WO2006024209A1 - Moteur de type « turbine a gaz-vapeur » - Google Patents

Moteur de type « turbine a gaz-vapeur » Download PDF

Info

Publication number
WO2006024209A1
WO2006024209A1 PCT/CN2005/000844 CN2005000844W WO2006024209A1 WO 2006024209 A1 WO2006024209 A1 WO 2006024209A1 CN 2005000844 W CN2005000844 W CN 2005000844W WO 2006024209 A1 WO2006024209 A1 WO 2006024209A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
turbine
boiler
exhaust
Prior art date
Application number
PCT/CN2005/000844
Other languages
English (en)
French (fr)
Inventor
Huaqun Zhou
Original Assignee
Huaqun Zhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqun Zhou filed Critical Huaqun Zhou
Priority to US11/573,844 priority Critical patent/US8156902B2/en
Priority to CN200580009411.6A priority patent/CN1934336B/zh
Priority to EP05752495A priority patent/EP1795714A4/en
Priority to JP2007526179A priority patent/JP2008510096A/ja
Publication of WO2006024209A1 publication Critical patent/WO2006024209A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a gas-to-steam engine suitable for use in automobiles, machinery, aircraft, and ships.
  • C and 0 2 combustion produces C0 2
  • C is a high density solid relative to co 2
  • co 2 is a small density gas relative to C, even if the gaseous fuel is first compressed to a certain density to burn, such as liquefied natural gas, Liquefied petroleum gas, etc.
  • the heat of combustion is generated by the kinetic energy, that is, the heat is generated during the density release process under the chemical reaction.
  • kinetic energy can disappear with the loss of thermal energy
  • thermal energy can also increase with the increase of kinetic energy.
  • compression heat pumps they are interdependent and mutually proportional and proportional, that is, the greater the kinetic energy, the greater the thermal energy, and vice versa. The greater the kinetic energy, the more different the two energies.
  • the inventor of the present patent application provides a kind of heat that can be simultaneously generated by combustion to generate gas and steam, and recovers the heat consumed during combustion work, which is fundamentally energy-saving and environmentally friendly, and has a simple and reliable structure, from the knowledge that kinetic energy and thermal energy are generated simultaneously with combustion. High power density engine.
  • a gas-steam boiler machine comprising a three-machine combination of a gas engine, a steam engine and a magneto, and a binary air intake system and a water vapor circulation system, which are composed of a boiler, a combustion chamber and a double-faced heart turbine , volute, shaft, heat exchanger, binary intake system, steam inlet, steam exhaust, preheater, condenser, fan, magneto, feed pump, in removable heat preservation Under the surface of the boiler, the fuel and oxygen-burning gas is discharged from the boiler through the heat exchanger. The heat in the boiler absorbs the heat of the gas and becomes the high-pressure steam to drive the double-oriented turbo turbine.
  • the steam after work is passed through a preheater disposed in the exhaust passage to preheat the boiler feed water, and the steam is also cooled, and then introduced into the condenser, cooled to return to the liquid water, and filtered to be supplied by the feed water pump. After pumping into the preheater, it absorbs the residual heat of the steam and enters the boiler cycle through the check valve.
  • the boiler machine Due to the simple structure of the boiler machine, it can be integrated with the magneto machine to form a parallel hybrid power system, and at the same time provide start-up and power supply to the boiler machine.
  • the double-faced heart turbines are formed by combining a conventional centripetal turbine back-to-back with a gas turbine on one side and a steam turbine on the other side, with gas and steam working through the same centripetal turbine.
  • the dual-facing turbine is capable of reducing heat loss by the simultaneous operation of gas and steam. Since the steam is cooler than the gas, the steam entering the double-facing turbine can be re-expanded while cooling the turbine.
  • the binary intake system is composed of an oxygen electronically controlled injection system and a fuel electronically controlled injection system.
  • the electronic control system can be shared, and each nozzle or a high pressure oxygen is used to drive the fuel to share a nozzle injection (spray type).
  • the binary air intake system solves the problems of the prior art extensive intake air, low efficiency, high energy consumption, low power density, serious environmental pollution, etc., and achieves precise control of the mixture ratio and intake air under any working condition.
  • the quantity, high energy saving, high power density fundamentally eliminate the production of NOx and significantly reduce the production of pollutants such as CO and HC.
  • the oxygen-to-fuel ratio is 21% of the air-fuel ratio, such as the empty space of gasoline.
  • the fuel ratio is 14.7: 1
  • the oxy-fuel ratio is about 3.1:1.
  • Pure oxygen promotes combustion. It can be said that it is triggered at the same time, so that the kinetic energy and thermal energy are released simultaneously in a shorter time than the air-fuel ratio combustion, plus the combustion chamber or
  • the reduction of the cylinder volume shortens the flame propagation time, and at the same time produces a higher temperature than the air-fuel ratio combustion, thereby increasing the temperature difference with the boiler water, making the heat exchange more rapid, and also increasing the exhaust port. Or the temperature difference of the exhaust gas at the flue gas outlet reduces heat loss.
  • the significant fuel economy reduces fuel carrying capacity and reduces the size and quality of the engine, thus making up for the lack of volume and quality of the oxygen carrying cylinder.
  • the working principle of the gas-steam boiler machine provided by the invention is as follows: Under the water surface of the heat preservation boiler, the fuel gas and the oxygen gas are exhausted in the double-faced turbine gas turbine surface, and then discharged to the boiler through the heat exchanger, in the boiler After the water absorbs the heat of the gas, it becomes the high-pressure steam to drive the double-faced turbine turbine surface. After the steam is preheated by the boiler, the condenser is cooled and returned to the high-temperature liquid water, and the feed water pump is preheated. After absorbing the residual heat of the steam, it enters the boiler cycle.
  • the coaxial magneto is provided for boiler start-up and power supply, and is also a parallel hybrid system relationship.
  • the gas-steam boiler machine of the invention installs the coaxial gas turbine and the steam engine under the water surface in the detachable heat preservation boiler, and the disassembly line can be selected as needed, and the flange type connection, the gas turbine and the steam engine can be used.
  • the outer casing should be manufactured as integrated as possible.
  • the sealing part is made of soft metal gasket, and the sleeve integrated with the outer casing extends to the joint with the boiler flange to achieve the function of insulating water and high pressure steam. It can be lubricated by hollow shaft oil passage pressure.
  • the exhaust gas of the gas turbine is introduced into the heat exchanger, and the exhaust gas is discharged to the outside of the boiler through the unified exhaust port after the heat exchange, so that there is almost no heat loss in the gas turbine work, and only a small part of the heat loss in the exhaust gas, but this is also
  • the heat loss of the existing boiler flue gas most of the heat is absorbed by the water in the boiler to generate high-pressure steam to drive the steam engine through the steam inlet.
  • the steam after work is passed through the preheater in the exhaust steam passage to preheat the boiler feed water.
