WO2006022330A1 - 霊長類動物胚性幹細胞から樹状細胞の製造方法 - Google Patents

霊長類動物胚性幹細胞から樹状細胞の製造方法 Download PDF

Info

Publication number
WO2006022330A1
WO2006022330A1 PCT/JP2005/015438 JP2005015438W WO2006022330A1 WO 2006022330 A1 WO2006022330 A1 WO 2006022330A1 JP 2005015438 W JP2005015438 W JP 2005015438W WO 2006022330 A1 WO2006022330 A1 WO 2006022330A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
rod
culture
embryonic stem
Prior art date
Application number
PCT/JP2005/015438
Other languages
English (en)
French (fr)
Inventor
Satoru Senju
Yasuharu Nishimura
Original Assignee
Tanabe Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co., Ltd. filed Critical Tanabe Seiyaku Co., Ltd.
Priority to JP2006531978A priority Critical patent/JP4695087B2/ja
Publication of WO2006022330A1 publication Critical patent/WO2006022330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464454Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Definitions

  • the present invention relates to a method for differentiating primate embryonic stem cells into rod cells, a method for producing rod cells from primate embryonic stem cells, the rod cells obtained by the method, and the rod shape Cells, use of said rod cells for the manufacture of a medicament for the treatment of a disease capable of obtaining a therapeutic effect by antigen-specific control of the immune response, and a cellular medicament for the treatment of the disease About.
  • Spider cells phagocytose antigen proteins, break them down into peptides, and present the resulting peptides to T cells as a complex with the major histocompatibility antigen (MHC) (hereinafter also referred to as “antigen presentation”). )
  • MHC major histocompatibility antigen
  • the rod-shaped cells are cells having the highest antigen-presenting ability in the living body.
  • the above-mentioned rod cells suppress the function of T cells reactive to self antigens and are also involved in maintaining immunological self tolerance. Thus, rod cells play a central role in regulating the immune response in vivo.
  • rod-shaped cells are also produced by differentiation of hematopoietic stem cell force in the bone marrow.
  • Hematopoietic stem cells in the bone marrow differentiate into erythrocytes, platelets, neutrophils, eosinophils, basophils, macrophages, lymphocytes, etc., in addition to rod-like cells, due to the presence of growth factors.
  • rod cells can be obtained by isolating existing rod cells from peripheral blood, inducing differentiation of hematopoietic stem cells in bone marrow (for example, Patent Document 1). ing.
  • Patent Document 1 discloses that mouse hematopoietic stem cells are induced to differentiate to obtain rod-shaped cells.
  • hematopoietic stem cells are difficult to grow for a long period of time, and it is necessary to use a viral vector for gene transfer into rod-shaped cells prepared by this method. is there.
  • Non-patent Document 1 attempts have been made to obtain rod-shaped cells by inducing mouse embryonic stem cells (Non-patent Document 1).
  • Non-patent Document 1 when the method described in Non-Patent Document 1 is applied to other organisms, for example, primates, there is a disadvantage that mature rod-shaped cells do not occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-16697
  • Non-Patent Document 1 S. Senju et al., Blood, 101, pp. 3501 to 3508, 2 May 2003
  • One aspect of the present invention is to efficiently obtain a rod-like cell derived from a primate animal, to stably supply a rod-like cell of a primate animal, and to make an immune response of an individual antigen specific.
  • Supplying a means to control for example, a means to strongly activate a cytotoxic T cell response to a specific antigen
  • a disease for which a therapeutic effect is expected by antigen-specific control of an immune response for example, self At least one of the following: providing treatment for immune diseases, allergic diseases, etc., and providing for the prevention or treatment of rejection in organ transplantation and Graft versus Host Diosease (GVHD)
  • the present invention relates to providing a method for dividing primate animals into embryonic stem cell force rod-shaped cells.
  • another aspect of the present invention is to obtain a large amount of rod-like cells derived from primates, to obtain rod-like cells derived from primates efficiently, A stable supply of cells, and to obtain rod-shaped cells that specifically control an individual's immune response (for example, rod-shaped cells that strongly activate the response of cytotoxic T cells to a specific antigen).
  • the present invention relates to providing a method for producing rod-shaped cells from primate embryonic stem cells, which enables at least one of the following.
  • Yet another aspect of the present invention is to control an individual's immune response in an antigen-specific manner (for example, to strongly activate a cytotoxic ⁇ cell response to a specific antigen), an immune response
  • the present invention relates to providing a rod-shaped cell that enables at least one of obtaining a therapeutic effect on a disease for which a therapeutic effect is expected by antigen-specific control of the antigen.
  • the preparation for the manufacture of a medicament that enables at least one of treatments for diseases for which a therapeutic effect is expected by antigen-specific control of an immune response is provided. Relates to providing the use of dendritic cells.
  • the present invention it is possible to at least one of antigen-specific control of immune response, for example, treatment of diseases such as autoimmune diseases and allergic diseases.
  • the present invention relates to providing an immune response control agent.
  • Other problems of the present invention are also apparent from the description of the present specification.
  • the gist of the present invention is as follows:
  • step (B) a step of obtaining a cell group B by co-culturing the cell group A obtained in the step (A) and a newly prepared cell having a property of inducing differentiation and proliferation of blood cells;
  • step (D) culturing the cell group C obtained in the step (C) in the presence of granulocyte macrophage colony stimulating factor and interleukin 4,
  • step (A) from the co-culture of primate embryonic stem cells and cells having the property of inducing differentiation and proliferation of blood cells to primate embryonic stem cells.
  • Cells having the property of inducing differentiation and proliferation of blood cells in step (A) are ST2 cells, and newly prepared having the property of inducing differentiation and proliferation of blood cells in step (B) (1) or (2) above, wherein the newly prepared cells that are OP9 cells and have the property of inducing differentiation and proliferation of blood cells in step (C) are OP9 cells.
  • Differentiation method
  • step (E) adding the tumor necrosis factor ⁇ and lipopolysaccharide to the culture obtained in step (D) and further culturing, [1] ⁇ [3] Any Or the differentiation method according to claim 1,
  • step (B) a step of obtaining a cell group B by co-culturing the cell group A obtained in the step (A) and a newly prepared cell having a property of inducing differentiation and proliferation of blood cells;
  • step (D) a step of culturing the cell group C obtained in the step (C) in the presence of a granulocyte macrophage colony stimulating factor and interleukin 4, and ( ⁇ ⁇ ′) obtained in the step (D). Isolating rod-shaped cells derived from primate embryonic stem cells from the culture;
  • step (Ii) adding the tumor necrosis factor ex and lipopolysaccharide to the culture obtained in step (D) and further culturing;
  • step (F) separating a rod-shaped cell derived from a primate embryonic stem cell from the culture obtained in step (ii);
  • the therapeutic effect can be obtained by antigen-specifically controlling the immune response, comprising the rod-shaped cells obtained by the production method according to any one of [5] to [10] as an active ingredient.
  • Cell medicines for the treatment of diseases obtainable,
  • the differentiation method of embryonic stem cells from rodent stem cells of the primate of the present invention into rodent cells the excellent effect of efficiently and stably supplying rodent cells derived from primate animals is achieved. Play.
  • a means for specifically controlling an individual's immune response for example, a primate rod-like cell, a cytotoxic ⁇ cell response to a specific antigen is strongly enhanced. It is possible to provide therapeutic means for diseases (for example, autoimmune diseases, allergic diseases, etc.) that are expected to have therapeutic effects by antigen-specific control of immune responses! Play.
  • a rod-like cell derived from a primate animal can be efficiently and stably supplied in large quantities. There is an excellent effect.
  • a rod-shaped cell that specifically controls an individual's immune response eg, a rod-shaped cell that strongly activates a cytotoxic ⁇ cell response to a specific antigen
  • I can do this.
  • an individual's immune response can be controlled in an antigen-specific manner (for example, it can strongly activate a cytotoxic ⁇ cell response to a specific antigen). It has an excellent effect that it can obtain a therapeutic effect on a disease for which a therapeutic effect is expected by controlling antigen-specific immune response of the body and antigen-specific control of immune response.
  • the immune response control agent of the present invention can be antigen-specifically controlled. For example, it is possible to treat diseases such as autoimmune diseases and allergic diseases! / ⁇ ⁇ Excellent effect.
  • FIG. 1 shows a schematic diagram of an example of a method for differentiation of embryonic stem cells into rod-shaped cells in primates.
  • FIG. 2 is a diagram showing micrographs of cells over time when differentiated into primate embryonic stem cell-powered rod cells.
  • panel A is before the start of differentiation induction
  • panel B is the third day after the start of differentiation induction
  • panels C and D are the sixth day
  • panels E and F are the ninth day
  • panel No. Gi 16
  • the cells of day 28, day No. Hi, 22th, Noh Noh, 26th, Noh No J, K and U are shown.
  • the scale bar indicates 100 ⁇ m.
  • FIG. 3 shows the results of analyzing the expression of cell surface molecules DR, CD40 and CD86 in suspension cells in culture medium when primate embryonic stem cells were differentiated into rod-shaped cells.
  • FIG. 6 is the end of step (B) in FIG. 1
  • Day22 is the end of step (C)
  • Day26 is the end of step (D)
  • Day28 is the end of step E.
  • the cell analysis results at the end are shown.
  • a thick solid line histogram shows the fluorescence intensity of the antibody stained for the molecule to be analyzed
  • the thin dotted line histogram is a negative control and non-specific. The fluorescence intensity in the case of antibody staining is shown.
  • FIG. 4 shows the results of analyzing the expression of CD80 and IL-12p40 mRNA by RT-PCR.
  • mRNA for HPRT indicates the relative amount of RNA sample used for analysis.
  • FIG. 5 is a graph showing the results of analysis of T cell stimulating activity by cells induced to differentiate from embryonic stem cells of primates.
  • diamonds represent floating cells in the culture medium after step (D)
  • white circles represent floating cells in the culture medium after step (E)
  • squares represent undifferentiated embryonic stem cells.
  • FIG. 6 is a diagram showing the results of examining the expression of a foreign gene in cells induced to differentiate from a primate embryonic stem cell into which a foreign gene has been introduced.
  • Panel A shows the structure of a plasmid DNA vector encoding the 13 strand of the HLA-DR53 molecule.
  • Panel B The results of detection of mRNA derived from the transgene by RT-PCR are shown.
  • cES is an undifferentiated embryonic stem cell
  • cES—53-23 is an undifferentiated embryonic stem cell into which a gene has been introduced
  • cES—DC is an embryonic stem cell force distribution.
  • the obtained rod cells, “cES-DC-53-23” indicate rod cells that have been induced to differentiate from the embryonic stem cells into which the gene has been introduced.
  • HP RT mRNA indicates the relative amount of RNA sample used in the analysis.
  • FIG. 7 shows the results of examining the antigen-presenting ability of rod-shaped cells differentiated from embryonic stem cells into which DR53 ⁇ gene was introduced.
  • Panel ⁇ is loaded with GAD65 antigen-derived peptides (concentrations 1.25, 2.5, 5. ⁇ / ⁇ ⁇ ) on rod-shaped cells differentiated from DR53 ⁇ -transfected embryonic stem cells and irradiated with X-rays
  • GAD65 antigen-derived peptides concentration 1.25, 2.5, 5. ⁇ / ⁇ ⁇
  • primate embryonic stem cells and cells having the property of inducing differentiation and proliferation of blood cells are co-cultured to obtain a cell group ⁇
  • B Cell group A obtained in step (A) above and the property of inducing differentiation of blood cells.
  • step (D) culturing the cell group C obtained in the step (C) in the presence of granulocyte macrophage colony stimulating factor and interleukin 4,
  • the present invention relates to a method for separating embryonic stem cell power rod-shaped cells of primates.
  • the separation method of the present invention has one major feature in that primate embryonic stem cells (ES cells) are used. Therefore, according to the differentiation method of the present invention, an excellent effect of being able to be supplied in a large amount is exhibited as compared with the case of isolating rod-shaped cells from a living body or the case of differentiation from hematopoietic stem cells. Further, according to the differentiation method of the present invention, since the ES cell is used, a gene expected to show a therapeutic effect (hereinafter also referred to as “therapeutic gene”) can be easily introduced if necessary. It exhibits an excellent effect that it can be expressed. Furthermore, according to the present invention, since primate ES cells are used, it is suitable for application to so-called cell therapy.
  • ES cells primate embryonic stem cells
  • the ES cell force of the mouse is different from that for dividing cells into rod cells.
  • ES cell of a primate animal is used.
  • One major feature is that co-cultured cells with cells that have the property of inducing the differentiation and proliferation of blood cells.
  • ES cells can be differentiated into mesodermal cells.
  • the term “primate animal” includes humans, monkeys, and the like.
  • the monkeys include power-cynomolgus monkeys, rhododendron monkeys, diphone monkeys, marmoset, chimpanzees and the like.
  • the primate ES cells used in the present invention are not particularly limited, and examples thereof include force-quizal ES cell line CMK6 cells, human ES cells and the like.
  • the ES cells can be appropriately selected depending on the intended use of the obtained rod-shaped cells.
  • Examples of the "cell having the property of inducing differentiation and proliferation of blood cells” include, for example, OP9 cell (RIKEN BIORESOURCE Center (RIKEN BIORESOURCE CENTER: 305-0074 Ibaraki, Tsukuba Takanodai, 3-chome, 1-1-1) Cell number: R CB1124), ST2 cells (RIKEN BIORESOURCE CENTER cell number: RCB0224), PA6 cells (RIKEN BioResource Center ( RIKE N BIORESOURCE CENTER) cell number: RCB1127) and the like.
  • ST2 cells are preferable from the viewpoint of improving the efficiency of inducing differentiation into blood cells.
  • the “feeder cell” when co-culturing the “primate animal ES cell” and the “feeder cell”, the “feeder cell” is cultured in an appropriate medium.
  • the cells can be cultured under the culture conditions corresponding to the feeder cell and grown to an extent that substantially covers the bottom surface of the culture container, thereby forming a feeder cell layer.
  • the medium that can be used for the production of the feeder cell is appropriately selected according to the type of the cell used as the feeder cell as long as it is a medium suitable for culturing adherent mammalian cells. Examples thereof include a MEM, DMEM [Dulbecco modified Eagle medium (culture medium)] and the like.
  • the culture vessel used in the step (ii) is a tissue culture culture from the viewpoint of promoting the differentiation of ES cells into mesodermal cells, the viewpoint of stably adhering feeder cells for a long period of time, and the like. If it is a culture vessel with a coating suitable for it.
  • the coating can be performed with, for example, gelatin, fibronectin or the like.
  • the culture condition of the feeder cell can be appropriately set according to the type of the cell used as the feeder cell. For example, in the case of ST2 cells, ⁇ 9 cells, etc., in a culture container coated with 0.1 wt% gelatin solution etc., culture at 37 ° C, 5 vol% CO in a medium supplemented with 10 vol% urchin fetal serum The conditions to do are mentioned.
  • the cell density of the ES cell maximizes the number of mesodermal cells obtained per medium (culture solution) from the viewpoint of sufficiently exerting the differentiation ability.
  • the culture vessel is preferably a culture vessel of 5 ⁇ 10 4 to 1 ⁇ 10 5 cells / diameter 100 mm
  • the medium used for the co-culture of ES cells and feeder cells in the step (A) may be any ES cell species that can be used as long as it is a culture solution suitable for culturing mammalian cells. It can be appropriately selected depending on the type, and examples thereof include a MEM, DMEM, IMDM (Iscob modified Dulbecco medium) and the like. Such a medium can also be used in the following steps (B) to (E).
