 20±0
' 阳性对照拉米夫定的半数中毒浓度 (TC50) 为: 1198.97±97.50μ /ιη1; 无毒浓度 (TC0) 为: 300±(^g/ml。
2. 精氨酸酶和拉米夫定在 2.2.15细胞培养内对 HBsAg和 HBeAg的分泌 的抑制作用
精氨酸酶最大无毒浓度 20 IU/ml 以下 2倍稀释 4个浓度分别加入 2.2.15 细胞培养 8 天, 两批实验平均对 HBeAg 分泌的抑制率为 68.69±8.89%, 对 HBeAg的半数有效浓度(IC50)为: 6.37±0.45 IU/ml,选 择指数(SI) 为: 6.30±0.45。 对 HBsAg分泌的抑制率为 29.81±27.35%, 对 HBsAg的半数有效浓度(IC50):第 1批为: 10.72 IU/ml,选择指数(SI) 为: 3.73 , 第 2批 20 IU/ml。
抑制率未达 50%, IC50 >20 IU/ml, SI:≤K 两批试验未作平均。 拉米夫定最大无毒浓度药液 800μ§/ηι1加入 2.2.15细胞培养 8天, 对 HBeAg和 HBsAg的分泌无明显抑制作用。不能计算半数有效浓度和选择 指数。
3.精氨酸酶和拉米夫定在 2.2.15细胞培养内对 HBV-DNA抑制作用
结果表明: 精氨酸酶对细胞培养上清内 HBV-DNA斑点杂交加药 8 天 IC50为 13.18±4.05 IU/ml,选择指数为 3.19±0.98。对细胞内的 HBV-DNA Southern Blot加药 8天 Sum的 IC50为 19.79±7.95 IU/ml, 选择指数为 2.19±0.88。 对细胞内的 HBV-DNA Southern Blot加药 8天 In Lane的 IC50 为 20.06±1.96 g/ml, 选择指数为 2.00±0.20。
拉米夫定对细胞培养上清的 HBV-DNA 斑点杂交的 IC50 为 ll 76 g/ml, SI为: 10.54。 Southern印迹测定总的抑制作用,两批实验 IC50分别为: 84.27和 93.2^g/ml, 平均为 88.78±6.37 g/ml, TC50为 1198.97 g/ml, SI分别为 14.23和 12.85, 平均为 13.54±0.97。
必需注意本文所用的及在权利要求中所用的单数形式术语"一个" "这 个,,除非特别指出, 还包括复数形式。 因此, 例如"一种药物制品"包括不 同制品的混合物, "治疗方法"包括本领域技术人员已知的等价的步骤和 方法等等。
除非另外指出, 本文所用所有技术和科学术语具有与本领域技术人 员通常理解的相同的含义。 尽管与本文所述的那些相似或相同的任何方 法和材料可以用于本发明的实践和测试中, 但本文描述了优选的方法和 材料。 本文提及的所有出版物在此并入参考, 以阐述和揭示与所引用的 内容相关联的特殊内容。 本发明已经充分地进行了描述, 本领域技术人 员可以在本发明范围内对其加以修改。 所有这种修改包含在本发明的范 围内。
本发明的药物组合物的配方可以是固体,溶液,乳液,分散液,胶囊, 脂质体等形式使用,其中在本发明的实际应用中所得配方含有一或多种修 饰的人精氨酸酶作为活性成分,与适于肠道或非肠道施用的有机或无机载 体或赋形剂混合。所述活性成分可以是精氨酸酶, 例如伴有用于片剂、 小 丸、 胶囊、 栓剂、 溶液、 乳液、 悬浮液和适于生产固体、 半固体或液体形 式制剂的任何其它形式的常规非毒性的药物可接受的载体。除了辅助剂之 外, 还可以使用稳定剂, 增稠剂和色素及香味剂。 所述药物配方中包含的 一或多种精氨酸酶活性成分的量足以对靶过程、 症状或疾病产生所需作 用。
含有本发明活性成分的药物配方可以是适于口服形式的, 例如片剂, 口含片 (troches), 锭剂, 水性或油性悬浮液, 分散粉末或颗粒, 乳液, 硬或软胶囊, 或糖浆或酏剂。 口服配方可以根据本领域已知生产药物配方 的任何方法制备。 片剂可以无包衣, 或者可以通过已知技术包衣, 以延迟 在胃肠道中的崩解和吸收, 从而在更长的时间内提供持续作用。它们也可 以包衣形成渗透性治疗片剂以控制释放。
在一些情况中, 口服配方可以是硬明胶胶囊, 其中活性成分与惰性固 体稀释剂例如碳酸钙, 磷酸钙, 高岭土等混合。 它们也可以是软明胶胶囊 形式, 其中活性成分与水或油介质例如花生油、 液体石蜡或橄榄油混合。
• 所述药物配方也可以是无菌注射溶液或悬浮液。这种悬浮液可以根据 已知方法配制, 使用适当的分散或增湿剂或悬浮剂。所述无菌注射制品也 可以是在无毒肠道外可接受的稀释剂或溶剂中的无菌注射溶液或悬浮液, 例如于 1,4-丁二醇中的溶液。无萆的不易发挥的油常规用作溶剂或悬浮介 质。为此目的可以应用任何柔和的不易挥发油, 包括合成的甘油一酯或甘 油二酯, 脂肪酸 (包括油酸), 天然植物油如芝麻油, 椰子油, 花生油, 棉花子油, 或者合成的脂肪酸载体, 如油酸乙酯等。 如果需要, 可以惨入 缓冲剂,葡萄糖溶液防腐剂, 抗氧化剂等或者它们可以用作溶质以溶解可 溶的酶。
所述药物配方也可以作为辅助治疗剂, 与其它化疗剂一起使用。