  • the exhaust steam is also cooled, and then the condenser is introduced, and the fan or the natural wind or water flow (including the wind, the water, and the water of the motor vehicle, the ship, the aircraft) is cooled after being cooled by the gas or the steam boiler machine.
  • the fan or the natural wind or water flow (including the wind, the water, and the water of the motor vehicle, the ship, the aircraft) is cooled after being cooled by the gas or the steam boiler machine.
  • high temperature (above 95 °C) liquid water after filtration, it is pumped into the preheater by coaxial or synchronous feed water pump, and absorbs the residual heat of exhaust steam and then enters the boiler cycle through the check valve.
  • the power of the gas-steam boiler machine is more than the sum of the power of two gas turbines and steam units (boilers) of the same technology of the prior art, and the energy consumption is only one gas turbine, and there is no noise pollution.
  • the boiler machine Due to the simple structure of the boiler machine, it can be combined with the magneto machine or the coaxial machine to form a parallel hybrid power system, and at the same time provide start-up and power supply to the boiler machine. Achieve higher energy efficiency, reliability, and environmental protection.
  • the gas turbine replaces the furnace of the boiler.
  • the heat exchanger replaces the exhaust pipe of the gas turbine.
  • the condenser replaces the radiator of the gas turbine.
  • the preheater replaces the regenerator of the gas turbine.
  • the boiler replaces the gas turbine.
  • the magneto machine replaces the auxiliary power.
  • a gas-steam turbine which combines a gas turbine and a steam turbine into a common turbine, the engine comprising a binary feeder system, a combustion chamber, a volute, a ring channel low pressure superheater, a ring channel high pressure superheater, Condenser, shaft, turbine, feed water pump, preheater, annular ejector inlet, exhaust manifold, fan, water filter, exhaust port, spherical combustion chamber and vortex in binary intake system
  • the outer surface of the shell is provided with a heat insulation ring channel superheater (direct current boiler), and the water is supplied by the condenser to the feed water pump coaxially or synchronously with the gas-steam turbine, and enters the preheater to absorb the residual heat of the exhaust gas and then becomes steam, and enters the low pressure overheating.
  • the steam is set in the preheater in the exhaust steam passage, preheating the boiler boiler feed water, and the exhaust steam is also cooled, and then introduced into the condenser, and after cooling, is restored to high temperature (above 95 ° C) Liquid water, then filtered into the feed pump cycle includes a combustion gas generated H 2 0 is also liquefied together, then the very small amount of co 2 is discharged through the exhaust port of the condenser.
  • the inner diameter of the front portion of the annular injection inlet (combustion chamber outlet) is smaller than the inner diameter of the duct after the annular injection inlet, and when the high temperature and high pressure gas passes, a negative pressure is generated at the annular gap, forming a strong The ejector acts, the relatively low-pressure steam is mixed into the gas passage through the annular gap.
  • the turbine inlet temperature of the mixture is determined by the compromise between the gas expansion limit temperature and the steam expansion limit temperature, which is about 800 ° C. Since the water vapor is cracked to H 2 and 0 2 at around 850 ° C, the function is at this time. It will be no different from gas, and 800 °C is also close to the expansion limit temperature of the gas.
  • a gas-steam internal combustion engine comprising two-stroke air intake system, a cylinder head, a combustion chamber, a cylinder, a porous exhaust port, a crankcase, a piston and a piston ring, a crankshaft connecting rod; Gas and scavenging are controlled by a ternary intake system, and the ternary intake system is controlled by a water-electric control system.
  • the two-stroke system consists of: a first stroke, the piston moves from bottom to top, and a high-pressure water mist is injected into the cylinder before compression, and at the same time, the gas is scavenged, since there is still At higher temperatures, the water mist becomes steam after sweeping out the exhaust gas, and at the same time, the cylinder is cooled, and during the compression process (to reduce the compression work, it is generally late), oxygen and fuel are simultaneously injected into the cylinder at one time or several times.
  • the piston continues to ascend to the top dead center, the mixture is self-ignited (compression ignition) or ignited due to the compression effect; the second stroke, the piston moves from top to bottom, due to the inertia piston passing the top dead center, the high temperature and high pressure generated by the deflagration
  • the gas simultaneously heats a large amount of compressed low-temperature and low-pressure steam in the cylinder, causing severe expansion, jointly pushing the piston downward, and simultaneously working externally through the connecting rod crankshaft.
  • multiple exhaust ports are simultaneously opened. After exhausting the exhaust steam, it enters the first stroke; the exhausted steam is introduced into the condenser, and is cooled and returned to the liquid water. After filtering, it enters the direct injection system of the water, including Combustion
  • the H 2 0 gas is also liquefied together, and a very small amount (0 2 is discharged through the exhaust port on the condenser).
  • the porous exhaust port is used for steam exhaustion, and since the intake air and the scavenging air are independent of the crankcase, splash lubrication can be used.
  • the water-electric control injection system is basically the same as the existing fuel electronically controlled injection system, except that the water source is a condenser, and the electronic control system can be shared, and each of them is sprayed or driven by high-pressure oxygen (spray type).
  • the water-fuel ratio should be increased as much as possible to increase the amount of steam, that is, kinetic energy (similar to the existing lean-burning technology). Since the combustion temperature is greatly reduced compared with the prior art, there is no need for a cooling system, and the cylinder is not required. The outer wall of the cylinder head needs to be kept warm, and the water mist sprayed into the cylinder is completely vaporized by the heat storage of the cylinder body metal, and an adiabatic cylinder gasket is used between the cylinder and the crankcase to reduce heat loss caused by heat transfer.
  • the temperature of the water injected in the cylinder that is, the degree of cooling of the condenser, depends on the fuel or compression ratio, that is, the temperature in the cylinder after the exhaust.
  • the single-cylinder volume of the gas-steam internal combustion engine can be made very large, reducing the complexity and cost of manufacturing a multi-cylinder machine (to maintain balance and 360° work of the crankshaft, generally double-cylinder) .
  • the gasket of the gas-steam boiler engine provided by the invention is made of a soft metal such as lead, tin, zinc or aluminum.
  • the gas-steam boiler engine of the present invention utilizes the kinetic energy and thermal energy of the combustion at the same time, and uses binary combustion and waste heat recovery and recovers the energy consumed in the production of oxygen, and at a constant pressure, the steam is at least heavier than the heat.
  • the specific heat of a fuel combustion product is twice as high, so the enormous energy waste and environmental pollution problems of the existing heat engine are fundamentally solved, and the amazing effect is achieved:
  • Figure 1 is a cross-sectional view of a gas-steam boiler machine of an engine of the present invention