  • the conditions of the culture gas phase during the co-culture of the ES cells and the feeder cells in the step (A) can be appropriately set according to the type of ES cells used, the composition of the culture solution, and the like. For example, conditions such as around 37 ° C (particularly 37 ° C), 5 vol% CO, and the like can be mentioned.
  • the co-culture time of the ES cell and the feeder cell in the step (A) is such that the ES cell is sufficiently differentiated into a cell differentiated into the mesoderm system, and the cell differentiated into the mesoderm system is used. In order to maximize the number, 9 to 11 days are preferred.
  • step (A) the medium is changed every other day after the fourth day after the start of the culture.
  • the cell group A obtained in the step (A) shows properties of mesodermal cells and may vary depending on the type of animal from which the ES cells used are used. It can be obtained as a cell group containing a mass of cells exhibiting
  • embryos of primates Cell group A is isolated as a cell group containing cells derived from primate embryonic stem cells and differentiated into mesodermal cells from a co-culture of sexual stem cells and the feeder cell I prefer that.
  • Isolation of the cell group A having the co-culture force may be performed by, for example, adding phosphate buffered saline containing 0.25 wt% trypsin ZlmM ethylenediaminetetraacetic acid (EDTA) to the co-culture, and It can be carried out by treating with C for a time suitable for separating cells differentiated into mesodermal cells, for example, for 8 to 15 minutes.
  • EDTA ethylenediaminetetraacetic acid
  • the cell group A obtained in the step (A) is a newly prepared cell (feeder cell) that induces differentiation and proliferation of blood cells.
  • feeder cell a newly prepared cell that induces differentiation and proliferation of blood cells.
  • the ratio of mesoderm cells, in particular, blood cells can be further improved, so that rod-like cells derived from primates are used. Can get more efficiently in And exhibits an excellent effect of being able to supply stably.
  • the feeder cell mentioned in the step (A) can be used.
  • OP 9 Cells are desirable.
  • the “feeder cell” is used as the “feeder cell” used in the step (A). Similar to “cells”, the cells can be grown to the extent that they almost cover the bottom surface of the culture vessel, thereby forming a feeder-one cell layer.
  • the culture conditions used for the culture vessel and the “feeder single cell” used in the step (B) are the same as those in the step (A).
  • step (B) the cells were collected from step (A) from the viewpoint of sufficiently exerting the ability to separate and the number of produced cells per culture medium used.
  • the cell group A has a larger area than in the case of step (A), specifically about 4 to 8 times the culture vessel in step (A) (for example, the area of the feeder cell layer is the same as in step (A). 4 to 8 times the case).
  • the conditions of the culture gas phase during the co-culture of the cell group A and the feeder cell in the step (B) depend on the type of ES cell used, the composition of the culture solution, and the like. ) Can be set as appropriate.
  • the medium used in the step (B) is the same as the medium used for the co-culture in the step (A).
  • the co-culture time of the ES cell and the feeder cell in the step (B) is such that the ES cell is sufficiently differentiated into a mesodermal cell, particularly a blood cell, and a mesodermal cell,
  • a mesodermal cell particularly a blood cell
  • a mesodermal cell particularly a blood cell
  • a mesodermal cell particularly a blood cell
  • a mesodermal cell particularly a blood cell
  • step (B) medium replacement or medium addition may be performed as appropriate during the culture period.
  • the cell group B obtained is a mesodermal cell, particularly a blood cell.
  • a mesodermal cell particularly a blood cell.
  • it has a relatively uniform, small and round shape as shown in panel G of Fig. 2, although it may vary depending on the type of animal from which the ES cells are used. It can be obtained as a group of cells containing the floating cells shown.
  • floating cells are collected by pipetting or the like, so that cells that have been differentiated in a direction other than insufficiently differentiated cells and cells other than blood cells (for example, including epithelial cells)
  • the cell group sorted in the direction of the blood cell lineage cell can be efficiently collected.
  • the differentiation method of the present invention the cell group B obtained in the step (B), and a newly prepared cell (feeder) having the property of inducing differentiation and proliferation of blood cells. 1 cell) is co-cultured in the presence of granulocyte-macrophage colony-stimulating factor [Step (C)]. Therefore, according to the differentiation method of the present invention, by performing such step (C), it is possible to induce the differentiation into the myeloid (myelocyte) system and the differentiation into the rod-like cells. Therefore, it is possible to obtain rod-like cells derived from primates more efficiently and to provide a stable supply.
  • granulocyte-macrophage colony-stimulating factor [Step (C)]. Therefore, according to the differentiation method of the present invention, by performing such step (C), it is possible to induce the differentiation into the myeloid (myelocyte) system and the differentiation into the rod-like cells. Therefore, it is possible to obtain rod-like cells derived from primates more efficiently and to provide a stable supply.
  • the culture vessel used in the step (C) is preferably one coated with gelatin, fibronectin or the like from the viewpoint of stably attaching feeder cells for a long period of time.
  • the feeder cell mentioned in the step (A) can be used, for example, OP9 cells are preferred.
  • the conditions of the culture gas phase during the co-culture in step (C) are the same as in steps (A) and (B) depending on the type of ES cells used, the composition of the medium, and the like. It can be set as appropriate.
  • the medium used in step (C) is the same as the medium used for the co-culture in steps (A) and (B) except that it contains granulocyte-macrophage colony-stimulating factor.
  • the content of granulocyte-macrophage colony-stimulating factor in the medium in the step (C) is selected from the viewpoint of maximizing the number of cells produced per culture medium and the amount of stimulating factor used. A range of ⁇ 200ngZml is desired!
  • the cell density of the cell group B is from the viewpoint of sufficiently exerting the differentiation ability, from the viewpoint of maximizing the number of cells produced per amount of the culture medium to be used and the stimulating factor. (3 x 10 5 to 6 x 10 5 Z8ml medium Z diameter 100mm culture dish)!
  • the co-culture time in the step (C) is such that the cell group B is sufficiently differentiated into irregularly shaped rod-like cells having protrusions, and finally produced in the cells. From the viewpoint of sufficiently improving the ratio of such rod-like cells and from the viewpoint of maximizing the number of cells produced per culture medium and the amount of stimulating factor, 4 to 6 days is desirable.
  • a macrophage colony-stimulating factor may be used from the viewpoint of promoting differentiation into myeloid cells.
  • the content of the macrophage colony stimulating factor in the medium in the step (C) is preferably in the range of 50 to 200 ngZml from the viewpoint of strong T cell stimulating activity and production of rod-shaped cells.
  • step (C) from the viewpoint of sufficiently improving the proportion of the rod-like cells that are finally produced in the cells, preferably on the third or fourth day, It is desirable to add the medium containing granulocyte macrophage colony stimulating factor and no macrophage colony stimulating factor to the culture in half the original medium (4 ml Z diameter 100 mm culture dish).
  • step (C) unlike the case of mouse ES cells, by adding a macrophage colony-stimulating factor temporarily at the time of induction of differentiation into rod cells, It is possible to further improve the efficiency of induction of the rod-shaped cells.
  • step (C) during the culture period, the medium is replaced with a medium containing granulocyte macrophage colony stimulating factor and not containing macrophage colony stimulating factor in the medium, or granulocyte macrophage colony stimulating factor is replaced. It is also possible to add a medium that contains and does not contain a macrophage colony stimulating factor.
  • part of the cell group C obtained is an ES cell that exhibits the properties of rod-shaped cells, such as the expression of DR, CD40, CD86, CD80, etc. Forces that may vary depending on the animal species from which they originate, for example as shown in panel H of Figure 2 In addition, it can be obtained as a group of cells containing floating cells that are morphologically heterogeneous and have protrusions.
  • the cell group C obtained in the step (C) is added in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 (IL-4).
  • IL-4 interleukin-4
  • the culture vessel used in the step (D) should have a low cell adherence, for example, a coated / polystyrene vessel is desirable, but has a coating power for cell culture. Cultured containers can also be used.
  • the conditions of the culture gas phase during the culture in step (D) are the same as those in steps (A) and (B), depending on the type of ES cells used, the composition of the culture medium, and the like. Can be set as appropriate.
  • step (D) The medium used in step (D) is used for the co-culture of steps (A) and (B) except that it contains granulocyte-macrophage colony-stimulating factor and interleukin-14. Same as the medium.
  • the cell density of the cell group C is used from the viewpoint of sufficiently exerting differentiation ability, and from the viewpoint of maximizing the yield of rod-shaped cells per culture medium to be used and stimulating factor. From the above, it is desirable that 3 10 5 -6 10 5 cells 72.5 ml culture solution Z culture diameter 60 mm culture vessel.
  • the culture time in step (D) is 2 to 5 from the viewpoint of further improving the proportion of rod-like cells in cell group C and producing rod-shaped cells with stronger T cell stimulating activity. It is desirable to evaluate the degree of differentiation according to the cell morphology and determine it appropriately within a day.
  • the content of granulocyte-macrophage colony-stimulating factor in the medium in the step (D) is preferably in the range of 50-200 ng Zml from the viewpoint of maximizing the yield of rod cells per stimulating factor used.
  • the content of interleukin-4 in the medium in the step (D) is preferably 5 to 20 ngZml from the viewpoint of producing rod-shaped cells with stronger T cell stimulating activity.
  • step (D) MHC class II of the finally produced rod-shaped cells is used.
  • FLT-3L fms-like tyrosine kinase 3 ligand
  • IL 4 is not essential for the differentiation induction of rod cells, and when IL 4 is added to rod cells at an immature stage, the final state of rod cells Force that prevents maturation in the step In step (D), IL 4 is essential in the process until differentiation is induced in the rod cells.
  • step (D) it is possible to obtain rod-shaped cells exhibiting the properties of rod-shaped cells, for example, the expression of DR, CD40, CD86, etc., morphologically heterogeneous, and having protrusions.
  • the rod-shaped cells obtained by the differentiation method of the present invention have the activity of strongly stimulating T cells by phagocytosing and degrading antigenic proteins and presenting the resulting peptides to T cells.
  • the T cells are killer T cells (Tc) that recognize antigen peptides presented on MHC class I molecules and T helper cells that recognize antigen peptides presented on MHC class II molecules.
  • Tc killer T cells
  • Th cells When Th cells are activated by presenting antigens from rod cells, they produce various cytokines, which can activate B cells and macrophages.
  • the rod-shaped cells obtained by performing the steps (A) to (D) are added with a tumor necrosis factor ex and lipopolysaccharide, and further subjected to a culturing step [step (E).
  • a tumor necrosis factor ex and lipopolysaccharide are added with a tumor necrosis factor ex and lipopolysaccharide, and further subjected to a culturing step [step (E).
  • the tumor necrosis factor a and lipopolysaccharide are used in addition to the interleukin-1 and the optional fms-like tyrosine kinase 3 ligand in the step (D). Therefore, it is possible to produce rod-shaped cells (mature rod-shaped cells) with improved T cell stimulating properties!
  • the culture vessel used in step (E) and the conditions of the culture gas phase are the same as those in steps (A) and (B) depending on the type of ES cells used, the composition of the culture medium, and the like. Can be set as appropriate.
  • the medium used in the step (E) contains GM-CSF, interleukin-1 4, tumor necrosis factor a (TNF- ⁇ ), lipopolysaccharide, and optionally FLT-3L. Except for this, it is the same as the medium used for the co-culture of the steps ( ⁇ ) and ( ⁇ ).
  • the culture time in the step (v) is 1-2 days from the viewpoint of producing rod-shaped cells with stronger cell-stimulating activity.
  • a CD40 ligand or the like may be used instead of TNF-a as long as it is a factor that promotes maturation of rod cells.
  • the amount of TNF-a added is preferably stronger than T cell stimulating activity, from the viewpoint of producing a dendritic cell, 5 to 20 ng is desirable.
  • step (E) if the factor promotes the maturation of rod cells, instead of lipopolysaccharide, a bacterial extract, a fungal extract, a mycoplasma extract, two Strand RNA or the like may be used.
  • step (E) the amount of lipopolysaccharide added is preferably 3 to 5 / zg with respect to 1 ml of the culture solution from the viewpoint of stronger T cell stimulating activity and production of rod-shaped cells. .
  • means for antigen-specific control of an individual's immune response for example, the reaction of cytotoxic T cells against a specific antigen using primate rod-shaped cells.
  • Preventive reactions associated with organ transplantation treatment methods for diseases that are expected to have therapeutic effects (for example, autoimmune diseases, allergic diseases, etc.) And a means of treatment and the like can be provided.
  • control of an immune response is intended to mean a concept that includes both suppression and activation of an immune response.
  • the present invention provides steps (A) to (D) in the sorting method.
  • step ( ⁇ ') a step of isolating rod-shaped cells derived from primate embryonic stem cells from the culture obtained in step (D), And a method for producing a rod-shaped cell of embryonic stem cell power of a primate animal.
  • the production method of the present invention is replaced with the step (').
  • step (Ii) a step of further culturing by adding interleukin-4, tumor necrosis factor oc, lipopolysaccharide and optionally fms-like tyrosine kinase 3 ligand to the culture obtained in step (D), and
  • step (F) separating a rod-shaped cell derived from a primate embryonic stem cell from the culture obtained in step (E),
  • step (E) is the same as the step (E) in the sorting method of the present invention.
  • Advantageous embodiments are advantageous in that rod cells can be supplied with higher efficiency and more stability.
  • means for separating the rod-like cells derived from primate embryonic stem cells from the culture include, for example, rod-like cells.
  • examples include a affinity column using an antibody against a specific marker, cell sorting by flow cytometry using the antibody, and cell sorting using magnetic microbeads coated with the antibody.
  • markers specific to the rod-shaped cells include HLA-DR, CD40 and CD.
  • the antibody can be easily prepared by a conventional method using a polypeptide or a fragment thereof, which is a marker specific to rod cells.
  • a polypeptide or a fragment thereof which is a marker specific to rod cells.
  • Such an antibody may be a commercially available antibody.
  • the production method of the present invention by introducing a gene such as a therapeutic gene into an ES cell as a raw material in advance, desired properties can be exerted on the rod-shaped cell. Therefore, in another embodiment, the production method of the present invention introduces a nucleic acid containing a gene to be introduced into a primate embryonic stem cell prior to performing step (A).
  • the gene to be introduced include the therapeutic gene, specifically, for example, a gene for immunosuppression, a gene for immunostimulation, etc. More specifically, Examples include genes encoding antigens, genes for factors that induce T cell migration, genes for factors that enhance T cell responses, genes for factors that suppress T cell responses, and the like.
  • the resulting rod-shaped cells have an extremely high antigen-specific T cell stimulating activity. Is advantageous in that it expresses the activity of specifically suppressing the T cell reaction.
  • an antigen is a protein or peptide that is a target of treatment or diagnosis, and includes, for example, various bacteria, various viruses, proteins constituting these, and cancer cells. Examples include proteins that are expressed (tumor antigen proteins), peptides that are part of tumor antigen proteins, and molecules that are targets of recognition by the immune system in autoimmune and allergic diseases.
  • the introduction of the nucleic acid can be performed by a conventional method, for example, the electopore position method, the lipofusion method, or the like. From the standpoint of fully exerting the ES cell sorting performance, the electopore position method is desirable.