Claims

1. 一种精氨酸降解酶在制备治疗肝炎药品中的应用。
2. 如权利要求 1的应用, 其中, 所述酶是一种分离的且基本上纯化 的重组精氨酸酶。
3. 如权利要求 1的应用, 其中, 所述重组精氨酸酶的纯度为 80-100%。 权
4. 如权利要求 3的应用,其中,所述重组精氨酸酶是人精氨酸酶 I。
5. 如权利要求 3 的应用, 其中, 所述重组精氨酸酶是精氨酸脱亚 胺酶。
6. 如权利要求 4的应用,其中,所述酶具有与 SEQ ID NO: l或 SEQ ID NO:2基本上相同的核苷酸序列, 其中, 所述核苷酸序列编码具有与 SEQ ID NO:3基本上相同的氨基酸序列。 书
7. 如权利要求 4的应用, 其中, 所述酶具有至少 250 I.UJmg的酶 活性。
8. 如权利要求 4 的应用, 其中, 所述酶被修饰成在血清或血浆中 具有足够稳定性, 并有大约至少三日的半衰期。
9. 如权利要求 8的应用, 其中, 所述修饰为聚乙二醇化。
10. 如权利要求 9的应用, 其中, 所述聚乙二醇化包括通过一个偶 联剂将所述酶与至少一个聚乙二醇组份共价结合。
11. 如权利要求 9的应用, 其中, 所述偶联剂是 2,4,6-三氯 -S-三嗪 或琥珀酰亚胺丙酸。
12. 如权利要求 4的应用, 其中所述人精氨酸酶 I的氨基末端连接 6个组氨酸。
13. 如权利要求 1的应用, 其中, 所述肝炎为乙型肝炎。
14. 一种药物组合物, 其包含一种用于治疗肝炎的精氨酸降解酶。
15. 如权利要求 14的药物组合物, 其中, 所述精氨酸降解酶是一 种分离的且基本上纯化的重组精氨酸酶。
16. 如权利要求 15的药物组合物,其中,所述酶的纯度为 80-100%。
17. 如权利要求 15的药物组合物, 其中, 所述重组精氨酸酶是人
18. 如权利要求 15的药物组合物, 其中, 所述重组精氨酸酶是精 氨酸脱亚胺酶。
19. 如权利要求 17的药物组合物,其中,所述酶具有基本上与 SEQ ID NO: l或 SEQ ID NO:2相同的核苷酸序列, 其中, 所述核苷酸序列编 码具有基本上与 SEQ ID NO:3相同的氨基酸序列。
20. 如权利要求 17的药物组合物, 其中, 所述酶具有至少 250 I.UJmg的酶活性。 .
21. 如权利要求 17的药物组合物, 其中, 所述酶在患者血浆中的 半衰期至少为 3天。
22. 如权利要求 17的药物组合物, 其中, 所述酶在患者血浆中的 半衰期至少为 1天。
' 23. 如权利要求 17的药物组合物, 其中, 所述酶经聚乙二醇化的 方法修饰。
24. 如权利要求 17的药物组合物, 其中所述酶的氨基末端连接 6 个组氨酸。
25. 如权利要求 14 的药物组合物, 其中所述酶能够降低患者体内 精氨酸水平。
26. 如权利要求 14的药物组合物, 其中所述酶可调节肝炎。
27. 如权利要求 14的药物组合物, 其中所述肝炎为乙型肝炎,
28. 如权利要求 14 的药物组合物 其中所述组合物进一步被
Figure imgf000023_0001
成固体、 液体、 乳状液、 悬浮液、 微胶粒, 或微脂体的形式。
29. 如权利要求 14的药物组合物, 其中所述组合物的配方是适用 于口服或注射的形式。
PCT/CN2005/001411 2004-09-08 2005-09-06 Composition pharmaceutique et methode de traitement de l'hepatite avec des arginases WO2006026915A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05783950A EP1803465A4 (en) 2004-09-08 2005-09-06 PHARMACEUTICAL COMPOSITION AND METHOD FOR TREATING HEPATITIS WITH ARGINASES
JP2007530572A JP2008512399A (ja) 2004-09-08 2005-09-06 医薬組成物およびアルギナーゼを用いる肝炎の処置方法
US11/680,631 US20080299638A1 (en) 2004-09-08 2007-03-01 Pharmaceutical Composition and Method of Treating Hepatitis with Arginases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410076854.4 2004-09-08
CNA2004100768544A CN1745847A (zh) 2004-09-08 2004-09-08 用精氨酸酶治疗肝炎的药物组合物和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/680,631 Continuation US20080299638A1 (en) 2004-09-08 2007-03-01 Pharmaceutical Composition and Method of Treating Hepatitis with Arginases