  • Figure 2 is a cross-sectional view of the gas-steam turbine of the engine of the present invention
  • Figure 3 is a cross-sectional view of a gas-steam internal combustion engine of the engine of the present invention. detailed description
  • the gas-steam boiler machine 1 shown in Fig. 1 installs the gas turbine 3 and the steam engine 4 of the coaxial 2 under the water surface in the detachable heat preservation boiler 5, and the disassembly line 6 can be selected as needed, and the flange can be used.
  • connection, the casing 3 of the gas turbine 3 and the steam engine 4 are manufactured as much as possible, the soft metal gasket 8 is used for the sealing, and the sleeve 9 integrated with the casing ⁇ extends to the flange of the boiler 5 to isolate
  • the function of water and high pressure steam can be lubricated by the hollow shaft 2 oil passage pressure; the gas turbine 3 burns the mixture entering the binary intake system 10 for work, and the exhaust gas is introduced into the heat exchanger 11, after which heat exchange is performed
  • the exhaust port 12 is discharged outside the boiler 5, so that the gas turbine 3 has almost no heat loss, and most of the heat is absorbed by the water in the boiler 5 to generate high-pressure steam, and the steam engine 4 is driven by the inlet steam passage 13 and the intake steam solenoid valve 14,
  • the steam after work is passed through a preheater 16 disposed in the exhaust passage 15, preheating the boiler 5 to supply water, and the exhaust steam is also cooled, and then introduced into the condenser 17, via the coaxial 2 or synchronous fan
  • the filter 19 After passing through the filter 19, it is preheated by the coaxial 2 or the synchronous feed water pump 20.
  • the device 16 absorbs the residual heat of the exhaust gas and then enters the boiler 5 cycle after passing through the check valve 21. Since the boiler 5 water is recycled, the size of the boiler 5 can be made very compact, and only needs to meet the heat exchange and steam load or flow rate. Since the boiler machine 1 has a simple structure, it can form a coaxial 2 integral machine with the magneto motor 22 to form a parallel hybrid power system 23, and at the same time provide startup and power supply to the boiler machine 1.
  • the core component of the technical design of the gas-steam boiler machine is a double-facing heart-operated turbine. 25 can be understood as a combination of the prior art centripetal turbine back-to-back, one side of the gas turbine 3 and the other side of the steam turbine 4, gas and steam. Through the same centripetal turbine 25, the simultaneous work of gas and steam can reduce the heat loss. Because the steam is lower than the gas temperature, the steam entering the double-faced turbine 25 can be re-expanded and cooled. Flat 25.
  • the gas-steam turbine 26 shown in Fig. 2 is provided with a heat insulating ring passage superheater 30, 31 on the outer surface of the spherical combustion chamber 28 and the volute 29 of the binary intake system 27, and the water is supplied by the condenser 32 and the gas.
  • a steam turbine 26 is supplied coaxially 33 or a synchronous feed water pump 34. After entering the preheater 35, it absorbs the waste heat of the exhaust gas and becomes steam. After entering the low-pressure superheater 30, it absorbs the heat of the scroll 29 and enters the high-pressure superheater 31 to absorb the combustion chamber.
  • the preheater 35 in the exhaust passage 38 preheats the boilers 30, 31 to feed water, and the exhaust steam is also cooled, and then introduced into the condenser 32, via the coaxial 33 or the synchronized fan 39 or natural wind or water flow (including Motors, ships, and aircraft are welcoming the wind. After cooling, they are returned to high temperature (above 95 °C).
  • the liquid water passes through the filter 40 and enters the feed water pump 34 cycle, including combustion.
  • the H 2 0 gas is also liquefied together, and a very small amount of C0 2 is discharged through the exhaust port 41 on the condenser 32.
  • the inner diameter (combustion chamber outlet) of the front portion of the annular inlet port 36 is smaller than the inner diameter of the duct 43 after the annular inlet port.
  • the intake, distribution, and scavenging are controlled by the ternary intake systems 45, 46, and 47; to improve the exhaust and scavenging efficiency, multiple ports and exhaust pipes are used. 48 exhaust steam, because the intake air and scavenging are independent of the crankcase 49, so splash lubrication can be used.
  • the three-way air intake system 45, 46, 47 is composed of a water-electric control injection system 45, and a binary air intake system 46, 47.
  • the electronic control system can be shared, and each independently sprays or drives water with high-pressure oxygen. Spray (spray type).
  • the piston 50 moves from bottom to top.
  • the water-electric control injection system 45 injects a high-pressure water mist into the cylinder 51 while scavenging, since the cylinder 51 still has a relatively high temperature, the water mist is at After sweeping out the steam, it becomes steam (using high-temperature water jets of near boiling point) while cooling the cylinder 51.
  • the oxygen and fuel electronically controlled injection system 46 At the same time, the oxygen and fuel are injected into the cylinder 51 at the same time or in multiple times (mixed spray or sprayer injection), the piston 50 continues to ascend to the top dead center, and the mixture is self-ignited due to the compression effect (compression ignition) or Being ignited, the second stroke, the piston 50 moves from top to bottom. Since the inertial piston 50 passes the top dead center, the high temperature and high pressure gas generated by the oxyfuel combustion mixture deflagration simultaneously heats a large amount of compressed low temperature and low pressure steam in the cylinder 51. The violent expansion occurs, and the piston 50 is pushed together to move downwards.
  • the external work is performed through the connecting rod crankshaft 52.
  • the plurality of exhaust ports 48 are simultaneously opened to discharge the exhaust steam. And into the first stroke.
  • the exhausted steam is introduced into the condenser 53 and cooled down by the coaxial 52 or the synchronous fan 54 or the natural wind or water flow (including the wind, the water of the motor vehicle, the ship, and the aircraft), and then returned to the liquid water, and then enters through the filter 55.
  • the water-electric controlled direct injection system 45 cycles, and the H 2 0 gas including the combustion is also liquefied together, and a very small amount of C0 2 is discharged through the exhaust port 56 on the condenser 53.
  • the water-fuel ratio should be increased as much as possible to increase the amount of steam, that is, kinetic energy (similar to the existing lean-burning technology). Since the combustion temperature is significantly lower than the prior art, the cooling system is not required, and the cylinder 51 is not required. And the outer wall of the cylinder head 57 needs to be insulated, using the cylinder 51 body metal The heat storage causes the water mist injected into the cylinder 51 to be completely vaporized; the outer surface of the cylinder, the outer surface of the cylinder head, and the joint of the cylinder and the crankcase need to be insulated.
  • An adiabatic cylinder pad 58 is used between the cylinder 51 and the crankcase 49 to reduce heat loss caused by heat transfer, and the temperature of the water injected in the cylinder 51 is high, that is, the degree of cooling of the condenser 53 depends on what kind of fuel or compression The ratio is the temperature in the cylinder 51 after the exhaust.
  • the single-cylinder 51 volume of a gas-steam internal combustion engine can be made very large, reducing the complexity and cost of manufacturing a multi-cylinder 51 machine.
  • the general double cylinder 51 can be used.