  • the nucleic acid may be V, a so-called naked nucleic acid, or may be linked to a vector (viral vector or non-viral vector).
  • a vector viral vector or non-viral vector.
  • examples of the vector include a phage and a plasmid.
  • the vector may contain elements effective for transcription promotion, such as various promoters, enhancers, and terminators, as necessary.
  • a non-viral vector for example, a plasmid vector by an electoral position from the viewpoint of ease of operation, therapeutic use, and the like.
  • the production method of the present invention induces differentiation from conventional peripheral blood monocytes or hematopoietic stem cells in order to introduce a plasmid vector by electoporation at the stage of ES cells and differentiate it into rod-shaped cells.
  • Gene transfer to the rod-shaped cells prepared by using a viral vector Compared to the method, the following points are excellent!
  • the present invention relates to a rod-shaped cell obtained by the production method.
  • the immune response of an individual can be controlled in an antigen-specific manner (for example, by strongly activating the response of cytotoxic T cells to a specific antigen).
  • Antigen-specific control makes it possible to obtain a therapeutic effect on a disease for which a therapeutic effect is expected.
  • an auxiliary agent capable of stably holding the rod-shaped cells of the present invention such as a medium, may be used as appropriate.
  • an immune response in a subject is antigen-specifically controlled, wherein a therapeutically effective amount of a rod-shaped cell obtained by the production method is administered to the subject.
  • a method for treating a disease capable of obtaining a therapeutic effect is provided.
  • Examples of the "disease whose therapeutic effect can be obtained by antigen-specific control of immune response” include, for example, autoimmune disease, tumor, allergic disease, infectious disease, rejection associated with organ transplantation, and the like. Examples include graft-versus-host disease (GVHD).
  • GVHD graft-versus-host disease
  • the "subject” is preferably a human in need of treatment for a disease that can obtain a therapeutic effect by antigen-specific control of the immune response as described above. It may be an organism that requires treatment of a disease capable of obtaining a therapeutic effect by controlling the immune response as described above in an antigen-specific manner, for example, pet animals such as Inu and cats.
  • the "therapeutically effective amount” means that when the rod-like cells obtained by the above production method are administered to the subject, the immunity is compared with that of the subject not administering the rod-like cells.
  • the amount of the rod-shaped cells that can control the response in an antigen-specific manner and thus can have a therapeutic effect on the above-mentioned diseases.
  • the specific therapeutically effective amount is not generally determined as long as it is appropriately set depending on the administration form of the rod cells, the administration method, the purpose of use and the age, weight, symptom, etc. of the subject.
  • the number of rod cells is 200,000 to 1,000,000 even / kg body gravity per treatment for a human (eg, an adult) per person!
  • examples of a method for administering a therapeutically effective amount of the rod-like cells obtained by the production method to a subject include subcutaneous injection, intralymphatic injection, intravenous injection, or malignant tumor. This includes, but is not limited to, direct local injection.
  • an immune response control agent comprising rod-shaped cells obtained by the production method as an active ingredient.
  • the immune response control agent of the present invention may contain the above-mentioned adjuvant capable of stably holding the rod-shaped cells as the active ingredient.
  • the pharmacological evaluation of the immune response control agent of the present invention can be evaluated using T cell stimulation activity measured by T cell proliferation assay as an index.
  • Fig. 1 shows an outline of differentiation-inducing culture from ES cells to rod-shaped cells.
  • the cells collected in the following steps were partially frozen and stored.
  • the cells in each step were analyzed using an inverted microscope (trade name: 1X70, manufactured by Olympus Corporation).
  • CMK6 cells As embryonic stem cells (ES cells) of primates, CMK6 cells, an ES cell line established from force-cynomolgus monkeys, were used.
  • ST2 cells (physical research) were prepared with DMEM supplemented with 10% by volume urchin fetal serum on a culture dish (diameter 10cm, manufactured by Falcon) previously coated with 0.1% gelatin solution. Supplied) was cultured at 37 ° C and 5% CO by volume. The ST2 cells touch the bottom of the culture dish
  • the ES cells were suspended in ⁇ MEM (a essential culture medium) supplemented with 20% by volume urine fetal serum (FCS) at a density of 8 ⁇ 10 4 cells Z8 ml culture solution.
  • FCS urine fetal serum
  • Panels A to F in Fig. 2 show the results of observing the morphology of cells generated by induction of ES cell differentiation over time.
  • Panel A in Fig. 2 shows undifferentiated ES cells, and panels B to F show the morphology of ES cell-derived cells that are being separated in step (A).
  • Panel B shows cells on day 3 after initiation of differentiation induction, panels C and D on day 6, and panels E and F on day 9. Shown in Figure 2 As the number of culture days passed, the differentiation of undifferentiated ES cells into mesoderm cells progressed, and the density of cells separated into mesoderm cells increased.
  • the surface of the feeder layer is almost like an ES cell-derived epithelial cell by 6 days after the start of differentiation induction. Covered with cells.
  • step (A) of (1) above ES cell-derived cells recovered from one culture dish are respectively transplanted onto OP9 cell layers prepared in 4 to 8 other culture dishes.
  • the cells were further cultured at 37 ° C. and 5% by volume CO 2 in ⁇ containing 20 vol% urine fetal serum.
  • the OP cell layer was obtained by growing until the bottom surface of the culture dish was almost covered, similar to the ST2 cells.
  • the ES cell-derived cells recovered from the four culture dishes in the step (B) of (2) were used as final concentration lOOngZml granulocyte macrophage colony-stimulating factor (GM-CSF; manufactured by Pep rotec) and final concentration lOOngZml macrophage.
  • GM-CSF granulocyte macrophage colony-stimulating factor
  • M-CSF colony stimulating factor
  • the cells were suspended in a MEM containing 20% by volume urine fetal serum.
  • the resulting cells transplants City on OP9 cell layer that had been prepared on one another culture dish (diameter 10 cm), and cultured at 37 ° C, 5 volume 0/0 CO.
  • the culture dish contains a final concentration of lOOngZml GM-CSF and no M-CSF, and a new culture solution [composition: ex MEM containing 20% by volume of fetus serum] 4 ml was added.
  • the ES cell-derived cells collected in step (C) of (3) were suspended at a density of 5 ⁇ 10 5 cells Z2.5 and 5 ml culture solution. 2.5 ml of the obtained cell suspension was transplanted to one culture dish (diameter 6 cm) without stromal cells, and further cultured at 37 ° C. and 5 vol% CO.
  • the final concentration of lOOngZml GM—CSF (manufactured by Peprotec) and the final concentration of 10ng / ml Interleukin-4 (IL-4; manufactured by Peprotec), final concentration lOngZml FLT-3L (fms-like tyrosine kinase 3 ligand; manufactured by Peprotec), and ⁇ MEM containing 20% by volume fetus serum .
  • step (D) of (4) above the final concentration of 10 ng / ml tumor necrosis factor a (TNF—manufactured by Peprotec) and final concentration of 3 / z gZml lipopolysaccharide ( LPS, derived from E. coli (manufactured by SIGMA) and culturing at 37 ° C and 5 vol% CO
  • step (A) in Example 1 OP9 cells or PA6 cells were used instead of ST2 cells, and step (A) was performed in the same manner as in the case of ST2 cells.
  • step (A) of Example 1 (1) bone morphogenetic protein 4 (BMP
  • TPO Thrombopoietin
  • SCF Stem cell stimulating factor
  • Fit—3L vascular endothelial growth
  • step (A) even when the site force-in is used, a force that does not show a remarkable effect of promoting the differentiation from ES cells to mesodermal cells. I got it.
  • the cell surface molecules that are physically present and expressed in the rod-shaped cells are ES in Example 1 above. Whether it was also expressed in cell-derived cells was examined.
  • ES cell-derived rod-like cells obtained in Example 1 were treated in Fc blocking reagent (Miltenyi Biotec) for 5 minutes. Thereafter, the obtained product was divided into the following fluorescein isothiocyanate (FITC) -binding monoclonal antibody (mAb) (Pharmingen): anti-human histocompatibility leukocyte antigen (HLA) -DR (clone L243, mouse IgG2a), Anti-human CD86 (clone FUN-1, mouse IgGl) and anti-human CD40 (clone 5C3, mouse IgGl) were used for staining. Said anti-human mAb cross-reacts with force-cynomolgus cells. As an isotype-matched control, mouse IgG2a (clone G155-178) and mouse IgGl (clone MOPC-21) were used for staining. And incubated at 4 ° C for 30 minutes
  • a cell analyzer equipped with CellQuest software (trade name:
  • FACScan manufactured by Becton Dickinson.
  • the cells after step (B) (“dayl6” in FIG. 3) and Cells after step (C) (“day 22” in FIG. 3) hardly expressed these molecules.
  • the ES cell-derived rod-like cells recovered in step (D) express HLA-DR, CD40, and CD86 at low levels. It was.
  • cells stimulated with TNF-a and LPS in step (E) expressed these molecules at a high level.
  • the product was homogenized with a product name: Qiashredder (Qiagen), and total RNA was extracted using a product name: RNeasy kit (Qiagen).
  • RNA equivalent to 1 ⁇ g random hexamer primer (Gibco—BRL) and Superscript TM n reverse transcriptase (Gibco—BRL), 42 ° C CDNA was synthesized under the conditions of incubation for 50 minutes.
  • Nucleic acid encoding Rhizobium CD80 SEQ ID NOs: 3 and 4
  • the thermal profile in PCR is 95 ° C for 5 minutes, followed by 35 cycles of 95 ° C for 1 minute, 56 ° C for 1 minute and 72 ° C for 1 minute, and 72 ° C for 5 minutes. It is a condition to incubate.
  • step (E) the cells stimulated with TNF-a and LPS are interleukin-12 (site force-in having an action of activating T cells). IL-12) was also expressed. Therefore, it was suggested that the cells obtained in Example 1 were rod-shaped cells.
  • ES cell-derived rod-like cell force Quantifies T cell proliferation when co-cultured with Aro (allogeneic) T cells, whether they have the activity of stimulating T cells and causing a proliferative response This was considered.
  • Reactive T cells were used as separate T-cell monkey peripheral blood T cells from those used to establish ES cells.
  • X-irradiated ES cells in the undifferentiated state (negative control), ES cell-derived rod cells after step (D), and ES cell-derived rod cells after step (E) were used as stimulating cells ( 40Gy) was used.
  • CD14 cells were isolated from mononuclear cells using magnetic beads coated with anti-human CD14 antibody (trade name, supermagneticMicro Beads, Miltenyi Biotec), and this was isolated from tissue culture. The plate was cultured at 37 ° C. for 1 hour in a medium (composition: RPMI-1640 medium containing 2% by volume heat-inactivated rabbit embryo serum). [0156] Thereafter, cells that do not adhere to the culture dish are collected, and the nylon wool column (made by filling a 10 ml plastic syringe with nylon wool manufactured by Wako Pure Chemical Industries, Ltd.) at 37 ° C, 5 volume% CO Left for 1 hour. The cells that did not adhere to the nylon wool column
  • HLA—DR ⁇ 4 * 0103 cDNA a type of human histocompatibility leukocyte antigen (HLA) class II ⁇ -chain gene, is activated by the CAG promoter and contains an internal ribosome entry site (I RES) —neomycin resistance gene cassette Cloning into the animal expression vector pCAG-IR ES-Neo gave pCAG-DRB4-IN.
  • Panel A in FIG. 6 shows a schematic diagram of the pCAG-DRB4 IN.
  • Undifferentiated force-quizal ES cells (1.0 ⁇ 10 7 cells) were suspended in 0.4 ml of Dulbecco's modified culture medium (DMEM; manufactured by Gibco-BRL). The obtained suspension was mixed with 50 ⁇ g of the above pC AG-DRB4-IN. The obtained mixture was put into a 4 mm gap cuvette (trade name: BM6400, manufactured by BTX), and the cuvette was set in a product name: Gene Pulser (manufactured by Bio-Rad). After that, gene transfer was performed by electroporation under conditions of 250V and 500F.
  • DMEM Dulbecco's modified culture medium
  • the ES cell into which the gene has been introduced is transferred to a PEF (mouse embryonic fibroblast) layer on a 10 cm culture dish.
  • PEF mouse embryonic fibroblast
  • Above medium Composition: 20 vol% KSR (Gibco BRL Co.) in containing DMEM, and incubated at 37 ° C, 5 volume 0/0 CO. From day 2 after gene transfer, G418 (150 ⁇
  • Drug-resistant cells ie, transgenic cells, were selected by adding g / ml) to the medium.
  • transfectants On day 11 after gene introduction, clones of transgenic cells (transfectants) were collected as colonies of G418-resistant cells and transferred to a 24-well culture plate in which PEF had been cultured in advance. Furthermore, the cells were grown by continuing the culture in the presence of G418 (150 g / ml), and a part of the cells was stored frozen. In addition, the remaining part was cultured at 37 ° C, 5 vol% CO in a medium containing 3 mgZml G418 (composition: DMEM containing 20 vol% KSR (Gibco BRL)), and in the presence of such a high concentration of G418. But the transfectant claw that can grow
  • PCR was performed using 5'-ctgactgaccgcgttactcccaca-3 '(SEQ ID NO: 7) and ttg gttatagatgtatctgatcaggt-3' (SEQ ID NO: 8). The expression of was examined. As a control, HPRT gene expression was examined. The thermal profile for PCR is 95 ° C for 5 minutes, followed by 35 cycles of 95 ° C for 1 minute, 56 ° C for 1 minute, and 72 ° C for 1 minute, followed by 72 ° C for 5 minutes. It is a condition.
  • HLA—SA32.5 (5 ⁇ 10 4 / well), a human CD4 + T cell clone that recognizes GAD65 pil—131 bound to DR53 molecule (DRA * 0101 + DRB4 * 0103), and antigen ( The above-mentioned synthetic peptide) -loaded rod cells (2 ⁇ 10 4 Zwell) were placed on a 96-well flat-bottom culture plate in RPMI-1640 medium supplemented with 10% human plasma at 37 ° C. The T cell proliferation assay was performed by culturing at 5 vol% CO.
  • the DR53 ⁇ gene-introduced rod cells obtained in Example 7 have the activity of taking a protein antigen into the cell, decomposing it into a peptide, producing a peptide, and displaying it on the DR molecule on the cell surface. Then, we examined whether or not.
  • the DNA fragment encoding the GAD65 ⁇ 96-174 protein fragment was ligated to the prokaryotic expression vector pGEX-4 ⁇ -3 (Amersham Biosciences), and the resulting vector was used for E. coli DH5 a was transformed, thereby allowing the E. coli DH5a to express a glutathione 1 S transferase fusion GAD65 protein (GST-GAD).
  • GST-GAD glutathione 1 S transferase fusion GAD65 protein
  • the recombinant protein was purified using dartathione-agarose (manufactured by SIGMA). The purity and amount of the fusion protein were confirmed by sodium lauryl sulfate-polyacrylamide gel electrophoresis. The obtained recombinant protein was concentrated using a trade name: Centricon-10 (manufactured by Millipore), separated from a low molecular weight peptide fragment, and the buffer was replaced with a medium by dialysis.
  • DR53 ⁇ obtained in Example 7 was used.
  • the transfected rod cells were cultured at 37 ° C. in the presence of GST or GST-GAD protein obtained in (1) above (18 / z M) with final concentration of lOngZml TNF- ⁇ and final concentration of 3 gZml LPS. Incubate with 5% CO for 20 hours, wash 3 times with medium, and X-ray irradiation (40
  • the SA32.5 (5 X 10 Suel) and the rod-shaped cells (2 X 10 4 Z uer) loaded with the antigen (the recombinant protein) were mixed on a 96-well flat-bottom culture plate at 10% by volume.
  • T cells were cultured in RPMI-1640 medium supplemented with human plasma at 37 ° C and 5% CO by volume.
  • rod-like cells derived from primates can be efficiently and stably supplied in large quantities, and a normal plasmid vector can be electroporated without using a viral vector. Genetic modification by introduction by the law becomes possible. According to the present invention, genetic modification of rod-shaped cells can be easily and efficiently performed. By administering such genetically modified rod cells to a living body, it becomes possible to control an individual's immune response in an antigen-specific manner. Therefore, various therapeutic effects are expected by antigen-specific control of the immune response. It becomes possible to treat such diseases.
  • SEQ ID NO: 1 is the sequence of the HPRT primer.
  • SEQ ID NO: 2 is the sequence of the HPRT primer.
  • SEQ ID NO: 3 is the sequence of the CD80 primer.
  • SEQ ID NO: 4 is the sequence of the CD80 primer.
  • SEQ ID NO: 5 is the sequence of the IL-12p40 primer.
  • SEQ ID NO: 6 is the sequence of the IL-12p40 primer.
  • SEQ ID NO: 7 is the sequence of the HPRT primer.
  • SEQ ID NO: 8 is the sequence of the HPRT primer.
  • SEQ ID NO: 9 is a partial sequence of GAD65.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Transplantation (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明の目的は、個体の免疫反応を抗原特異的に制御する手段を提供することにある。従って、本発明は、霊長類動物の胚性幹細胞から樹状細胞への分化方法、霊長類動物胚性幹細胞から樹状細胞の製造方法、該製造方法により得られる樹状細胞、該樹状細胞、免疫応答を抗原特異的に制御することにより治療効果を得ることができる疾患の治療のための医薬の製造のための該樹状細胞の使用、及び該疾患の治療のための細胞医薬に関する。  