Publications (1)

Publication Number Publication Date
WO2006026915A1 true WO2006026915A1 (fr) 2006-03-16

Family

ID=36036072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001411 WO2006026915A1 (fr) 2004-09-08 2005-09-06 Composition pharmaceutique et methode de traitement de l'hepatite avec des arginases

Country Status (6)

Country Link
US (1) US20080299638A1 (zh)
EP (1) EP1803465A4 (zh)
JP (1) JP2008512399A (zh)
KR (1) KR20070100875A (zh)
CN (1) CN1745847A (zh)
WO (1) WO2006026915A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124547A1 (en) * 2009-03-26 2010-11-04 The Hong Kong Polytechnic University Site-directed pegylation of arginases and the use thereof as anti-cancer and anti-viral agents

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3778885T (lt) 2008-10-31 2023-06-12 Aerase, Inc. Dirbtinai sukurtų žmogaus arginazių kompozicijos ir vėžio gydymo metodai
CN103184209B (zh) 2011-12-27 2015-09-16 拜奥生物科技(上海)有限公司 人精氨酸酶和聚乙二醇化人精氨酸酶及其应用
ES2897635T3 (es) 2014-04-29 2022-03-02 Bio Cancer Treat International Ltd Métodos y composiciones para modular el sistema inmunológico con la arginasa I
ES2909556T3 (es) 2016-08-08 2022-05-09 Aerase Inc Composiciones y procedimientos para el tratamiento de cáncer con agentes de disminución de arginina y de inmunoncología
EP3720476A1 (en) 2017-12-05 2020-10-14 AERase, Inc. Method and composition for treating arginase 1 deficiency
MX2022012987A (es) * 2020-04-17 2023-01-18 Bio Cancer Treat International Limited Metodos de tratamiento de infecciones virales usando arginasa.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140588A (zh) * 1995-07-19 1997-01-22 郝文学 治疗肝病的药物“疏肝酶”及其制法
WO2004001048A1 (en) * 2002-06-20 2003-12-31 Bio-Cancer Treatment International Limited Pharmaceutical composition and method of treatment of human malignancies with arginine deprivation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780286A (en) * 1996-03-14 1998-07-14 Smithkline Beecham Corporation Arginase II
US5851985A (en) * 1996-08-16 1998-12-22 Tepic; Slobodan Treatment of tumors by arginine deprivation
US6183738B1 (en) * 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
WO2004000349A1 (en) * 2002-06-20 2003-12-31 Bio-Cancer Treatment International Limited Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140588A (zh) * 1995-07-19 1997-01-22 郝文学 治疗肝病的药物“疏肝酶”及其制法
WO2004001048A1 (en) * 2002-06-20 2003-12-31 Bio-Cancer Treatment International Limited Pharmaceutical composition and method of treatment of human malignancies with arginine deprivation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1803465A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010124547A1 (en) * 2009-03-26 2010-11-04 The Hong Kong Polytechnic University Site-directed pegylation of arginases and the use thereof as anti-cancer and anti-viral agents
US8507245B2 (en) 2009-03-26 2013-08-13 The Hong Kong Polytechnic University Site-directed pegylation of arginases and the use thereof as anti-cancer and anti-viral agents