Description

燃气一蒸汽锅炉发动机
技术领域
本发明涉及一种燃气一蒸汽发动机,该发动机适用于机动车、机械设备、 航空器和舰船。 旦: ¾ϋ
冃 : ^不
当今世界能源危机和环境污染日趋严重,而现有的热机又普遍存在着严 重浪费燃料和污染环境的现象。本专利申请的发明人认为解决这一技术问题 的关键涉及到对燃烧机理的深入研究。 目前人们普遍把燃烧的动能归为热 能, 本发明人认为动能和热能是随燃烧同时产生的。 把燃烧理解为在化学反 应下的密度释放 (动能) 和热量释放。 如 C和 02燃烧产生 C02, C相对于 co2是高密度的固体, 而 co2相对于 C是微小密度的气体, 即使气体燃料也 要先压缩成一定密度才能燃烧, 如液化天然气, 液化石油气等。
燃烧热能是随动能而产生的, 即在化学反应下的密度释放过程中产生了 热量, 密度释放越快, 动能越大, 热能也越强, 燃烧工质越多, 密度释放后 的体积越大, 即动量越多, 产生的热量也越多, 如火药和燃油爆炸(剧烈燃 烧) 的动能是典型例子。 虽然动能可随热能的流失而消失, 但热能也可随动 能的增强而增加, 如压缩式热泵, 它们是相互依存和相互转换且成正比的关 系, 即动能越大热能也越大, 反之热能越大动能也越大, 但它们却是不同的 两种能量。 因燃烧中动能和热能成正比, 所以动能适用于热定律学进行计算 研究, 这也是为什么燃机的研究设计可以用于热定律学得出结论的原因。对 于发动机来讲, 动能是直接能量, 而热能是间接能量, 它必须经中介转化, 如锅炉产汽驱动蒸汽机。 热能对于取暖、 做饭等是直接能量, 如家用燃具利 用燃烧的热能做饭、 洗浴, 但它没有利用动能, 而现有的燃机只利用了燃烧 时的动能, 热能都随冷却系统和排气系统白白浪费掉; 蒸汽机组中的锅炉只 利用了燃烧时的热能、 动能都随烟气白白流失, 且它们的排气都严重污染环 境。 发明内容
本专利申请的发明人从动能和热能随燃烧同时产生的认识出发, 提供 一种可同时利用燃烧产生燃气和蒸汽, 并回收燃烧作功时消耗的热量, 达 到根本性节能环保、 结构精简可靠、 高功率密度的发动机。
为此而提出的三种体现其技术构思的解决方案是:
一种燃气一蒸汽锅炉机, 该燃气一蒸汽锅炉机包括燃机、 蒸汽机、 磁电 机的三机组合和二元制进气系统及水汽循环系统, 由锅炉、 燃烧室、 双面向 心透平、 涡壳、 轴、 换热器、 二元制进气系统、 蒸汽进汽道、 蒸汽排汽道、 预热器、凝汽器、风扇、磁电机、给水泵组成, 在可拆装的保温锅炉水面下, 燃料与氧气燃烧的燃气在双面向心透平燃气涡轮面作功后, 经换热器排出锅 炉, 锅炉内水吸收燃气热量变为高压蒸汽驱动双面向心透平蒸汽涡轮面, 作 功后的蒸汽经设在排气道内的预热器, 预热锅炉给水, 同时蒸汽也得到了冷 却,再引入凝汽器,经冷却后还原回液态水,经过滤后由给水泵抽入预热器, 吸收蒸汽余热后经单向阀又进入锅炉循环。
由于锅炉机结构简单, 可以与磁电机组成同轴的一体机, 形成并联混合 动力系统, 同时给锅炉机提供启动与供电。
所述的双面向心透平由常规的向心透平背靠背合并而成,一面为燃气涡 轮, 另一面为蒸汽涡轮, 燃气和蒸汽经同一只向心透平作功。
该双面向心透平由燃气和蒸汽同时作功可相互减少热损失, 由于蒸汽较 燃气温度低, 所以进入双面向心透平的蒸汽还可以再热膨胀, 同时冷却了透 平。
所述的二元制进气系统由氧气电控喷射系统和燃料电控喷射系统组成, 电控系统可共用,各自喷射或利用高压氧气按当量比驱动燃料共用一个喷嘴 喷射 (喷雾器式)。
该二元制进气系统解决了现有技术粗放型进气、 效率低、 能耗高、 功率 密度低、 对环境污染严重等问题, 达到了在任何工况下精确控制混合气比例 和进气量, 高度节能, 高功率密度, 从根本上杜绝了 NOx的产生和显著降 低 CO和 HC等污染物的产生。
因空气中有大约 21%的氧气,所以氧燃比为空燃比的 21%, 如汽油的空 燃比为 14.7: 1, 那么氧燃比就为约 3.1 : 1就可以了, 纯氧气促进燃烧, 可 谓是一触即发, 使动能和热能相对于空燃比燃烧在更短的时间内同时释放, 加之燃烧室或气缸容积的减小, 更缩短了火焰传播时间, 同时相对于空燃比 燃烧产生了更高的温度, 从而加大了与锅炉水的温差, 使换热更迅速, 也加 大了与排气口或烟气口的废气温差, 减少了热损失。 因显著节能而减少了燃 料携带量和减少了发动机的体积和质量,所以弥补了携带氧气瓶的体积和质 量的不足。
本发明提供的燃气一蒸汽锅炉机的工作原理为: 保温锅炉内水面下, 燃 料与氧气燃烧的燃气在双面向心透平燃气涡轮面作功后, 经换热器后排出锅 炉, 锅炉内水吸收燃气热量后变为高压蒸汽驱动双面向心透平蒸汽涡轮面, 作功后的蒸汽预热锅炉给水后, 再引入凝汽器冷却还原回高温液态水, 经给 水泵抽入预热器吸收蒸汽余热后, 又进入锅炉循环。 同轴的磁电机提供锅炉 机启动和供电外, 还为并联混合动力系统关系。
本发明一种燃气一蒸汽锅炉机把同轴的燃机和蒸汽机安装在可拆装的 保温锅炉内的水面下, 拆装线可按需要选择, 可采用法兰式连接, 燃机和蒸 汽机的外壳尽量采用一体化制造, 密封处用软金属密封垫, 并有与外壳一体 的轴套延伸至与锅炉法兰连接处, 达到隔绝水和高压蒸汽的作用, 可采用中 空轴油道压力润滑。 燃机的排气引入换热器, 排气在此换热后经统一排气口 排出锅炉外, 这样燃机作功几乎没有热损, 只在排气中有小部分热损, 但这 也是现有锅炉烟气的热损,绝大部分热量都被锅炉内的水吸收产生高压蒸汽 经进汽道驱动蒸汽机, 作功后的蒸汽经设在排汽道内的预热器, 预热锅炉给 水, 同时排汽也得到了冷却, 再引入凝汽器, 经与燃气一蒸汽锅炉机同轴或 同步的风扇或自然风或水流 (包括机动车、 舰船、 航空器的迎风迎水)冷却 后还原回高温(95°C以上)液态水, 经过滤后由同轴或同步的给水泵抽入预 热器, 吸收排汽余热后经单向阀又进入锅炉循环。 此时燃气一蒸汽锅炉机的 功率是现有技术的两台相同能耗的燃机和蒸汽机组(锅炉)功率的总和以上, 耗能量却只有一台燃机的能耗, 且无噪声污染。