Description

明 細 書
霊長類動物胚性幹細胞から樹状細胞の製造方法
技術分野
[0001] 本発明は、霊長類動物の胚性幹細胞から榭状細胞への分化方法、霊長類動物胚 性幹細胞から榭状細胞の製造方法、該製造方法により得られる榭状細胞、該榭状細 胞、免疫応答を抗原特異的に制御することにより治療効果を得ることができる疾患の 治療のための医薬の製造のための該榭状細胞の使用、及び該疾患の治療のための 細胞医薬に関する。
背景技術
[0002] 榭状細胞は、抗原タンパク質を貪食し、ペプチドに分解し、生じたペプチドを、主要 組織適合抗原 (MHC)との複合体として T細胞に提示 (以下、「抗原提示」とも 、う)し て T細胞を刺激し、抗原特異的に該 T細胞を活性化する。また、前記榭状細胞は、生 体内において抗原提示能力が最も高い細胞である。一方、前記榭状細胞は、自己 抗原に反応性を有する T細胞の機能を抑制し、免疫学的な自己寛容の維持にも関 与している。このように、榭状細胞は、生体内において免疫応答を制御する中心的な 役割を果たしている。
[0003] 榭状細胞は、生体内では、骨髄中で造血幹細胞力も分化され、産生される。また、 骨髄中の造血幹細胞は、増殖因子の存在により榭状細胞以外に、赤血球、血小板、 好中球、好酸球、好塩基球、マクロファージ、リンパ球等に分化する。
[0004] 従来、末梢血中から、存在する榭状細胞を単離すること、骨髄中の造血幹細胞を 分化誘導すること (例えば、特許文献 1)等により榭状細胞が得られることが知られて いる。し力しながら、末梢血中の榭状細胞の存在量は少ないため、榭状細胞を大量 に得ることは困難であるという欠点がある。また、前記特許文献 1に記載の方法では、 マウスの造血幹細胞を分化誘導し榭状細胞を得ることが開示されて ヽる。しかしなが ら、造血幹細胞は長期間培養して増殖させることは困難であり、また、この方法で作 製した榭状細胞に遺伝子導入を行なうためにはウィルスベクターを用いる必要がある という欠点がある。 [0005] また、マウス胚性幹細胞を分ィ匕誘導して榭状細胞を得ることが試みられて 、る (非 特許文献 1)。し力しながら、前記非特許文献 1に記載の方法を、他の生物、例えば、 霊長類動物に適用した場合、成熟榭状細胞が生じないという欠点がある。
特許文献 1 :特開 2004— 16697号公報
非特許文献 1 :千住覚(S. Senju)ら、 Blood,第 101卷、第 3501頁〜第 3508頁、 2 003年 5月 1日発行
発明の開示
発明が解決しょうとする課題
[0006] 本発明の 1つの側面は、霊長類動物に由来する榭状細胞を効率よく得ること、霊長 類動物の榭状細胞を安定的に供給すること、個体の免疫反応を抗原特異的に制御 する手段 (例えば、特定の抗原に対する細胞傷害性 T細胞の反応を強力に賦活する 手段等)を供給すること、免疫応答の抗原特異的な制御により治療効果が期待され る疾患 (例えば、自己免疫疾患、アレルギー疾患等)の治療手段を供給すること、臓 器移植における拒絶反応と移植片対宿主病(GVHD: Graft versus Host Diosease)を 予防または治療する手段を供給すること等の少なくとも 1つを可能にする、霊長類動 物の胚性幹細胞力 榭状細胞への分ィ匕方法を提供することに関する。
[0007] さらに、本発明の他の側面は、霊長類動物に由来する榭状細胞を大量に得ること、 霊長類動物に由来する榭状細胞を効率よく得ること、霊長類動物の榭状細胞を安定 的に供給すること、個体の免疫反応を抗原特異的に制御する榭状細胞 (例えば、特 定の抗原に対する細胞傷害性 T細胞の反応を強力に賦活する榭状細胞等)を得るこ と等の少なくとも 1つを可能にする、霊長類動物の胚性幹細胞からの榭状細胞の製 造方法を提供することに関する。
[0008] 本発明のさらに他の側面は、個体の免疫反応を抗原特異的に制御すること (例え ば、特定の抗原に対する細胞傷害性 τ細胞の反応を強力に賦活すること等)、免疫 応答の抗原特異的な制御により治療効果が期待される疾患に対する治療効果を得 ること等の少なくとも 1つを可能にする、榭状細胞を提供することに関する。
[0009] 本発明の別の側面では、免疫応答の抗原特異的な制御により治療効果が期待さ れる疾患に対する治療等の少なくとも 1つを可能にする医薬の製造のための前記榭 状細胞の使用を提供することに関する。
[0010] また、本発明のさらに別の側面では、免疫応答を抗原特異的に制御すること、例え ば、自己免疫疾患、アレルギー疾患等の疾患の治療を行なうこと等の少なくとも 1つ を可能にする、免疫応答制御剤を提供することに関する。なお、本発明の他の課題 は、本明細書の記載からも明らかである。
課題を解決するための手段
[0011] すなわち、本発明の要旨は、
〔1〕 (A)霊長類動物の胚性幹細胞と、血液細胞の分化と増殖とを誘導する性質を 有する細胞とを共培養して、細胞群 Aを得るステップ、
(B)前記ステップ (A)で得られた細胞群 Aと、血液細胞の分化と増殖とを誘導する性 質を有する新たに準備した細胞とを共培養して、細胞群 Bを得るステップ、
(C)前記ステップ (B)で得られた細胞群 Bと、血液細胞の分化と増殖とを誘導する性 質を有するさらに新たに準備した細胞とを、顆粒球マクロファージコロニー刺激因子 の存在下に共培養して、細胞群 Cを得るステップ、及び
(D)前記ステップ (C)で得られた細胞群 Cを、顆粒球マクロファージコロニー刺激因 子とインターロイキン 4の存在下に培養するステップ、
を含む、霊長類動物の胚性幹細胞から榭状細胞への分化方法、
〔2〕 ステップ (A)にお 、て、霊長類動物の胚性幹細胞と、血液細胞の分化と増殖と を誘導する性質を有する細胞との共培養物から、霊長類動物の胚性幹細胞に由来 し、かつ中胚葉系細胞に分化した細胞を含有した細胞群として、細胞群 Aを分離す る、前記〔1〕記載の分化方法、
〔3〕 ステップ (A)における血液細胞の分化と増殖とを誘導する性質を有する細胞が 、 ST2細胞であり、ステップ (B)における血液細胞の分化と増殖とを誘導する性質を 有する新たに準備した細胞力 OP9細胞であり、かつステップ (C)における血液細 胞の分化と増殖とを誘導する性質を有するさらに新たに準備した細胞が、 OP9細胞 である、前記〔1〕又は〔2〕記載の分化方法、
〔4〕 ステップ (D)の後、(E)前記ステップ (D)で得られた培養物に、腫瘍壊死因子 αとリポ多糖とを添加し、さらに培養を行なうステップを行なう、前記〔1〕〜〔3〕いずれ か 1項に記載の分化方法、
[5] (A)霊長類動物の胚性幹細胞と、血液細胞の分化と増殖とを誘導する性質を 有する細胞とを共培養して、細胞群 Aを得るステップ、
(B)前記ステップ (A)で得られた細胞群 Aと、血液細胞の分化と増殖とを誘導する性 質を有する新たに準備した細胞とを共培養して、細胞群 Bを得るステップ、
(C)前記ステップ (B)で得られた細胞群 Bと、血液細胞の分化と増殖とを誘導する性 質を有するさらに新たに準備した細胞とを、顆粒球マクロファージコロニー刺激因子 の存在下に共培養して、細胞群 Cを得るステップ、及び
(D)前記ステップ (C)で得られた細胞群 Cを、顆粒球マクロファージコロニー刺激因 子とインターロイキン 4の存在下に培養するステップ、及び (Ε' )前記ステップ(D) で得られた培養物から、霊長類動物の胚性幹細胞に由来する榭状細胞を分離する ステップ、
を含む、霊長類動物の胚性幹細胞からの榭状細胞の製造方法、
〔6〕 ステップ (Ε,)に代えて、
(Ε)前記ステップ (D)で得られた培養物に、腫瘍壊死因子 exとリポ多糖とを添加し、 さらに培養するステップ、及び
(F)前記ステップ (Ε)で得られた培養物から、霊長類動物の胚性幹細胞に由来する 榭状細胞を分離するステップ、
を行なう、前記〔5〕記載の製造方法、
〔7〕 ステップ (Α)を行なうに先立ち、霊長類動物の胚性幹細胞に導入対象の遺伝 子を含む核酸を導入する、前記〔5〕又は〔6〕記載の製造方法、
〔8〕 導入対象の遺伝子が、免疫抑制のための遺伝子である、前記〔5〕〜〔7〕いず れか 1項に記載の製造方法、
〔9〕 導入対象の遺伝子が、免疫賦活のための遺伝子である、前記〔5〕〜〔7〕いず れか 1項に記載の製造方法、
〔10〕 核酸の導入が、非ウィルスベクター媒介核酸導入法により行なわれる、前記〔 7]〜〔9〕 V、ずれか 1項に記載の製造方法、
〔11〕 前記〔5〕〜〔10〕いずれか 1項に記載の製造方法により得られる榭状細胞、 〔12〕 免疫応答を抗原特異的に制御することにより治療効果を得ることができる疾患 の治療のための医薬の製造のための、前記〔5〕〜〔10〕いずれか 1項に記載の製造 方法により得られる榭状細胞の使用、並びに
〔13〕 前記〔5〕〜〔10〕いずれか 1項に記載の製造方法により得られる榭状細胞を有 効成分として含有してなる、免疫応答を抗原特異的に制御することにより治療効果を 得ることができる疾患の治療のための細胞医薬、
に関する。
発明の効果
[0012] 本発明の霊長類動物の胚性幹細胞から榭状細胞への分化方法によれば、霊長類 動物に由来する榭状細胞を効率よく安定的に供給することができるという優れた効果 を奏する。また、本発明の分化方法によれば、個体の免疫反応を抗原特異的に制御 する手段 (例えば、霊長類動物の榭状細胞を、特定の抗原に対する細胞傷害性 τ細 胞の反応を強力に賦活する手段等)、免疫応答の抗原特異的な制御により治療効果 が期待される疾患 (例えば、自己免疫疾患、アレルギー疾患等)の治療手段等を供 給することできると!、う優れた効果を奏する。
[0013] さらに、本発明の霊長類動物の胚性幹細胞力 の榭状細胞の製造方法によれば、 霊長類動物に由来する榭状細胞を、大量に効率よく安定的に供給することができる という優れた効果を奏する。また、本発明の製造方法によれば、個体の免疫反応を 抗原特異的に制御する榭状細胞 (例えば、特定の抗原に対する細胞傷害性 τ細胞 の反応を強力に賦活する榭状細胞)を得るこができる。
[0014] 本発明の榭状細胞によれば、個体の免疫反応を抗原特異的に制御(例えば、特定 の抗原に対する細胞傷害性 τ細胞の反応を強力に賦活すること)することができ、個 体の免疫反応を抗原特異的を制御することや免疫応答の抗原特異的な制御により 治療効果が期待される疾患に対する治療効果を得ることができるという優れた効果を 奏する。
[0015] 本発明の医薬の製造のための前記榭状細胞の使用によれば、免疫応答の抗原特 異的な制御により治療効果が期待される疾患に対する治療を可能にする医薬を提供 することができる。 [0016] また、本発明の免疫応答制御剤によれば、免疫応答を抗原特異的に制御すること ができ、例えば、自己免疫疾患、アレルギー疾患等の疾患の治療を行なうことができ ると!/ヽぅ優れた効果を奏する。
図面の簡単な説明
[0017] [図 1]図 1は、霊長類動物の胚性幹細胞から榭状細胞への分化方法の 1例の概略図 を示す。
[0018] [図 2]図 2は、霊長類動物の胚性幹細胞力 榭状細胞に分化させた際の経時的な細 胞の顕微鏡写真を示す図である。図中、パネル Aは分化誘導開始前、パネル Bは、 分化誘導開始後 3日目、パネル C及び Dは、 6日目、パネル E及び Fは、 9日目、パネ ノレ G iま、 16曰目、ノ ネノレ Hiま、 22曰目、ノ ネノレ Ιίま、 26曰目、ノ ネノレ J、 K及び Uま、 28日目の細胞を示す。スケールバーは、 100 μ mを示す。
[0019] [図 3]図 3は、霊長類動物の胚性幹細胞から榭状細胞に分化させた際の培養液中の 浮遊細胞における細胞表面分子 DR、 CD40及び CD86それぞれの発現を解析した 結果を示す図である。図中、「Dayl 6」は、図 1における工程 (B)終了時、「Day22」 は、工程(C)終了時、「Day26」は、工程(D)終了時、「Day28」は、工程 E終了時の 細胞の解析結果を示す。また、各パネル中、太い実線のヒストグラムが、解析の対象 とする分子に特異的な抗体による染色を施したものの蛍光強度を示し、細い点線のヒ ストグラムは、陰性対照であり、非特異的な抗体染色の場合の蛍光強度を示す。
[0020] [図 4]図 4は、 RT— PCR法により、 CD80および IL— 12p40の mRNAの発現を解析 した結果を示す図である。図中、 HPRTの mRNAは、解析に用いた RNA試料の相 対的な量を示す。
[0021] [図 5]図 5は、霊長類動物の胚性幹細胞から分化誘導された細胞による T細胞刺激 活性を解析した結果を示す図である。図中、ひし形は、ステップ (D)終了後の培養液 中の浮遊細胞、白丸は、ステップ (E)終了後の培養液中の浮遊細胞、四角は、未分 化の胚性幹細胞を示す。
[0022] [図 6]図 6は、外来遺伝子を導入した霊長類動物胚性幹細胞から分化誘導された細 胞における該外来遺伝子の発現を調べた結果を示す図である。パネル Aは、 HLA — DR53分子 13鎖をコードするプラスミド DNAベクターの構造図である。パネル Bは 、導入遺伝子由来の mRNAを RT—PCR法により検出した結果を示す。図中、「cE S」は、未分化の胚性幹細胞、「cES— 53— 23」は、遺伝子導入した未分化の胚性 幹細胞、「cES— DC」は、胚性幹細胞力 分ィ匕誘導された榭状細胞、「cES— DC— 53— 23」は、遺伝子導入した胚性幹細胞から分化誘導された榭状細胞を示す。 HP RTの mRNAは、解析に用いた RNA試料の相対的な量を示す。
[0023] [図 7]図 7は、 DR53 β遺伝子を導入した胚性幹細胞より分化誘導された榭状細胞に よる抗原提示能を調べた結果を示す図である。パネル Αは、 DR53 β遺伝子導入胚 性幹細胞から分化誘導された榭状細胞に、 GAD65抗原由来ペプチド (濃度 1. 25, 2. 5, 5. Ο /ζ Μ)を負荷し、 X線を照射し、それにより増殖能力を欠損させ、 DR53分 子上に提示された GAD65抗原由来ペプチドを認識する Τ細胞株 SA32. 5とともに 培養した場合の SA32. 5の増殖反応を示す。パネル Α中、 SA32. 5による、 [3H]— チミジンの染色体 DNAへの取り込みを、 β線測定用のシンチレーシヨンカウンターを 用いて測定した値を示す。また、陰性対照として、遺伝子が導入されていない胚性幹 細胞から分化誘導された榭状細胞に GAD65抗原由来ペプチドを負荷したもの及び DR53 β遺伝子導入榭状細胞に GAD65抗原由来ペプチドを負荷していないもの それぞれを SA32. 5とともに培養した場合の結果を示す。パネル Βは、 DR53 β遺 伝子を導入した胚性幹細胞から分化誘導された榭状細胞に、遺伝子組換えにより作 製した GST融合 GAD65抗原 (GST— GAD)を負荷し、 X線を照射し、それにより増 殖能力を欠損させ、 T細胞株 SA32. 5とともに培養した場合の SA32. 5の増殖反応 を示す。パネル Bにおいて、パネル Aと同様に、 [ ]—チミジン取り込みにより、増殖 反応を定量化した値を示す。陰性対照として、遺伝子が導入されていない胚性幹細 胞カゝら分ィ匕誘導された榭状細胞に GST— GADを負荷したもの及び DR53 β遺伝子 を導入した胚性幹細胞カゝら分ィ匕誘導された榭状細胞に、 GSTを負荷したものそれぞ れを SA32. 5とともに培養した場合の結果を示す。
発明を実施するための最良の形態
[0024] 本発明は、 1つの側面では、(Α)霊長類動物の胚性幹細胞と、血液細胞の分化と 増殖とを誘導する性質を有する細胞とを共培養して、細胞群 Αを得るステップ、 (B)前記ステップ (A)で得られた細胞群 Aと、血液細胞の分化を誘導する性質を有 する新たに準備した細胞とを共培養して、細胞群 Bを得るステップ、
(C)前記ステップ (B)で得られた細胞群 Bと、血液細胞の分化と増殖とを誘導する性 質を有するさらに新たに準備した細胞とを、顆粒球マクロファージコロニー刺激因子 の存在下に共培養して、細胞群 Cを得るステップ、及び
(D)前記ステップ (C)で得られた細胞群 Cを、顆粒球マクロファージコロニー刺激因 子とインターロイキン 4の存在下に培養するステップ、
を含む、霊長類動物の胚性幹細胞力 榭状細胞への分ィ匕方法に関する。
[0025] 本発明の分ィ匕方法は、霊長類動物の胚性幹細胞 (ES細胞)が用いられていること に 1つの大きな特徴がある。したがって、本発明の分化方法によれば、生体から榭状 細胞を単離する場合や造血幹細胞から分化させる場合に比べ、大量に供給させるこ とができるという優れた効果を発揮する。また、本発明の分化方法によれば、前記 ES 細胞が用いられているため、必要により、治療効果を示すことが期待される遺伝子( 以下、「治療用遺伝子」ともいう)を容易に導入し、発現させることができるという優れ た効果を発揮する。さらに、本発明によれば、霊長類動物の ES細胞が用いられてい るため、 、わゆる細胞治療等への応用に好適である。
[0026] また、本発明の分ィ匕方法は、マウスの ES細胞力も榭状細胞への分ィ匕の場合とは異 なり、最初に、前記ステップ (A)において、霊長類動物の ES細胞を、血液細胞の分 化と増殖とを誘導する性質を有する細胞と共培養することに 1つの大きな特徴がある 。本発明の分化方法によれば、前記ステップ (A)を行なうことにより、 ES細胞を、中 胚葉系の細胞に分化させることができる。
[0027] 本明細書にぉ 、て、「霊長類動物」とは、ヒト、サル等を!、う。前記サルとしては、例 えば、力-クイザル、ァカゲザル、二ホンザル、マーモセット、チンパンジー等が挙げ られる。
[0028] 本発明に用いられる霊長類動物の ES細胞としては、特に限定されるものではなぐ 例えば、力-クイザル ES細胞系 CMK6細胞、ヒト ES細胞等が挙げられる。前記 ES細 胞は、得られる榭状細胞の使用目的等に応じて、適宜選択されうる。
[0029] 前記「血液細胞の分化と増殖を誘導する性質を有する細胞」(フィーダ一細胞)とし ては、例えば、 OP9細胞(理研バイオリソースセンター(RIKEN BIORESOURCE CENTER:〒 305— 0074 茨城県つくば巿高野台 3丁目 1番地の 1)細胞番号: R CB1124)、 ST2細胞(理研バイオリソースセンター(RIKEN BIORESOURCE CENTER)細胞番号: RCB0224)、 PA6細胞(理研バイオリソースセンター(RIKE N BIORESOURCE CENTER)細胞番号: RCB1127)等が挙げられる。これら の中でも、血球細胞への分ィ匕誘導効率を向上させる観点から、好ましくは、 ST2細胞 が望ましい。
[0030] 本発明にお 、て、前記「霊長類動物の ES細胞」と、前記「フィーダ一細胞」との共培 養の際、前記「フィーダ一細胞」は、適切な培地の入った培養容器において、当該フ ィーダ一細胞に応じた培養条件下に培養し、該培養容器の底面をほぼ覆う程度まで 増殖させて、それにより、フィーダ一細胞層を形成させて用いられうる。