Also Published As

Publication number Publication date
KR20070100875A (ko) 2007-10-12
EP1803465A1 (en) 2007-07-04
JP2008512399A (ja) 2008-04-24
US20080299638A1 (en) 2008-12-04
EP1803465A4 (en) 2009-08-12
CN1745847A (zh) 2006-03-15

Similar Documents

Publication Publication Date Title
RU2389501C2 (ru) Применение модифицированных циклоспоринов для лечения заболеваний, вызванных hcv
ES2207830T3 (es) Conjugados de polietilenglicol-interferon alfa para la terapia de infecciones.
WO2006026915A1 (fr) Composition pharmaceutique et methode de traitement de l&#39;hepatite avec des arginases
JP2008509889A (ja) ペグ化インターフェロンα−1b
WO1994020122A1 (en) A method for treating autoimmune diseases using alpha-interferon and/or beta-interferon
WO2009149377A1 (en) Use of pegylated type iii interferons for the treatment of hepatitis c
EA008866B1 (ru) ПОЛИМЕРНЫЙ КОНЪЮГАТ МОДИФИКАЦИЙ ИНТЕРФЕРОНА-β, ФАРМАЦЕВТИЧЕСКИЕ ПРОДУКТЫ НА ЕГО ОСНОВЕ И СПОСОБ ИХ ПОЛУЧЕНИЯ
EP0730470A1 (en) Improved interferon polymer conjugates
CZ292775B6 (cs) Fyziologicky aktivní konjugát polyethylenglykol-interferon alfa, způsob jeho přípravy a farmaceutický prostředek, který ho obsahuje
JPH07503851A (ja) 改良インターフェロン及びヒトの末梢血液白血球からのその製造方法
JP2005508848A (ja) コンセンサスインターフェロンのB型肝炎表面抗原とe抗原の抑制剤としての応用
JP2005508848A6 (ja) コンセンサスインターフェロンのB型肝炎表面抗原とe抗原の抑制剤としての応用
CN103923209B (zh) 一种Lambda干扰素突变体及聚乙二醇衍生物
KR20080042045A (ko) 포유동물로의 인터페론 전달용 지질 구조물
MXPA02001296A (es) Micofenolato mofetil en asociacion con peg-ifn-alfa.
EP1421946B1 (en) A pharmaceutical composition for treating hiv infection
EP1105467A1 (en) USE OF MODIFIED LYSOZYME c TO PREPARE MEDICINAL COMPOSITIONS FOR THE TREATMENT OF SOME SERIOUS DISEASES
CN105085658A (zh) 一种白细胞介素29突变体及聚乙二醇衍生物
AU681350B2 (en) Inhibitiion of retrovirus infection
US20100028298A1 (en) Interferon type i supporting compounds
CN116688095A (zh) 受体酪氨酸激酶fgfr1的抗疱疹病毒作用及其应用
CN115920006A (zh) Abcf1或其激动剂在制备抗dna病毒制剂中的应用
WO2005046715A1 (ja) 生理活性複合体
JP2015512900A (ja) 特別な患者の遺伝子亜型分集団のhcv感染症を治療するための併用療法
NZ620689B2 (en) Hcv immunotherapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007530572

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12007500588

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2005783950

Country of ref document: EP

Ref document number: 1020077007829

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005783950

Country of ref document: EP