为符合锅炉内安装的需要,须简化燃机和蒸汽机及提高功率密度和可靠 性, 因此设计了二元制进气系统, 它不仅满足了以上需要, 且还实现了更高 节能和近零放, 使燃气一蒸汽锅炉机耗能量保持在原来的水平上, 再次实现 了大幅度的节能, 即功率的显著增加。 因锅炉水为循环利用, 所以锅炉尺寸 可以制造的非常紧凑, 只需满足换热和蒸汽负荷或流量即可。
由于锅炉机结构简单, 可与磁电机组成或同轴的一体机, 形成并联混合 动力系统, 同时给锅炉机提供启动与供电。 实现了更高的节能性、 可靠性、 环保性。 这样燃机兼代了锅炉的炉膛, 换热器替代了燃机的排气管, 凝汽器 替代了燃机的散热器, 预热器替代了燃机的回热器, 锅炉替代了燃机的冷却 系统, 磁电机替代了辅助动力。
一种燃气一蒸汽轮机,将燃气轮机和蒸汽轮机合二为一,共用一套涡轮, 该发动机包括二元制进器系统、 燃烧室、 涡壳、 环通道低压过热器、 环通道 高压过热器、 凝汽器、 轴、 涡轮、 给水泵、 预热器、 环形引射进汽口、 排汽 道、 风扇、 水过滤器、 排气口, 在采用二元制进气系统的球形燃烧室和涡壳 外表面设保温环通道过热器 (直流锅炉), 水由凝汽器经与燃气一蒸汽轮机 同轴或同步的给水泵供给, 进入预热器吸收排气余热后变为蒸汽, 进入低压 过热器吸收涡壳热量后又进入高压过热器吸收燃烧室热量, 再经环形引射进 汽口后, 与进入涡轮前的高温燃气混合再次吸收燃气后超热膨胀, 共同推动 涡轮及轴作功, 排汽经设在排汽道内的预热器, 预热锅锅炉给水, 同时排汽 也得到了冷却, 再引入凝汽器, 经冷却后还原回高温 (95°C以上) 液态水, 过滤后又进入给水泵循环,包括燃烧产生的 H20气也一起被液化,极少量的 co2则经凝汽器上的排气口排出。
所述的环形引射进汽口的前部分函道内径 (燃烧室出口) 比环形引射进 汽口后的函道内径小, 高温高压燃气经过时, 在环形间隙处产生负压, 形成 强烈的引射作用, 相对低压的蒸汽就经环形间隙进入函道与燃气混合。
混合气的涡轮进口温度由燃气膨胀极限温度和蒸汽膨胀极限温度折衷而 定, 约在 800°C左右, 因水蒸汽在 850°C左右会裂解为 H2和 02, 此时作功能 力就会与燃气无异, 而 800°C也与燃气的膨胀极限温度接近。
一种燃气一蒸汽内燃机, 为二冲程, 它包括三元制进气系统、 气缸盖、 燃烧室、 气缸、 多孔排气口、 曲轴箱、 活塞及活塞环、 曲轴连杆; 其进气、 配气、 扫气由三元制进气系统控制, 所述的三元制进气系统由水电控喷射系 统和二元制进气系统组成, 所述的二冲程包括: 第一冲程, 活塞由下至上运 动, 在压缩前向缸内喷入高压水雾, 同时扫气, 由于此时气缸内仍有较高的 温度,水雾在扫出废气后就变为了蒸汽,同时冷却了气缸,在压缩过程中(为 减少压缩功一般为后期) 一次或分多次同时向缸内喷入氧气和燃料并混合, 活塞继续上行至近上止点, 混合气由于压缩效应而自燃 (压燃) 或被点燃; 第二冲程, 活塞由上至下运动, 由于惯性活塞过了上止点, 爆燃产生的高温 高压燃气同时加热了气缸内大量被压缩的低温低压蒸汽, 产生剧烈膨胀, 共 同推动活塞向下运动, 同时通过连杆曲轴对外作功, 活塞行至近下止点时多 个排气口同时被打开,排出废汽后又进入第一冲程;排出的废汽引入凝汽器, 经冷却后还原回液态水, 经过滤后进入水直喷系统循环, 包括燃烧产生的
H20气也一起被液化, 极少量的 ( 02则经凝汽器上的排气口排出。
为提高排气、 扫气效率, 采用多孔排气口排汽, 同时由于进气、 扫气与 曲轴箱无关, 所以可以采用飞溅润滑。
水电控喷射系统与现有的燃油电控喷射系统基本相同, 只是水源为凝汽 器,电控系统部分可共用,各自喷射或利用高压氧气驱动水喷射(喷雾器式)。
在确保当量氧燃比的情况下, 应尽量提高水燃比来增加蒸汽量, 也即动 能 (类似现有的稀燃技术), 由于燃烧温度较现有技术大幅度降低, 所以无 须冷却系统, 而且气缸和缸盖外壁还需保温, 利用气缸体金属的蓄热使喷入 缸内的水雾完全气化, 气缸与曲轴箱之间采用绝热气缸垫, 使之减少因热传 递造成的热损。 缸内喷射的水温高低, 也即凝汽器冷却程度, 须看是何种燃 料或压缩比, 也即排气后的缸内温度。
由于采用三元制进气, 燃气一蒸汽内燃机的单缸容积可制造的非常大, 减少了制造多缸机的复杂性和成本 (为保持平衡和曲轴 360° 作功, 一般双 缸即可)。
本发明提供的燃气一蒸汽锅炉发动机其核心机件之间的密封垫采用由 软金属, 如: 铅、 锡、 锌或铝等软金属制成。
现有的密封垫基本都用纸质和橡胶质的材料制成。 它们有一个共同缺 点, 即都为热的不良导体, 使机器产生的热量不能迅速的传递和散发, 在各 个密封件之间产生了温差, 导致密封件之间的热胀冷缩不同, 易产生密封不 良的后果, 且因密封垫本身的材质, 使其使用寿命很短, 易老化分解。 因金属密封垫用软金属制成, 所以实现了无热阻, 不会产生因热阻导致 的密封不良和温度过高等问题, 使用寿命更长, 不易老化分解, 且增加了机 器的整体性和美观。
因本发明的燃气一蒸汽锅炉发动机同时利用了燃烧的动能和热能, 并采 用了二元制燃烧和余热回收及回收了制氧时消耗的能量, 且在等压下蒸汽比 热至少要比空气一燃料燃烧产物的比热高一倍,所以从根本上解决了现有热 机巨大的能源浪费和环境污染问题, 达到了惊人的效果:
( 1 ) 实现了极度节能, 最高节能可达 75%左右, 也即只需原 25%的燃 料可输出原动力。
(2) 由于高纯度的 C02很容易处理, 所以达到了零排放。
(3 ) 结构的简单紧凑又达到了极高的功率密度和可靠性。 附图说明
图 1为本发明发动机的燃气一蒸汽锅炉机剖视图;
图 2为本发明发动机的燃气一蒸汽轮机剖视图;
图 3为本发明发动机的燃气一蒸汽内燃机剖视图。 具体实施方式
附图中描述了本发明提供的燃气一蒸汽锅炉发动机三种形式的各一个优 选实施例。