[0031] 前記フィーダ一細胞の作製に用いられうる培地としては、付着性の哺乳動物細胞 の培養に適した培地であればよぐフィーダ一細胞として用いる細胞の種類などに応 じて適宜選択され得、例えば、 a MEM、 DMEM〔ダルベッコ改変イーグル培地(培 養液)〕等が挙げられる。
[0032] 前記ステップ (Α)に用いられる培養容器は、 ES細胞から中胚葉系の細胞への分ィ匕 を促進させる観点、フィーダ一細胞を長期間安定的に接着させる観点等から、組織 培養に適したコーティングが施された培養容器であればょ ヽ。前記コーティングは、 例えば、ゼラチン、フイブロネクチン等により行なわれうる。
[0033] 前記フィーダ一細胞の培養条件としては、フィーダ一細胞として用いる細胞の種類 などに応じて適宜設定されうる。例えば、 ST2細胞、 ΟΡ9細胞等の場合、 0. 1重量 % ゼラチン溶液等でコーティングされた培養容器上、 10容量% ゥシ胎仔血清を 添カロした培地で 37°C、 5体積% COで培養する条件等が挙げられる。
2
[0034] 前記ステップ (A)にお 、て、 ES細胞の細胞密度は、分化能を十分に発揮させる観 点、用いる培地 (培養液)あたりに得られる中胚葉性細胞の数を最大にする観点等か ら、好ましくは、 5 X 104〜1 X 105細胞/直径 100mm培養容器であることが望ましい
[0035] 前記ステップ (A)における ES細胞とフィーダ一細胞との共培養に用いられる培地と しては、哺乳動物細胞の培養に適した培養液であればよぐ用いられる ES細胞の種 類などに応じて適宜選択され得、例えば、 a MEM、 DMEM、 IMDM (イスコブ改変 ダルベッコ培地)等が挙げられる。なお、かかる培地は、以下のステップ (B)〜(E)に おいても用いられうる。
[0036] 前記ステップ (A)における ES細胞とフィーダ一細胞との共培養の際の培養気相の 条件は、用いられる ES細胞の種類、培養液の組成等に応じて、適宜設定されうるが 、例えば、 37°C前後(特に、 37°C)、 5体積% CO等の条件が挙げられる。
2
[0037] なお、前記ステップ (A)における ES細胞とフィーダ一細胞との共培養の時間は、 E S細胞を、中胚葉系へ分化した細胞に十分に分化させ、中胚葉系に分化した細胞の 数を最大にするため、 9日〜 11日程度が望ましい。
[0038] なお、ステップ (A)にお 、ては、培養開始の後 4日目以降は、隔日の培地交換を行 なう。
[0039] 前記ステップ (A)にお ヽて得られる細胞群 Aは、中胚葉系細胞の性質を示すもの であり、用いられる ES細胞の起源となる動物の種類により異なる場合もある力 丸い 形態を示す細胞の塊を含有する細胞群として得られうる。
[0040] また、前記ステップ (A)を行なった後、中胚葉系へ分ィ匕した細胞を選択的に回収し 、榭状細胞への分化の効率を向上させる観点から、霊長類動物の胚性幹細胞と、当 該フィーダ一細胞との共培養物から、霊長類動物の胚性幹細胞に由来し、かつ中胚 葉系細胞に分化した細胞を含有した細胞群として、細胞群 Aを分離することが好まし い。
[0041] 前記共培養物力 の細胞群 Aの単離は、例えば、 0. 25重量% トリプシン ZlmM エチレンジアミンテトラ酢酸 (EDTA)を含むリン酸緩衝生理食塩水を、共培養物に 添加し、 37°Cで、中胚葉系細胞に分化した細胞を分離するに適切な時間、例えば、 8〜15分間処理することにより行なわれうる。
[0042] 本発明の分化方法にお!ヽては、前記ステップ (A)で得られた細胞群 Aを、血球細 胞の分化と増殖とを誘導する新たに準備した細胞 (フィーダ一細胞)と共培養する〔ス テツプ (B)〕ことに 1つの大きな特徴がある。したがって、本発明の分ィ匕方法によれば 、かかるステップ (B)において、中胚葉系細胞、特に、血球系細胞の割合をより向上 させることができるため、霊長類動物に由来する榭状細胞をより効率よく得ることがで き、安定的に供給することができるという優れた効果を発揮する。
[0043] 前記「血球細胞の分化と増殖とを誘導する新たに準備した細胞」(フィーダ一細胞) としては、前記ステップ (A)で挙げたフィーダ一細胞を用いることができ、例えば、 OP 9細胞が望ましい。
[0044] 前記ステップ (B)にお 、て、前記細胞群 Aと前記「フィーダ一細胞」との共培養の際 、前記「フィーダ一細胞」は、前記ステップ (A)で用いられる「フィーダ一細胞」と同様 に、培養容器の底面をほぼ覆う程度まで増殖させて、それにより、フィーダ一細胞層 を形成させて用いられうる。
[0045] また、前記ステップ (B)に用いられる培養容器、前記「フィーダ一細胞」の培養条件 は、前記ステップ (A)の場合と同様である。
[0046] なお、前記ステップ (B)にお 、ては、分ィ匕能を十分に発揮させる観点、用いる培養 液あたりの産生細胞数を最大にする観点等から、ステップ (A)から回収した細胞群 A を、ステップ (A)の場合よりも広い面積、具体的には、ステップ (A)における培養容器 の 4〜8倍程度〔例えば、フィーダ一細胞層の面積として、ステップ (A)の場合の 4〜 8倍程度〕にすることが望ましい。
[0047] 前記ステップ (B)における細胞群 Aとフィーダ一細胞との共培養の際の培養気相の 条件は、用いられる ES細胞の種類、培養液の組成等に応じて、前記ステップ (A)の 場合と同様に適宜設定されうる。
[0048] 前記ステップ (B)に用いられる培地は、前記ステップ (A)の共培養に用いられる培 地と同様である。
[0049] なお、前記ステップ (B)における ES細胞とフィーダ一細胞との共培養の時間は、 E S細胞を、中胚葉系細胞、特に、血球系細胞に十分に分化させ、中胚葉系細胞、特 に、血球系細胞の割合を十分に向上させる観点、用いる培養液あたりの産生細胞数 を最大にする観点、最終的に τ細胞刺激活性の強い榭状細胞を作製する観点等か ら、好ましくは、 4〜6日間であることが望ましい。
[0050] なお、ステップ (B)にお ヽては、培養期間中、適宜培地交換又は培地の追加を行 なってもよい。
[0051] 前記ステップ (B)にお 、て得られる細胞群 Bは、中胚葉系細胞、特に、血球系細胞 の性質を示すものであり、用いられる ES細胞の起源となる動物の種類により異なる場 合もあるが、例えば、図 2のパネル Gに示されるような、比較的均一で小さくて丸い形 態を示す浮遊細胞を含有する細胞群として得られうる。かかるステップ (B)において は、浮遊細胞をピペッティング操作等により回収することにより、分化が不十分な細胞 と血球系細胞以外の方向に分ィヒした細胞 (例えば、上皮性細胞を含む)とから、血球 系細胞の方向に分ィ匕した細胞群を効率よく回収することができる。
[0052] 本発明の分化方法にお!ヽては、前記ステップ (B)で得られた細胞群 Bと、血液細胞 の分化と増殖とを誘導する性質を有するさらに新たに準備した細胞 (フィーダ一細胞 )とを、顆粒球マクロファージコロニー刺激因子の存在下に共培養する〔ステップ (C) 〕ことに 1つの大きな特徴がある。したがって、本発明の分化方法によれば、かかるス テツプ (C)を行なうことにより、ミエロイド (骨髄球)系への分ィ匕を誘導することができ、 榭状細胞様細胞への分ィ匕をより効率よく行なうことができるため、霊長類動物に由来 する榭状細胞をより効率よく得ることができ、安定的に供給することができるという優 れた効果を発揮する。
[0053] 前記ステップ (C)に用いられる培養容器は、フィーダ一細胞を長期間安定的に接 着させる観点等から、ゼラチン、フイブロネクチン等によりコーティングしたものである ことが望ましい。
[0054] 前記「血球細胞の分化と増殖とを誘導するさらに新たに準備した細胞」(フィーダ一 細胞)としては、前記ステップ (A)で挙げたフィーダ一細胞を用いることができ、例え ば、 OP9細胞が望ましい。
[0055] 前記ステップ (C)における共培養の際の培養気相の条件は、用いられる ES細胞の 種類、培地の組成等に応じて、前記ステップ (A)及び (B)の場合と同様に適宜設定 されうる。
[0056] 前記ステップ (C)に用いられる培地は、顆粒球マクロファージコロニー刺激因子を 含有することを除き、前記ステップ (A)及び (B)の共培養に用いられる培地と同様で ある。
[0057] 前記ステップ(C)における培地中の顆粒球マクロファージコロニー刺激因子の含有 量は、用いる培養液と刺激因子の量あたりの産生細胞数を最大にする観点から、 50 〜200ngZmlの範囲が望まし!、。
[0058] 前記ステップ (C)にお 、ては、細胞群 Bの細胞密度は、分化能を十分に発揮させる 観点、用いる培養液と刺激因子の量あたりの産生細胞数を最大にする観点から、 (3 X 105〜6 X 105Z8ml培地 Z直径 100mm培養皿)であることが望まし!/ヽ。
[0059] なお、前記ステップ (C)における共培養の時間は、細胞群 Bを、突起を有する不規 則な形状の榭状細胞様細胞に十分に分化させ、最終的に産生される細胞中かかる 榭状細胞様細胞の割合を十分に向上させる観点、用いる培養液と刺激因子の量あ たりの産生細胞数を最大にする観点等から、 4〜6日間が望ましい。
[0060] 前記ステップ (C)にお 、ては、骨髄球 (ミエロイド)系細胞への分化を促進させる観 点から、マクロファージコロニー刺激因子を用いてもょ 、。
[0061] 前記ステップ(C)における培地中のマクロファージコロニー刺激因子の含有量は、 T細胞刺激活性の強 、榭状細胞を産生する観点から、 50〜200ngZmlの範囲が 望ましい。
[0062] なお、ステップ (C)においては、最終的に産生される細胞中力かる榭状細胞様細 胞の割合を十分に向上させる観点から、好ましくは、 3日目又は 4日目に、顆粒球マ クロファージコロニー刺激因子を含有し、かつマクロファージコロニー刺激因子を含 有しな 、培地を、元の培地の半量(4mlZ直径 100mm培養皿)の培養物に添加する ことが望ましい。
[0063] なお、前記ステップ (C)にお 、ては、マウスの ES細胞の場合とは異なり、榭状細胞 への分ィ匕誘導の際に一時的にマクロファージコロニー刺激因子を加えることにより、 榭状細胞の分ィ匕誘導効率をより向上させることができる。前記ステップ (C)において 、培養期間中に、培地を、前記培地において、顆粒球マクロファージコロニー刺激因 子を含み、かつマクロファージコロニー刺激因子を含まない培地に交換、あるいは、 顆粒球マクロファージコロニー刺激因子を含み、かつマクロファージコロニー刺激因 子を含まな 、培地を追加することも可能である。
[0064] 前記ステップ (C)にお 、て得られる細胞群 Cの一部は、榭状細胞の性質、例えば、 DR、 CD40、 CD86、 CD80の発現等を示すものであり、用いられる ES細胞の起源 となる動物の種類により異なる場合もある力 例えば、図 2のパネル Hに示されるよう な、形態的に不均一で、突起を有する形態を示す浮遊細胞を含有する細胞群として 得られうる。
[0065] 本発明の分化方法にお!ヽては、前記ステップ (C)で得られた細胞群 Cを、顆粒球 マクロファージコロニー刺激因子とインターロイキンー4 (IL— 4)との存在下に培養す る〔ステップ (D)〕ことに 1つの大きな特徴がある。したがって、本発明の分化方法によ れば、力かるステップ (D)を行なうことにより、榭状細胞様細胞の割合をより向上させ 、かつ T細胞に対する刺激活性および抗原提示活性の高 ヽ榭状細胞を作製すること ができるため、霊長類動物に由来する榭状細胞をより効率よく得ることができ、安定 的に供給することができるという優れた効果を発揮する。また、本発明の分化方法に よれば、力かるステップ (D)を行なわれるため、前記ステップ (C)の段階に比べ、より 選択的に榭状細胞へ誘導することができる。
[0066] 前記ステップ (D)に用いられる培養容器は、細胞の付着性が低!ヽもの、例えばコー ティングされて!/ヽな 、ポリスチレン製容器等が望ま 、が、細胞培養用のコーティング 力 された培養容器も使用可能である。
[0067] 前記ステップ (D)における培養の際の培養気相の条件は、用いられる ES細胞の種 類、培養液の組成等に応じて、前記ステップ (A)及び (B)の場合と同様に適宜設定 されうる。
[0068] 前記ステップ (D)に用いられる培地は、顆粒球マクロファージコロニー刺激因子とィ ンターロイキン一 4とを含有することを除き、前記ステップ (A)及び (B)の共培養に用 いられる培地と同様である。
[0069] 前記ステップ (D)にお 、ては、細胞群 Cの細胞密度は、分化能を十分に発揮させ る観点、用いる培養液と刺激因子あたりの榭状細胞の収量を最大にする観点等から 、 3 105—6 105細胞72. 5ml培養液 Z直径 60mm培養容器であることが望まし い。
[0070] なお、前記ステップ (D)における培養時間は、細胞群 Cにおける榭状細胞様細胞 の割合をより向上させ、 T細胞刺激活性のより強い榭状細胞を作製する観点から、 2 〜5日間で、細胞の形態により分化の進行程度を評価し適宜決定することが望ましい [0071] 前記ステップ(D)における培地中の顆粒球マクロファージコロニー刺激因子の含有 量は、用いる刺激因子あたりの榭状細胞の収量を最大にする観点から、 50— 200ng Zmlの範囲が望ましい。
[0072] 前記ステップ (D)における培地中のインターロイキンー4の含有量は、 T細胞刺激 活性のより強!ヽより強!ヽ榭状細胞を作製する観点から、 5〜20ngZmlが望ま ヽ。
[0073] また、前記ステップ (D)にお 、ては、最終的に産生される榭状細胞の MHCクラス II
(DR)の発現が上昇させる観点から、前記顆粒球マクロファージコロニー刺激因子及 びインターロイキン— 4に加え、好ましくは、 fms様チロシンキナーゼ 3リガンド(FLT - 3L)を用いることが望まし 、。
[0074] なお、マウスの ES細胞の場合は、榭状細胞の分ィ匕誘導には IL 4は必須ではなく 、また、未成熟段階の榭状細胞に IL 4を加えると榭状細胞の最終的な成熟が妨げ られる力 前記ステップ (D)においては、榭状細胞に分化誘導させるまでの過程で、 IL 4が必須である。
[0075] 前記ステップ (D)により、榭状細胞の性質、例えば、 DR、 CD40、 CD86等の発現 、形態的に不均一で、突起を有する形態等を示す榭状細胞を得ることができる。
[0076] 本発明の分化方法により得られる榭状細胞は、抗原タンパク質を貪食し、分解し、 生じたペプチドを T細胞に提示することにより T細胞を強く刺激する活性を有する。前 記 T細胞は、 MHCクラス I分子上に提示された抗原ペプチドを認識するキラー T細胞 (Tc)及び MHCクラス II分子上に提示された抗原ペプチドを認識する Tヘルパー細 胞である。 Th細胞は、榭状細胞から抗原を提示されて活性化すると、各種のサイト力 インを産生し、それにより B細胞やマクロファージを活性ィ匕させうる。
[0077] なお、前記ステップ (A)〜(D)を行なうことにより得られる榭状細胞は、腫瘍壊死因 子 exとリポ多糖とを添加し、さらに培養を行なうステップを行なう〔ステップ (E)〕ことに より、 T細胞刺激性の向上した榭状細胞 (成熟榭状細胞)を産生することができる。
[0078] 前記ステップ (E)にお 、ては、前記ステップ(D)におけるインターロイキン一 4と任 意の fms様チロシンキナーゼ 3リガンドとに加え、腫瘍壊死因子 aとリポ多糖とが用い られて!ヽるため、 T細胞刺激性の向上した榭状細胞 (成熟榭状細胞)を産生すること ができると!、う優れた効果を発揮する。 [0079] 前記ステップ (E)に用いられる培養容器、培養気相の条件は、用いられる ES細胞 の種類、培養液の組成等に応じて、前記ステップ (A)及び (B)の場合と同様に適宜 設定されうる。
[0080] 前記ステップ (E)に用いられる培地は、 GM— CSFとインターロイキン一 4と腫瘍壊 死因子 a (TNF— α )とリポ多糖と任意に FLT— 3Lとが添加されていることを除き、 前記ステップ (Α)及び (Β)の共培養に用いられる培地と同様である。
[0081] なお、前記ステップ (Ε)における培養時間は、 Τ細胞刺激活性のより強 、榭状細胞 を作製する観点から、 1〜2日であればょ 、。
[0082] 前記ステップ (Ε)にお 、ては、榭状細胞の成熟を促す因子であれば、 TNF— aの 代わりに、 CD40リガンド等を用いてもよい。
[0083] 前記ステップ(E)にお!/、て、 TNF— aの添加量は、 T細胞刺激活性のより強!ヽ榭 状細胞を作製する観点から、好ましくは、培養液 lmlに対し、 5〜20ngとすることが 望ましい。
[0084] また、前記ステップ (E)にお 、ては、榭状細胞の成熟を促す因子であれば、リポ多 糖の代わりに、細菌抽出物、真菌類抽出物、マイコプラズマ抽出物、二本鎖 RNA等 を用いてもよい。
[0085] 前記ステップ (E)にお 、て、リポ多糖の添加量は、 T細胞刺激活性のより強 、榭状 細胞を作製する観点から、培養液 lmlに対し、 3〜5 /z gが望ましい。
[0086] 本発明の分化方法によれば、個体の免疫反応を抗原特異的に制御する手段 (例え ば、霊長類動物の榭状細胞を用いた、特定の抗原に対する細胞傷害性 T細胞の反 応を強力に賦活する手段等)、免疫応答の抗原特異的な制御により治療効果が期待 される疾患 (例えば、自己免疫疾患、アレルギー疾患等)の治療手段、臓器移植に伴 う拒絶反応を予防および治療する手段等を供給することができる。
[0087] なお、本明細書にぉ 、て、免疫反応の「制御」とは、免疫反応の抑制及び賦活の 、 ずれをも包含する概念を意図する。
[0088] 本発明は、他の側面では、前記分ィ匕方法におけるステップ (A)〜(D)、及び
(Ε' )前記ステップ (D)で得られた培養物から、霊長類動物の胚性幹細胞に由来す る榭状細胞を分離するステップ、 を含む、霊長類動物の胚性幹細胞力 の榭状細胞の製造方法に関する。
[0089] 本発明の製造方法によれば、前記ステップ (A)〜(D)が行なわれるため、本発明 の分化方法と同様の観点から、霊長類動物に由来する榭状細胞を、大量に効率よく 安定的に供給することができるという優れた効果を発揮する。
[0090] また、本発明の製造方法としては、別の実施態様では、前記ステップ (Ε ' )に代えて
(Ε)前記ステップ (D)で得られた培養物に、インターロイキン— 4と腫瘍壊死因子 ocと リポ多糖と任意に fms様チロシンキナーゼ 3リガンドとを添加し、さらに培養するステツ プ、及び
(F)前記ステップ (E)で得られた培養物から、霊長類動物の胚性幹細胞に由来する 榭状細胞を分離するステップ、
を行なう方法が挙げられる。ここで、前記ステップ (E)は、本発明の分ィ匕方法におけ るステップ (E)と同様である。力かる実施態様によれば、より高い効率で、より安定的 に、榭状細胞を供給することが可能になる点で有利である。
[0091] 前記ステップ (Ε ' )及び (F)のそれぞれにお ヽて、培養物から、霊長類動物の胚性 幹細胞に由来する榭状細胞を分離する手段としては、例えば、榭状細胞に特異的な マーカーに対する抗体を用いたァフィユティーカラム、該抗体を用いたフローサイトメ トリーによるセルソーティング、該抗体をコーティングした磁性マイクロビーズを用いた セルソーティング等が挙げられる。
[0092] 前記榭状細胞に特異的なマーカーとしては、例えば、 HLA— DR、 CD40及び CD
86、 CDla、 CDl lc、 CD83等が挙げられる。
[0093] 前記抗体は、榭状細胞に特異的なマーカーであるポリペプチド又はその断片を用 い、慣用の方法により容易に作製されうる。また、かかる抗体は、市販された抗体であ つてもよい。
[0094] 本発明の製造方法にお!ヽては、治療用遺伝子等の遺伝子を原材料である ES細胞 に予め導入することにより、榭状細胞に所望の性質を発揮させることもできる。したが つて、本発明の製造方法は、他の実施態様では、ステップ (A)を行なうに先立ち、霊 長類動物の胚性幹細胞に導入対象の遺伝子を含む核酸を導入する。 [0095] 前記導入対象の遺伝子としては例えば、前記治療用遺伝子、具体的には、例えば 、免疫抑制のための遺伝子、免疫賦活のための遺伝子等が挙げられ、より具体的に は、特に、抗原をコードする遺伝子、 T細胞の遊走を誘導する因子の遺伝子、 T細胞 の反応を増強する因子の遺伝子、 T細胞の反応を抑制する因子の遺伝子等が挙げ られる。
[0096] かかる導入対象の遺伝子を榭状細胞に発現させることにより、生体内で免疫応答 の制御に中心的な役割を果たしている榭状細胞の機能を強化することもできる。
[0097] 本発明にお ヽては、例えば、抗原をコードする遺伝子を含む核酸が導入された ES 細胞を用いた場合、得られる榭状細胞は、極めて高い抗原特異的 T細胞刺激活性あ るいは抗原特異的に T細胞反応を抑制する活性を発現する点で有利である。
[0098] 本明細書にぉ 、て、抗原とは、治療や診断のターゲット対象となるタンパク質又はべ プチドであり、例えば、各種細菌、各種ウィルス、これらを構成するタンパク、癌細胞 に特異的に発現するタンパク質 (腫瘍抗原タンパク質)、腫瘍抗原タンパク質の一部 であるペプチド、自己免疫疾患やアレルギー疾患において免疫系による認識の標的 となって!/、る分子等が挙げられる。
[0099] 核酸の導入は、慣用の方法、例えば、エレクト口ポレーシヨン法、リポフエクシヨン法 、等により行なわれうる。 ES細胞の分ィ匕性能を十分に発揮させる観点から、エレクト口 ポレーシヨン法が望まし 、。
[0100] また、前記核酸は、 V、わゆる naked核酸であってもよく、ベクター(ウィルスベクター 又は非ウィルスベクター)に連結されたものであってもよい。前記ベクターとしては、フ ァージ、プラスミド等が挙げられる。
[0101] なお、前記ベクターは、必要に応じ、各種プロモーター、ェンハンサー、ターッミネ 一ター等の転写促進に有効なエレメントを含有してもよ 、。
[0102] 本発明においては、操作の容易性、治療用途等の観点から、非ウィルスベクター、 例えば、プラスミドベクターのエレクト口ポレーシヨンによる導入が望ましい。
[0103] 本発明の製造方法は、 ES細胞の段階で、プラスミドベクターをエレクト口ポレーショ ンにより導入し、榭状細胞へ分化させるため、従来の末梢血単球あるいは造血幹細 胞等から分化誘導して作製した榭状細胞にウィルスベクター用いて遺伝子導入する 方法と比較して、以下のような点にぉ 、て優れて!/、る。
1) 従来の末梢血単球あるいは造血幹細胞等から分化誘導して得られた榭状細胞 にウィルスベクター用いて遺伝子導入する方法の場合、榭状細胞を使用する度に遺 伝子導入を行なう必要がある。また、ウィルスベクター用いた遺伝子導入は、導入効 率が不安定であり、かつ、遺伝子導入榭状細胞をクローンとして得ることは極めて困 難である。一方、本発明に用いられる ES細胞は、クローンとして単離 '増殖'凍結保 存することが容易である。そのため、適切な遺伝子改変を行なった ES細胞のクロー ンを単離したうえで増殖させ凍結保存したストックを作製しておけば、必要時に、榭状 細胞へ分ィ匕させることにより、遺伝的に均一な榭状細胞を安定して治療に用いること が可能である点で優れる。
2) ウィルスベクターを用いる場合、導入できる遺伝子の数 (種類)と大きさ(サイズ) に制限がある。一方、 ES細胞の場合、通常のプラスミドベクターを使用でき、遺伝子 の共導入 (co-transfection)又は複数の薬剤耐性遺伝子を用いた段階的導入により 複数の遺伝子を導入できる点で優れる。さらに、本発明においては、遺伝子の標的 破壊 ·改変 ·導入を行なうこともできる点で優れる。これらの特性は、単に免疫効果の 増強を目的として用いるのみでなぐ免疫応答の抑制的あるいは質的な制御を行なう などの目的で、より複雑な遺伝子改変が必要な場合に特に有用である。
3) ES細胞を用いる方法では、遺伝子改変 ES細胞クローンを榭立した時点で病原 微生物の混入や発がん遺伝子の活性化等の有無を検査し、さらに榭状細胞へ分ィ匕 した段階での特性を十分に検討したうえで治療に用いることが可能である点で優れる 。従って、ウィルスベクターを用いる方法に比べ、治療用途等に有用である。
[0104] 本発明は、別の側面では、前記製造方法により得られる榭状細胞に関する。本発 明の榭状細胞によれば、個体の免疫反応を抗原特異的に制御すること (例えば、特 定の抗原に対する細胞傷害性 T細胞の反応を強力に賦活すること等)、免疫応答の 抗原特異的な制御により治療効果が期待される疾患に対する治療効果を得ること等 が可能になる。
[0105] したがって、本発明によれば、免疫応答を抗原特異的に制御することにより治療効 果を得ることができる疾患の治療のための医薬の製造のための、前記製造方法によ り得られる榭状細胞の使用も提供される。
[0106] 前記医薬の製造の際には、本発明の榭状細胞を安定に保持しうる助剤、例えば、 培地等を適宜用いてもよい。
[0107] また、本発明によれば、被験体に前記製造方法により得られる榭状細胞の治療有 効量を投与することを特徴とする、被験体における、免疫応答を抗原特異的に制御 することにより治療効果を得ることができる疾患の治療方法が提供される。
[0108] 前記「免疫応答を抗原特異的に制御することにより治療効果を得ることができる疾 患」としては、例えば、自己免疫疾患、腫瘍、アレルギー疾患、感染症、臓器移植に ともなう拒絶反応と移植片対宿主病 (GVHD)等が挙げられる。
[0109] また、前記「被験体」としては、好ましくは、前記のような免疫応答を抗原特異的に 制御することにより治療効果を得ることができる疾患の治療を必要とするヒトであるが 、前記のような免疫応答を抗原特異的に制御することにより治療効果を得ることがで きる疾患の治療を必要とする生物、例えば、ィヌ、ネコなどのペット動物等であっても よい。
[0110] また、前記「治療有効量」とは、前記製造方法により得られる榭状細胞を上記被験 体に投与した場合に、該榭状細胞を投与していない被験体と比較して、免疫応答を 抗原特異的に制御することができ、従って前記のような疾患に対して治療効果を得る ことができる該榭状細胞の量である。具体的な治療有効量としては、榭状細胞の投 与形態、投与方法、使用目的および被験体の年齢、体重、症状等によって適宜設定 されればよぐ一概には決定されないが、例えば、前記榭状細胞の細胞数で、ヒト(例 えば、成人)の 1回の、治療あたり、 200, 000〜1, 000, 000偶/ kg体重力好まし!/ヽ。
[0111] 本発明の治療方法における、被験体への前記製造方法により得られる榭状細胞の 治療有効量の投与方法としては、例えば、皮下注射、リンパ節内注射、静脈内注射 、あるいは悪性腫瘍の局所への直接注射などが挙げられるが、これらに限定されな い。
[0112] また、本発明によれば、前記製造方法により得られる榭状細胞を有効成分として含 有した、免疫応答制御剤も提供される。
[0113] 本発明の免疫応答制御剤によれば、本発明の榭状細胞を含有しているため、免疫 応答を抑制又は賦活させることができる。
[0114] 本発明の免疫応答制御剤は、有効成分である榭状細胞を安定に保持しうる前記助 剤を含有していてもよい。
[0115] 本発明の免疫応答制御剤の薬理評価は、 T細胞増殖アツセィによる測定される T 細胞刺激活性等を指標として評価されうる。
[0116] 以下、実施例などにより本発明を詳細に説明するが、本発明は、かかる実施例など により限定されるものではない。
実施例 1
[0117] 生体外分化誘導により、力二クイザル胚性幹細胞からの榭状細胞の産生を試みた 。図 1に、 ES細胞から榭状細胞への分化誘導培養の概略を示す。なお、以下の各ス テツプで回収した細胞について、一部凍結保存した。また、各ステップにおける細胞 を、倒立顕微鏡 (商品名:1X70、ォリンパス社製)を用いて分析した。
[0118] (1)ステップ (A)
霊長類動物の胚性幹細胞 (ES細胞)として、力-クイザルより樹立された ES細胞系 である CMK6細胞を用いた。
[0119] まず、予め 0. 1重量%ゼラチン溶液でコーティングした培養皿(直径 10cm、フアル コン社製)上、 10容量% ゥシ胎仔血清を添加した DMEMで、 ST2細胞 (理ィ匕学研 究所供給)を、 37°C、 5体積% COで培養した。前記 ST2細胞が、培養皿の底面を
2
ほぼ覆うようになるまで増殖させた。
[0120] 前記 ES細胞を、 20容量% ゥシ胎仔血清(FCS)を添加した α MEM ( a必須培 養液)に、 8 X 104細胞 Z8ml培養液の密度で懸濁させた。得られた細胞懸濁液を、 前記培養皿の ST2細胞上に播き、 37°C、 5体積% COで培養して、該 ES細胞の
2
分化誘導を開始した。分化誘導開始の 4、 6、 8、 9日後、培養液を除去し、新たな培 養液と交換した。図 2のパネル A〜Fに、 ES細胞の分化誘導により生じる細胞につい て、経時的に形態を観察した結果を示す。
[0121] 図 2のパネル Aは、未分化な ES細胞であり、パネル B〜Fは、ステップ(A)にお!/、て 分ィ匕しつつある ES細胞由来の細胞の形態を示す。パネル Bは、分化誘導開始後 3 日目、パネル C及び Dは、 6日目、パネル E及び Fは、 9日目の細胞を示す。図 2に示 されるように、培養日数が経過するほど、未分化の ES細胞が中胚葉系の細胞への分 化が進み、中胚葉系へ分ィ匕した細胞の密度が増カロしていた。また、直径 10cm培養 皿、 1枚あたり、 ES細胞 8 X 104個で分化培養をはじめた結果、分化誘導開始後 6 日目までにはフィーダ一層の表面は、ほぼ ES細胞由来の上皮細胞様細胞で覆われ た。パネル Bに示されるように、分化誘導開始後 3日目の時点では、多くの細胞が、 丸い細胞に囲まれた上皮細胞様の大きく平らな細胞の塊を形成していた。また、パ ネル C及び Dに示されるように、分ィ匕誘導開始後 4日目において、中胚葉に分化した 細胞であると思われる丸い細胞の塊が、上皮細胞様細胞塊の周辺に現れていた。一 日おきに培地を交換し続けると、中胚葉様の丸い細胞の塊は徐々に大きくなつて融 合した。パネル E及び Fに示されるように、分化誘導開始後 10日目において、中胚葉 様の丸い細胞の塊によって、フィーダ一層の表面の 40〜60%が覆われていた。
[0122] 培養開始 10日後、前記培養皿に、 0. 25重量% トリプシン (ギブコ インビトロジ エネン(Gibco- Invitrogen)社製) ZlmM EDTA (エチレンジアミンテトラ酢酸)を含 むリン酸緩衝生理食塩水 1. 5mlを添カ卩し、 37°Cで 10分間維持し、 ST2細胞層か ら ES細胞由来の細胞を分離した。その後、前記培養皿に、新しい培地を添加して、 ES細胞由来の細胞を、遠心チューブに移した。その結果、中胚葉に分化した細胞 は分離して単細胞となり、分ィ匕しな力つた細胞と上皮に分ィ匕した細胞とのほとんどは 塊になり、数分のうちにチューブの底に沈殿した。そこで、上清の単細胞の懸濁液を 新しいチューブに移した。
[0123] (2)ステップ(B)
前記(1)のステップ (A)において、 1枚の培養皿から回収された ES細胞由来の細 胞を、別の培養皿 4〜8枚に準備しておいた OP9細胞層上にそれぞれ移植し、 20 容量% ゥシ胎仔血清を含む α ΜΕΜで、さらに 37°C、 5体積% COで培養した。
2
なお、前記 OP細胞層は、前記 ST2細胞と同様に、培養皿の底面をほぼ覆うようにな るまで増殖させることにより得られたものである。
[0124] 移植 1日目又は 2日目には、フィーダ一細胞層上に小さな丸い細胞の塊ができてい た。かかる細胞の塊は、はじめはまばらであった力 徐々に増加した。移植後 4日目 に、新しい培養液 4mlを前記培養皿に添加した。移植後 6日目、ピペッティング操 作により、 ES細胞に由来する球形の浮遊する細胞を回収した。図 2のパネル Gに、ス テツプ (B)で得られた ES細胞力も分ィ匕した細胞 (移植後 6日目、分ィ匕誘導開始後 16 日目)の形態を示す。図 2のパネル (G)に示されるように、 ES細胞由来の細胞のほと んどは小さくて丸 、形態であった。
[0125] (3)ステップ(C)
前記(2)のステップ (B)において 4枚の培養皿から回収された ES細胞由来の細胞 を、終濃度 lOOngZml 顆粒球マクロファージコロニー刺激因子(GM— CSF ; Pep rotec社製)と終濃度 lOOngZml マクロファージコロニー刺激因子(M— CSF ; Pep rotec社製)との存在下、 20容量% ゥシ胎仔血清を含む a MEMに浮遊させた。得 られた細胞を、 1枚の別の培養皿(直径 10cm)に準備しておいた OP9細胞層上に移 植し、 37°C、 5体積0 /0 COで培養した。
2
[0126] 移植後 4日目、前記培養皿に、終濃度 lOOngZml GM— CSFを含み、かつ M— CSFを含まな 、新し 、培養液〔組成: 20容量% ゥシ胎仔血清を含む ex MEM] 4 mlを添加した。
[0127] 移植後 6日目、ピペッティング操作により、 ES細胞に由来する球形の浮遊する細胞 を回収した。図 2のパネル Hに、 ES細胞から分化した細胞 (移植後 6日目、分化誘導 開始後 22日目)の形態を示す。
[0128] その結果、パネル Hに示されるように、浮遊細胞がさらに増えていた。また、パネル Hに示されるように、培養細胞中、形態的に不均一になり、突起を持った不規則な形 の榭状細胞様細胞が含まれていた。浮遊細胞の総数は、未分化 ES細胞の数の 20 倍前後であった。なお、本ステップ (C)では、前記培地において、 M— CSFを含まず 、 GM— CSFを含む培地を最初力 用いた場合にも、前記と同様な細胞が得られる
[0129] (4)ステップ(D)
前記(3)のステップ (C)で回収した ES細胞由来の細胞を、 5 X 105個 Z2. 5ml 培 養液の密度で懸濁させた。得られた細胞懸濁液 2. 5mlを、ストローマ細胞なしの 1 枚の培養皿(直径 6cm)に移植し、 37°C、 5体積% COでさらに培養した。なお、前
2
記培養液として、終濃度 lOOngZml GM— CSF (Peprotec社製)と終濃度 10ng /ml インターロイキン—4 (IL—4 ;Peprotec社製)と終濃度 lOngZml FLT—3L (fms様チロシンキナーゼ 3リガンド; Peprotec社製)と 20容量% ゥシ胎仔血清とを 含む α MEMを用いた。
[0130] その結果、いくつかの(< 30%)細胞は、マクロファージのように培養皿の表面に付 着した。また、かかる段階において、浮遊細胞は、球形細胞の群と、パネル Iに示され る突出部のある不規則な形状を示す細胞 (榭状細胞様細胞)群との 2つのタイプの細 胞群に分かれていた。なお、本ステップ (D)では、前記培養液において、 FLT- 3L を含まな!/ヽ培養液を最初カゝら用いた場合にも、前記と同様な細胞が得られる。
[0131] (5)ステップ(E)
前記 (4)のステップ (D)における移植後 3〜4日目に、培養物中に、終濃度 10ng /ml 腫瘍壊死因子 a (TNF— Peprotec社製)と終濃度 3 /z gZml リポ多糖( LPS,大腸菌由来; SIGMA社製)と添加し、 37°C、 5体積% COで培養することに
2
より、前記 (4)のステップ (D)で得られた培養物中の浮遊細胞を刺激した。
[0132] その結果、浮遊細胞中に含まれる榭状細胞様細胞の比率が増加し、付着して 、た 細胞のうち一部が浮遊細胞となった。
[0133] 刺激後 1〜3日目、ピペッティング操作により、細胞を回収した。この培養段階にお ける ES細胞由来榭状細胞様細胞の細胞数は、分化誘導開始時の未分化 ES細胞 の数の 20倍前後であった。また、図 2のパネル J〜Lに、 ES細胞から分化した細胞( 分化誘導開始後 26日目)の形態を示す。
[0134] その結果、図 2のパネル J〜Lに示されるように、突起をもった不規則な形の細胞が 得られることがゎカゝる。
実施例 2
[0135] 前記実施例 1における(1)ステップ (A)において、 ST2細胞の代わりに OP9細胞又 は PA6細胞を用いて、該 ST2細胞の場合と同様にステップ (A)を行なった。
[0136] その結果、実施例 1の ST2細胞を用いた場合に比べ、 OP9細胞又は PA6細胞を 用いた場合には、上皮様細胞がより多く現れ、丸い細胞の塊は少な力つた。
[0137] また、前記実施例 1における(1)ステップ (A)において、骨形成タンパク質 4 (BMP
4)、トロンボポェチン (TPO)、幹細胞刺激因子(SCF)、 Fit— 3L、血管内皮増殖 因子 (VEGF)等のサイト力インを、単独で又は様々な組み合わせで用いた場合の効 果を調べた。
[0138] その結果、ステップ (A)において、前記サイト力インを用いた場合であっても、 ES細 胞から中胚葉系の細胞への分ィ匕を促進する顕著な効果は見られな力つた。
実施例 3
[0139] 前記実施例 1の(2)のステップ (B)及び(3)のステップ (C)それぞれにおいて、 OP 9細胞の代わりに、 ST2細胞又は PA6細胞を用い、 OP9細胞の場合と同様に、ステ ップ (B)及びステップ (C)を行なった。
[0140] その結果、実施例 1の OP9細胞を用いた場合に比べ、 ST2細胞又は PA6細胞を 用いた場合には、ステップ (C)後に得られる浮遊細胞が少な力つた。
実施例 4
[0141] 細胞表面分子解析
フローサイトメータ(商品名: FACScan、ベタトン一ディキンソン社製)を用いて、生 理的に存在して 、る榭状細胞に発現して 、る細胞表面分子が、前記実施例 1におけ る ES細胞由来の細胞にも発現して 、るかどうかを調べた。