图 1所示的燃气一蒸汽锅炉机 1是把同轴 2的燃机 3和蒸汽机 4安装在 可拆装的保温锅炉 5内的水面下, 拆装线 6可按需要选择, 可采用法兰式连 接, 燃机 3和蒸汽机 4的外壳 7尽量采用一体化制造, 密封处用软金属密封 垫 8, 并有与外壳 Ί一体的轴套 9延伸至与锅炉 5的法兰连接处, 达到隔绝 水和高压蒸汽的作用, 并可采用中空轴 2油道压力润滑; 燃机 3燃烧从二元 制进气系统 10进入的混合物作功, 排气引入换热器 11, 在此换热后经排气 口 12排出锅炉 5外, 这样燃机 3作功几乎没有热损, 绝大部分热量都被锅 炉 5内的水吸收产生高压蒸汽经进汽道 13和进汽电磁阀 14驱动蒸汽机 4, 作功后的蒸汽经设在排汽道 15内的预热器 16, 预热锅炉 5给水, 同时排汽 也得到了冷却, 再引入凝汽器 17, 经同轴 2或同步的风扇 18或自然风或水 流(包括机动车、舰船、航空器的迎风迎水)冷却后还原回高温(95 °C以上) 液态水,经过滤器 19后由同轴 2或同步的给水泵 20抽入预热器 16,吸收排 汽余热后经单向阀 21后又进入锅炉 5循环, 因锅炉 5水为循环利用, 所以 锅炉 5尺寸可以制造得非常紧凑, 只需满足换热和蒸汽负荷或流量即可; 由 于锅炉机 1结构简单, 可以与磁电机 22组成同轴 2的一体机, 形成并联混 合动力系统 23, 同时给锅炉机 1提供启动与供电。
工作原理: 保温锅炉 5水面下, 燃烧室 24燃料与氧气燃烧的燃气在双 面向心透平 25燃气涡轮面作功后, 经换热器 11后排出锅炉 5, 锅炉 5内水 吸收燃气热量后变为高压蒸汽驱动双面向心透平 25蒸汽涡轮面, 作功后的 蒸汽预热锅炉 5给出水后再引入凝汽器 17冷却还原回高温液态水, 经给水 泵 20抽入预热器 16吸收排汽余热后又进入锅炉 5循环。同轴 2的磁电机 22 与锅炉机 1组成并联混合动力系统 23, 同时给锅炉机 1提供启动与供电。
本燃气一蒸汽锅炉机技术设计的核心组成双面向心透平 25可理解为现 有技术的向心透平背靠背合并而成, 一面为燃气涡轮 3, 另一面为蒸汽涡轮 4, 燃气和蒸汽经同一只向心透平 25作功, 燃气和蒸汽同时作功可相互减少 热损失, 由于蒸汽较燃气温度低, 所以进入双面向心透平 25 的蒸汽还可以 再热膨胀, 同时冷却了透平 25。
图 2所示的燃气一蒸汽轮机 26, 在采用二元制进气系统 27的球形燃烧 室 28和涡壳 29外表面设保温环通道过热器 30、 31 , 水由凝汽器 32经与燃 气一蒸汽轮机 26同轴 33或同步的给水泵 34供给,进入预热器 35吸收排气 余热后变为蒸汽,进入低压过热器 30吸收涡壳 29热量后又进入高压过热器 31, 吸收燃烧室 28热量后, 再经环形引射进汽口 36后与进入涡轮 37前的 高温高压燃气混合后再次吸收燃气的 "超热"膨胀, 共同推动涡轮 37及轴 33作功, 排汽经设在排汽道 38内的预热器 35, 预热锅炉 30、 31给水, 同 时排汽也得到了冷却, 再引入凝汽器 32,经同轴 33或同步的风扇 39或自然 风或水流(包括机动车、 舰船、 航空器的迎风迎水) 冷却后还原回高温 (95 °C以上) 液态水, 经过滤器 40后又进入给水泵 34循环, 包括燃烧产生的 H20气也一起被液化, 极少量的 C02则经凝汽器 32上的排气口 41排出。 环形引射进汽口 36的前部分函道 42内径 (燃烧室出口) 比环形引射进 汽口后的函道 43内径小,高温高压燃气经过时,在环形间隙 36处产生负压, 形成强烈的引射作用, 相对低压的蒸汽就经环形间隙 36处进入函道与燃气 混合。
图 3所示的燃气一蒸汽内燃机 44, 其进气、 配气、 扫气由三元制进气系 统 45、 46、 47控制; 为提高排气、 扫气效率, 采用多气口及排气管 48排汽, 因进气、 扫气与曲轴箱 49无关, 所以可以采用飞溅润滑。
所述的三元制进气系统 45、 46、 47由水电控喷射系统 45, 和二元制进 气系统 46、 47组成, 电控系统部分可共用, 各自独立喷射或利用高压氧气 驱动水喷射 (喷雾器式)。
第一冲程, 活塞 50由下至上运动, 在下止点时水电控喷射系统 45向气 缸 51内喷入高压水雾, 同时扫气, 由于此时气缸 51内仍有较高温度, 水雾 在扫出废汽后就变为了蒸汽 (可采用近沸点的高温水喷射), 同时冷却了气 缸 51, 在压缩过程中 (为减少压缩功, 一般在压缩后期), 氧气和燃料电控 喷射系统 46、 47—次或分多次同时向气缸 51内喷入氧气和燃料并混合(对 喷或喷雾器式喷射), 活塞 50继续上行至近上止点, 混合气由于压缩效应而 自燃 (压燃) 或被点燃, 第二冲程, 活塞 50 由上至下运动, 由于惯性活塞 50过了上止点, 氧燃比混合气爆燃产生的高温高压燃气同时加热了气缸 51 内大量被压縮的低温低压蒸汽, 产生剧烈膨胀, 共同推动活塞 50向下运动, 同时通过连杆曲轴 52对外作功, 活塞 50行至近下止点时多个排气口 48同 时被打开, 排出废汽后又进入第一冲程。排出的废汽引入凝汽器 53, 经同轴 52或同步的风扇 54或自然风或水流 (包括机动车、 舰船、 航空器的迎风迎 水)冷却后还原回液态水, 经过滤器 55后进入水电控直喷系统 45循环, 包 括燃烧产生的 H20气也一起被液化, 极少量的 C02则经凝汽器 53上的排气 口 56排出。
在确保当量氧燃比的情况下, 应尽量提高水燃比来增加蒸汽量, 也即动 能 (类似现有的稀燃技术), 由于燃烧温度较现有技术显著降低, 所以无须 冷却系统, 而且气缸 51和气缸盖 57外壁还需保温, 利用气缸 51体金属的 蓄热使喷入气缸 51 内的水雾完全气化; 气缸外表、 气缸盖外表及气缸与曲 轴箱结合处需隔热保温。气缸 51与曲轴箱 49之间采用绝热气缸垫 58,使之 减少因热传递造成的热损, 气缸 51内喷射的水温高低, 也即凝汽器 53冷却 程度, 须看是何种燃料或压缩比, 也即排气后的气缸 51内温度。
由于采用三元制进气 45、 46、 47, 燃气一蒸汽内燃机的单缸 51容积可 制造的非常大, 减少了制造多缸 51机的复杂性和成本。 为保持平衡和曲轴 52三百六十度作功, 一般双缸 51即可。
上面结合附图详细说明的实施方式并非是对本发明提供的技术方案的限 定, 凡是根据本发明提出的技术构思作出的变型, 都应当是本发明的权利要 求的保护范围之内, 如采用直流锅炉或汽包锅炉的变型; 采用轴流或径流涡 轮的变型; 将排气直接排入大气的变型; 锅炉外置同轴或非同轴蒸汽机的变 型; 增设与发动机同轴的压气机替代氧气喷射系统的变型; 各组件位置的变 型等。

Claims

权 利 要 求 书
1、 一种燃气一蒸汽锅炉机, 该发动机包括燃机、 蒸气机、 磁电机的三 机结合和二元制进气系统及水汽循环系统, 由锅炉、 双面向心透平、 涡壳、 轴、磁电机、 换热器、 二元制进气系统、 蒸汽进汽道、 蒸汽排汽道、 预热器、 凝汽器、 风扇、 给水泵组成, 其特征为: 可拆装的保温锅炉内水下, 燃料与 氧气燃烧的燃气在双面向心透平燃气涡轮面作功后, 经换热器排出锅炉, 锅 炉内水吸收燃气热量后, 变为高压蒸汽驱动双面向心透平蒸汽涡轮面 , 作 功后的蒸汽经设在排汽道内的预热器, 预热锅炉给水, 同时蒸汽也得到了冷 却, 再引入凝汽器, 经同轴或同步的风扇或自然风或水流冷却后还原回液态 水, 经过滤后由同轴或同步的给水泵抽入预热器, 吸收排汽余热后, 经单向 阀又进入锅炉循环, 同轴的磁电机与燃气一蒸汽锅炉机组成并联混合动力系 统, 同时给燃气一蒸汽锅炉机提供启动与供电。
2、 一种燃气一蒸汽轮机, 该发动机包括二元制进器系统、 燃烧室、 涡 壳、 环通道低压过热器、 环通道高压过热器、 凝汽器、 轴、 涡轮、 给水泵、 预热器、 环形引射进汽口、 排汽道、 风扇、 水过滤器、 排气口, 其特征为: 把燃气轮机和蒸汽轮机合二为一, 共用一套涡轮, 在采用二元制进气系统的 球形燃烧室和涡壳外表面设保温环通道过热器, 水由凝汽器经与燃气一蒸汽 轮机同轴或同步的给水泵供给, 进入预热器吸收排气余热后变为蒸汽, 进入 低压过热器吸收涡壳热量后又进入高压过热器吸收燃烧室热量, 再经环形引 射进汽口后, 与进入涡轮前的高温燃气混合再次吸收燃气的超热膨胀, 共同 推动涡轮及轴作功, 排汽经设在排汽道内的预热器, 预热锅炉给水, 同时排 汽也得到了冷却, 再引入凝汽器, 经同轴或同步的风扇或自然风或水流冷却 后还原回高温液态水,过滤后又进入给水泵循环,包括燃烧产生的 0气也 一起被液化, 极少量的 ( 02则经凝汽器上的排气口排出。
3、 一种燃气一蒸汽内燃机, 该发动机为二冲程内燃机, 由三元制进气 系统控制进气、 配气、 扫气, 采用多气口排汽和飞溅润滑, 包括三元制进气 系统、 气缸盖、 气缸、 燃烧室、 多排汽口及排汽管、 曲轴箱、 活塞及活塞环、 曲轴连杆, 其特征为: 所述的二冲程包括: 第一冲程, 活塞由下至上运动, 在压縮前向缸内喷入高压水雾,同时扫气,由于此时气缸内仍有较高的温度, 水雾在扫出废气后就变为了蒸汽,同时冷却了气缸,在压缩过程中期或后期, 一次或分多次同时向缸内喷入氧气和燃料并对喷或喷雾器式喷射混合, 活塞 继续上行至近上止点, 混合气由于压缩效应而自燃或被点燃; 第二冲程, 活 塞由上至下运动, 由于惯性活塞过了上止点, 爆燃产生的高温高压燃气同时 加热了气缸内大量被压缩的低温低压蒸汽, 产生剧烈膨胀, 共同推动活塞向 下运动, 同时通过连杆曲轴对外作功, 活塞行至近下止点时多个排气口同时 被打开, 排出废汽后又进入第一冲程; 排出的废汽引入凝汽器, 经同轴或同 步的风扇或自然风或水流冷却后还原回液态水, 经过滤后进入水直喷系统循 环, 包括燃烧产生的 H20气也一起被液化, 极少量的( 02则经凝汽器上的 排气口排出。
4、 根据权利要求 1所述的发动机, 其特征为: 不可燃液体从汽包锅炉 或直流锅炉外注入, 吸收燃气轮机燃烧作功时消耗的热量后变为高压蒸汽, 经同轴的径流涡轮或轴流涡轮作功, 排汽预热注入锅炉的不可燃液体后, 引 入冷却还原装置循环利用。
5、 根据权利要求 2所述的发动机, 其特征为: 不可燃液体从汽包锅炉 或直流锅炉外注入, 吸收燃气燃烧作功时消耗的热量后变为高压蒸汽, 并与 燃气混合后共同经轴流涡轮或径流涡轮作功, 排汽经预热锅炉给水后引入冷 却还原装置循环利用。
6、 根据权利要求 3所述的发动机, 其特征为: 不可燃液体喷入活塞式 发动机或转子发动机或旋缸发动机的气缸内, 作为吸收燃料与氧气燃烧热量 的介质膨胀作功, 排汽引入冷却还原装置循环利用。
7、 根据权利要求 1或 2所述的发动机, 其特征为: 所述的二元制进气 系统由氧气电控喷射系统和燃料电控喷射系统组成, 其电控系统部分共用, 各自喷射或利用高压氧气按当量比驱动燃料共用一个喷嘴喷射。
8、 根据权利要求 1 所述的发动机, 其特征为: 所述的双面向心透平由 向心透平背靠背合并而成, 燃气和蒸汽经同一只双面向心透平作功, 其一面 为燃气涡轮, 另一面为蒸汽涡轮, 燃气和蒸汽同时作功时, 相对低温的蒸汽 可再热膨胀, 同时冷却透平。
9、 根据权利要求 3所述的发动机, 其特征为: 所述的三元制进气系统 由水电控喷射系统和二元制进气系统组成, 其电控系统部分共用, 各自独立 喷射或利用高压氧气驱动水喷射。
10、根据权利要求 3所述的发动机,其特征为:利用气缸体金属的蓄热, 使喷入缸内的水雾完全气化, 气缸外表、 气缸盖外表及气缸与曲轴箱结合处 加设隔热保温层。
11、 根据权利要求 1或 2或 3所述的发动机, 其特征为: 各高温高压机 件之间的密封垫采用由软金属制成的金属密封垫。其软金属为铅或锡或锌或 铝。
PCT/CN2005/000844 2004-08-19 2005-06-14 Moteur de type « turbine a gaz-vapeur » WO2006024209A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/573,844 US8156902B2 (en) 2004-08-19 2005-06-14 Gas-steam engine
CN200580009411.6A CN1934336B (zh) 2004-08-19 2005-06-14 燃气-蒸汽发动机
EP05752495A EP1795714A4 (en) 2004-08-19 2005-06-14 ENGINE TYPE <= GAS-VAPOR TURBINE> =
JP2007526179A JP2008510096A (ja) 2004-08-19 2005-06-14 ガス―スチーム・エンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2004100700861A CN1587665A (zh) 2004-08-19 2004-08-19 燃气—蒸汽锅炉发动机
CN200410070086.1 2004-08-19

Publications (1)

Publication Number Publication Date
WO2006024209A1 true WO2006024209A1 (fr) 2006-03-09

Family

ID=34604400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000844 WO2006024209A1 (fr) 2004-08-19 2005-06-14 Moteur de type « turbine a gaz-vapeur »

Country Status (5)