[0142] 前記実施例 1で得られた ES細胞由来の榭状細胞様細胞を、 Fcブロック試薬 (Milt enyi Biotec社製)中 5分間処理した。その後、得られた産物を、下記フルォレセィ ンイソチォシァネート(FITC)結合モノクローナル抗体(mAb)〔Pharmingen社製〕: 抗ヒト組織適合性白血球抗原(HLA)— DR (クローン L243、マウス IgG2a)、抗ヒト C D86 (クローン FUN— 1、マウス IgGl)及び抗ヒト CD40 (クローン 5C3,マウス IgGl )を用いて染色した。前記抗ヒト mAbは、力-クイザル細胞と交差反応する。また、ァ イソタイプ適合対照として、マウス IgG2a (クローン G155— 178)とマウス IgGl (クロ ーン MOPC— 21)を用いて染色した。とともに、 4°Cで 30分間インキュベーションした
[0143] その後、細胞を、 PBSZ2容量% FCSで 3回洗浄した。
[0144] 洗浄後の細胞について、 CellQuest ソフトウェアを備えた細胞解析装置(商品名:
FACScan, Becton Dickinson社製)を用いて分析した。
[0145] その結果、図 3に示されるように、ステップ (B)後の細胞(図 3中、「dayl6」)及びス テツプ(C)後の細胞(図 3中、「day22」)では、これらの分子をほとんど発現していな かった。また、図 3の「day26」に示されるように、ステップ(D)で回収された ES細胞由 来の榭状細胞様細胞は、 HLA— DR、 CD40及び CD86それぞれを、低いレベルで 発現していた。一方、図 3中、「day28」に示されるように、ステップ(E)で、 TNF— a と LPSとによる刺激を行なった細胞は、これらの分子を、高いレベルで発現していた 実施例 5
[0146] RT— PCR解析による遺伝子発現解析
商品名: Qiashredder (Qiagen社製)で細胞をホモジナイズして、商品名: RNeas yキット (Qiagen社製)を用いて、全 RNAを抽出した。
[0147] 得られた全 RNA 1 μ g相当量と、ランダムへキサマープライマー(Gibco— BRL社 製社製)と Superscript™n逆転写酵素(Gibco— BRL社製)とを用い、 42°Cで 50分 間インキュベーションする条件で、 cDNAを合成した。
[0148] 得られた cDNAを铸型とし、下記プライマー対を用いて、生理的に存在して!/ヽる榭 状細胞に発現している分子の前記実施例 1における ES細胞由来の細胞における発 現の有無を調べた。なお、前記 cDNAについて、 PCRによって、相対量をヒポキサン チンホスホリボシルトランスフェラーゼ (HPRT)遺伝子で標準化した。
[0149] PCRプライマーとして、下記プライマー対:
HPRTをコードする核酸:
5 - gctggattacatcaaagcactgaa- 3' (酉己列番号: 1)、及び
5 -caacaaagtctggcttatatccaa-ύ ' (酉 C列备号: 2)、
CD80をコードする核酸:
5 ' -ctctccattgtgatcctggctctg-3 ' (配歹 [J番号: 3)、及び
0 -accaggagaggtgaggctctggaa-3 ' ( 歹 号: 4)ゝ
IL - 12p40サブユニットをコードする核酸:
5 -gctcaagtatgaaaactacaccag-3 (目 3列 ¾·号: 5)、及び
0 -cagatgaccgtggctgaggtcttgt-3、tt^lj¾^ : 6)、
力二クイザル CD80をコードする核酸:前記配列番号: 3及び 4 力-クイザル IL— 12p40 (40kDサブユニット)をコードする核酸:前記配列番号: 5及 び 6
を用いた。
[0150] なお、 PCRにおけるサーマルプロファイルは、 95°C5分のインキュベーションの後、 95°C1分と 56°C1分と 72°C1分とを 1サイクルとする 35サイクルを行ない、 72°C5分ィ ンキュベーシヨンする条件である。
[0151] 得られた PCR産物を、ェチジゥムブロマイド含有 1. 25重量% ァガロースゲル電 気泳動に供し、可視化した。結果を図 4に示す。
[0152] その結果、図 4に示されるように、ステップ(C) (day22)以降の細胞では、 CD80の 発現が認められた。また、図 4に示されるように、ステップ (E)で、 TNF— aと LPSと により刺激を与えた細胞は、 T細胞を活性ィ匕する作用を有するサイト力インであるイン ターロイキン— 12 (IL— 12)も発現していた。したがって、前記実施例 1で得られた細 胞は、榭状細胞であることが示唆された。
実施例 6
[0153] 混合リンパ球反応 (MLR)による T細胞刺激活性の解析
ES細胞由来の榭状細胞力 T細胞を刺激し増殖反応を起こさせる活性を有して ヽ るかどうか、ァロ(同種異系)の T細胞と共培養した場合の、 T細胞増殖を定量するこ とにより、検討した。反応性 T細胞として、 ES細胞の榭立に用いられたものとは別個 体の力-クイザルの末梢血 T細胞を用いた。また、刺激細胞として、未分化状態にあ る ES細胞(陰性対照)、ステップ (D)後の ES細胞由来榭状細胞及びステップ (E)後 の ES細胞由来榭状細胞それぞれを X線照射 (40Gy)して得られた細胞を用いた。
[0154] 化学及血清療法研究所で飼育された力-クイザルのへノ^ン添加血液から、商品 名: Ficoll— Paque PLUS (Amersham Biosciences社製)を用いて、単核細胞 を単離した。
[0155] つ!、で、抗ヒト CD14抗体をコートした磁性ビーズ(商品名、 supermagneticMicro Beads, Miltenyi Biotec社製)を用いて、単核細胞から CD14—細胞を単離し、こ れを、組織培養皿上、培地〔組成: 2容量% 熱不活生化ゥシ胎仔血清含有 RPMI— 1640培地〕中、 37°Cで 1時間培養した。 [0156] その後、培養皿に接着しない細胞を採取し、ナイロンウールカラム (和光純薬社製 ナイロンウールを 10mlプラスチック注射筒に充填して作製したもの)中で 37°C、 5体 積% COで 1時間静置した。前記ナイロンウールカラムに接着しな力つた細胞を、キ
2
ラー T細胞として使用した。
[0157] 種々の細胞数の前記刺激細胞を、 96ゥエル丸底培養皿 (ファルコン社製)にお 、て 、 10容量% 熱不活性ィ匕ヒト血漿を添カ卩した RPMI— 1640培地中、 37°C、 5体積% COで 5日間キラー T細胞とともに共培養した。最後の 8時間、 [ ]—チミジン(247
2
. 9GbqZmmol)を前記培地に、 0. 037MbqZゥエルとなるように添カ卩した。培養後 に、細胞を、ガラス繊維ろ紙 (Wallac社製)に取り、細胞における [ ]—チミジンの取 込みをシンチレーシヨン計測した。結果を図 5に示す。
[0158] その結果、図 5に示されるように、 ES細胞由来榭状細胞を刺激細胞とした場合にの み、反応性 T細胞の強い増殖反応が認められた。また、図 5に示されるように、ステツ プ (E)後の成熟刺激を加えた後の榭状細胞がより強!、T細胞刺激活性を有して 、る ことがわ力ゝる。
実施例 7
[0159] (1)プラスミドベクターを用いた ES細胞由来榭状細胞の遺伝子改変
ヒトの組織適合白血球抗原(HLA)クラス II β鎖の遺伝子の一種である HLA— DR Β4*0103の cDNAを、 CAGプロモーターによって働き、内部リボソーム侵入部位(I RES)—ネオマイシン耐性遺伝子カセットを含む哺乳動物発現ベクター pCAG—IR ES— Neo中にクローユングして、 pCAG— DRB4— INを得た。図 6のパネル Aに、 前記 pCAG— DRB4 INの概略図を示す。
[0160] 未分化状態の力-クイザル ES細胞 1. 0 X 107個を、 0. 4mlのダルベッコ改良ィ 一ダル培養液 (DMEM ;Gibco— BRL社製)に懸濁した。得られた懸濁液と前記 pC AG-DRB4-IN 50 μ gとを混合した。得られた混合物を、 4mmギャップのキュべ ット(商品名: BM6400、 BTX社製)に入れ、該キュベットを、商品名: Gene Pulser (Bio— Rad社製)にセットした。その後、 250V、 500 Fの条件で電気穿孔法による 遺伝子導入を行なった。
[0161] 遺伝子導入した ES細胞を、 10cm培養皿上の PEF (マウス胎仔性線維芽細胞)層 上で、培地〔組成: 20容量% KSR (Gibco BRL社製)含有 DMEM中、 37°C、 5 体積0 /0 COで培養した。 遺伝子導入後 2日目より、選択薬剤である G418 (150 μ
2
g/ml)を培地に添加することにより、薬剤耐性細胞すなわち遺伝子導入細胞を選択 した。
[0162] 遺伝子導入後 11日目に G418耐性細胞のコロニーとして、遺伝子導入細胞(トラン スフエタタント)クローンを採取し、予め PEFを培養している 24ゥエル培養プレートに 移した。さらに、 G418 (150 g/ml)の存在下で培養を継続することにより細胞を増 殖させ、その一部を凍結保存した。また、残りの一部を 3mgZml G418含有培地〔 組成: 20容量% KSR (Gibco BRL社製)含有 DMEM〕中、 37°C、 5体積% CO で培養し、このような高濃度の G418存在下でも増殖できるトランスフエクタントクロー
2
ン、すなわち導入遺伝子の発現レベルが高いと予測されるクローンを、選択した。
[0163] また、 RT— PCRにより、導入遺伝子の発現を調べた。得られた細胞から、商品名: RNeasyキット(Qiagen社製)を用いて、全 RNAを抽出した。得られた全 RNA 1 μ g相当量と、ランダムへキサマープライマー(Gibco— BRL社製)と Superscript™II 逆転写酵素(Gibco— BRL社製)とを用い、 42°C 50分間インキュベーションする条 件で、 cDNAを合成した。
[0164] 得られた cDNAを铸型とし、 5'- ctgactgaccgcgttactcccaca- 3' (配列番号: 7)と 5し ttg gttatagatgtatctgatcaggt-3' (配列番号: 8)とを用いて、 PCRを行ない、導入遺伝子の 発現を調べた。なお、対照として、 HPRT遺伝子の発現を調べた。なお、 PCRにお けるサーマルプロファイルは、 95°C5分のインキュベーションの後、 95°C1分と 56°C1 分と 72°C1分とを 1サイクルとする 35サイクルを行ない、 72°C5分インキュベーション する条件である。
[0165] 前記 G418耐性と、 RT—PCRの結果に基づいて、トランスジーンの発現が比較的 高い ES細胞のトランスフエクタントクローン 12個を選択した。
[0166] ついで、前記実施例 1と同様に、得られた ES細胞から、榭状細胞を分化誘導させ た。
[0167] (2)RT— PCR解析による導入遺伝子の発現解析
前記(1)と同様に、 RT— PCR解析により、導入遺伝子の発現を確認した。結果を 図 6のパネル Bに示す。
[0168] その結果、図 6のパネル Bに示されるように、遺伝子導入を行ない、 G418による薬 剤選択を行なった細胞では、導入遺伝子由来の DR53 βの mRNAが発現している ことがわかる。また、遺伝子導入 ES細胞から分化誘導した榭状細胞においても、同 様に導入遺伝子由来の DR53 βの mRNAが発現していることがわ力る。
実施例 8
[0169] 抗原提示能力の評価
前記実施例 7で得られた DR53 β遺伝子導入榭状細胞について、 DR53分子上に 提示された GAD65抗原由来ペプチドを特異的に認識して増殖反応を示すヒトの Τ 細胞株 SA32. 5に対する抗原提示能力を調べた。
[0170] (1)合成ペプチドの作製
ヒトのグルタミン酸デカルボキシラーゼ 65 (GAD65) pi l l— 131 (LQDVMNILLQ YWKSFDRSTK;配列番号: 9)に相当するオリゴペプチドを合成し、精製した。
[0171] (2)抗原提示アツセィ
合成ペプチドを用いたアツセィにおいて、実施例 1で得られた榭状細胞を、前記(1 )で得られた合成ペプチド存在下(0〜5 μ Μ)、 37°C、 5体積0 /0 COで 3時間インキ
2
ュベーシヨンし、培地で 4回洗い、 X線照射 (40Gy)し、増殖能力を失わせた。
[0172] HLA— DR53分子(DRA*0101 + DRB4*0103)に結合した GAD65 pi l l— 131を認識するヒト CD4+T細胞クローンである SA32. 5 (5 X 104/ゥエル)と、抗原( 前記合成ペプチド)が負荷された榭状細胞(2 X 104Zゥエル)とを、 96ゥ ル平底培 養プレート上、 10容量% ヒト血漿を添カ卩した RPMI— 1640培地中、 37°C、 5体積 % COで培養することにより、 T細胞増殖アツセィを行なった。
2
[0173] 培養 48時間後、培地に、 [ ]—チミジンを添加し、さらに 16時間培養した。その後 、細胞を採取し、 SA32. 5の増殖に伴う [3H]—チミジンの染色体 DNAへの取り込み を、 j8線測定用のシンチレーシヨンカウンターを用いて測定した。なお、陰性対照とし て、遺伝子導入を行なって 、な 、ES細胞由来の榭状細胞にペプチドを負荷した細 胞及びペプチドを負荷していない DR53 β遺伝子導入榭状細胞を用い、前記と同様 に、 SA32. 5ととも〖こ培養した。結果を図 7のパネル Αに示す。 [0174] その結果、パネル Aに示されるように、 DR53 β遺伝子導入榭状細胞にペプチドを 負荷したもののみが、 SA32. 5の増殖を誘導するという結果が得られた。この結果か ら、 ES細胞の段階で導入した遺伝子に由来する DR53 βが榭状細胞分化後に機能 していること、さらに、 DR53 β鎖の遺伝子を導入した ES細胞由来の榭状細胞は、 G AD65抗原由来ペプチドを DR53分子上に提示し、 SA32. 5T細胞株を刺激して増 殖反応を誘導することがゎカゝつた。また、 DR53 β遺伝子を導入した ES細胞由来の 榭状細胞では、力-クイザル遺伝子にコードされる力-クイザルの DR a鎖と導入遺 伝子由来の DR53 β鎖が会合して DR53分子を形成し、細胞表面に発現することが 示唆される。
実施例 9
[0175] ES細胞由来榭状細胞による抗原の限定分解と提示
前記実施例 7で得られた DR53 β遺伝子導入榭状細胞が、タンパク質抗原を細胞 内に取込み、これを限定分解してペプチドを産生し、細胞表面上の DR分子上に提 示する活性を有して 、るかどうか検討した。
[0176] (1)組換えタンパク質の作製
GAD65 ρ96— 174タンパク質断片をコードする DNA断片を、原核生物の発現 ベクター pGEX— 4Τ— 3 (Amersham Biosciences社製)に連結し、っ、で、得ら れたベクターを用いて、 E. coli DH5 aを形質転換し、それにより、該 E. coli DH 5 aに、グルタチオン一 S トランスフェラーゼ融合 GAD65タンパク質(GST— GAD )を発現させた。 Fragioni及び Neelが報告した方法〔Anal. Biochem.、 210、 179 187 (1993)〕により、 E. coli DH5 α中での組換えタンパク質産生を誘導し、組 換えタンパク質を細菌封入体力も抽出した。ダルタチオン—ァガロース(SIGMA社 製)を用いて、組換えタンパク質を精製した。なお、融合タンパク質の純度及び量は、 硫酸ラウリルナトリウム—ポリアクリルアミドゲル電気泳動によって確認した。得られた 組換えタンパク質を、商品名: Centricon— 10 (Millipore社製)を用いて濃縮し、低 分子量のペプチド断片から分離し、透析によってバッファーを培地に置換した。
[0177] (2)抗原提示アツセィ
組換えタンパク質を用いたアツセィにおいては、前記実施例 7で得られた DR53 β 遺伝子導入榭状細胞を、 GST又は前記(1)で得られた GST— GADタンパク質の存 在下(18 /z M)、終濃度 lOngZml TNF— αと終濃度 3 gZml LPSとともに、 3 7°C、 5体積% COで 20時間インキュベーションし、培地で 3回洗い、 X線照射 (40
2
Gy)し、増殖能力を失わせた。
[0178] 前記 SA32. 5 (5 X 10ソゥエル)と、抗原 (前記組換えタンパク質)が負荷された榭 状細胞(2 X 104Zゥエル)とを、 96ゥエル平底培養プレート上、 10容量% ヒト血漿を 添カロした RPMI— 1640培地中、 37°C、 5体積% COで培養することにより、 T細胞
2
増殖アツセィを行なった。
[0179] 48時間後、培養物に、 [ ]—チミジンを添カ卩し、さらに 16時間培養した。 SA32. 5 の増殖に伴う [3H]—チミジンの染色体 DNAへの取り込みを、 β線測定用のシンチレ ーシヨンカウンターを用いて測定した。陰性対照として、遺伝子導入を行なっていな い ES細胞由来の榭状細胞に GAD65タンパク質を負荷したもの、および、 DR53 j8 遺伝子導入榭状細胞に GSTタンパク質を負荷したものも、 SA32. 5とともに培養し た。結果を図 7のパネル Bに示す。
[0180] その結果、パネル Bに示されるように、 DR53 β遺伝子導入榭状細胞に GST融合 GAD65タンパク質を負荷したもののみ力 SA32. 5の増殖を誘導した。これらの結 果は、 ES細胞由来榭状細胞は溶解している抗原タンパク質を細胞内に取込み、分 解し、ペプチドとして DR分子上に提示する能力があることを示す。
産業上の利用可能性
[0181] 本発明によれば、霊長類動物に由来する榭状細胞を大量に効率よく安定的に供 給することができ、かつ、ウィルスベクターを使用すること無く通常のプラスミドベクタ 一を電気穿孔法により導入することによる遺伝子改変が可能になる。本発明により榭 状細胞の遺伝子改変が容易に効率良ぐかつ安全に行なうことが可能になる。このよ うな遺伝子改変榭状細胞を生体に投与することにより、個体の免疫反応を抗原特異 的に制御することが可能になるため、免疫応答の抗原特異的な制御により治療効果 が期待される種々の疾患に対する治療等が可能になる。
配列表フリーテキスト
[0182] 配列番号: 1は、 HPRTプライマーの配列である。 [0183] 配列番号: :2は、 HPRTプライマーの配列である。
[0184] 配列番号: :3は、 CD80プライマーの配列である。
[0185] 配列番号: :4は、 CD80プライマーの配列である。
[0186] 配列番号: :5は、 IL— 12p40プライマーの配列である。
[0187] 配列番号: :6は、 IL— 12p40プライマーの配列である。
[0188] 配列番号: :7は、 HPRTプライマーの配列である。
[0189] 配列番号: :8は、 HPRTプライマーの配列である。
[0190] 配列番号: :9は、 GAD65の部分配列である。