Country Link
US (1) US8156902B2 (zh)
EP (1) EP1795714A4 (zh)
JP (1) JP2008510096A (zh)
CN (1) CN1587665A (zh)
WO (1) WO2006024209A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005572A1 (en) * 2007-06-28 2009-01-08 Michael Jeffrey Brookman Air start steam engine
US9309785B2 (en) 2007-06-28 2016-04-12 Averill Partners Llc Air start steam engine
US9499056B2 (en) 2007-06-28 2016-11-22 Averill Partners, Llc Air start steam engine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779513B2 (ja) * 2005-08-31 2011-09-28 いすゞ自動車株式会社 回転式容積型蒸気エンジン
US8459391B2 (en) 2007-06-28 2013-06-11 Averill Partners, Llc Air start steam engine
CN101649752B (zh) * 2008-08-11 2011-06-15 姜忠扬 燃汽动力机
US8943836B2 (en) * 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant
CN102678332B (zh) * 2011-03-15 2016-02-17 杜臣 再热涡旋复合式热机
CN102797565B (zh) * 2011-05-26 2016-02-17 杜臣 涡旋复合式热机
US9297277B2 (en) 2011-09-30 2016-03-29 General Electric Company Power plant
WO2013056437A1 (zh) * 2011-10-19 2013-04-25 深圳智慧能源技术有限公司 多工质涡轮发动机
CN102490838B (zh) * 2011-11-07 2013-08-28 河南省四达仙龙实业有限公司 一种小型汽轮摩托车
CN103256077B (zh) * 2012-02-21 2015-10-21 中国科学院工程热物理研究所 一种多级向心透平系统
CN104121094B (zh) * 2014-08-12 2016-07-13 李福祥 蒸汽机原理的燃气发动机
CN105804868B (zh) * 2016-04-01 2017-12-01 王作才 内燃蒸汽组合发动机
CN108757073B (zh) * 2018-05-29 2021-05-04 杭州汽轮工程股份有限公司 一种燃气-蒸汽联合循环机组
CN111810978B (zh) * 2020-07-20 2022-09-13 山东博然电力科技有限公司 基于热量自调节的两台锅炉的烟气换热器切换装置
CN113309592B (zh) * 2021-07-09 2022-12-23 粟永快 一种双系统汽动力装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672341A (en) * 1970-07-30 1972-06-27 Combustion Power Air pollution-free internal combustion engine and method for operating same
US3962877A (en) * 1974-03-16 1976-06-15 Deutsche Babcock & Wilcox Aktiengesellschaft Off-shore power plant
DE3017373A1 (de) * 1980-05-07 1981-12-24 Max 6255 Dornburg Otrembnik Gas- und wasserdamp-turbine
GB2087252A (en) * 1980-10-15 1982-05-26 Stal Laval Turbin Ab Combined gas and steam turbine plant
US4430854A (en) * 1980-06-28 1984-02-14 Steag Ag Process and apparatus for energy recovery from solid fossil inerts containing fuels
US4680927A (en) * 1979-07-23 1987-07-21 International Power Technology, Inc. Control system for Cheng dual-fluid cycle engine system
JPS6441622A (en) * 1987-08-05 1989-02-13 Toshiba Corp Pressurization fluidized bed composite generating plant
US5175993A (en) * 1988-06-30 1993-01-05 Imatran Voima Oy Combined gas-turbine and steam-turbine power plant and method for utilization of the thermal energy of the fuel to improve the overall efficiency of the power-plant process
US5426932A (en) * 1992-01-10 1995-06-27 Hitachi, Ltd. Fluidized bed combined cycle power generating plant with method to decrease plant response time to changing output demand
CN2222241Y (zh) * 1994-12-17 1996-03-13 卢金平 喷水式节能内燃机
DE19834297A1 (de) * 1998-07-30 1999-02-25 Alexander Dr Ing Waberski Neues Konzept Kombi-Verfahren für Aufladetechnik und Verbundverfahren bei der Verbrennungsmotoren
EP0967371A1 (de) * 1998-06-26 1999-12-29 Wärtsilä NSD Schweiz AG Zweitakt-Dieselbrennkraftmaschine
CN1299435A (zh) * 1998-03-13 2001-06-13 金特瓦斯特公司 高效率低污染的混合式布雷顿循环燃烧器
US20040040305A1 (en) * 2002-08-27 2004-03-04 Helm John F. One cycle internal combustion engine
GB2394511A (en) * 2002-10-11 2004-04-28 Bernard Owen Internal combustion engine with direct water injection into cylinder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118508A (ja) * 1984-11-14 1986-06-05 Hitachi Ltd 給水ポンプ再循環流量制御装置
JPH08193504A (ja) * 1995-01-13 1996-07-30 Ishikawajima Harima Heavy Ind Co Ltd 動力プラントの複合サイクル
EP0862685A4 (en) * 1995-11-01 2000-04-26 Barry Frank Hughes COMBINED INTERNAL COMBUSTION AND STEAM ENGINE
JP3902018B2 (ja) * 2001-04-06 2007-04-04 三菱重工業株式会社 往復動内燃機関の運転方法とそのシステム

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3672341A (en) * 1970-07-30 1972-06-27 Combustion Power Air pollution-free internal combustion engine and method for operating same
US3962877A (en) * 1974-03-16 1976-06-15 Deutsche Babcock & Wilcox Aktiengesellschaft Off-shore power plant
US4680927A (en) * 1979-07-23 1987-07-21 International Power Technology, Inc. Control system for Cheng dual-fluid cycle engine system
DE3017373A1 (de) * 1980-05-07 1981-12-24 Max 6255 Dornburg Otrembnik Gas- und wasserdamp-turbine
US4430854A (en) * 1980-06-28 1984-02-14 Steag Ag Process and apparatus for energy recovery from solid fossil inerts containing fuels
GB2087252A (en) * 1980-10-15 1982-05-26 Stal Laval Turbin Ab Combined gas and steam turbine plant
JPS6441622A (en) * 1987-08-05 1989-02-13 Toshiba Corp Pressurization fluidized bed composite generating plant
US5175993A (en) * 1988-06-30 1993-01-05 Imatran Voima Oy Combined gas-turbine and steam-turbine power plant and method for utilization of the thermal energy of the fuel to improve the overall efficiency of the power-plant process
US5426932A (en) * 1992-01-10 1995-06-27 Hitachi, Ltd. Fluidized bed combined cycle power generating plant with method to decrease plant response time to changing output demand
CN2222241Y (zh) * 1994-12-17 1996-03-13 卢金平 喷水式节能内燃机
CN1299435A (zh) * 1998-03-13 2001-06-13 金特瓦斯特公司 高效率低污染的混合式布雷顿循环燃烧器
EP0967371A1 (de) * 1998-06-26 1999-12-29 Wärtsilä NSD Schweiz AG Zweitakt-Dieselbrennkraftmaschine
DE19834297A1 (de) * 1998-07-30 1999-02-25 Alexander Dr Ing Waberski Neues Konzept Kombi-Verfahren für Aufladetechnik und Verbundverfahren bei der Verbrennungsmotoren
US20040040305A1 (en) * 2002-08-27 2004-03-04 Helm John F. One cycle internal combustion engine
GB2394511A (en) * 2002-10-11 2004-04-28 Bernard Owen Internal combustion engine with direct water injection into cylinder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1795714A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005572A1 (en) * 2007-06-28 2009-01-08 Michael Jeffrey Brookman Air start steam engine
US7743872B2 (en) 2007-06-28 2010-06-29 Michael Jeffrey Brookman Air start steam engine
US9309785B2 (en) 2007-06-28 2016-04-12 Averill Partners Llc Air start steam engine
US9499056B2 (en) 2007-06-28 2016-11-22 Averill Partners, Llc Air start steam engine

Also Published As

Publication number Publication date
JP2008510096A (ja) 2008-04-03
EP1795714A1 (en) 2007-06-13
US8156902B2 (en) 2012-04-17
US20080087002A1 (en) 2008-04-17
EP1795714A4 (en) 2008-06-25
CN1587665A (zh) 2005-03-02

Similar Documents

Publication Publication Date Title
WO2006024209A1 (fr) Moteur de type « turbine a gaz-vapeur »
JP3902018B2 (ja) 往復動内燃機関の運転方法とそのシステム
US8851025B2 (en) Powering an internal combustion engine
US7273023B2 (en) Steam enhanced double piston cycle engine
WO2010036096A1 (en) Internal combustion engine
CN102094708B (zh) 自冷回热式活缸式燃料-空气发动机
WO2013023434A1 (zh) 二冲程往复活塞式燃汽发动机
US6314925B1 (en) Two-stroke internal combustion engine with recuperator in cylinder head
CN104088720A (zh) 一种高效热能动力发动机及其做功方法
US20130291826A1 (en) Systems and vehicles incorporating improved engine cooling and energy generation
WO1999017001A1 (fr) Moteur de puissance
CN101737104B (zh) 燃气-蒸汽透平发动机
CN1934336B (zh) 燃气-蒸汽发动机
JPH0633707A (ja) コジェネレーション型エンジン
WO2007147292A1 (fr) Moteur a piston rotatif
CN103422900A (zh) 超节能发动机
CN207620934U (zh) 一种内燃机节能减排装置
JP2008115723A (ja) 往復動型内燃機関
RU2435975C2 (ru) Двигатель внутреннего сгорания меньшова
CN214836690U (zh) 一种降低转子发动机燃油消耗的系统
CA2731299A1 (en) Novel simpler and efficient internal combustion engine
CN110645051B (zh) 高低温联合循环发动机
WO1986004388A1 (en) Regenerative thermal engine
CN1201865A (zh) 一种内燃蒸气发动机
CN202545060U (zh) 小温升低熵混燃制冷系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580009411.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007526179

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005752495

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005752495

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11573844

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11573844

Country of ref document: US