Claims

請求の範囲
[1] (A)霊長類動物の胚性幹細胞と、血液細胞の分化と増殖とを誘導する性質を有す る細胞とを共培養して、細胞群 Aを得るステップ、
(B)前記ステップ (A)で得られた細胞群 Aと、血液細胞の分化と増殖とを誘導する性 質を有する新たに準備した細胞とを共培養して、細胞群 Bを得るステップ、
(C)前記ステップ (B)で得られた細胞群 Bと、血液細胞の分化と増殖とを誘導する性 質を有するさらに新たに準備した細胞とを、顆粒球マクロファージコロニー刺激因子 の存在下に共培養して、細胞群 Cを得るステップ、及び
(D)前記ステップ (C)で得られた細胞群 Cを、顆粒球マクロファージコロニー刺激因 子とインターロイキン 4の存在下に培養するステップ、
を含む、霊長類動物の胚性幹細胞から榭状細胞への分化方法。
[2] ステップ (A)にお 、て、霊長類動物の胚性幹細胞と、血液細胞の分化と増殖とを誘 導する性質を有する細胞との共培養物から、霊長類動物の胚性幹細胞に由来し、か つ中胚葉系細胞に分化した細胞を含有した細胞群として、細胞群 Aを分離する、請 求項 1記載の分化方法。
[3] ステップ (A)における血液細胞の分化と増殖とを誘導する性質を有する細胞が、 S
T2細胞であり、ステップ )における血液細胞の分化と増殖とを誘導する性質を有 する新たに準備した細胞力 OP9細胞であり、かつステップ (C)における血液細胞の 分化と増殖とを誘導する性質を有するさらに新たに準備した細胞が、 OP9細胞であ る、請求項 1又は 2記載の分化方法。
[4] ステップ (D)の後、(E)前記ステップ (D)で得られた培養物に、腫瘍壊死因子 exとリ ポ多糖とを添加し、さらに培養を行なうステップを行なう、請求項 1〜3いずれか 1項に 記載の分化方法。
[5] (A)霊長類動物の胚性幹細胞と、血液細胞の分化と増殖とを誘導する性質を有す る細胞とを共培養して、細胞群 Aを得るステップ、
(B)前記ステップ (A)で得られた細胞群 Aと、血液細胞の分化と増殖とを誘導する性 質を有する新たに準備した細胞とを共培養して、細胞群 Bを得るステップ、
(C)前記ステップ (B)で得られた細胞群 Bと、血液細胞の分化と増殖とを誘導する性 質を有するさらに新たに準備した細胞とを、顆粒球マクロファージコロニー刺激因子 の存在下に共培養して、細胞群 Cを得るステップ、及び
(D)前記ステップ (C)で得られた細胞群 Cを、顆粒球マクロファージコロニー刺激因 子とインターロイキン 4の存在下に培養するステップ、及び
(Ε' )前記ステップ (D)で得られた培養物から、霊長類動物の胚性幹細胞に由来す る榭状細胞を分離するステップ、
を含む、霊長類動物の胚性幹細胞からの榭状細胞の製造方法。
[6] ステップ (Ε,)に代えて、
(Ε)前記ステップ (D)で得られた培養物に、腫瘍壊死因子 exとリポ多糖とを添加し、 さらに培養するステップ、及び
(F)前記ステップ (Ε)で得られた培養物から、霊長類動物の胚性幹細胞に由来する 榭状細胞を分離するステップ、
を行なう、請求項 5記載の製造方法。
[7] ステップ (Α)を行なうに先立ち、霊長類動物の胚性幹細胞に導入対象の遺伝子を 含む核酸を導入する、請求項 5又は 6記載の製造方法。
[8] 導入対象の遺伝子が、免疫抑制のための遺伝子である、請求項 5〜7いずれか 1 項に記載の製造方法。
[9] 導入対象の遺伝子が、免疫賦活のための遺伝子である、請求項 5〜7いずれか 1 項に記載の製造方法。
[10] 核酸の導入が、非ウィルスベクター媒介核酸導入法により行なわれる、請求項 7〜
9いずれか 1項に記載の製造方法。
[11] 請求項 5〜10いずれか 1項に記載の製造方法により得られる榭状細胞。
[12] 免疫応答を抗原特異的に制御することにより治療効果を得ることができる疾患の治 療のための医薬の製造のための、請求項 5〜: LOいずれか 1項に記載の製造方法に より得られる榭状細胞の使用。
[13] 請求項 5〜10いずれか 1項に記載の製造方法により得られる榭状細胞を有効成分 として含有してなる、免疫応答を抗原特異的に制御することにより治療効果を得ること ができる疾患の治療のための細胞医薬。 被験体に請求項 5〜 10いずれか 1項に記載の製造方法により得られる榭状細胞の 治療有効量を投与することを特徴とする、被験体における、免疫応答を抗原特異的 に制御することにより治療効果を得ることができる疾患の治療方法。
PCT/JP2005/015438 2004-08-27 2005-08-25 霊長類動物胚性幹細胞から樹状細胞の製造方法 WO2006022330A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531978A JP4695087B2 (ja) 2004-08-27 2005-08-25 霊長類動物胚性幹細胞から樹状細胞の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-249062 2004-08-27
JP2004249062 2004-08-27

Publications (1)

Publication Number Publication Date
WO2006022330A1 true WO2006022330A1 (ja) 2006-03-02

Family

ID=35967537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015438 WO2006022330A1 (ja) 2004-08-27 2005-08-25 霊長類動物胚性幹細胞から樹状細胞の製造方法

Country Status (2)

Country Link
JP (1) JP4695087B2 (ja)
WO (1) WO2006022330A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130651A3 (en) * 2005-06-01 2007-03-29 Wisconsin Alumni Res Found Method of forming dendritic cells from embryonic stem cells
WO2008056734A1 (fr) * 2006-11-08 2008-05-15 National University Corporation Kumamoto University Procédé de production de cellules dendritiques à partir de cellules souches d'embryons humains
WO2010122961A1 (ja) 2009-04-24 2010-10-28 国立大学法人熊本大学 細胞医薬の製造方法
US8034613B2 (en) 2005-06-01 2011-10-11 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
WO2012115276A1 (en) 2011-02-23 2012-08-30 Kyoto University Method for producing dendritic cells from pluripotent stem cells
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
WO2016159875A1 (en) * 2015-03-31 2016-10-06 Agency For Science, Technology And Research Method for antigen loading of dendritic cells and vaccine
CN114107203A (zh) * 2021-12-01 2022-03-01 上海健康医学院 一种dc体外诱导扩增体系及诱导造血干细胞分化为树突状细胞的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028000A2 (en) * 1998-11-05 2000-05-18 Isis Innovation Limited Method for producing dendritic cells
WO2003083089A2 (en) * 2002-03-28 2003-10-09 Revivicor Inc. Tolerogenic antigen-presenting cells
JP2004313038A (ja) * 2003-04-14 2004-11-11 Kumamoto Technology & Industry Foundation 哺乳動物のes細胞由来樹状細胞の産生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028000A2 (en) * 1998-11-05 2000-05-18 Isis Innovation Limited Method for producing dendritic cells
WO2003083089A2 (en) * 2002-03-28 2003-10-09 Revivicor Inc. Tolerogenic antigen-presenting cells
JP2004313038A (ja) * 2003-04-14 2004-11-11 Kumamoto Technology & Industry Foundation 哺乳動物のes細胞由来樹状細胞の産生方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARRIGHI J.F. ET AL: "A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers", J. IMMUNOL., vol. 166, no. 6, 2001, pages 3837 - 3845, XP002999804 *
NISHIMURA Y: "Mouse Es-Saibo kara no Jujo Saibo Bunka Yudoho no kaihatsu.", NENDO SOKATSU KENKYU JOGYO HOKOKUSHO, XX, XX, 1 January 2002 (2002-01-01), XX, pages 208 - 214, XP002999805 *
NISITANI S. ET AL: "Lineage marker-negative lymphocyte precursors derived from embryonic stem cells in vitro differentiate into mature lymphocytes in vivo", INT IMMUNOL., vol. 6, no. 6, 1994, pages 909 - 916, XP002999807 *
RYU K.H. ET AL: "In vitro generation of functional dendritic cells from human umbilical cord blood CD34+ cells by a 2-step culture method", INT. . HEMATOL., vol. 80, no. 3, October 2004 (2004-10-01), pages 281 - 286, XP009067312 *
SENJU S. ET AL: "Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells", BLOOD, vol. 101, no. 9, 2003, pages 3501 - 3508, XP002999806 *
ZHAN X. ET AL: "Lympho-lematopoiesis from differentiated human embryonic stem (ES) cells", BLOOD, vol. 100, no. 11, 2002, pages 292A, ABSTRACT NO. 1121, XP008070076 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130651A3 (en) * 2005-06-01 2007-03-29 Wisconsin Alumni Res Found Method of forming dendritic cells from embryonic stem cells
GB2440494A (en) * 2005-06-01 2008-01-30 Wisconsin Alumni Res Found Method of forming dendritic from embryonic stem cells
US9624470B2 (en) 2005-06-01 2017-04-18 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8785189B2 (en) 2005-06-01 2014-07-22 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
GB2440494B (en) * 2005-06-01 2010-07-28 Wisconsin Alumni Res Found Method of forming dendritic from embryonic stem cells
US7811821B2 (en) 2005-06-01 2010-10-12 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
US8435785B2 (en) 2005-06-01 2013-05-07 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
AU2006252576B2 (en) * 2005-06-01 2011-01-20 Wisconsin Alumni Research Foundation Method of forming dendritic cells from embryonic stem cells
US8034613B2 (en) 2005-06-01 2011-10-11 Wisconsin Alumni Research Foundation Multipotent lymphohematopoietic progenitor cells
US8133732B2 (en) 2005-06-01 2012-03-13 Wisconsin Alumni Research Foundation Method of forming myeloid precursor cells from human embryonic stem cells
JPWO2008056734A1 (ja) * 2006-11-08 2010-02-25 国立大学法人 熊本大学 ヒト胚性幹細胞からの樹状細胞の製造方法
WO2008056734A1 (fr) * 2006-11-08 2008-05-15 National University Corporation Kumamoto University Procédé de production de cellules dendritiques à partir de cellules souches d'embryons humains
WO2010122961A1 (ja) 2009-04-24 2010-10-28 国立大学法人熊本大学 細胞医薬の製造方法
US8551472B2 (en) 2009-04-24 2013-10-08 National University Corporation Kumamoto University Method of making macrophage expressing an antibody directed against β-amyloid
WO2012115276A1 (en) 2011-02-23 2012-08-30 Kyoto University Method for producing dendritic cells from pluripotent stem cells
EP2678425A4 (en) * 2011-02-23 2015-01-21 Univ Kyoto METHOD FOR THE PRODUCTION OF DENDRITIC CELLS FROM PLURIPOTENTIAL STEM CELLS
US9499789B2 (en) 2011-02-23 2016-11-22 Kyoto University Method for producing dendritic cells from pluripotent stem cells
EP2678425A1 (en) * 2011-02-23 2014-01-01 Kyoto University Method for producing dendritic cells from pluripotent stem cells
WO2014148646A1 (ja) 2013-03-21 2014-09-25 国立大学法人京都大学 神経分化誘導用の多能性幹細胞
WO2016159875A1 (en) * 2015-03-31 2016-10-06 Agency For Science, Technology And Research Method for antigen loading of dendritic cells and vaccine
CN108026513A (zh) * 2015-03-31 2018-05-11 新加坡科技研究局 树突状细胞的抗原加载的方法和疫苗
CN114107203A (zh) * 2021-12-01 2022-03-01 上海健康医学院 一种dc体外诱导扩增体系及诱导造血干细胞分化为树突状细胞的方法

Also Published As

Publication number Publication date
JP4695087B2 (ja) 2011-06-08
JPWO2006022330A1 (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP7148580B2 (ja) 特定の組成を有する遺伝子により改変されたt細胞製剤
US20230340412A1 (en) Expansion Of Peripheral Blood Lymphocytes (PBLS) From Peripheral Blood
AU2018393110B2 (en) VCAR compositions and methods for use
AU2019374761A1 (en) Processes for production of tumor infiltrating lymphocytes and uses of the same in immunotherapy
JP2020518256A (ja) Crispr/cpf1を用いる、t細胞における遺伝子編集のための組成物および方法
JP4695087B2 (ja) 霊長類動物胚性幹細胞から樹状細胞の製造方法
US9121008B2 (en) Development of natural killer cells and functional natural killer cell lines
KR20080015033A (ko) 배아 줄기 세포로부터 가지 세포를 형성하는 방법
JP6884697B2 (ja) T細胞を刺激および拡大する組成物および方法
EP2495312B1 (en) Method for producing antigen-specific b cell population
JPH11514879A (ja) 原始ヒト幹細胞を有するMp1リガンドの使用法
US20110020932A1 (en) In vitro differentiation/induction of lymphocyte from stem cell having genotype provided after gene reconstitution
JP6687246B2 (ja) 改変型免疫細胞、改変型免疫細胞の製造方法、およびこれらの利用
WO2008056734A1 (fr) Procédé de production de cellules dendritiques à partir de cellules souches d&#39;embryons humains
JP2022540267A (ja) Ciml nk細胞及びそれについての方法
JP6684211B2 (ja) B細胞集団の製造方法
TW201900870A (zh) 製備和使用胚胎間充質先驅細胞的方法
WO2024034656A1 (ja) 増殖性マクロファージ様細胞(pMAC)の製造方法
Class et al. Patent application title: Development Of Natural Killer Cells And Functional Natural Killer Cell Lines Inventors: Schickwann Tsai (Salt Lake City, UT, US)
CLAUSEN et al. Antigen-Presenting Cells and Dendritic Cells
JP2013005756A (ja) 形質細胞様樹状細胞性白血病細胞株の形質転換体、及びその利用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531978

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase