WO2006022273A2 - Organic el element, organic el element protection film and method for manufacturing the organic el element protection film - Google Patents

Organic el element, organic el element protection film and method for manufacturing the organic el element protection film Download PDF

Info

Publication number
WO2006022273A2
WO2006022273A2 PCT/JP2005/015295 JP2005015295W WO2006022273A2 WO 2006022273 A2 WO2006022273 A2 WO 2006022273A2 JP 2005015295 W JP2005015295 W JP 2005015295W WO 2006022273 A2 WO2006022273 A2 WO 2006022273A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic
film
cap
oled
substrate
Prior art date
Application number
PCT/JP2005/015295
Other languages
French (fr)
Japanese (ja)
Other versions
WO2006022273A3 (en
WO2006022273A1 (en
Inventor
Makoto Tomoyori
Original Assignee
Tohoku Device Co Ltd
Makoto Tomoyori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Device Co Ltd, Makoto Tomoyori filed Critical Tohoku Device Co Ltd
Priority to JP2006531925A priority Critical patent/JPWO2006022273A1/en
Publication of WO2006022273A2 publication Critical patent/WO2006022273A2/en
Publication of WO2006022273A1 publication Critical patent/WO2006022273A1/en
Publication of WO2006022273A3 publication Critical patent/WO2006022273A3/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic EL element, and more particularly to an organic EL element that exhibits high light emission efficiency effectively in the case of a top emission type.
  • Organic-electric-luminescence elements (hereinafter referred to as “organic EL elements” for short) can form high-purity, high-quality multilayer films with a thickness of nm class due to recent advances in thin-film formation technology. It became possible to operate at a low voltage of about 5V.
  • organic EL elements are attracting attention as elements for next-generation display systems that have low power consumption, high quality, are thin, and can display curved surfaces.
  • an organic EL element a plurality of films having a predetermined organic molecular component force are stacked vertically to form an organic EL layer, and electrode layers are attached to both the upper and lower sides to form an OLED (organic light emitting diode), Apply a predetermined voltage or current through both electrodes to inject electrons and holes into the organic EL layer, and use the phenomenon of light emission when electrons and holes recombine.
  • OLED organic light emitting diode
  • At least one of the electrodes provided on the upper and lower sides must be transparent.
  • ITO Indium Tin Oxide
  • annealing is required to lower the electrical resistance of ITO.
  • polishing is necessary to increase the smoothness of the ITO surface (to reduce the roughness).
  • the stacking order is [substrate—first electrode film (ITO) —organic EL layer—second electrode film (opaque electrode film)], and light is emitted from the substrate side (bottom emission). Therefore, the substrate must also be transparent, and a glass substrate is usually used.
  • the glass substrate has a poor thermal conductivity and the heat dissipation is insufficient for the heat generated during operation. High temperature tends to cause deterioration of the organic EL layer.
  • TFT active matrix
  • the second electrode is made transparent, and [substrate-TFT-first electrode-organic EL layer-second electrode (ITO)] is used to emit light from the opposite side of the substrate (top emission). Being! In that case, it is necessary to pay particular attention not to alter the organic EL layer when forming ITO.
  • ITO substrate-TFT-first electrode-organic EL layer-second electrode
  • Non-Patent Document 1 discloses a contrivance on the manufacturing method such as bonding a substrate on which an organic EL layer is formed and a substrate on which a second electrode (ITO) is formed in order to prevent this alteration.
  • Non-Patent Document 1 Kathleen M. Vaeth, Information Display 6/03 (2003), pp 12-17, SID.
  • the emission intensity of the organic light emitting diode is maximum in the direction perpendicular to the organic EL layer, but is also dispersed in other directions, and the relative value is theoretically a right angle. It is a function of ⁇ represented by cos ⁇ , where ⁇ is the angle from the direction.
  • the luminance can be increased, that is, in order to obtain a constant luminance in the right angle direction, it is possible to prevent the deterioration of the organic EL layer even if the power consumption is suppressed.
  • Patent Document 1 discloses a technique including a lens layer formed by sealing the transparent electrode 6 with a glass substrate (glass cap) 7 and ion implantation from the outer surface side.
  • Patent Document 2 discloses that an organic film 10 includes a gas nolia layer 11 and an oxygen base film 13 formed thereon.
  • a technology is disclosed in which an ultraviolet curable resin mixed with fine transparent beads is coated thereon, a mic mouth lens 12 is formed with a roll mold, and then laminated to an organic EL substrate formed separately.
  • Patent Document 3 discloses a technique in which a microlens array 17 preferably made of a photocurable transparent resin is further provided on a protective film 16 on an anode 15 of an organic EL pixel. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-264059
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-257627
  • Patent Document 3 JP 2004-039500 A
  • the organic EL layer itself emits light from both sides with an intensity according to the function cos ⁇ , that is, the opposite surface not only by the surface force on the transparent electrode film side of interest. The same amount of light is also emitted from the side.
  • Non-Patent Document 2 specifically discloses a technique for forming an organic EL element having a transparent electrode film on both surfaces of an organic EL layer on a glass substrate, which enables the use of double-sided light emission.
  • light reception (viewing) on one side is dominant as an application of organic EL elements, and the ratio of light emission amount Z power consumption still cannot be increased.
  • Non-Patent Literature 2 Transparent organic lignt emitting devices, G. u et al., Appl. Phys. Letter. 68 (19), 6 May 1996
  • the organic EL element formed in this way is not modified as it is because the OLED, in particular, the organic EL layer and the ITO film deteriorate and deteriorate with time due to moisture and oxygen. If the top-emission type is used, this protective film must be as transparent as possible to visible light. Furthermore, a low-temperature process is necessary so that the OLED is not physically and chemically altered again even when this protective film is formed.
  • a silicon nitride film is the most suitable as a protective film (passivation) against moisture and oxygen for silicon semiconductors and the like.
  • a silicon nitride film generally requires a high temperature for film formation. Since it is hard, it has been unsuitable by itself, such as giving stress to organic EL elements, and various ingenuities have been made.
  • a technology for obtaining a high-purity silica (SiO 2) film by simply dissolving polysilazane, especially PHPS (PerHydroPolySilazane) in an organic solvent, applying it, and baking it has been realized in the semiconductor industry.
  • the silica film obtained by firing the polysilazane forms a dense protective film macroscopically, but microscopically, it has a protective ability alone when it is not as dense as the silicon nitride film. Is inferior.
  • Patent Document 4 discloses a technique in which an intermediate film (polysilazane film) is sandwiched between silicon nitride films with vertical force, covers the OLED, and only the outer peripheral portion is laser-heated to transform the intermediate film into silica. It is disclosed.
  • Fluorine is the most strongly bonded to carbon of the polymer skeleton with the highest electronegativity
  • fluorine-based polymer membranes are generally robust and have both hydrophobic and oleophobic properties, that is, they exhibit water repellency and antifouling properties.
  • Patent Document 5 as an example of a four-layer transparent protective film, four layers of a fluorine polymer film, a silicon nitride film, an epoxy polymer film, PET, or a fluorine polymer film are used. The structure listed is disclosed.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-119138
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-139991
  • an object of the present invention is to provide an organic EL device including a microlens array that can be stably and inexpensively manufactured.
  • Another object of the present invention is to provide an organic EL element that can be manufactured more stably and inexpensively by integrating a cap and a microlens array.
  • Another object of the present invention is to provide an organic EL device that can be manufactured more stably and inexpensively by providing a method for securely bonding a cap and a substrate.
  • the present invention also provides an organic EL device that can be manufactured more stably and inexpensively by simultaneously realizing and sealing the protection of the organic EL device and the reliable adhesion of the cap and the substrate. Objective.
  • the present invention provides an organic EL device that increases the ratio of the amount of light emission Z and the power consumption by concentrating the light emission from both sides of the organic EL layer on one side. With the goal.
  • the present invention also provides an organic EL device that uses a metal substrate as a substrate to provide a stable and inexpensive manufacturing mechanism that concentrates the light emitted from the double-sided force of the organic EL layer on one side. Objective.
  • the present invention has a simple structure 'manufacturing method, the organic EL layer does not deteriorate / deteriorate, and the transparency is ensured.
  • the purpose is to provide a protective film suitable for a type of organic EL device and a method for producing the same.
  • an organic EL device includes an organic EL light emitting diode (OLED) including a transparent electrode film, an organic EL layer, and a counter electrode layer, as described in claim 1.
  • OLED organic EL light emitting diode
  • an organic EL element including a substrate on which the OLED is mounted and a cap provided so as to cover the OLED and having a transparent portion facing the transparent electrode film, the outer surface or the inner surface of the cap, or the A microlens array is provided on the surface side of the transparent electrode film.
  • the cap is made of silicone resin, and the microphone lens is provided integrally with the cap.
  • an organic EL light emitting diode including a transparent electrode film, an organic EL layer, and a counter electrode layer, a substrate on which the OLED is mounted, and a cover provided to cover the OLED.
  • a cap whose portion facing the transparent electrode film is transparent, and a microlens array is provided integrally with the cap on the outer surface or inner surface of the cap, and the inner surface of the cap A gap between the upper surface of the substrate including the upper surface of the OLED and a gap between the bonding surface of the cap and the substrate is filled with a silicone resin.
  • both the bonding portion of the substrate and the bonding portion of the cap are subjected to primer treatment.
  • the silicone resin is polydimethylsiloxane (Poly-Di-Methyl- Siloxane, PDMS).
  • the organic EL device includes an organic EL light-emitting diode including a first transparent electrode film, an organic EL layer, and a second transparent electrode film as described in claim 7.
  • OLED organic EL light-emitting diode
  • a light reflection surface is provided on a side of the substrate on which the OLED is mounted. It is characterized by that.
  • the light emitted from the organic EL layer, which has passed through the first transparent electrode film as in the prior art, is directly emitted to the outside, and in addition to this, the second transparent electrode film is applied to the second transparent electrode film.
  • the material that has passed is reflected by the light reflecting surface provided on the substrate and superimposed on the material that has passed through the first transparent electrode film to be emitted to the outside.
  • the ratio of the amount of light emitted to the outside and the Z power consumption can be almost doubled.
  • the substrate is a metal substrate made of, for example, magnesium, aluminum, or an alloy containing the same, and having an insulating film formed on the surface thereof. To do.
  • the metal substrate can be made into a light reflecting surface simply by finishing the surface smoothly so as to be a mirror surface.
  • a magnesium substrate can be easily mirror-finished, and a high-quality light reflecting surface can be obtained at low cost.
  • metal substrates especially magnesium substrates
  • These metal substrates are rich in workability, and can be manufactured at low cost because they can easily form a strong and thin insulating film by surface oxidation, and have high thermal conductivity and high power consumption. Although it is easy to dissipate heat, the organic EL device according to the present invention can be provided with these features.
  • the light reflecting surface includes a plurality of concave mirror arrays having a concave mirror force.
  • the concave mirror array to be provided on the substrate according to the present invention is surface-oxidized after the surface of the original substrate is previously finished in the shape of the concave array by molding, polishing ij, or press. It can be easily provided by filling the concave portion with a transparent resin such as silicone to flatten the final surface.
  • each concave mirror capture and reflect as much lateral light as possible, so out of the O LED size (hereinafter referred to as d) and pitch (hereinafter referred to as D, D> d), D
  • d O LED size
  • D pitch
  • D it is desirable to have a one-to-one correspondence with OLEDs and arrange them as closely as possible.
  • each concave mirror is usually circular. In order to increase the amount of light collected, it may be square or rectangular according to the vertical and horizontal pitches of the OLED.
  • the focal length of each concave mirror (hereinafter referred to as fl) should be approximately 0.5 times or more and 2 times or less of OLED pitch D.
  • the distance between the concave mirror array and the OLED (hereinafter referred to as si) is approximately 0.5 times the focal length fl of the concave mirror, preferably 2 times or less.
  • each concave mirror is preferably a parabola.
  • the details of the above parameters are such that the reflected light is attenuated by the passing medium, the distortion due to various aberrations of the concave mirror, and the light emission of the adjacent OLE D so that the reflected light can be focused in the direction perpendicular to the surface of the organic EL element. It is determined in consideration of interference with
  • a cap is further provided so as to cover the OLED, and a portion facing the second transparent electrode film is transparent, and the outer surface or the inner surface of the cap is provided.
  • a microlens array comprising a plurality of microlenses on the surface side of the second transparent electrode film.
  • the microlens array to be provided on the cap side, that is, close to the first electrode film can be provided by various methods.
  • stable performance including sealing of the cap and the substrate can be obtained at a low cost by forming the cap and the substrate integrally with, for example, silicone resin.
  • each microlens captures and reflects as much lateral light as possible, so out of the OLED size (hereinafter referred to as d) and pitch (hereinafter referred to as D, D> d), D It is desirable to arrange them as much as possible, that is, with a one-to-one correspondence with OLEDs.
  • each microlens is usually a circle. In order to increase the amount of condensed light, it may be square or rectangular according to the vertical and horizontal pitches of the OLED.
  • the focal length of each microlens (hereinafter referred to as f2) is approximately 0.5 times the OLED pitch D, preferably 2 times or less.
  • the distance between the microlens and the OLED (hereinafter referred to as s2) is approximately 0.5 to 2 times the focal length f2 of the microlens.
  • each microlens is preferably a parabola.
  • the details of the above parameters are such that the refracted light can be focused in the direction perpendicular to the surface of the organic EL element so that the light is attenuated by the passing medium, the distortion caused by various aberrations of the microlens, and the adjacent OLED. It is determined in consideration of interference with light emission.
  • the protective film of the organic EL device according to the present invention is laminated with a silica film obtained by firing polysilazane (PHPS) as described in claim 11.
  • PHPS polysilazane
  • Including a fluorine-containing organic fluorine polymer film, and the fluorine-containing organic fluorine polymer film of the silicon-containing organic fluorine polymer film includes a perfluoro hydrocarbon part, a hydrocarbon part, and a It is characterized by comprising a group.
  • the perfluorohydrocarbon portion is characterized by being a perfluoroalkane or a perfluoroalkene having only a straight chain or a side chain.
  • the perfluorohydrocarbon part is a perfluoropolyether moiety having only a straight chain or a side chain and containing only a saturated bond or an unsaturated bond.
  • Perfluoropolyokitacene is also a feature.
  • the hydrocarbon portion includes only a saturated bond, is only a straight chain, or has a side chain, and at least one of hydrogen atoms is substituted with the kalein-containing group. It is characterized by.
  • one or more of the hydrogen atoms are further substituted with a halogen.
  • the silicon-containing group is a silane composed of one or more linear silicon atoms, wherein one or more hydrogen atoms are an alkoxyl group or a halogen. It is characterized by being replaced.
  • PHPS polysilazane
  • the organic EL device according to the present invention includes a microlens array made of silicone resin that can be manufactured stably and inexpensively, so that the luminance in the direction perpendicular to the light emitting surface is increased, and the organic EL layer It is possible to suppress an increase in power consumption that causes deterioration of the battery.
  • the organic EL element according to the present invention can be manufactured more stably and inexpensively because the cap and the microlens array are integrally formed.
  • the organic EL device according to the present invention can be manufactured more stably and inexpensively because the sealing treatment can be performed firmly by applying a primer treatment to the substrate when the cap made of silicone resin is bonded to the substrate. .
  • the organic EL device according to the present invention is sealed and protected by a silicone resin that can be cured at a low temperature simultaneously with the adhesion between the cap and the substrate, the organic EL device can be manufactured stably and inexpensively without deterioration.
  • the organic EL device according to the present invention can emit light from both sides of the OLED to the outside by the light reflecting surface provided on the substrate. It is possible to suppress an increase in power consumption that causes deterioration of the organic EL layer.
  • the organic EL device according to the present invention can be manufactured stably and inexpensively by integrally forming the light reflecting surface using a metal substrate such as magnesium as the substrate.
  • the organic EL device according to the present invention is combined with a light reflecting surface provided on the first transparent electrode film side and a microlens provided on the Z or second electrode film side, that is, the cap side. Since it is possible to condense maximum in the direction perpendicular to the element surface, the ratio of effective light emission amount Z power consumption as a display device can be further increased.
  • the water-repellent property comprising two layers of a dense silica film and a silicon-containing organic fluoropolymer film firmly bonded to the silica film at a molecular level. It is possible to provide a protective film that is rich in oil repellency, and is vulnerable to fragile organic EL elements (OLEDs and their driving) during the manufacturing process and after storage or use with respect to moisture, oxygen, high temperature, and physical impact. Circuit), and top emission type organic EL elements can be provided with high reliability and economically.
  • OLEDs and their driving during the manufacturing process and after storage or use with respect to moisture, oxygen, high temperature, and physical impact. Circuit
  • an organic EL element (OLED and its driving circuit) that is vulnerable to moisture, oxygen, high temperature, and physical impact is physically present.
  • Highly water- and oil-repellent protection consisting of two layers: a dense silica film that is not damaged mechanically or chemically, and a silicon-containing organic fluoropolymer film that is firmly bonded to the silica film at the molecular level.
  • a highly reliable and economical manufacturing method for forming a film can be provided.
  • FIG. 1 (A), (B), and (C) are cross-sectional schematic views showing organic EL devices in Examples 2 and 3, respectively.
  • FIG. 2 (A), (B), and (C) are cross-sectional schematic views showing organic EL elements in Examples 4, 5, and 6, respectively.
  • FIG. 3 is a schematic cross-sectional view showing an organic EL device in Example 7.
  • FIG. 4 is a schematic cross-sectional view showing the structure of an organic EL device in Example 8.
  • FIG. 5 is a schematic cross-sectional view showing the structure of an organic EL device in Example 9.
  • FIG. 6 is a schematic cross-sectional view showing the structure of an organic EL device in Example 10.
  • FIG. 7 is a schematic cross-sectional view showing the structure of an organic EL device in Example 11.
  • FIG. 8 is an optical equivalent cross-sectional view of an organic EL element in Example 8.
  • FIG. 9 is a distribution diagram of the light emission amount of the organic EL device in Example 8.
  • FIG. 10 is an optical equivalent cross-sectional view of an organic EL element in Example 9.
  • FIG. 11 is a distribution diagram of the light emission amount of the organic EL device in Example 9.
  • FIG. 12 is an optical equivalent cross-sectional view of an organic EL device in Example 10.
  • FIG. 13 is a distribution diagram of the light emission amount of the organic EL device in Example 10.
  • FIG. 14 is a schematic cross-sectional view of an organic EL device according to Examples 12 to 15 of the present invention.
  • FIG. 15 is a schematic diagram showing a molecular structure of a protective film of an organic EL layer element in Example 12.
  • FIG. 16 is a schematic diagram showing a molecular structure of a protective film of an organic EL layer element in Example 13.
  • FIG. 17 is a schematic diagram of a molecular structure showing various aspects of the silicon-containing organic fluorine-containing polymer according to Examples 12 to 15 of the present invention.
  • FIG. 18 is a flowchart showing a procedure for forming a protective film for an organic EL layer in Example 15.
  • the present invention can be applied to the bottom emission type or passive matrix drive type as long as it is appropriately modified.
  • FIGS. 1 (A), (B), and (C) are cross-sectional schematic views showing organic EL elements in Examples 2 and 3, respectively, and FIGS. 2 (A), (B), and (C) are respectively.
  • FIG. 3 is a cross-sectional schematic view showing the organic EL element in Examples 4, 5, and 6.
  • FIG. 3 is a cross-sectional view showing the organic EL element in Example 7.
  • FIG. 1 (A) a cross-sectional schematic view showing an organic EL device according to the present invention, wherein the organic EL device body is formed on a substrate 200 and is made of, for example, a transparent cap 100 made of glass.
  • the leg portion 105 covered with and extending downward on the edge portion of the cap is sealed by being bonded to the substrate 200 via the bonding portion 120 and is blocked from the outside.
  • the organic EL element body includes an organic EL light emitting diode (OLED) for one panel and a corresponding pixel driving unit 230.
  • OLED organic EL light emitting diode
  • a polysilicon layer or amorphous silicon layer 220 is formed on the upper surface of the substrate 200.
  • the pixel driving unit 230 is formed.
  • each pixel driving unit 230 is composed of a single TFT transistor, and its gate and source are connected to driving wiring (not shown) in rows and columns, respectively, and its drain is
  • Each OLED is composed of a transparent electrode film 260 common to the cathode electrode 240 and an organic EL layer 250R, 250G, or 250B corresponding to the three primary colors sandwiched between the two electrodes. film
  • a protective film 270 is formed on 260.
  • the organic EL element body is formed.
  • the OLED When a predetermined signal voltage that changes with time is applied to the pixel drive unit of the organic EL element body after the sealing is completed, the OLED emits light of three primary colors having a light amount that changes in accordance with the signal voltage.
  • Each of the three primary color lights is emitted from above through the transparent electrode film 260, the protective film 270, and the transparent cap 100, and each pixel has a desired color tone and functions as a display device. .
  • the microlens array 110 made of silicone resin is adhered to the inner surface of the cap 100, and each microlens 115 has a convex lens shape and faces the upper surface of the OLED. ing.
  • each OLED depends on the light emission angle as described above.
  • the vertical upper direction is maximized, and the angle from the upper vertical is proportional to cos ⁇ with respect to ⁇ . Yes.
  • the microlens 115 collects the light emitted from the OLED in the vertically upward direction.
  • the size and pitch of the microlens 115 are the organic EL layers 250R, 250G, and 250B, and therefore the force that matches the size and pitch of one OLED is not limited to this.
  • the size and pitch of the microlens 115 must be matched to the size and pitch of the pixel in the case of recent high-definition display, and is m (micron) class.
  • the present invention is based on the fact that such micron-class precision machining has been put to practical use for the first time due to recent technological advances.
  • silicone resin especially PDMS (Poly-Di-Methyl-Siloxane)
  • PDMS Poly-Di-Methyl-Siloxane
  • it is chemically inert, and the conformity of the substrate to the warp is good, isotropic, homogeneous, transparent, and elastomeric. It describes that a controllable surface state can be formed by plasma treatment with high durability and subsequent chemical treatment.
  • Non-Patent Document 3 Y Xia et al: Soft Lithography, Angew. Chem. Int. Ed. 1998, 37, pp550—575.
  • a desired microlens array can be obtained with good releasability at low cost from, for example, an embossed cage from a micron-class master made of silicon.
  • Silicon's state-of-the-art cache technology is 0.1 micron class, and the above micron class matrix can be obtained at low cost.
  • the distance between the tip of the microlens 115 and the OLED upper surface protective film 270 is as small as possible in order to increase the light collection efficiency. However, it is desirable that the distance between the substrate 200 and the cap 100 is warped. Even if there is, the value is set so that a part of the microlens is not pressed and deformed against the protective film.
  • Example 1 is a schematic cross-sectional view showing an organic EL element according to the present invention
  • the difference from Example 1 is that the outer surface where the microlens array 110 is not the inner surface of the cap 100. Be prepared for.
  • FIG. 1 (C) it is a schematic cross-sectional view showing the organic EL device according to the present invention.
  • the difference from the first and second embodiments is that the microlens array 110 is attached to the inner surface or the outer surface of the cap 100.
  • the OLED transparent electrode film 260 is attached to the upper surface side of the OLED through the protective film 270.
  • the light can be collected most efficiently by the microlens 115, and the microlens array 110 can most effectively protect the OLED.
  • Fig. 2 (A) it is a schematic cross-sectional view showing the organic EL device according to the present invention.
  • the difference from the above-mentioned Examples 1 to 3 is that the inner surface of the cap 100 made of silicone resin is microscopic.
  • the lens 115 is integrally formed with the cap 100, that is, the lens 115 is obtained by integrally molding the microlens 115 and the cap 100 from silicone resin.
  • PDMS material which is silicone resin as in Example 1
  • a desired microlens array and cap are integrated from, for example, embossing from a micron-class matrix made of silicon, for example. Can be obtained inexpensively with good releasability.
  • Silicone resin PDMS is transparent as described above, and allows OLED light emission to pass outside, while chemically inert, it protects the internal OLED and adapts to substrate warpage. And has ideal performance as a cap.
  • the dangling bonds of Si atoms on the surface of the silicone resin can be stably bonded to OH groups by, for example, oxygen plasma treatment.
  • the bonding surface (bonding portion 120) of the substrate 200 is preliminarily treated with a primer so that the OH group of the cap 100 is dehydrated.
  • Si atoms on the surface of the silicone resin are chemically bonded to the molecules of the bonding portion 120, and a strong adhesive seal is obtained.
  • microlens size 'pitch corresponds to the organic EL layers 250R, 250G, 250B, and thus the OLED size' pitch, in Example 4 above, On the other hand, in this embodiment, there is a one-to-two correspondence.
  • the microlens size and pitch correspond to the OLED size and pitch on a two-to-one basis.
  • the smaller the microlens the greater the force-contrast distortion that can be obtained with a shorter focal length.
  • the size and pitch of the microlenses must be determined so that a stable light collection rate can be obtained over the entire panel surface.
  • FIG. 3 a schematic cross-sectional view showing an organic EL device according to the present invention, in which a transparent cap 100 made of glass, for example, having a microlens 115 on its inner surface is mounted on an OLED-mounted substrate 200. The entire upper surface is covered, and the gap between the two is filled with the silicone resin PDMS including the leg portion 105 of the cap 100 and the adhesive portion 120 of the substrate 200 to form the filling portion 130.
  • a transparent cap 100 made of glass, for example, having a microlens 115 on its inner surface is mounted on an OLED-mounted substrate 200.
  • the entire upper surface is covered, and the gap between the two is filled with the silicone resin PDMS including the leg portion 105 of the cap 100 and the adhesive portion 120 of the substrate 200 to form the filling portion 130.
  • PDMS effectively protects the OLED in a single process, and at the same time, the substrate 200 and the cap 100 can be effectively bonded by the bonding portion 120. It can be cured at a low temperature of 48 hours at 65 ° C for 4 hours, so it does not damage the organic EL layer.
  • the bonding surface of the substrate and the bonding surface of the leg portion are preliminarily treated in advance to fill the bonding portion 120.
  • the OH groups on the surface of the prepared silicone resin are removed by a dehydration reaction, and the S source on the surface of the silicone resin is chemically bonded to the molecules on the bonding surface of the substrate and the cap, resulting in a strong Adhesion and sealing can be obtained.
  • FIGS. 4, 5, 6, and 7 are schematic cross-sectional views showing the structures of the organic EL elements in Examples 8, 9, 10, and 11, respectively.
  • FIGS. 9, 11, and 13 are distribution diagrams of the light emission amounts of the organic EL elements in Examples 8, 9, and 10, respectively. is there.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the organic EL element in Example 8.
  • the organic EL element body is formed on a metal substrate, for example, a magnesium substrate 201.
  • a leg (not shown) covered with a transparent glass cap 100 and extending downward at the edge of the cap is sealed by being bonded to the corresponding edge of the substrate, and is blocked from the outside. Is done.
  • the organic EL element body is composed of, for example, a plurality of organic EL light emitting diodes corresponding to one panel.
  • OLED organic light-emitting diode
  • a corresponding pixel driving unit for example, a polysilicon layer or an amorphous silicon layer 220 is deposited on the insulating film 210 formed on the upper surface of the substrate 201, and the pixel driving unit is formed therein. Is done.
  • Each pixel driving unit is in principle a single TFT transistor, and includes a source 231, a gate insulating film 237, a drain 235, a source wiring 233, a gate wiring 239, and a drain wiring 3 10.
  • the source wiring 233 and the gate wiring 239 each form a row and a column, and are driven by a row / column driving circuit provided at the edge of the pixel driving unit array and connected to the gate wiring to which a selection potential is applied.
  • the drain potential is equal to the pixel signal potential applied to each source line. In this way, an arbitrary signal potential is sequentially applied to the drain line of each pixel driving unit.
  • the drain wiring 310 is connected to the drain 235 through an appropriate noria metal layer if necessary.
  • a region between adjacent pixel driving units is covered with a silicon nitride-based silicon insulating film 225, and the drain wiring 310 is stretched thereon. It becomes the first transparent electrode film of OLED.
  • Each OLED also has a first transparent electrode film 310, a common second transparent electrode film 320, and an organic EL layer 300 sandwiched between both electrode films, and usually three adjacent organic EL layers 301, 300, 302 force S3 primary colors R, G, B are supported.
  • a low-keke function alloy for example, an Mg—Ag layer 322 is interposed.
  • the thickness of the Mg-Ag layer is as thin as 10 nm so as not to impair the transparency. Further, a protective film (not shown) is formed on the second transparent electrode film 320.
  • the organic EL element body is formed.
  • the typical film pressure of each film and layer related to the light emitting part of this organic EL element is listed.
  • Substrate insulating film 210 10 nm
  • polysilicon (amorphous silicon) layer 220 including insulating film 225
  • 1st transparent electrode film 310 100nm
  • OLED layer 300 60nm
  • Mg—Ag layer 10 nm
  • second transparent electrode film 320 40 nm.
  • each organic EL layer 300 corresponds to the signal voltage. Emits one of the three primary colors with a variable amount of light.
  • Each of the three primary colors is emitted to the outside through the Mg-Ag film 322, the second transparent electrode film 320, the protective film, and the transparent cap 100, and each pixel has a desired color tone and serves as a display device. It will fulfill the function.
  • the luminance of the organic EL element is determined by the amount of light emission of the OLED when the signal voltage is maximum. In the following, the “light emission amount” is limited to this case.
  • the light emission amount of the organic EL layer is maximum in the vertical direction in Fig. 1 as described above, becomes zero in the horizontal direction, and forms a cos ⁇ distribution with respect to the angle ⁇ measured with the upward direction as the baseline. . Therefore, in this embodiment, light emission in the downward direction in FIG. 4, that is, in the range of 90 ° ⁇ ⁇ ⁇ 180 °, is transmitted through the first transparent electrode film 310, the polysilicon (amorphous silicon) layer 220, and the insulating layer 210. Then, it reaches the base metal boundary 205 between the insulating layer 210 and the substrate 201, and light cannot be transmitted through the metal substrate 201, and is reflected.
  • the boundary 205 functions as a light reflecting surface, and the reflected light travels upward like the light emitted from the mirror image 305 (indicated by a two-dot chain line) of the organic EL layer 300. (Hereafter, the light reflecting surface is also indicated by “205”.)
  • FIG. 8 is an optical equivalent cross-sectional view of the organic EL element in this example.
  • FIG. 9 is a distribution diagram of the light emission amount of the organic EL element in this example.
  • the emission intensity ⁇ (relative value) of the organic EL layer 300 is cos ⁇ , as shown by the broken line, where the angle of the vertical upward force is 0 in the figure, but the negative Y portion corresponding to the downward emission is reflected. As shown by the solid line, the total emission intensity is 2 X cos ⁇ (- ⁇ / 2 ⁇ ⁇ 2), which can be doubled compared to the conventional case without reflection.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the organic EL device in Example 9.
  • Example 8 when an array of recesses is formed on the upper surface of the metal substrate 201 in advance in the drawing and the insulating film 210 is formed by oxidizing the surface in the same manner, it functions as a concave mirror. A light reflecting surface 205 is obtained.
  • the layers after the polysilicon layer or the amorphous silicon layer 220 are formed in the same manner as in the eighth embodiment.
  • the process for forming the polysilicon layer or amorphous silicon layer 220 and the TFT transistor therein may require a high temperature. Apply low melting glass.
  • silicone resin especially PDMS (Poly-Di-Methyl-Siloxane) can be used as the material of the transparent layer 215. .
  • PDMS Poly-Di-Methyl-Siloxane
  • PDMS is a plasma process that is chemically inert, isotropic, homogenous, and transparent, and has high durability as an elastomer, followed by chemical process.
  • a controllable surface state can be formed, so that it is in close contact with the first transparent electrode film, etc. Force can also absorb the stress due to temperature coefficient difference.
  • FIG. 10 is an optical equivalent cross-sectional view of the organic EL element in Example 9.
  • Direct upward light emission is indicated by rays 11-16 as in Example 1 above.
  • light emitted downward is reflected by the concave mirror, but in this embodiment, the distance s2 between the light reflecting surface 205 and the organic EL layer 300 forming the concave mirror array is equal to the focal length fl of the concave mirror. The reflected light is parallel for each point light source on the organic EL layer.
  • the transparent layer 215 functions as a convex lens for each of the downward emission and reflected light, so to be precise, fl is transparent with a concave mirror that is not the focal length of the concave mirror alone.
  • the light reflecting surface changes along the concave surface of the concave mirror (the arc-shaped broken line in the figure in the lower side of the light reflecting surface 205), but here it is represented by a plane for simplicity.
  • the diameter of the concave mirror is set equal to the pitch D of the organic EL layer.
  • FIG. 11 is a distribution diagram of the light emission amount of the organic EL element in this example.
  • the intensity distribution of the upper emission follows the cos ⁇ (- ⁇ 2 ⁇ ⁇ ⁇ ⁇ / 2) indicated by the broken line, but the lower emission is in the above range of ⁇ 4 to ⁇ 6, that is, about 0.1 ⁇ ⁇ 0. ⁇ About ⁇ ⁇ 4 Part or all of the force reflected light will concentrate on 0 ⁇ ⁇ 0.1 ⁇ .
  • FIG. 6 is a schematic cross-sectional view showing the structure of the organic EL element in Example 10.
  • a convex microlens 115 facing the organic EL layer is further provided on the lower surface 102 of the cap 100.
  • the upper emission rays 11 and 16 from the organic EL layer are refracted by the microlens to become external rays 21 and 26.
  • the lower emission light beam is reflected by the light reflecting surface 205 to become reflected light beams 61 and 66, and is refracted by the microphone opening lens to become external light beams 71 and 76.
  • the adaptability to the warp of the cap is very chemically inactive. It is isotropic, homogeneous and transparent, and has high durability as an elastomer, so it can absorb stress due to temperature coefficient differences.
  • FIG. 12 is an optical equivalent cross-sectional view of the organic EL element in Example 10.
  • both surfaces or one surface of the microlens 115 changes with a predetermined curvature (the arcuate broken line in the drawing of the microlens 115).
  • a predetermined curvature the arcuate broken line in the drawing of the microlens 115.
  • it is represented by a plane.
  • the distance si between the organic EL layer 300 and the microlens 115 is set equal to the focal length f2 of the microlens in this embodiment.
  • the light rays emitted from the upper side from the left end, the center, and the right end of the organic EL layer are superimposed on the light rays emitted downward and reflected by the light reflecting surface 205, of which between 11 and 12 Between ⁇ 1, 13 and 14, between ⁇ 2, 15 and 16, the light in the range of ⁇ 3 is reflected and parallel to the parallel rays, 21 and 22, 23 and 24, 25 and 26, respectively. Light.
  • FIG. 13 is a distribution diagram of the light emission amount of the organic EL element in this example.
  • the upper and lower light emission are superimposed, and the range of ⁇ 1 to ⁇ 3 in the cos ⁇ ( ⁇ ⁇ / 2 ⁇ ⁇ 2) distribution, that is, about 0.1 ⁇ 0. ⁇ About ⁇ ⁇ 4 A part or all of the part will be concentrated to 0 ⁇ ⁇ 0.1 ⁇ in the outgoing light.
  • Example 11
  • FIG. 7 is a schematic cross-sectional view showing the structure of the organic EL element in Example 11.
  • Example 8 when an array of recesses is formed on the upper surface of the metal substrate 201 in advance in the drawing and the insulating film 210 is formed by oxidizing the surface in the same manner, it functions as a concave mirror. A light reflecting surface 205 is obtained.
  • a convex microlens 115 facing the organic EL layer is further provided on the lower surface 102 of the cap 100.
  • the lower emitted light beams 51 and 56 are reflected by the concave mirror-like light reflecting surface 205 to become reflected light beams 61 and 66, and refracted by the microlens 115 to become outer light beams 71 and 76.
  • the upper emitted light beam is collected once by the microlens and the lower emitted light beam is collected twice by the microlens and the concave mirror, so that the position, size, and focal length of the microlens and concave mirror are appropriately adjusted.
  • the light collection efficiency can be further increased.
  • FIG. 14 is a schematic cross-sectional view of the organic EL device according to Examples 12 to 15,
  • FIG. 15 is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 12
  • FIG. FIG. 17 is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 13
  • FIG. 17 is a schematic diagram of the molecular structure showing various aspects of the fluorine-containing organic fluorine-based polymer according to Examples 12-15
  • FIG. 18 is a flowchart showing the procedure for forming the protective film for the organic EL layer in Example 15.
  • FIG. 14 there is a schematic cross-sectional view of a top emission type organic EL device according to the present invention, in which a TFT layer 220 is formed on a substrate 200, and there are a plurality of inner layers of the TFT layer 220.
  • the TFT transistor circuits 230 and row / column wirings (not shown) for selectively driving these TFT transistor circuits 230 are formed.
  • the output of the TFT transistor circuit 230 is connected to the first electrode 240, and an organic EL layer 250R, 250G, or 250B is formed on the first electrode 240, and an ITO transparent film is further formed thereon.
  • the second electrode 260 consisting of the first electrode 'organic EL layer' and the second electrode An organic electroluminescent diode (hereinafter referred to as OLED) is constructed.
  • a protective film according to the present invention is formed on the second electrode, and includes a silica film 410 obtained by baking polysilazane and a silicon-containing organic fluorine-based polymer film 420.
  • FIG. 15 it is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 12 of the present invention.
  • the protective film is composed of a silica film 410 obtained by baking polysilazane and a silicon-containing organic fluorine-based polymer film 420, both of which are molecularly bonded with a one-dot chain line 401 as a boundary.
  • Polysilazane PHPS (PerHydroPolvSilazane) is based on “One SiH—NH—”.
  • Silica's nore is a force consisting of polycrystals with “one Si—o—” as the basic unit.
  • the Si atoms on the surface of the polycrystal are usually terminated with a hydroxyl group “—OH”.
  • FIG. 17 it is a schematic diagram of the molecular structure showing various embodiments of the silicon-containing organofluorine polymer.
  • Fig. 17 (A) is the most basic organofluorine polymer, called perfluoroalkane, which contains all the hydrogen atoms of acyclic 'saturated hydrocarbons (alkanes). Place with fluorine atom It has been changed.
  • Perfluoroalkane has a simple structure and is rich in water and oil repellency, but it cannot secure adhesion to the organic EL elements to be protected.
  • FIG. 17B shows an example of a fluorine-containing organic fluorine-based polymer, in which a fluorine-containing group 439 is introduced and bonded to the end of the perfluoroalkanol part 432.
  • the silicon-containing group 439 comprises a trimethyloxysilane group “one Si (OCH 3)”,
  • the perfluoroalkane part 432 is bonded via a hydrocarbon part 434.
  • the hydrocarbon part 434 was introduced as a carrier of the silicon-containing group in order to bond the silicon-containing group 439 to the perfluoroalkane part 432, and when the molecular weight of the hydrocarbon part increases.
  • a small molecular weight may be desirable because the number of associated hydrogen atoms increases and water and oil repellency may be impaired.
  • the number of carbon atoms is 2 per ka atom, and therefore, a vinylsilane derivative is used as the carrier molecule for the kalein-containing group.
  • Perfluoroalkane 432 and hydrocarbon part 434 are combined and named the main part 430 of the C-containing organofluorine polymer.
  • a film 420 made of a silicon-containing organofluorine polymer shown in FIG. 17B is formed on the upper surface of the silica film 410 obtained by firing the polysilazane. is there.
  • the silicon-containing organofluorine polymer reacts with the hydroxyl group on the silica surface on the side of the silicon-containing group 439, the methyloxy group is removed from the silicon atom of the silicon-containing group 439, and the silicon atom on the surface of the silica 410
  • the matrix 430 of the fluorine-containing organic fluorine-based polymer is bonded to the silica surface at the molecular level, and bonded to the adjacent silicon-containing group via the oxygen atom.
  • the fluorine-containing organic fluorine-based polymer consists of silica and diacid It is integrated by key bonding, and strong adhesion at the molecular level can be secured.
  • the main part 430 of the fluorine-containing organofluorine polymer is composed of perfluoroalkanes, which occupy most of the main part, so that it is rigid and easily oriented.
  • the two-layer film composed of the silica film 410 and the silicon-containing organic fluorine-based polymer film 420 according to this embodiment is an excellent protective film for the organic EL element.
  • the upper surface of the above-contained fluorine-containing organic fluorine-containing polymer is generally easy to attach even if it is difficult to attach dirt 490 due to water repellency and oil repellency. Can be eliminated.
  • Example 13 a main part 440 of a silicon-containing organofluorine polymer having a flexible molecular structure is introduced.
  • perfluorinated polyoxetane is applied as an organic fluorine-based polymer to form a perfluorooxetane portion 442.
  • Perfluorooxetane is more commonly referred to as perfluoro (poly) ether and is a straight-chain consisting of several “one CF—” or three (in the case of perfluoropolyoxetane) or
  • a perfluoroalkane having a side chain is bonded through an oxygen atom o (ether bond).
  • the main part 440 of the C-containing organofluorine polymer is rich in flexibility, as shown in the center of FIG. Even if there is a gap due to, the main part of the fluorine-containing organic fluorine-containing high molecule around the gap fills the gap while bending, and repels the dirt molecule 490. The water repellency and oil repellency of dirt can be improved.
  • Example 14 [0139] In the above Examples 12 and 13, an organic fluoropolymer part, a hydrocarbon part, and a key made of perfluoroalkane, perfluoropolyoxetane (perfluoropolyether). Only typical and basic cases of element-containing groups are shown.
  • a hydrocarbon part 454 which is a 4-carbon nuclear power instead of a 2-carbon atom, was introduced into Example 13 and its first and third carbon atoms were introduced. Bind trimethyloxysilane to the atom.
  • the main portion 450 of the fluorine-containing organofluorine polymer is bonded to the silica surface by two “—Si-0—” bonds, so that the adhesion strength at the molecular level is further improved.
  • the orientation direction at the base of the main portion 450 is substantially parallel to the silica surface, crystal irregularities on the silica surface are more efficiently covered, and the antifouling property is further improved.
  • Example 15 this is a flowchart showing a procedure for forming a protective film for an organic EL layer, which is common to Examples 12 to 14 described above.
  • step S1 polysilazane (PHPS) is diluted with a cyclohexane solvent to obtain polysilazane.
  • PHPS polysilazane
  • a predetermined metal catalyst is added.
  • step S2 a PHPS solution is applied on the ITO film of the organic EL element.
  • step S3 humidification drying is performed at a temperature of 60 ° C and a humidity of 90% for 1 hour.
  • step S4 a fluorine-containing organic fluorine-based polymer composed of a perfluorohydrocarbon portion, a hydrocarbon portion, and a silicon-containing group is diluted with perfluorinated hexane to form the above-mentioned silicon-containing organic fluorine-based polymer. Obtain a solution.
  • step S5 the solution of the silicon-containing organic fluorine-based polymer is applied onto the silica film.
  • step S6 the film is dried at room temperature for 1 hour. Alternatively, humidify and dry at 60 ° C and 90% humidity for 1 hour.
  • the silicon-containing organic fluorine-based polymer is bonded to the silica silicon at the molecular level via the silicon-containing group.
  • Organic EL devices are attracting attention as devices for next-generation display systems that have low power consumption, high quality, low profile, and can also display curved surfaces. Therefore, it is necessary to further improve the effective luminous efficiency in the same display area.
  • an inexpensive and highly reliable peripheral structure that can increase the effective luminous efficiency even when the same organic EL layer is used is provided, which greatly contributes to the development of next-generation display systems. Can contribute.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL element, especially a top emission type, having an increased effective emission quantity per consumption power is provided by providing a protection film, which has a microlens array which can be integrally formed with a cap, can concentrate light emission from both planes of an organic EL layer on one plane and has a high transparency. The organic EL element includes the protection film; an organic EL light emitting diode (OLED) including a transparent electrode film, the organic EL layer and a counter electrode layer; a board whereupon the OLED is mounted; and the cap for covering the OLED. On the outer plane or inner plane of the cap or on the front side of the transparent electrode film, the microlens array made of, for instance, a silicone resin, is provided, preferably a light reflecting plane is provided on the board, and more preferably, the protection film includes a silica film and an organic fluorine polymeric film containing silicon.

Description

明 細 書  Specification
有機 EL素子と、有機 EL素子の保護膜及びその製法  Organic EL device, protective film for organic EL device and method for producing the same
技術分野  Technical field
[0001] 本発明は有機 EL素子に係り、特にトップェミッション型の場合に、実効的に高い発 光効率を呈する有機 EL素子に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an organic EL element, and more particularly to an organic EL element that exhibits high light emission efficiency effectively in the case of a top emission type.
背景技術  Background art
[0002] 有機エレクト口ルミネッセンス素子(以下、略して「有機 EL素子」と 、う。)は、近年の 薄膜形成技術の進歩により、厚さ nmクラスの高純度、良質の積層膜が形成できるよ うになり、 5V程度の低電圧動作が可能となった。  [0002] Organic-electric-luminescence elements (hereinafter referred to as “organic EL elements” for short) can form high-purity, high-quality multilayer films with a thickness of nm class due to recent advances in thin-film formation technology. It became possible to operate at a low voltage of about 5V.
このようにして有機 EL素子は、低消費電力、高品質で、薄型で、さらには曲面表示 も可能な、次世代表示システム用の素子として注目されている。  In this way, organic EL elements are attracting attention as elements for next-generation display systems that have low power consumption, high quality, are thin, and can display curved surfaces.
[0003] 有機 EL素子では、所定の有機分子成分力 なる複数の膜を上下に積層して有機 EL層とし、その上下両側に各々電極層を付着して OLED (有機発光ダイオード)を 形成し、両電極を通じて所定の電圧又は電流を印加して電子とホールを有機 EL層 に注入し、電子とホールが再結合する際に発光する現象を利用する。  [0003] In an organic EL element, a plurality of films having a predetermined organic molecular component force are stacked vertically to form an organic EL layer, and electrode layers are attached to both the upper and lower sides to form an OLED (organic light emitting diode), Apply a predetermined voltage or current through both electrodes to inject electrons and holes into the organic EL layer, and use the phenomenon of light emission when electrons and holes recombine.
従って、この発光を外部に導いて表示機能を果たさせるためには、上下に備えた電 極の内、少なくとも一方の電極は透明でなければならない。  Therefore, in order to guide the emitted light to the outside and perform the display function, at least one of the electrodes provided on the upper and lower sides must be transparent.
[0004] この透明電極としては、電気伝導度と透明度の両立を図ることができる材質として I TO (酸化インジウム錫)が普及している力 一般には ITOの電気抵抗を下げるためァ ニールが必要であり、且つ、 ITOの表面の平滑度を上げるため(粗度を下げるため) 研磨が必要である。  [0004] For this transparent electrode, ITO (Indium Tin Oxide) is widely used as a material that can achieve both electrical conductivity and transparency. Generally, annealing is required to lower the electrical resistance of ITO. In addition, polishing is necessary to increase the smoothness of the ITO surface (to reduce the roughness).
[0005] ITOのァニールの際などに高温にすると有機 EL層が変質してしまうので、 ITOの 形成に際しては、有機 EL層の形成より先に実行する必要があった。  [0005] Since the organic EL layer is deteriorated when the temperature is increased during the annealing of the ITO, it is necessary to perform the formation of the ITO prior to the formation of the organic EL layer.
即ち、 ITOを先に形成する場合は、積層順が [基板—第 1電極膜 (ITO)—有機 EL 層—第 2電極膜 (不透明電極膜) ]となり、基板側から発光させる(ボトムェミッション) ため、基板も透明でなければならず、通常、ガラス基板を用いている。  In other words, when ITO is formed first, the stacking order is [substrate—first electrode film (ITO) —organic EL layer—second electrode film (opaque electrode film)], and light is emitted from the substrate side (bottom emission). Therefore, the substrate must also be transparent, and a glass substrate is usually used.
[0006] し力しながら、ガラス基板は熱伝導性が悪ぐ作動中の発熱に対し放熱が不十分で 高温になり有機 EL層の劣化を招き易い。 [0006] However, the glass substrate has a poor thermal conductivity and the heat dissipation is insufficient for the heat generated during operation. High temperature tends to cause deterioration of the organic EL layer.
[0007] さらに、高速高精細の表示システムを得るためには、アクティブマトリクス (TFT)駆 動にしなければならないが、その場合、 TFTトランジスタを基板と ITO電極の間に形 成しなければならないので、 TFTトランジスタの存在する分だけ開口率が低下し、発 光の外部変換効率が低下する。 [0007] Furthermore, in order to obtain a high-speed and high-definition display system, it must be driven by an active matrix (TFT). In that case, a TFT transistor must be formed between the substrate and the ITO electrode. The aperture ratio decreases by the presence of the TFT transistor, and the external conversion efficiency of the light emission decreases.
即ち、所要の発光量を確保するためには消費電力が増大し、従って消費電力に比 例する発熱量が増大し、さらに高温になってしまい、有機 EL層の劣化を一層招き易 い。  In other words, in order to secure the required amount of light emission, the power consumption increases, and therefore the amount of heat generation proportional to the power consumption increases, resulting in a higher temperature, and the organic EL layer is more likely to deteriorate.
[0008] そこで、第 2電極を透明化して [基板一 TFT—第 1電極—有機 EL層—第 2電極 (IT O) ]とし、基板の反対側から発光させる(トップェミッション)方式が研究されて!、る。 その際は、 ITOの形成に際しては、有機 EL層を変質させないよう特に留意する必 要がある。  [0008] Therefore, the second electrode is made transparent, and [substrate-TFT-first electrode-organic EL layer-second electrode (ITO)] is used to emit light from the opposite side of the substrate (top emission). Being! In that case, it is necessary to pay particular attention not to alter the organic EL layer when forming ITO.
例えば、非特許文献 1には、この変質を防ぐため有機 EL層までを形成した基板と、 第 2電極 (ITO)を形成した基板を貼り合わせる、などの製法上の工夫が開示されて いる。  For example, Non-Patent Document 1 discloses a contrivance on the manufacturing method such as bonding a substrate on which an organic EL layer is formed and a substrate on which a second electrode (ITO) is formed in order to prevent this alteration.
非特許文献 1 : Kathleen M. Vaeth, Information Display 6/03 (2003) , pp 12— 17、 SID.  Non-Patent Document 1: Kathleen M. Vaeth, Information Display 6/03 (2003), pp 12-17, SID.
[0009] さて、有機発光ダイオード (OLED)の発光強度は有機 EL層に直角な方向に最大 であるが、それ以外の方向に対しても分散しており、その相対値は理論的には直角 方向からの角度を Θとして cos Θで表される Θの関数となる。  [0009] The emission intensity of the organic light emitting diode (OLED) is maximum in the direction perpendicular to the organic EL layer, but is also dispersed in other directions, and the relative value is theoretically a right angle. It is a function of Θ represented by cos Θ, where Θ is the angle from the direction.
従って、この発光を直角方向に集光すると輝度を増すことができ、即ち、直角方向 の一定の輝度を得るために、消費電力を抑えてもよぐ有機 EL層の劣化を防ぐことが できる。  Therefore, when the emitted light is condensed in the right angle direction, the luminance can be increased, that is, in order to obtain a constant luminance in the right angle direction, it is possible to prevent the deterioration of the organic EL layer even if the power consumption is suppressed.
[0010] そこで、この OLEDの集光を達成するために、各種のマイクロレンズアレイの導入が 研究されている。  [0010] Therefore, in order to achieve this OLED focusing, the introduction of various microlens arrays has been studied.
例えば特許文献 1には、透明電極 6の上をガラス基板 (ガラスキャップ) 7で封止し、 その外表面側からのイオン注入で形成したレンズ層を備える技術が開示されている。  For example, Patent Document 1 discloses a technique including a lens layer formed by sealing the transparent electrode 6 with a glass substrate (glass cap) 7 and ion implantation from the outer surface side.
[0011] また、特許文献 2には、有機フィルム 10に、ガスノリア層 11と酸ィ匕ケィ素膜 13を形 成し、その上に微細透明ビーズを混合した紫外線硬化榭脂を塗り、ロール金型でマ イク口レンズ 12を形成した後、別に形成した有機 EL基板にラミネート接着する技術が 開示されている。 [0011] Patent Document 2 discloses that an organic film 10 includes a gas nolia layer 11 and an oxygen base film 13 formed thereon. A technology is disclosed in which an ultraviolet curable resin mixed with fine transparent beads is coated thereon, a mic mouth lens 12 is formed with a roll mold, and then laminated to an organic EL substrate formed separately.
[0012] また、特許文献 3には、有機 EL画素の陽極 15の上の保護膜 16のさらに上に、好ま しくは光硬化性透明樹脂からなるマイクロレンズアレイ 17を設ける技術が開示されて いる。  [0012] Further, Patent Document 3 discloses a technique in which a microlens array 17 preferably made of a photocurable transparent resin is further provided on a protective film 16 on an anode 15 of an organic EL pixel. .
[0013] このように、マイクロレンズアレイを形成する位置は多様である力 その形成方法は ガラスに対するイオン注入または紫外線硬化榭脂もしくは光硬化性榭脂を利用する としており、透明性の確保など安定した安価な製造条件を得るのが容易ではない。 特許文献 1:特開 2003 - 264059号公報  [0013] As described above, the force at which the microlens array is formed has a variety of positions. The formation method uses ion implantation into the glass, ultraviolet curing resin, or photocurable resin, and it is stable such as ensuring transparency. It is not easy to obtain inexpensive manufacturing conditions. Patent Document 1: Japanese Patent Laid-Open No. 2003-264059
特許文献 2:特開 2003 - 257627号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-257627
特許文献 3 :特開 2004— 039500号公報  Patent Document 3: JP 2004-039500 A
[0014] さらに注目すべきは、有機 EL層自身は両面から、前記の関数 cos Θに従う強度で 発光していること、即ち、注目している透明電極膜側の表面力 だけでなぐその反 対面側からも同量の発光があることである。 Furthermore, it should be noted that the organic EL layer itself emits light from both sides with an intensity according to the function cos Θ, that is, the opposite surface not only by the surface force on the transparent electrode film side of interest. The same amount of light is also emitted from the side.
従来の技術では、ボトムェミッション、トップェミッションを問わず、この反対面側から の発光は不透明電極膜に遮られて浪費されており、発光量 Z消費電力の比を上げ ることができなかった。  In the conventional technology, regardless of the bottom emission or the top emission, the light emission from the opposite side is wasted by being blocked by the opaque electrode film, and the ratio of light emission amount Z power consumption cannot be increased. It was.
[0015] 非特許文献 2には、ガラス基板上に有機 EL層の両面に透明電極膜を備えた有機 EL素子を形成する技術が具体的に開示されており、両面発光の利用が可能になつ たが、有機 EL素子の用途としては片面だけの受光 (視認)が優勢であり、その場合の 発光量 Z消費電力の比は依然として上げられない。  [0015] Non-Patent Document 2 specifically discloses a technique for forming an organic EL element having a transparent electrode film on both surfaces of an organic EL layer on a glass substrate, which enables the use of double-sided light emission. However, light reception (viewing) on one side is dominant as an application of organic EL elements, and the ratio of light emission amount Z power consumption still cannot be increased.
非特干文献 2 : Transparent organic lignt emitting devices, G. u et al . , Appl. Phys. Letter. 68 (19) , 6 May 1996  Non-Patent Literature 2: Transparent organic lignt emitting devices, G. u et al., Appl. Phys. Letter. 68 (19), 6 May 1996
[0016] このようにして形成した有機 EL素子は、そのままでは、 OLED、特に有機 EL層や I TO膜が水分や酸素により時間と共に変質劣化してしまうので、何らかの保護膜が不 可欠であり、し力もトップェミッション型の場合、この保護膜は可視光に対してなるべく 透明でなければならな 、。 さらに、この保護膜形成に当たっても、再び OLEDを物理的、化学的に変質させな いような、低温プロセスが必要である。 [0016] The organic EL element formed in this way is not modified as it is because the OLED, in particular, the organic EL layer and the ITO film deteriorate and deteriorate with time due to moisture and oxygen. If the top-emission type is used, this protective film must be as transparent as possible to visible light. Furthermore, a low-temperature process is necessary so that the OLED is not physically and chemically altered again even when this protective film is formed.
[0017] 従来、シリコン半導体などに対する水分や酸素に対する保護膜 (パッシベーシヨン) としては、窒化シリコン系の膜が最適とされている力 窒化シリコン系の膜は、一般に 成膜に際して高温を要する上に、硬いので有機 EL素子にストレスを与えるなど、単 独では不適当であったので、様々な工夫がなされてきた。 Conventionally, as a protective film (passivation) against moisture and oxygen for silicon semiconductors and the like, a silicon nitride film is the most suitable. A silicon nitride film generally requires a high temperature for film formation. Since it is hard, it has been unsuitable by itself, such as giving stress to organic EL elements, and various ingenuities have been made.
[0018] 例えば、ポリシラザン、特に PHPS (PerHydroPolySilazane)を有機溶媒に溶解 して塗布し焼成するだけで、高純度のシリカ(SiO )膜を得る技術が半導体産業で実 [0018] For example, a technology for obtaining a high-purity silica (SiO 2) film by simply dissolving polysilazane, especially PHPS (PerHydroPolySilazane) in an organic solvent, applying it, and baking it has been realized in the semiconductor industry.
2  2
用化されていたが、最近の触媒技術の進歩により、 100°C以下の比較的低温で焼成 できるようになつたので、有機 EL素子への適用が可能になった。  However, due to recent advances in catalyst technology, it has become possible to calcinate at a relatively low temperature of 100 ° C or lower, making it applicable to organic EL devices.
[0019] し力しながら、このポリシラザン焼成によるシリカ膜は、巨視的には緻密な保護膜を 形成するが、微視的には、上記窒化シリコン系膜ほどの緻密さがなぐ単独では保護 能力が劣る。 [0019] However, the silica film obtained by firing the polysilazane forms a dense protective film macroscopically, but microscopically, it has a protective ability alone when it is not as dense as the silicon nitride film. Is inferior.
そこで、ポリシラザンと他の種類の膜を組み合わせて多層膜を形成して所要の保護 能力を得る試みがなされている。  Therefore, attempts have been made to obtain the required protection ability by forming a multilayer film by combining polysilazane and other types of films.
[0020] 例えば特許文献 4には、中間膜 (ポリシラザン膜)を上下力も窒化シリコン系膜で挟 み、 OLEDを覆い、外周部分のみをレーザ加熱して、中間膜をシリカに変成する技 術が開示されている。 [0020] For example, Patent Document 4 discloses a technique in which an intermediate film (polysilazane film) is sandwiched between silicon nitride films with vertical force, covers the OLED, and only the outer peripheral portion is laser-heated to transform the intermediate film into silica. It is disclosed.
[0021] また、多層膜の一部にフッ素系高分子膜を適用する試みがなされている。 [0021] Further, an attempt has been made to apply a fluorine-based polymer film to a part of the multilayer film.
フッ素は電気陰性度が最も大きぐ高分子骨格の炭素と最も強く結合しているので Fluorine is the most strongly bonded to carbon of the polymer skeleton with the highest electronegativity
、フッ素系高分子膜は一般に堅牢で疎水性、疎油性を兼ね備える、即ち撥水性、防 汚性を呈するからである。 This is because fluorine-based polymer membranes are generally robust and have both hydrophobic and oleophobic properties, that is, they exhibit water repellency and antifouling properties.
[0022] 例えば特許文献 5には、 4層からなる透明保護膜の 1例として、フッ素系高分子膜、 窒化シリコン系膜、エポキシ系高分子膜、 PET又はフッ素系高分子膜、の 4層が列 挙された構造が開示されている。 For example, in Patent Document 5, as an example of a four-layer transparent protective film, four layers of a fluorine polymer film, a silicon nitride film, an epoxy polymer film, PET, or a fluorine polymer film are used. The structure listed is disclosed.
[0023] し力しながら、これらの複合膜は製造手順が複雑で高価につく反面、特に多層膜の 一部として窒化シリコン系膜を使っている場合、 OLEDを変質させずに所要の保護 能力を得るのが必ずしも容易ではな 、。 また、無機系膜と有機系高分子膜、特にフッ素系高分子膜との密着性が必ずしも 確保されず、剥離により保護能力が劣化する場合があった。 [0023] However, these composite films are complicated and expensive to manufacture, but especially when using a silicon nitride film as part of a multilayer film, the required protection capability is maintained without altering the OLED. Is not always easy to get. In addition, the adhesion between the inorganic film and the organic polymer film, particularly the fluorine polymer film, is not always ensured, and the protective ability may deteriorate due to peeling.
また、これらの多層膜の場合、透明度が必ずしも確保されな力つた。  Moreover, in the case of these multilayer films, the transparency was not always ensured.
特許文献 4:特開 2004 - 119138号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-119138
特許文献 5:特開 2004— 139991号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-139991
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0024] 本発明は、上記の諸問題を解決するために、安定して安価に製造できるマイクロレ ンズアレイを備えた有機 EL素子を提供することを目的とする。 [0024] In order to solve the above problems, an object of the present invention is to provide an organic EL device including a microlens array that can be stably and inexpensively manufactured.
[0025] 本発明は、又、キャップとマイクロレンズアレイを一体にすることにより、さらに安定で 安価に製造できる有機 EL素子を提供することを目的とする。 Another object of the present invention is to provide an organic EL element that can be manufactured more stably and inexpensively by integrating a cap and a microlens array.
[0026] 本発明は、又、キャップと基板の確実な接着方法を提供することにより、さらに安定 で安価に製造できる有機 EL素子を提供することを目的とする。 [0026] Another object of the present invention is to provide an organic EL device that can be manufactured more stably and inexpensively by providing a method for securely bonding a cap and a substrate.
[0027] 本発明は、又、有機 EL素子の保護と、キャップ及び基板の確実な接着とを同時に 実現して封止することにより、さらに安定で安価に製造できる有機 EL素子を提供する ことを目的とする。 [0027] The present invention also provides an organic EL device that can be manufactured more stably and inexpensively by simultaneously realizing and sealing the protection of the organic EL device and the reliable adhesion of the cap and the substrate. Objective.
[0028] 本発明は、上記の諸問題を解決するために、有機 EL層の両面からの発光を片面 に集中することにより、発光量 Z消費電力の比を上げた有機 EL素子を提供すること を目的とする。  [0028] In order to solve the above problems, the present invention provides an organic EL device that increases the ratio of the amount of light emission Z and the power consumption by concentrating the light emission from both sides of the organic EL layer on one side. With the goal.
[0029] 本発明は、又、基板として金属基板を用いることにより、有機 EL層の両面力ゝらの発 光を片面に集中する機構が安定で安価に製造できる有機 EL素子を提供することを 目的とする。  [0029] The present invention also provides an organic EL device that uses a metal substrate as a substrate to provide a stable and inexpensive manufacturing mechanism that concentrates the light emitted from the double-sided force of the organic EL layer on one side. Objective.
[0030] 本発明は、上記の諸問題を解決するために、構造'製法が簡単で、有機 EL層が変 質 ·劣化する恐れのない、し力も透明度の確保された、従って特にトップェミッション 型の有機 EL素子に適した保護膜とその製法を提供することを目的とする。  [0030] In order to solve the above-mentioned problems, the present invention has a simple structure 'manufacturing method, the organic EL layer does not deteriorate / deteriorate, and the transparency is ensured. The purpose is to provide a protective film suitable for a type of organic EL device and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0031] 上記目的を達成するために、本発明による有機 EL素子は請求項 1に記載のとおり 、透明電極膜と有機 EL層と対向電極層を含む有機 EL発光ダイオード (OLED)と、 前記 OLEDを搭載した基板と、前記 OLEDを覆うように設けられ、前記透明電極膜 に対向する部分が透明であるキャップと、を含む有機 EL素子において、前記キヤッ プの外面もしくは内面に、又は前記透明電極膜の表面側に、マイクロレンズアレイを 備えることを特徴とする。 [0031] In order to achieve the above object, an organic EL device according to the present invention includes an organic EL light emitting diode (OLED) including a transparent electrode film, an organic EL layer, and a counter electrode layer, as described in claim 1. In an organic EL element including a substrate on which the OLED is mounted and a cap provided so as to cover the OLED and having a transparent portion facing the transparent electrode film, the outer surface or the inner surface of the cap, or the A microlens array is provided on the surface side of the transparent electrode film.
[0032] また、請求項 2に記載のとおり、前記キャップがシリコーン榭脂からなり、前記マイク 口レンズが前記キャップと一体に形成されて備えられていることを特徴とする。  [0032] Further, as described in claim 2, the cap is made of silicone resin, and the microphone lens is provided integrally with the cap.
[0033] また、請求項 3に記載のとおり、前記キャップと前記基板の接着に際して、前記基板 の、前記キャップとの接着部にプライマー処理がなされることを特徴とする。  [0033] In addition, as described in claim 3, when the cap and the substrate are bonded, a primer treatment is performed on the bonding portion of the substrate with the cap.
[0034] また、請求項 4に記載のとおり、透明電極膜と有機 EL層と対向電極層を含む有機 E L発光ダイオード (OLED)と、前記 OLEDを搭載した基板と、前記 OLEDを覆うよう に設けられ、前記透明電極膜に対向する部分が透明であるキャップと、を含む有機 E L素子において、前記キャップの外面もしくは内面にマイクロレンズアレイが前記キヤ ップと一体に設けられ、前記キャップの内面と、前記 OLEDの上面を含む前記基板 の上面との間の空隙に、前記キャップと前記基板との接着面の間の空隙を含めて、 シリコーン榭脂が充填されていることを特徴とする。  [0034] Also, as described in claim 4, an organic EL light emitting diode (OLED) including a transparent electrode film, an organic EL layer, and a counter electrode layer, a substrate on which the OLED is mounted, and a cover provided to cover the OLED. And a cap whose portion facing the transparent electrode film is transparent, and a microlens array is provided integrally with the cap on the outer surface or inner surface of the cap, and the inner surface of the cap A gap between the upper surface of the substrate including the upper surface of the OLED and a gap between the bonding surface of the cap and the substrate is filled with a silicone resin.
[0035] また、請求項 5に記載のとおり、前記キャップと前記基板の接着に際して、前記基板 の接着部と前記キャップの接着部の双方にプライマー処理がなされることを特徴とす る。  [0035] Further, as described in claim 5, when the cap and the substrate are bonded, both the bonding portion of the substrate and the bonding portion of the cap are subjected to primer treatment.
[0036] また、請求項 6に記載のとおり、前記シリコーン榭脂が、ポリジメチルシロキサン (Pol y - Di - Methyl - Siloxane, PDMS)であることを特徴とする。  [0036] Further, as described in claim 6, the silicone resin is polydimethylsiloxane (Poly-Di-Methyl- Siloxane, PDMS).
[0037] 上記目的を達成するために、本発明による有機 EL素子は請求項 7に記載のとおり 、第 1の透明電極膜と有機 EL層と第 2の透明電極膜とを含む有機 EL発光ダイオード (OLED)力もなる OLEDと、前記 OLEDを前記第 1の透明電極膜が接するように搭 載した基板とを含む有機 EL素子において、前記基板の、前記 OLEDを搭載した側 に光反射面を備えることを特徴とする。  In order to achieve the above object, the organic EL device according to the present invention includes an organic EL light-emitting diode including a first transparent electrode film, an organic EL layer, and a second transparent electrode film as described in claim 7. (OLED) In an organic EL device including an OLED having a force and a substrate on which the OLED is mounted so that the first transparent electrode film is in contact with the OLED, a light reflection surface is provided on a side of the substrate on which the OLED is mounted. It is characterized by that.
[0038] 本発明によれば、有機 EL層力もの発光のうち、従来と同様に第 1の透明電極膜を 経たものは直接外部に発射され、これに加えて、第 2の透明電極膜を経たものは基 板に備えた光反射面で反射されて第 1の透明電極膜を経たものに重畳して外部に発 射されるので、外部への発光量 Z消費電力の比は略、倍増できることになる。 [0038] According to the present invention, the light emitted from the organic EL layer, which has passed through the first transparent electrode film as in the prior art, is directly emitted to the outside, and in addition to this, the second transparent electrode film is applied to the second transparent electrode film. The material that has passed is reflected by the light reflecting surface provided on the substrate and superimposed on the material that has passed through the first transparent electrode film to be emitted to the outside. The ratio of the amount of light emitted to the outside and the Z power consumption can be almost doubled.
[0039] また、請求項 8に記載のとおり、前記基板が、例えば、マグネシウム、アルミニウム、 又はそれらを含む合金カゝらなり、その表面に絶縁膜が形成された金属基板であること を特徴とする。  [0039] Further, as described in claim 8, the substrate is a metal substrate made of, for example, magnesium, aluminum, or an alloy containing the same, and having an insulating film formed on the surface thereof. To do.
[0040] 金属基板は、表面を鏡面になるように滑らかに仕上げるだけで、光反射面とするこ とがでさる。  [0040] The metal substrate can be made into a light reflecting surface simply by finishing the surface smoothly so as to be a mirror surface.
特にマグネシウム基板は鏡面仕上げが容易であり、良質の光反射面を安価に得る ことができる。  In particular, a magnesium substrate can be easily mirror-finished, and a high-quality light reflecting surface can be obtained at low cost.
なお、これらの金属基板、特にマグネシウム基板は、加工性に富み、表面酸化によ り丈夫で薄い絶縁膜の形成が容易であるので安価に製造でき、その上に熱伝導率 が大きく消費電力の熱放散が容易であるが、本発明による有機 EL素子はこれらの特 徴を合わせ備えることができる。  These metal substrates, especially magnesium substrates, are rich in workability, and can be manufactured at low cost because they can easily form a strong and thin insulating film by surface oxidation, and have high thermal conductivity and high power consumption. Although it is easy to dissipate heat, the organic EL device according to the present invention can be provided with these features.
[0041] また、請求項 9に記載のとおり、前記光反射面が複数の凹面鏡力 なる凹面鏡ァレ ィを含むことを特徴とする。  [0041] Further, as described in claim 9, the light reflecting surface includes a plurality of concave mirror arrays having a concave mirror force.
[0042] 本発明により基板に備えるべき凹面鏡アレイは、特に金属基板の場合は、原基板 の表面を予め、モールド、研肖 ij、又はプレスにより凹面のアレイの形状に仕上げた後 で表面酸化し、凹部にシリコーンなどの透明榭脂を充填して最終表面を平坦にする ことにより容易に備えることができる。  [0042] The concave mirror array to be provided on the substrate according to the present invention, particularly in the case of a metal substrate, is surface-oxidized after the surface of the original substrate is previously finished in the shape of the concave array by molding, polishing ij, or press. It can be easily provided by filling the concave portion with a transparent resin such as silicone to flatten the final surface.
[0043] 各凹面鏡のサイズとピッチは、なるべく多くの側方発光を捕らえて反射するため、 O LEDのサイズ (以下 dとする)とピッチ(以下 Dとする、 D>d)のうち、 Dに等しくとる、即 ち、 OLEDに一対一で対応してなるべく隙間なく並べることが望ま 、。  [0043] The size and pitch of each concave mirror capture and reflect as much lateral light as possible, so out of the O LED size (hereinafter referred to as d) and pitch (hereinafter referred to as D, D> d), D In other words, it is desirable to have a one-to-one correspondence with OLEDs and arrange them as closely as possible.
[0044] 各凹面鏡の平面形状は通常円形である力 集光量を上げるため、 OLEDの縦横の ピッチに合わせた正方形又は長方形であってもよい。  [0044] The planar shape of each concave mirror is usually circular. In order to increase the amount of light collected, it may be square or rectangular according to the vertical and horizontal pitches of the OLED.
各凹面鏡の焦点距離 (以下 flとする)は、 OLEDのピッチ Dの略、 0. 5倍以上、 2倍 以下が望ましい。  The focal length of each concave mirror (hereinafter referred to as fl) should be approximately 0.5 times or more and 2 times or less of OLED pitch D.
凹面鏡アレイと OLEDの距離 (以下 siとする)は凹面鏡の焦点距離 flの略、 0. 5倍 以上、 2倍以下が望ましい。  The distance between the concave mirror array and the OLED (hereinafter referred to as si) is approximately 0.5 times the focal length fl of the concave mirror, preferably 2 times or less.
各凹面鏡の断面形状は、略、放物線が望ましい。 [0045] 以上の諸パラメータの詳細は、反射光を有機 EL素子面に直角な方向に最大集光 できるように、発光の通過媒体での減衰、凹面鏡の各種収差による歪み、隣接 OLE Dの発光への干渉などを考慮して決定される。 In general, the cross-sectional shape of each concave mirror is preferably a parabola. [0045] The details of the above parameters are such that the reflected light is attenuated by the passing medium, the distortion due to various aberrations of the concave mirror, and the light emission of the adjacent OLE D so that the reflected light can be focused in the direction perpendicular to the surface of the organic EL element. It is determined in consideration of interference with
[0046] また、請求項 10に記載のとおり、さらに前記 OLEDを覆うように設けられ、前記第 2 の透明電極膜に対向する部分が透明であるキャップを備え、前記キャップの外面もし くは内面に、又は前記第 2の透明電極膜の表面側に、複数のマイクロレンズからなる マイクロレンズアレイを備えることを特徴とする。  [0046] Further, as described in claim 10, a cap is further provided so as to cover the OLED, and a portion facing the second transparent electrode film is transparent, and the outer surface or the inner surface of the cap is provided. Or a microlens array comprising a plurality of microlenses on the surface side of the second transparent electrode film.
[0047] 本発明によりキャップ側、即ち、第 1電極膜に近接して備えるべきマイクロレンズァレ ィは、各種の方法で設けることができる。  [0047] According to the present invention, the microlens array to be provided on the cap side, that is, close to the first electrode film, can be provided by various methods.
特に、例えばシリコーン榭脂を用いてキャップと一体に成形することにより、キャップ と基板の封止を含めて、安定した性能が安価に得られる。  In particular, stable performance including sealing of the cap and the substrate can be obtained at a low cost by forming the cap and the substrate integrally with, for example, silicone resin.
[0048] 各マイクロレンズのサイズとピッチは、なるべく多くの側方発光を捕らえて反射する ため、 OLEDのサイズ (以下 dとする)とピッチ(以下 Dとする、 D>d)のうち、 Dに等し くとる、即ち、 OLEDに一対一で対応してなるべく隙間なく並べることが望ましい。 [0048] The size and pitch of each microlens captures and reflects as much lateral light as possible, so out of the OLED size (hereinafter referred to as d) and pitch (hereinafter referred to as D, D> d), D It is desirable to arrange them as much as possible, that is, with a one-to-one correspondence with OLEDs.
[0049] 各マイクロレンズの平面形状は通常円形である力 集光量を上げるため、 OLEDの 縦横のピッチに合わせた正方形又は長方形であってもよい。 [0049] The planar shape of each microlens is usually a circle. In order to increase the amount of condensed light, it may be square or rectangular according to the vertical and horizontal pitches of the OLED.
各マイクロレンズの焦点距離(以下 f 2とする)は、 OLEDのピッチ Dの略、 0. 5倍以 上、 2倍以下が望ましい。  The focal length of each microlens (hereinafter referred to as f2) is approximately 0.5 times the OLED pitch D, preferably 2 times or less.
マイクロレンズと OLEDの距離(以下 s2とする)はマイクロレンズの焦点距離 f 2の略 、 0. 5倍以上、 2倍以下が望ましい。  The distance between the microlens and the OLED (hereinafter referred to as s2) is approximately 0.5 to 2 times the focal length f2 of the microlens.
各マイクロレンズの断面形状は、略、放物線が望ましい。  The cross-sectional shape of each microlens is preferably a parabola.
[0050] 以上の諸パラメータの詳細は、屈折光を有機 EL素子面に直角な方向に最大集光 できるように、発光の通過媒体での減衰、マイクロレンズの各種収差による歪み、隣 接 OLEDの発光への干渉などを考慮して決定される。  [0050] The details of the above parameters are such that the refracted light can be focused in the direction perpendicular to the surface of the organic EL element so that the light is attenuated by the passing medium, the distortion caused by various aberrations of the microlens, and the adjacent OLED. It is determined in consideration of interference with light emission.
[0051] 上記目的を達成するために、本発明による有機 EL素子の保護膜は請求項 11に記 載のとおり、ポリシラザン (PHPS)を焼成して得られるシリカ膜と、その上に積層され たケィ素含有有機フッ素高分子膜を含み、前記ケィ素含有有機フッ素高分子膜のケ ィ素含有有機フッ素高分子は、ペルフルォロ炭化水素部と炭化水素部とケィ素含有 基とからなることを特徴とする。 [0051] In order to achieve the above object, the protective film of the organic EL device according to the present invention is laminated with a silica film obtained by firing polysilazane (PHPS) as described in claim 11. Including a fluorine-containing organic fluorine polymer film, and the fluorine-containing organic fluorine polymer film of the silicon-containing organic fluorine polymer film includes a perfluoro hydrocarbon part, a hydrocarbon part, and a It is characterized by comprising a group.
[0052] また、請求項 12に記載のとおり、前記ペルフルォロ炭化水素部は、直鎖のみ又は 側鎖つきの、ペルフルォロアルカン又はペルフルォロアルケン、力 なることを特徴と する。  [0052] Further, as described in claim 12, the perfluorohydrocarbon portion is characterized by being a perfluoroalkane or a perfluoroalkene having only a straight chain or a side chain.
[0053] また、請求項 13に記載のとおり、前記ペルフルォロ炭化水素部は、直鎖のみ又は 側鎖つきであり、かつ、飽和結合のみ又は不飽和結合を含む、ペルフルォロポリエ 一テル (ペルフルォロポリオキタセン)力もなることを特徴とする。  [0053] Further, as described in claim 13, the perfluorohydrocarbon part is a perfluoropolyether moiety having only a straight chain or a side chain and containing only a saturated bond or an unsaturated bond. (Perfluoropolyokitacene) is also a feature.
[0054] また、請求項 14に記載のとおり、前記炭化水素部は、飽和結合のみを含み、直鎖 のみ又は側鎖つきであり、水素原子の内少なくとも一つが前記ケィ素含有基に置換 されていることを特徴とする。 [0054] Further, as described in claim 14, the hydrocarbon portion includes only a saturated bond, is only a straight chain, or has a side chain, and at least one of hydrogen atoms is substituted with the kalein-containing group. It is characterized by.
[0055] また、請求項 15に記載のとおり、前記水素原子の内、さらに単数または複数個がハ ロゲンにより置換されて 、ることを特徴とする。 [0055] Further, as described in claim 15, one or more of the hydrogen atoms are further substituted with a halogen.
[0056] また、請求項 16に記載のとおり、前記珪素含有基は、 1個又は複数個の直鎖ケィ 素からなるシランにおいて、 1個又は複数個の水素原子が、アルコキシル基またはハ ロゲンにより置換されて 、ることを特徴とする。 [0056] Further, as described in claim 16, the silicon-containing group is a silane composed of one or more linear silicon atoms, wherein one or more hydrogen atoms are an alkoxyl group or a halogen. It is characterized by being replaced.
[0057] また、上記目的を達成するために、本発明による有機 EL素子の保護膜の製法は 請求項 17に記載のとおり、 [0057] Further, in order to achieve the above object, a method for producing a protective film of an organic EL element according to the present invention is as described in claim 17,
ポリシラザン (PHPS)をシクロへキサン溶媒で希釈し、所定の金属触媒を添加した ポリシラザン溶液を得るステップと、  Diluting polysilazane (PHPS) with a cyclohexane solvent to obtain a polysilazane solution to which a predetermined metal catalyst is added;
前記ポリシラザン溶液を有機 EL素子の ITO膜の上に塗布するステップと、 20°C以上 100°C以下の所定の温度と所定の湿度で、所定の時間、加湿乾燥して シリカ膜を形成するステップと、  Applying the polysilazane solution onto the ITO film of the organic EL element, and forming a silica film by humidifying and drying at a predetermined temperature and a predetermined humidity of 20 ° C to 100 ° C for a predetermined time. When,
ペルフルォロ炭化水素部と炭化水素部とケィ素含有基とからなるケィ素含有有機フ ッ素系高分子をペルフルォ口へキサンで希釈して前記ケィ素含有有機フッ素系高分 子の溶液を得るステップと、  A step of diluting a silicon-containing organic fluorine-based polymer comprising a perfluorinated hydrocarbon portion, a hydrocarbon portion, and a silicon-containing group with perfluorinated hexane to obtain a solution of the above-mentioned silicon-containing organic fluorine-based polymer. When,
前記ケィ素含有有機フッ素系高分子溶液を前記シリカ膜上に塗布するステップと、 20°C以上 100°C以下の所定の温度と所定の湿度で、所定の時間、加湿乾燥して、 前記ケィ素含有有機フッ素系高分子を、シリカのケィ素原子と分子レベルで結合さ せるステップと、を含むことを特徴とする。 Applying the silicon-containing organofluorine polymer solution onto the silica film; and humidifying and drying at a predetermined temperature of 20 ° C. to 100 ° C. for a predetermined time, Fluorine-containing organic fluorine-based polymers are bound to silica atoms at the molecular level. And the step of making it include.
発明の効果  The invention's effect
[0058] 本発明による有機 EL素子は、安定で安価に製造することができるシリコーン榭脂か らなるマイクロレンズアレイを備えているので、発光面に直角な方向の輝度を高めて、 有機 EL層の劣化を招く消費電力の増加を抑えることができる。  [0058] The organic EL device according to the present invention includes a microlens array made of silicone resin that can be manufactured stably and inexpensively, so that the luminance in the direction perpendicular to the light emitting surface is increased, and the organic EL layer It is possible to suppress an increase in power consumption that causes deterioration of the battery.
[0059] また、本発明による有機 EL素子は、キャップとマイクロレンズアレイが一体に形成さ れるので、さらに安定で安価に製造できる。 [0059] Further, the organic EL element according to the present invention can be manufactured more stably and inexpensively because the cap and the microlens array are integrally formed.
[0060] また、本発明による有機 EL素子は、シリコーン榭脂からなるキャップと基板の接着 に際して、基板にプライマー処理をなすことで、堅固な封止接着ができるので、さらに 安定で安価に製造できる。 [0060] Further, the organic EL device according to the present invention can be manufactured more stably and inexpensively because the sealing treatment can be performed firmly by applying a primer treatment to the substrate when the cap made of silicone resin is bonded to the substrate. .
[0061] また、本発明による有機 EL素子は、キャップと基板の接着と同時に、低温でキュア できるシリコーン榭脂により封止されて保護されるので、劣化がなぐ安定で安価に製 造できる。 [0061] Further, since the organic EL device according to the present invention is sealed and protected by a silicone resin that can be cured at a low temperature simultaneously with the adhesion between the cap and the substrate, the organic EL device can be manufactured stably and inexpensively without deterioration.
[0062] 本発明による有機 EL素子は、基板に備えた光反射面により、 OLEDの両面からの 発光を外部に片面発射できるので、発光量、従って発光量 Z消費電力の比を略、倍 増することができ、有機 EL層の劣化を招く消費電力の増加を抑えることができる。  [0062] The organic EL device according to the present invention can emit light from both sides of the OLED to the outside by the light reflecting surface provided on the substrate. It is possible to suppress an increase in power consumption that causes deterioration of the organic EL layer.
[0063] また、本発明による有機 EL素子は、特に基板としてマグネシウムなどの金属基板を 用いて、光反射面を一体成形により安定で安価に製造することができる。  [0063] In addition, the organic EL device according to the present invention can be manufactured stably and inexpensively by integrally forming the light reflecting surface using a metal substrate such as magnesium as the substrate.
[0064] また、本発明による有機 EL素子は、第 1透明電極膜側に備えた光反射面、及び Z 又は第 2電極膜側、即ちキャップ側に備えたマイクロレンズと組み合わせることにより 、有機 EL素子面に直角な方向に最大集光することができるので、表示装置としての 有効発光量 Z消費電力の比をさらに上げることができる。  [0064] The organic EL device according to the present invention is combined with a light reflecting surface provided on the first transparent electrode film side and a microlens provided on the Z or second electrode film side, that is, the cap side. Since it is possible to condense maximum in the direction perpendicular to the element surface, the ratio of effective light emission amount Z power consumption as a display device can be further increased.
[0065] 本発明による有機 EL素子の保護膜によれば、緻密なシリカ膜と、前記シリカ膜に分 子レベルで強固に結合されたケィ素含有有機フッ素高分子膜の 2層からなる撥水性 、撥油性に富む保護膜を提供することができ、水分、酸素、高温、そして物理的打撃 に関して、製造工程中及び製造後の保管又は使用中を通じて、脆弱な有機 EL素子 (OLED、及びその駆動回路)を保護することができ、特にトップェミッション型有機 E L素子を高信頼度で経済的に提供できる。 [0066] また、本発明による有機 EL素子の保護膜の製法によれば、水分、酸素、高温、そし て物理的打撃に対して、脆弱な有機 EL素子 (OLED、及びその駆動回路)が物理 的又は化学的にダメージを受けることなぐ緻密なシリカ膜と、前記シリカ膜に分子レ ベルで強固に結合されたケィ素含有有機フッ素高分子膜の 2層からなる撥水性、撥 油性に富む保護膜を形成する、高信頼度で経済的な製法を提供できる。 [0065] According to the protective film of the organic EL device according to the present invention, the water-repellent property comprising two layers of a dense silica film and a silicon-containing organic fluoropolymer film firmly bonded to the silica film at a molecular level. It is possible to provide a protective film that is rich in oil repellency, and is vulnerable to fragile organic EL elements (OLEDs and their driving) during the manufacturing process and after storage or use with respect to moisture, oxygen, high temperature, and physical impact. Circuit), and top emission type organic EL elements can be provided with high reliability and economically. [0066] Further, according to the method for manufacturing a protective film of an organic EL element according to the present invention, an organic EL element (OLED and its driving circuit) that is vulnerable to moisture, oxygen, high temperature, and physical impact is physically present. Highly water- and oil-repellent protection consisting of two layers: a dense silica film that is not damaged mechanically or chemically, and a silicon-containing organic fluoropolymer film that is firmly bonded to the silica film at the molecular level. A highly reliable and economical manufacturing method for forming a film can be provided.
図面の簡単な説明  Brief Description of Drawings
[0067] [図 1] (A)、 (B)、 (C)は、各々実施例 2、 3における有機 EL素子を示す断面模式 図である。  [0067] [FIG. 1] (A), (B), and (C) are cross-sectional schematic views showing organic EL devices in Examples 2 and 3, respectively.
[図 2] (A)、(B)、(C)は、各々実施例 4、 5、 6における有機 EL素子を示す断面模式 図である。  FIG. 2 (A), (B), and (C) are cross-sectional schematic views showing organic EL elements in Examples 4, 5, and 6, respectively.
[図 3]は、実施例 7における有機 EL素子を示す断面模式図である。  FIG. 3 is a schematic cross-sectional view showing an organic EL device in Example 7.
[図 4]は、実施例 8における有機 EL素子の構造を示す断面模式図である。  FIG. 4 is a schematic cross-sectional view showing the structure of an organic EL device in Example 8.
[図 5]は、実施例 9における有機 EL素子の構造を示す断面模式図である。  FIG. 5 is a schematic cross-sectional view showing the structure of an organic EL device in Example 9.
[図 6]は、実施例 10における有機 EL素子の構造を示す断面模式図である。  FIG. 6 is a schematic cross-sectional view showing the structure of an organic EL device in Example 10.
[図 7]は、実施例 11における有機 EL素子の構造を示す断面模式図である。  FIG. 7 is a schematic cross-sectional view showing the structure of an organic EL device in Example 11.
[図 8]は、実施例 8における有機 EL素子の光学的等価断面図である。  FIG. 8 is an optical equivalent cross-sectional view of an organic EL element in Example 8.
[図 9]は、実施例 8における有機 EL素子の発光量の分布図である。  FIG. 9 is a distribution diagram of the light emission amount of the organic EL device in Example 8.
[図 10]は、実施例 9における有機 EL素子の光学的等価断面図である。  FIG. 10 is an optical equivalent cross-sectional view of an organic EL element in Example 9.
[図 11]は、実施例 9における有機 EL素子の発光量の分布図である。  FIG. 11 is a distribution diagram of the light emission amount of the organic EL device in Example 9.
[図 12]は、実施例 10における有機 EL素子の光学的等価断面図である。  FIG. 12 is an optical equivalent cross-sectional view of an organic EL device in Example 10.
[図 13]は、実施例 10における有機 EL素子の発光量の分布図である。  FIG. 13 is a distribution diagram of the light emission amount of the organic EL device in Example 10.
[図 14]は、本発明の実施例 12〜15に係る有機 EL素子の断面模式図である。  FIG. 14 is a schematic cross-sectional view of an organic EL device according to Examples 12 to 15 of the present invention.
[図 15]は、実施例 12における有機 EL層素子の保護膜の分子構造を示す模式図で ある。  FIG. 15 is a schematic diagram showing a molecular structure of a protective film of an organic EL layer element in Example 12.
[図 16]は、実施例 13における有機 EL層素子の保護膜の分子構造を示す模式図で ある。  FIG. 16 is a schematic diagram showing a molecular structure of a protective film of an organic EL layer element in Example 13.
[図 17]は、本発明の実施例 12〜15に係るケィ素含有有機含フッ素系高分子の様々 な態様を示す分子構造模式図である。 [図 18]は、実施例 15における有機 EL層の保護膜の形成手順を示すフローチャート である。 FIG. 17 is a schematic diagram of a molecular structure showing various aspects of the silicon-containing organic fluorine-containing polymer according to Examples 12 to 15 of the present invention. FIG. 18 is a flowchart showing a procedure for forming a protective film for an organic EL layer in Example 15.
符号の説明 Explanation of symbols
11、 12、 13、 14、 15、 16 光線  11, 12, 13, 14, 15, 16 rays
21、 22、 23、 24、 25、 26 光線  21, 22, 23, 24, 25, 26 rays
51、 52、 53、 54、 55、 56 光線  51, 52, 53, 54, 55, 56 rays
61、 62、 63、 64、 65、 66 光線  61, 62, 63, 64, 65, 66 rays
71、 76 光線  71, 76 rays
100 キャップ  100 cap
102 キャップの下面  102 Bottom of cap
110 マイクロレンズアレイ  110 micro lens array
115 マイクロレンズ  115 micro lens
105 キャップの脚部  105 Cap legs
120 接着部  120 Bonding part
130 充填部  130 Filling section
200 基板  200 substrates
201 金属基板 (マグネシウム基板)  201 Metal substrate (magnesium substrate)
205 境界 (光反射面)  205 boundary (light reflecting surface)
215 透明層  215 Transparent layer
210、 225 絶縁膜  210, 225 Insulating film
220 ポリシリコン層又はアモルファスシリコン層(TFT層)  220 Polysilicon layer or amorphous silicon layer (TFT layer)
230 画素駆動ユニット(TFTトランジスタ回路)  230 Pixel drive unit (TFT transistor circuit)
231 ソース  231 source
233 ソース配線  233 source wiring
235 ドレーン  235 drain
237 ゲート絶縁膜  237 Gate insulation film
239 ゲート配線  239 Gate wiring
240 陰極用電極 (第 1電極) 250R、 250G、 250B 有機 EL層 240 Cathode electrode (first electrode) 250R, 250G, 250B OLED layer
260 透明電極膜 (第 2電極)  260 Transparent electrode film (second electrode)
270 保護膜  270 Protective film
300、 301、 302 有機 EL層  300, 301, 302 OLED layer
305 鏡像  305 Mirror image
310 第 1透明電極膜 (ドレーン配線)  310 1st transparent electrode film (drain wiring)
320 第 2透明電極膜  320 Second transparent electrode film
322 Mg— Ag層  322 Mg— Ag layer
401 境界  401 boundary
410 ポリシラザンを焼成して得られるシリカ膜  410 Silica film obtained by firing polysilazane
420 ケィ素含有有機フッ素系高分子膜  420 C-containing organofluorine polymer film
430、 440、 450 ケィ素含有有機フッ素系高分子の主部  430, 440, 450 Main part of organofluorine polymers containing silicon
432 ぺノレフノレオロアノレカン咅  432 Penolev Noreolo Anolecan
434、 454 炭化水素部  434, 454 Hydrocarbon part
439、 459 ケィ素含有基  439, 459
442 ペルフルォロポリオキセタン部  442 Perfluoropolyoxetane
490、 490a, 490b 汚れ  490, 490a, 490b Dirt
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0069] 以下、本発明に係る実施の形態を、トップェミッション型で、かつアクティブマトリクス 駆動型の場合について、図面を参照して具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings in the case of a top emission type and an active matrix drive type.
本発明はボトムェミッション型あるいはパッシブマトリクス駆動型の場合についても 適宜変形するならば適用できる。  The present invention can be applied to the bottom emission type or passive matrix drive type as long as it is appropriately modified.
[0070] 図 1 (A)、 (B)、 (C)は、各々実施例 2、 3における有機 EL素子を示す断面模式 図、図 2 (A)、(B)、(C)は、各々実施例 4、 5、 6における有機 EL素子を示す断面模 式図、図 3は実施例 7における有機 EL素子を示す断面図である。 [0070] FIGS. 1 (A), (B), and (C) are cross-sectional schematic views showing organic EL elements in Examples 2 and 3, respectively, and FIGS. 2 (A), (B), and (C) are respectively FIG. 3 is a cross-sectional schematic view showing the organic EL element in Examples 4, 5, and 6. FIG. 3 is a cross-sectional view showing the organic EL element in Example 7.
実施例 1  Example 1
[0071] 図 1 (A)を参照すると、本発明による有機 EL素子を示す断面模式図であって、有 機 EL素子本体は、基板 200上に形成されて、例えばガラス製の透明なキャップ 100 に覆われ、キャップの縁辺部にお ヽて下方に延伸された脚部 105が接着部 120を介 して基板 200に接着されることにより封止され、外界から遮断される。 Referring to FIG. 1 (A), a cross-sectional schematic view showing an organic EL device according to the present invention, wherein the organic EL device body is formed on a substrate 200 and is made of, for example, a transparent cap 100 made of glass. The leg portion 105 covered with and extending downward on the edge portion of the cap is sealed by being bonded to the substrate 200 via the bonding portion 120 and is blocked from the outside.
[0072] 有機 EL素子本体は、パネル 1つ分の有機 EL発光ダイオード (OLED)と、対応す る画素駆動ユニット 230からなり、基板 200の上表面に例えばポリシリコン層又はァモ ルファスシリコン層 220を堆積し、画素駆動ユニット 230が形成される。 [0072] The organic EL element body includes an organic EL light emitting diode (OLED) for one panel and a corresponding pixel driving unit 230. For example, a polysilicon layer or amorphous silicon layer 220 is formed on the upper surface of the substrate 200. As a result, the pixel driving unit 230 is formed.
[0073] 個々の画素駆動ユニット 230は、原理的には 1個の TFTトランジスタからなり、その ゲートとソースは各々行 ·列をなす駆動配線(図示せず)に接続され、そのドレーンは[0073] In principle, each pixel driving unit 230 is composed of a single TFT transistor, and its gate and source are connected to driving wiring (not shown) in rows and columns, respectively, and its drain is
(必要ならば、導電性金属層を介して)、 OLEDの陰極用電極 240に接続される。 Connected to the cathode electrode 240 of the OLED (via a conductive metal layer if necessary).
[0074] 個々の OLEDは、上記陰極用電極 240と共通の透明電極膜 260と、両電極に挟ま れた、 3原色に対応する有機 EL層 250R、 250G、又は 250Bカゝらなり、透明電極膜[0074] Each OLED is composed of a transparent electrode film 260 common to the cathode electrode 240 and an organic EL layer 250R, 250G, or 250B corresponding to the three primary colors sandwiched between the two electrodes. film
260の上には保護膜 270が形成されて 、る。 A protective film 270 is formed on 260.
[0075] このようにして、有機 EL素子本体が形成される。 In this way, the organic EL element body is formed.
上記封止完成後に、有機 EL素子本体の画素駆動ユニットに時間と共に変化する 所定の信号電圧が与えられると、 OLEDは信号電圧に対応して変化する光量を有 する 3原色光を発光する。  When a predetermined signal voltage that changes with time is applied to the pixel drive unit of the organic EL element body after the sealing is completed, the OLED emits light of three primary colors having a light amount that changes in accordance with the signal voltage.
3原色光は各々、透明電極膜 260、保護膜 270、透明なキャップ 100を経て上方か ら外部に発光され、各画素は所望の色調を呈色し、表示装置としての機能を果たす ことになる。  Each of the three primary color lights is emitted from above through the transparent electrode film 260, the protective film 270, and the transparent cap 100, and each pixel has a desired color tone and functions as a display device. .
[0076] さて本発明によれば、キャップ 100の内面にシリコーン榭脂からなるマイクロレンズ アレイ 110が接着されて備えられ、個々のマイクロレンズ 115は凸レンズの形状をなし て、 OLEDの上面に対向している。  According to the present invention, the microlens array 110 made of silicone resin is adhered to the inner surface of the cap 100, and each microlens 115 has a convex lens shape and faces the upper surface of the OLED. ing.
[0077] 個々の OLEDの発光強度は、上述のように発光角度に依存し、図 1 (A)で垂直上 方を最大とし、垂直上方からの角度を Θに対して cos Θに比例している。 [0077] The light emission intensity of each OLED depends on the light emission angle as described above. In FIG. 1 (A), the vertical upper direction is maximized, and the angle from the upper vertical is proportional to cos Θ with respect to Θ. Yes.
従って、マイクロレンズ 115は OLEDからの発光を垂直上方方向に向かった集光す る。  Therefore, the microlens 115 collects the light emitted from the OLED in the vertically upward direction.
[0078] 図 1 (A)では、マイクロレンズ 115のサイズ、ピッチは有機 EL層 250R、 250G、 250 B、従って OLED1個のサイズ、ピッチに合わせてある力 これに限定されるものでは ない。 いずれにしても、マイクロレンズ 115のサイズ、ピッチは、最近の高精細表示の場合 、画素のサイズ、ピッチに合わせる必要があり、 m (ミクロン)級である。 In FIG. 1 (A), the size and pitch of the microlens 115 are the organic EL layers 250R, 250G, and 250B, and therefore the force that matches the size and pitch of one OLED is not limited to this. In any case, the size and pitch of the microlens 115 must be matched to the size and pitch of the pixel in the case of recent high-definition display, and is m (micron) class.
[0079] 本発明は、このようなミクロン級の精密加工が最近の技術の進歩により、初めて実 用化の目処が立ったという事実に基づくものであり、例えば非特許文献 3には、素材 としてシリコーン榭脂、中でもその一種 PDMS (Poly -Di- Methyl -Siloxane)を 適用すると、基板のソリに対する順応性がよぐ化学的に不活性で、等方、等質、透 明で、エラストマとしての耐久性が高ぐプラズマ処理とこれに続く化学的処理によつ て制御可能な表面状態が形成できる、旨が記述されている。  [0079] The present invention is based on the fact that such micron-class precision machining has been put to practical use for the first time due to recent technological advances. When silicone resin, especially PDMS (Poly-Di-Methyl-Siloxane) is applied, it is chemically inert, and the conformity of the substrate to the warp is good, isotropic, homogeneous, transparent, and elastomeric. It describes that a controllable surface state can be formed by plasma treatment with high durability and subsequent chemical treatment.
非特許文献 3 : Y Xia et al: Soft Lithography, Angew. Chem. Int. Ed. 1998, 37, pp550— 575.  Non-Patent Document 3: Y Xia et al: Soft Lithography, Angew. Chem. Int. Ed. 1998, 37, pp550—575.
[0080] 従って、この PDMS材を使うと、例えばシリコンで作ったミクロン級の母型から、例え ばエンボスカ卩ェにより、所望のマイクロレンズアレイが離型性よく安価に得られる。 シリコンの最先端カ卩ェ技術は 0. 1ミクロン級であり、上記ミクロン級の母型が安価に 得られる。  Therefore, when this PDMS material is used, a desired microlens array can be obtained with good releasability at low cost from, for example, an embossed cage from a micron-class master made of silicon. Silicon's state-of-the-art cache technology is 0.1 micron class, and the above micron class matrix can be obtained at low cost.
[0081] なお、マイクロレンズ 115の突端と OLEDの上面保護膜 270との距離は、集光効率 を上げるためにはなるべく小さ!/、方が望ま 、が、基板 200やキャップ 100の反りな どがあっても、マイクロレンズの一部が保護膜に押し付けられて変形しな 、程度の値 に設定される。  [0081] The distance between the tip of the microlens 115 and the OLED upper surface protective film 270 is as small as possible in order to increase the light collection efficiency. However, it is desirable that the distance between the substrate 200 and the cap 100 is warped. Even if there is, the value is set so that a part of the microlens is not pressed and deformed against the protective film.
実施例 2  Example 2
[0082] 図 1 (B)を参照すると、本発明による有機 EL素子を示す断面模式図であって、上 記実施例 1との差異は、マイクロレンズアレイ 110がキャップ 100の内面ではなぐ外 面に備えられて 、ることである。  Referring to FIG. 1 (B), which is a schematic cross-sectional view showing an organic EL element according to the present invention, the difference from Example 1 is that the outer surface where the microlens array 110 is not the inner surface of the cap 100. Be prepared for.
[0083] このようにすると、有機 EL層がキャップにより封止されてマイクロレンズアレイから隔 てられているので、仮にマイクロレンズアレイに水、酸素などが僅かに付着していてもIn this way, since the organic EL layer is sealed by the cap and separated from the microlens array, even if water, oxygen, or the like is slightly attached to the microlens array.
、有機 EL層を痛める恐れがない。 There is no fear of damaging the organic EL layer.
実施例 3  Example 3
[0084] 図 1 (C)を参照すると、本発明による有機 EL素子を示す断面模式図であって、上 記実施例 1、 2との差異は、マイクロレンズアレイ 110がキャップ 100の内面または外 面にではなぐ OLEDの透明電極膜 260の上表面側に保護膜 270を介して接着され て、備えられていることである。 Referring to FIG. 1 (C), it is a schematic cross-sectional view showing the organic EL device according to the present invention. The difference from the first and second embodiments is that the microlens array 110 is attached to the inner surface or the outer surface of the cap 100. The OLED transparent electrode film 260 is attached to the upper surface side of the OLED through the protective film 270.
[0085] このようにすると、マイクロレンズ 115による集光を最も効率的に行うことができる上 に、マイクロレンズアレイ 110が OLEDを最も効果的に保護する。 In this manner, the light can be collected most efficiently by the microlens 115, and the microlens array 110 can most effectively protect the OLED.
実施例 4  Example 4
[0086] 図 2 (A)を参照すると、本発明による有機 EL素子を示す断面模式図であって、上 記実施例 1〜3との差異は、シリコーン榭脂からなるキャップ 100の内面にマイクロレ ンズ 115がキャップ 100と一体に形成されている、即ち、シリコーン榭脂からマイクロ レンズ 115とキャップ 100を一体に成形して得ている点である。  [0086] Referring to Fig. 2 (A), it is a schematic cross-sectional view showing the organic EL device according to the present invention. The difference from the above-mentioned Examples 1 to 3 is that the inner surface of the cap 100 made of silicone resin is microscopic. The lens 115 is integrally formed with the cap 100, that is, the lens 115 is obtained by integrally molding the microlens 115 and the cap 100 from silicone resin.
[0087] 従って上記実施例 1と同じくシリコーン榭脂である PDMS材を使うと、例えばシリコ ンで作ったミクロン級の母型から、例えばエンボス加工により、所望のマイクロレンズ アレイとキャップを一体したものが離型性よく安価に得られる。  [0087] Accordingly, when the PDMS material, which is silicone resin as in Example 1, is used, a desired microlens array and cap are integrated from, for example, embossing from a micron-class matrix made of silicon, for example. Can be obtained inexpensively with good releasability.
[0088] シリコーン榭脂 PDMSは、上記のように透明であるので OLEDの発光を外部に通 す一方、化学的に不活性であるので内部の OLEDを保護し、かつ基板の反りに対す る順応性があり、キャップとして理想的な性能を備える。  [0088] Silicone resin PDMS is transparent as described above, and allows OLED light emission to pass outside, while chemically inert, it protects the internal OLED and adapts to substrate warpage. And has ideal performance as a cap.
[0089] さらに、一般にシリコーン榭脂の表面の Si原子のダングリングボンドは、例えば酸素 プラズマ処理により OH基と安定に結合した状態にしておける。  [0089] Further, generally, the dangling bonds of Si atoms on the surface of the silicone resin can be stably bonded to OH groups by, for example, oxygen plasma treatment.
基板 200と、キャップ 100の脚部 105との接着'封止に際しては、予め、基板 200の 接着面 (接着部 120)をプライマー処理をしておくと、キャップ 100の前記 OH基が脱 水反応により除去されて、シリコーン榭脂の表面の Si原子が接着部 120の分子とィ匕 学的に結合され、強固な接着 '封止が得られる。  When the substrate 200 and the leg portion 105 of the cap 100 are bonded and sealed, the bonding surface (bonding portion 120) of the substrate 200 is preliminarily treated with a primer so that the OH group of the cap 100 is dehydrated. Thus, Si atoms on the surface of the silicone resin are chemically bonded to the molecules of the bonding portion 120, and a strong adhesive seal is obtained.
実施例 5  Example 5
[0090] 図 2 (B)を参照すると、マイクロレンズのサイズ'ピッチが上記実施例 4では有機 EL 層 250R、 250G、 250B、従って OLEDのサイズ'ピッチと 1対 1に対応しているのに 対し、本実施例では、 1対 2で対応している。  [0090] Referring to FIG. 2 (B), although the microlens size 'pitch corresponds to the organic EL layers 250R, 250G, 250B, and thus the OLED size' pitch, in Example 4 above, On the other hand, in this embodiment, there is a one-to-two correspondence.
実施例 6  Example 6
[0091] また図 2 (C)を参照すると、マイクロレンズのサイズ.ピッチが OLEDのサイズ.ピッチ と 2対 1で対応している。 [0092] マイクロレンズは一般に小サイズであるほど、短い焦点距離のものが得られる力 収 差歪みが甚だしくなるので、 OLEDのサイズ'ピッチ、 OLEDの上面とマイクロレンズ の距離とそのばらつきなどを考慮して、パネル全面で安定した集光率が得られるよう に、マイクロレンズのサイズ ·ピッチを決定しなければならな 、。 [0091] Referring also to FIG. 2C, the microlens size and pitch correspond to the OLED size and pitch on a two-to-one basis. [0092] In general, the smaller the microlens, the greater the force-contrast distortion that can be obtained with a shorter focal length. Considering the OLED size 'pitch, the distance between the OLED top surface and the microlens and their variations, etc. Therefore, the size and pitch of the microlenses must be determined so that a stable light collection rate can be obtained over the entire panel surface.
このことは、他の実施例である上記実施例 1、 2、 3、及び下記実施例 7についても 当然成り立つ。  This naturally holds true for the above-described Examples 1, 2, and 3, and Example 7 below, which are other examples.
実施例 7  Example 7
[0093] 図 3を参照すると、本発明による有機 EL素子を示す断面模式図であって、マイクロ レンズ 115を内面に備えた、例えばガラス製の透明なキャップ 100が、 OLEDを搭載 した基板 200の上面の全体を覆い、双方の間の空隙は、キャップ 100の脚部 105と 基板 200の接着部 120を含めて、シリコーン榭脂 PDMS、で充填されて充填部 130 となる。  [0093] Referring to FIG. 3, a schematic cross-sectional view showing an organic EL device according to the present invention, in which a transparent cap 100 made of glass, for example, having a microlens 115 on its inner surface is mounted on an OLED-mounted substrate 200. The entire upper surface is covered, and the gap between the two is filled with the silicone resin PDMS including the leg portion 105 of the cap 100 and the adhesive portion 120 of the substrate 200 to form the filling portion 130.
[0094] このようにすると、一回の工程で PDMSが OLEDを効果的に保護すると共に、同時 に基板 200とキャップ 100を接着部 120で効果的に接着することができ、 PDMSは 例えば、室温で 48時間、 65°Cで 4時間程度の低温でキュアできるので、有機 EL層 にダメージを与えない。  [0094] In this way, PDMS effectively protects the OLED in a single process, and at the same time, the substrate 200 and the cap 100 can be effectively bonded by the bonding portion 120. It can be cured at a low temperature of 48 hours at 65 ° C for 4 hours, so it does not damage the organic EL layer.
[0095] 基板 200と、キャップ 100の脚部 105との接着'封止に際しては、予め、基板の接着 面と、脚部の接着面を予めプライマー処理をしておくと、接着部 120に充填されたシ リコーン榭脂の表面の前記 OH基が脱水反応により除去されて、シリコーン榭脂の表 面の S源子が基板、キャップの接着表面の分子とィ匕学的に結合され、強固な接着、 封止が得られる。  [0095] When the substrate 200 and the leg portion 105 of the cap 100 are bonded and sealed, the bonding surface of the substrate and the bonding surface of the leg portion are preliminarily treated in advance to fill the bonding portion 120. The OH groups on the surface of the prepared silicone resin are removed by a dehydration reaction, and the S source on the surface of the silicone resin is chemically bonded to the molecules on the bonding surface of the substrate and the cap, resulting in a strong Adhesion and sealing can be obtained.
[0096] また、図 4、図 5、図 6、図 7は各々、実施例 8、 9、 10、 11における有機 EL素子の構 造を示す断面模式図、図 8、図 10、図 12は各々、実施例 8、 9、 10における有機 EL 素子の光学的等価断面図、図 9、図 11、図 13は各々、実施例 8、 9、 10における有 機 EL素子の発光量の分布図である。  [0096] FIGS. 4, 5, 6, and 7 are schematic cross-sectional views showing the structures of the organic EL elements in Examples 8, 9, 10, and 11, respectively. FIG. 8, FIG. 10, and FIG. Optical equivalent cross-sectional views of the organic EL elements in Examples 8, 9, and 10, respectively, FIGS. 9, 11, and 13 are distribution diagrams of the light emission amounts of the organic EL elements in Examples 8, 9, and 10, respectively. is there.
実施例 8  Example 8
[0097] 図 4は、実施例 8における有機 EL素子の構造を示す断面模式図である。  FIG. 4 is a schematic cross-sectional view showing the structure of the organic EL element in Example 8.
有機 EL素子本体は、金属基板、例えばマグネシウム基板 201上に形成されて、例 えばガラス製の透明なキャップ 100に覆われ、キャップの縁辺部において下方に延 伸された脚部(図示せず)が基板の対応する縁辺部に接着されることにより封止され 、外界から遮断される。 The organic EL element body is formed on a metal substrate, for example, a magnesium substrate 201. For example, a leg (not shown) covered with a transparent glass cap 100 and extending downward at the edge of the cap is sealed by being bonded to the corresponding edge of the substrate, and is blocked from the outside. Is done.
[0098] 有機 EL素子本体は、例えばパネル 1つ分にあたる、複数の有機 EL発光ダイオード  [0098] The organic EL element body is composed of, for example, a plurality of organic EL light emitting diodes corresponding to one panel.
(OLED)と、対応する画素駆動ユニットからなり、基板 201の上表面に形成された絶 縁膜 210の上に例えばポリシリコン層又はアモルファスシリコン層 220を堆積し、その 中に画素駆動ユニットが形成される。  (OLED) and a corresponding pixel driving unit, for example, a polysilicon layer or an amorphous silicon layer 220 is deposited on the insulating film 210 formed on the upper surface of the substrate 201, and the pixel driving unit is formed therein. Is done.
[0099] 個々の画素駆動ユニットは原理的には 1個の TFTトランジスタであり、ソース 231、 ゲート絶縁膜 237、ドレーン 235と、ソース配線 233、ゲート配線 239、ドレーン配線 3 10からなる。  Each pixel driving unit is in principle a single TFT transistor, and includes a source 231, a gate insulating film 237, a drain 235, a source wiring 233, a gate wiring 239, and a drain wiring 3 10.
ソース配線 233とゲート配線 239は、各々行、列をなしており、画素駆動ユニットァ レイの縁辺部に設けた行,列駆動回路により駆動され、選択電位が与えられたゲート 配線に繋がる画素駆動ユニットのドレーンの電位は、各々のソース配線に与えられた 画素信号電位に等しくなり、このようにして各画素駆動ユニットのドレーン配線には任 意の信号電位が順次与えられる。  The source wiring 233 and the gate wiring 239 each form a row and a column, and are driven by a row / column driving circuit provided at the edge of the pixel driving unit array and connected to the gate wiring to which a selection potential is applied. The drain potential is equal to the pixel signal potential applied to each source line. In this way, an arbitrary signal potential is sequentially applied to the drain line of each pixel driving unit.
[0100] ドレーン配線 310は必要ならば適当なノリア金属層を介してドレーン 235に接続さ れる。 [0100] The drain wiring 310 is connected to the drain 235 through an appropriate noria metal layer if necessary.
ポリシリコン(アモルファスシリコン)層の上面のうち、隣接する画素駆動ユニットの間 の領域は窒化酸ィ匕シリコン系の絶縁膜 225で覆われており、ドレーン配線 310は、そ の上に延伸されて OLEDの第 1透明電極膜となる。  Of the upper surface of the polysilicon (amorphous silicon) layer, a region between adjacent pixel driving units is covered with a silicon nitride-based silicon insulating film 225, and the drain wiring 310 is stretched thereon. It becomes the first transparent electrode film of OLED.
[0101] 個々の OLEDは、第 1透明電極膜 310と、共通の第 2透明電極膜 320と、両電極膜 に挟まれた有機 EL層 300力もなり、通常 3つの隣接する有機 EL層 301、 300、 302 力 S3原色 R、 G、 Bに対応する。 [0101] Each OLED also has a first transparent electrode film 310, a common second transparent electrode film 320, and an organic EL layer 300 sandwiched between both electrode films, and usually three adjacent organic EL layers 301, 300, 302 force S3 primary colors R, G, B are supported.
なお第 2透明電極膜と有機 EL層 300の間には、電子注入効率を上げるため、低ヮ ークファンクションの合金、例えば Mg—Ag層 322を介在させる。  In order to increase the electron injection efficiency between the second transparent electrode film and the organic EL layer 300, a low-keke function alloy, for example, an Mg—Ag layer 322 is interposed.
Mg—Ag層の厚さは透明性を損なわないように薄ぐ例えば 10nm程度にとる。 また、第 2透明電極膜 320の上には保護膜 (図示せず)を形成する。  The thickness of the Mg-Ag layer is as thin as 10 nm so as not to impair the transparency. Further, a protective film (not shown) is formed on the second transparent electrode film 320.
[0102] このようにして、有機 EL素子本体が形成される。 ここで本有機 EL素子の発光部に関係する各膜、層の典型的膜圧を列挙すると、 基板絶縁膜 210 : 10nm、 ポリシリコン (アモルファスシリコン)層 220 (絶縁膜 22 5を含む): 500應、 第 1透明電極膜 310 : 100nm、 有機 EL層 300 : 60nm,[0102] In this way, the organic EL element body is formed. Here, the typical film pressure of each film and layer related to the light emitting part of this organic EL element is listed. Substrate insulating film 210: 10 nm, polysilicon (amorphous silicon) layer 220 (including insulating film 225): 500 1st transparent electrode film 310: 100nm, OLED layer 300: 60nm,
Mg— Ag層: 10nm、 第 2透明電極膜 320 : 40nm、である。 Mg—Ag layer: 10 nm, second transparent electrode film 320: 40 nm.
[0103] 上記のキャップによる封止完成後に、有機 EL素子本体の画素駆動ユニットの行 · 列配線に時間と共に変化する所定の信号電圧が与えられると、各有機 EL層 300は 信号電圧に対応して変化する光量を有する 3原色光のいずれかを発光する。 [0103] After completion of sealing with the cap, when a predetermined signal voltage that changes with time is applied to the row and column wirings of the pixel drive unit of the organic EL element body, each organic EL layer 300 corresponds to the signal voltage. Emits one of the three primary colors with a variable amount of light.
3原色光は各々、 Mg— Ag膜 322、第 2透明電極膜 320、保護膜、透明なキャップ 100を経て上方力 外部に発光され、各画素は所望の色調を呈色し、表示装置とし ての機能を果たすことになる。  Each of the three primary colors is emitted to the outside through the Mg-Ag film 322, the second transparent electrode film 320, the protective film, and the transparent cap 100, and each pixel has a desired color tone and serves as a display device. It will fulfill the function.
有機 EL素子の輝度を決定するのは、信号電圧が最大の場合の OLEDの発光量 であり、以下において、「発光量」はこの場合に限定する。  The luminance of the organic EL element is determined by the amount of light emission of the OLED when the signal voltage is maximum. In the following, the “light emission amount” is limited to this case.
[0104] さて有機 EL層の発光量は、上記のように図 1において上下方向で最大になり、水 平方向でゼロとなり、上方向を基線として計った角度 Θに対して cos Θ分布をなす。 従って、本実施例の場合、図 4で下方向、即ち 90° ≤ Θ≤180° の範囲の発光は 、第 1透明電極膜 310、ポリシリコン (アモルファスシリコン)層 220、絶縁層 210を透 過して、絶縁層 210と基板 201の母体金属の境界 205に至り、光は金属基板 201内 を透過できないので、反射される。 [0104] The light emission amount of the organic EL layer is maximum in the vertical direction in Fig. 1 as described above, becomes zero in the horizontal direction, and forms a cos Θ distribution with respect to the angle Θ measured with the upward direction as the baseline. . Therefore, in this embodiment, light emission in the downward direction in FIG. 4, that is, in the range of 90 ° ≤ Θ ≤ 180 °, is transmitted through the first transparent electrode film 310, the polysilicon (amorphous silicon) layer 220, and the insulating layer 210. Then, it reaches the base metal boundary 205 between the insulating layer 210 and the substrate 201, and light cannot be transmitted through the metal substrate 201, and is reflected.
[0105] 即ち、境界 205が光反射面として機能し、反射された光は、あた力も有機 EL層 300 の鏡像 305 (2点鎖線で示す)からの発光のように、上方に向かう。(以下、光反射面 も「205」で示す。 ) That is, the boundary 205 functions as a light reflecting surface, and the reflected light travels upward like the light emitted from the mirror image 305 (indicated by a two-dot chain line) of the organic EL layer 300. (Hereafter, the light reflecting surface is also indicated by “205”.)
図 4において、直接光と反射光の光線の例を各々、 11及び 16と、 61及び 66で示 す。  In Figure 4, examples of direct and reflected light rays are shown as 11 and 16 and 61 and 66, respectively.
次に、直接光と反射光の合計強度の分布を近似的に見積もる。  Next, the distribution of the total intensity of the direct light and the reflected light is approximately estimated.
[0106] 図 8は、本実施例における有機 EL素子の光学的等価断面図である。 FIG. 8 is an optical equivalent cross-sectional view of the organic EL element in this example.
有機 EL層 300の平面方向の寸法 dとピッチ D、及びキャップの下面 102との間隔 s 1力 0. 1mm〜: Lmmであるのに対して、有機 EL層と光反射面 205の間隔は上記の 典型的膜厚の場合でも高々 700nm、即ち: L m (ミクロン)未満であるので、有機 EL 層、光反射面、鏡像 305は密着してすべてキャップ下面から slの距離にあると見な す。 Plane dimension d and pitch D of organic EL layer 300, and distance between lower surface 102 of cap s 1 force 0.1 mm ~: Lmm, whereas the distance between organic EL layer and light reflecting surface 205 is the above Even for typical film thicknesses of at most 700 nm, ie: less than L m (microns), organic EL The layer, light reflecting surface, and mirror image 305 are in close contact and are all considered to be at a sl distance from the bottom of the cap.
本図では、 sl = D= 2 X d、にとつてある。  In this figure, sl = D = 2 X d.
[0107] 従って、有機 EL層 300からの発光は、上方への直接光と下方からの反射光が重畳 しており、有機 EL層の、本図における左端、中央、右端の各々から左右 π Ζ2 ( = 4 5° )への発光光線、 11と 12、 13と 14、 15と 16、で代表して示す。 Accordingly, light emitted from the organic EL layer 300 is obtained by superimposing direct light upward and reflected light from below, and the left and right sides of the organic EL layer from the left end, the center, and the right end in this figure are π Ζ2 Emission rays to (= 45 °), 11 and 12, 13 and 14, 15 and 16 are representatively shown.
[0108] 図 9は、本実施例における有機 EL素子の発光量の分布図である。 FIG. 9 is a distribution diagram of the light emission amount of the organic EL element in this example.
有機 EL層 300の発光強度 Υ (相対値)は、図において垂直上方力もの角度を 0と して、破線で示すように cos Θであるが、下方発光にあたる負値の Yの部分が反射さ れて上方発光に重畳され、合計発光強度は実線で示すように 2 X cos θ (- π /2≤ θ≤ π Ζ2)となり、反射がない従来の場合に比較して倍増できる。  The emission intensity Υ (relative value) of the organic EL layer 300 is cos Θ, as shown by the broken line, where the angle of the vertical upward force is 0 in the figure, but the negative Y portion corresponding to the downward emission is reflected. As shown by the solid line, the total emission intensity is 2 X cos θ (-π / 2≤θ≤π Ζ2), which can be doubled compared to the conventional case without reflection.
実施例 9  Example 9
[0109] 図 5は、実施例 9における有機 EL素子の構造を示す断面模式図である。  FIG. 5 is a schematic cross-sectional view showing the structure of the organic EL device in Example 9.
上記実施例 8と比べると、金属基板 201に対して、予め図で上面に凹部のアレイを 形成しておき、同様に表面を酸ィ匕して絶縁膜 210を形成すると、凹面鏡として機能す る光反射面 205が得られる。  Compared to Example 8 above, when an array of recesses is formed on the upper surface of the metal substrate 201 in advance in the drawing and the insulating film 210 is formed by oxidizing the surface in the same manner, it functions as a concave mirror. A light reflecting surface 205 is obtained.
[0110] このような金属基板 201の上に透明層 215を形成して上面を平坦ィ匕した後、上記 実施例 8と同様にポリシリコン層又はアモルファスシリコン層 220以降の各層を形成 する。 [0110] After the transparent layer 215 is formed on the metal substrate 201 and the upper surface is flattened, the layers after the polysilicon layer or the amorphous silicon layer 220 are formed in the same manner as in the eighth embodiment.
本実施例のようにアクティブマトリクス駆動型の場合は、ポリシリコン層又はァモルフ ァスシリコン層 220とその中に TFTトランジスタを形成するプロセスにおいて、高温を 要する場合があるので、透明層 215の素材としては例えば低融点ガラスを適用する。  In the case of the active matrix driving type as in this embodiment, the process for forming the polysilicon layer or amorphous silicon layer 220 and the TFT transistor therein may require a high temperature. Apply low melting glass.
ノ¾シブマトリクス駆動型の場合で後のプロセスに高温を要しない場合は、透明層 2 15の素材としては例えばシリコーン榭脂、中でもその一種 PDMS (Poly- Di- Met hyl-Siloxane)が適用できる。  If the high temperature is not required for the subsequent process in the case of a noisy matrix drive type, for example, silicone resin, especially PDMS (Poly-Di-Methyl-Siloxane) can be used as the material of the transparent layer 215. .
PDMSは、基板のソリに対する順応性がよぐ化学的に不活性で、等方、等質、透 明である上に、エラストマとしての耐久性が高ぐプラズマ処理とこれに続く化学的処 理によって制御可能な表面状態が形成できるので、第 1透明電極膜などと密着し、し 力も温度係数の差によるストレスを吸収することができる。 PDMS is a plasma process that is chemically inert, isotropic, homogenous, and transparent, and has high durability as an elastomer, followed by chemical process. A controllable surface state can be formed, so that it is in close contact with the first transparent electrode film, etc. Force can also absorb the stress due to temperature coefficient difference.
次に本実施例における合計発光強度の分布を見積もる。  Next, the distribution of the total light emission intensity in this example is estimated.
[0111] 図 10は、実施例 9における有機 EL素子の光学的等価断面図である。  FIG. 10 is an optical equivalent cross-sectional view of the organic EL element in Example 9.
上方への直接発光を、上記実施例 1の場合と同じように光線 11〜 16で示す。 一方、下方への発光は凹面鏡により反射されるが、本実施例の場合、凹面鏡アレイ をなす光反射面 205と有機 EL層 300との間隔 s2は、凹面鏡の焦点距離 flに等しく とってあるので、有機 EL層上の各点光源ごとに平行な反射光となる。  Direct upward light emission is indicated by rays 11-16 as in Example 1 above. On the other hand, light emitted downward is reflected by the concave mirror, but in this embodiment, the distance s2 between the light reflecting surface 205 and the organic EL layer 300 forming the concave mirror array is equal to the focal length fl of the concave mirror. The reflected light is parallel for each point light source on the organic EL layer.
一般には透明層 215の屈折率が 1より大きいので、透明層 215は下方発光と反射 光の各々に対して凸レンズとして機能するので、正確には、 flは凹面鏡単独の焦点 距離ではなぐ凹面鏡と透明層 215による 2つの凸レンズとの合成系の焦点距離であ る。  In general, since the refractive index of the transparent layer 215 is greater than 1, the transparent layer 215 functions as a convex lens for each of the downward emission and reflected light, so to be precise, fl is transparent with a concave mirror that is not the focal length of the concave mirror alone. The focal length of the composite system with two convex lenses by layer 215.
また、光反射面は、厳密には凹面鏡の凹面に沿って変化する (光反射面 205の、 図で下方の円弧状破線)が、ここでは簡単のため平面で代表する。  In addition, strictly speaking, the light reflecting surface changes along the concave surface of the concave mirror (the arc-shaped broken line in the figure in the lower side of the light reflecting surface 205), but here it is represented by a plane for simplicity.
なお、凹面鏡の直径は、本実施例では、有機 EL層のピッチ Dに等しくとってある。  In this embodiment, the diameter of the concave mirror is set equal to the pitch D of the organic EL layer.
[0112] 即ち、図で有機 EL層の左端、中央、右端力も下方に発射された光線のうち、 51と 5 2の間 φ 4、 53と 54の間 φ 5、 55と 56の間 φ 6の範囲の光線は、反射されて各々、平 行な光線、 61と 62、 63と 64、 65と 66、の間の光線となる。 [0112] That is, in the figure, among the light rays that are emitted downward in the left, center, and right edge of the organic EL layer, between 51 and 52, φ4, between 53 and 54, φ5, between 55 and 56, φ6 Rays in this range are reflected to become parallel rays, rays between 61 and 62, 63 and 64, and 65 and 66, respectively.
[0113] 図 11は、本実施例における有機 EL素子の発光量の分布図である。 FIG. 11 is a distribution diagram of the light emission amount of the organic EL element in this example.
上方発光の強度分布は、破線で示した cos θ (- π 2≤ θ≤π /2)に従うが、下 方発光は、上記 φ 4〜 φ 6の範囲、即ち、約 0. 1 π≤ 0≤約 π Ζ4の部分の一部又 は全部力 反射光では、 0≤ θ≤0. 1 πに集中することになる。  The intensity distribution of the upper emission follows the cos θ (-π 2 ≤ θ ≤ π / 2) indicated by the broken line, but the lower emission is in the above range of φ 4 to φ 6, that is, about 0.1 π ≤ 0. ≤ About π Ζ4 Part or all of the force reflected light will concentrate on 0≤ θ≤0.1 π.
この結果、合計発光強度は実線で示すように、約 0. 1 π〜+ 0. 1 πに集中し、 そのピーク値は Θ =0で、約 2. 8となり、反射がない従来の場合に比較して 3倍増に 近くなり、上記実施例 8の場合の約 2. 0と比較してもさらに改善される。  As a result, as shown by the solid line, the total emission intensity is concentrated at about 0.1 π to +0.1 π, and the peak value is about 2.8 at Θ = 0. Compared to about 2.0 in the case of Example 8 above, this is further improved.
このようにして、有機 EL表示装置を正面から見た場合( Θ〜0)の発光強度 Ζ消費 電力比を改善できる。  In this way, it is possible to improve the light emission intensity / power consumption ratio when the organic EL display device is viewed from the front (Θ˜0).
実施例 10  Example 10
[0114] 図 6は、実施例 10における有機 EL素子の構造を示す断面模式図である。 上記実施例 8に対して、例えば図 6に示すようにキャップ 100の下面 102に、有機 E L層に対向する凸面のマイクロレンズ 115をさらに設ける。 FIG. 6 is a schematic cross-sectional view showing the structure of the organic EL element in Example 10. In contrast to Example 8, for example, as shown in FIG. 6, a convex microlens 115 facing the organic EL layer is further provided on the lower surface 102 of the cap 100.
有機 EL層からの上方発光光線 11、 16はマイクロレンズにより屈折されて外部光線 21、 26となる。  The upper emission rays 11 and 16 from the organic EL layer are refracted by the microlens to become external rays 21 and 26.
一方、下方発光光線は光反射面 205で反射されて反射光線 61、 66となり、マイク 口レンズにより屈折されて外部光線 71、 76となる。  On the other hand, the lower emission light beam is reflected by the light reflecting surface 205 to become reflected light beams 61 and 66, and is refracted by the microphone opening lens to become external light beams 71 and 76.
[0115] マイクロレンズアレイの素材としては、例えばシリコーン榭脂、中でもその一種 PDM S (Poly -Di- Methyl -Siloxane)を適用すると、キャップのソリに対する順応性が よぐ化学的に不活性で、等方、等質、透明である上に、エラストマとしての耐久性が 高!、ので、温度係数の差によるストレスを吸収することができる。  [0115] As a material for the microlens array, for example, when silicone resin, especially PDM S (Poly-Di-Methyl-Siloxane), is applied, the adaptability to the warp of the cap is very chemically inactive. It is isotropic, homogeneous and transparent, and has high durability as an elastomer, so it can absorb stress due to temperature coefficient differences.
次に本実施例における合計発光強度の分布を見積もる。  Next, the distribution of the total light emission intensity in this example is estimated.
[0116] 図 12は、実施例 10における有機 EL素子の光学的等価断面図である。  FIG. 12 is an optical equivalent cross-sectional view of the organic EL element in Example 10.
( マイクロレンズ 115の両面又は片面は、厳密には所定の曲率を持って変化する( マイクロレンズ 115の図で下方の円弧状破線)力 ここでは簡単のため平面で代表す る。  (Strictly speaking, both surfaces or one surface of the microlens 115 changes with a predetermined curvature (the arcuate broken line in the drawing of the microlens 115). Here, for simplicity, it is represented by a plane.
また、有機 EL層 300とマイクロレンズ 115との距離 siは、本実施例ではマイクロレン ズの焦点距離 f2に等しくとってある。 )  Further, the distance si between the organic EL layer 300 and the microlens 115 is set equal to the focal length f2 of the microlens in this embodiment. )
[0117] 従って、図で有機 EL層の左端、中央、右端から上方から発射された光線と、下方 に発射されて光反射面 205で反射された光線は重畳され、そのうち、 11と 12の間 φ 1、 13と 14の間 φ 2、 15と 16の間 φ 3の範囲の光線は、反射されて各々、平行な光 線、 21と 22、 23と 24、 25と 26、の間の平行な光線となる。 [0117] Accordingly, in the figure, the light rays emitted from the upper side from the left end, the center, and the right end of the organic EL layer are superimposed on the light rays emitted downward and reflected by the light reflecting surface 205, of which between 11 and 12 Between φ 1, 13 and 14, between φ 2, 15 and 16, the light in the range of φ 3 is reflected and parallel to the parallel rays, 21 and 22, 23 and 24, 25 and 26, respectively. Light.
[0118] 図 13は、本実施例における有機 EL素子の発光量の分布図である。 FIG. 13 is a distribution diagram of the light emission amount of the organic EL element in this example.
本実施例の場合、上方、下方発光は重畳され、 cos θ (~ π /2≤ θ≤ π Ζ2)分 布のうち、上記 φ 1〜φ 3の範囲、即ち、約 0. 1 π≤ 0≤約 π Ζ4の部分の一部又は 全部が、外部への発射光では、 0≤ θ≤0. 1 πに集中することになる。  In the case of the present embodiment, the upper and lower light emission are superimposed, and the range of φ1 to φ3 in the cos θ (~ π / 2≤ θ≤πΖ2) distribution, that is, about 0.1π≤0. ≤ About π Ζ4 A part or all of the part will be concentrated to 0≤ θ≤0.1 π in the outgoing light.
この結果、合計発光強度は実線で示すように、約 0. 1 π〜+ 0. 1 πに集中し、 そのピーク値は Θ =0で、約 3. 6となり、反射がない従来の場合に比較して 4倍増に 近くなり、上記実施例 8の場合の約 2. 0と比較してもさらに改善される。 実施例 11 As a result, as shown by the solid line, the total emission intensity is concentrated in the range of about 0.1 π to +0.1 π. Its peak value is Θ = 0, which is about 3.6. Compared with the increase of about 2.0 in the case of Example 8 above, it is further improved. Example 11
[0119] 図 7は、実施例 11における有機 EL素子の構造を示す断面模式図である。  FIG. 7 is a schematic cross-sectional view showing the structure of the organic EL element in Example 11.
上記実施例 8と比べると、金属基板 201に対して、予め図で上面に凹部のアレイを 形成しておき、同様に表面を酸ィ匕して絶縁膜 210を形成すると、凹面鏡として機能す る光反射面 205が得られる。  Compared to Example 8 above, when an array of recesses is formed on the upper surface of the metal substrate 201 in advance in the drawing and the insulating film 210 is formed by oxidizing the surface in the same manner, it functions as a concave mirror. A light reflecting surface 205 is obtained.
それとともに、例えばキャップ 100の下面 102に、有機 EL層に対向する凸面のマイ クロレンズ 115をさらに設ける。  In addition, for example, a convex microlens 115 facing the organic EL layer is further provided on the lower surface 102 of the cap 100.
[0120] 有機 EL層からの上方発光光線 11、 16はマイクロレンズ 115により屈折されて外部 光線 21、 26となる。 [0120] The upper emitted light beams 11 and 16 from the organic EL layer are refracted by the microlens 115 to become external light beams 21 and 26.
一方、下方発光光線 51、 56は凹面鏡状の光反射面 205で反射されて反射光線 6 1、 66となり、マイクロレンズ 115により屈折されて外咅光線 71、 76となる。  On the other hand, the lower emitted light beams 51 and 56 are reflected by the concave mirror-like light reflecting surface 205 to become reflected light beams 61 and 66, and refracted by the microlens 115 to become outer light beams 71 and 76.
[0121] 即ち、上方発光光線はマイクロレンズにより 1回集光され、下方発光光線はマイクロ レンズと凹面鏡により 2回集光されるので、マイクロレンズと凹面鏡の位置、サイズ、焦 点距離を適切に選ぶことにより、さらに集光効率を上げることができる。  [0121] That is, the upper emitted light beam is collected once by the microlens and the lower emitted light beam is collected twice by the microlens and the concave mirror, so that the position, size, and focal length of the microlens and concave mirror are appropriately adjusted. By selecting, the light collection efficiency can be further increased.
[0122] また、図 14は、実施例 12〜 15に係る有機 EL素子の断面模式図、図 15は、実施 例 12における有機 EL層素子の保護膜の分子構造を示す模式図、図 16は、実施例 13における有機 EL層素子の保護膜の分子構造を示す模式図、図 17は、実施例 12 〜15に係るケィ素含有有機フッ素系高分子の様々な態様を示す分子構造模式図、 そして、図 18は、実施例 15における有機 EL層の保護膜の形成手順を示すフローチ ヤートである。  FIG. 14 is a schematic cross-sectional view of the organic EL device according to Examples 12 to 15, FIG. 15 is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 12, and FIG. FIG. 17 is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 13, FIG. 17 is a schematic diagram of the molecular structure showing various aspects of the fluorine-containing organic fluorine-based polymer according to Examples 12-15, FIG. 18 is a flowchart showing the procedure for forming the protective film for the organic EL layer in Example 15.
実施例 12  Example 12
[0123] 図 14を参照すると、本発明に係るトップェミッション型の有機 EL素子の断面模式図 であって、基板 200の上に TFT層 220が形成され、 TFT層 220内〖こは、複数個の T FTトランジスタ回路 230とこれらを選択的に駆動するための図示しない行 ·列配線が 形成される。  Referring to FIG. 14, there is a schematic cross-sectional view of a top emission type organic EL device according to the present invention, in which a TFT layer 220 is formed on a substrate 200, and there are a plurality of inner layers of the TFT layer 220. The TFT transistor circuits 230 and row / column wirings (not shown) for selectively driving these TFT transistor circuits 230 are formed.
[0124] TFTトランジスタ回路 230の出力は、第 1電極 240に接続されており、第 1電極 240 の上に有機 EL層 250R、 250G、又は 250Bが形成され、さらにそれらの上に、 ITO 透明膜からなる第 2電極 260が形成されて、第 1電極'有機 EL層'第 2電極の 3者に より有機電界発光ダイオード (以下 OLEDという)が構成される。 [0124] The output of the TFT transistor circuit 230 is connected to the first electrode 240, and an organic EL layer 250R, 250G, or 250B is formed on the first electrode 240, and an ITO transparent film is further formed thereon. The second electrode 260 consisting of the first electrode 'organic EL layer' and the second electrode An organic electroluminescent diode (hereinafter referred to as OLED) is constructed.
[0125] 通常、第 2電極に基準電位 (接地電位)を与えておき、選択された行配線に選択電 圧を与えると、選択された行配線に接続された TFTトランジスタ回路がすべて活性ィ匕 し、列配線に与えた電圧又はそれに対応する電圧が第 1電極に印加され、有機 EL 素子は印加された電圧に応じた光度で発光する。カラー表示の場合は、赤、緑、青 の有機 EL層のセット 250R、 250G、 250Bを含む OLEDが選択される。 [0125] Normally, when a reference potential (ground potential) is applied to the second electrode and a selected voltage is applied to the selected row wiring, all TFT transistor circuits connected to the selected row wiring are activated. Then, a voltage applied to the column wiring or a voltage corresponding thereto is applied to the first electrode, and the organic EL element emits light with a light intensity corresponding to the applied voltage. For color display, an OLED that includes a set of red, green, and blue organic EL layers 250R, 250G, and 250B is selected.
[0126] ここまでに説明した有機 EL素子の、行'列配線及びその駆動回路、 TFTトランジス タ回路、第 1電極、有機 EL層、第 2電極の各々に関する構造と作用については、こ れ以上の詳細な説明を省略する。 [0126] Regarding the structure and operation of each of the row and column wiring and its drive circuit, TFT transistor circuit, first electrode, organic EL layer, and second electrode of the organic EL element described so far, will be further described. The detailed description of is omitted.
第 2電極の上には、本発明による保護膜が形成されており、ポリシラザンを焼成して 得られるシリカ膜 410とケィ素含有有機フッ素系高分子膜 420からなる。  A protective film according to the present invention is formed on the second electrode, and includes a silica film 410 obtained by baking polysilazane and a silicon-containing organic fluorine-based polymer film 420.
[0127] 図 15を参照すると、本発明の実施例 12における有機 EL層素子の保護膜の分子 構造を示す模式図である。 Referring to FIG. 15, it is a schematic diagram showing the molecular structure of the protective film of the organic EL layer device in Example 12 of the present invention.
図において、保護膜はポリシラザンを焼成して得られるシリカ膜 410とケィ素含有有 機フッ素系高分子膜 420からなり、両者は、一点鎖線 401を境界として、分子的に結 合している。  In the figure, the protective film is composed of a silica film 410 obtained by baking polysilazane and a silicon-containing organic fluorine-based polymer film 420, both of which are molecularly bonded with a one-dot chain line 401 as a boundary.
[0128] 最初に、ポリシラザンを焼成して得られるシリカ膜について説明する。  First, a silica film obtained by firing polysilazane will be described.
ポリシラザン PHPS (PerHydroPolvSilazane)は「一 SiH—NH—」を基本ュ-ッ  Polysilazane PHPS (PerHydroPolvSilazane) is based on “One SiH—NH—”.
2  2
トとする有機溶剤に可溶な無機高分子 (ポリマー)であるが、有機溶剤で希釈して塗 布した後、加湿乾燥して焼成すると脱水素及び脱アンモニア反応などの結果、緻密 な高純度シリカ(SiO )膜 410となる。  It is an inorganic polymer (polymer) that is soluble in organic solvents, but when it is diluted with an organic solvent and coated, it is dried by humidification and baked. A silica (SiO 2) film 410 is formed.
2  2
シリカのノ レクは「一 Si— o—」を基本ユニットとする多結晶からなる力 多結晶の 表面の Si原子は通常水酸基「― OH」で終端されて 、る。  Silica's nore is a force consisting of polycrystals with “one Si—o—” as the basic unit. The Si atoms on the surface of the polycrystal are usually terminated with a hydroxyl group “—OH”.
[0129] 次に、ケィ素含有有機フッ素系高分子について説明する。 [0129] Next, the silicon-containing organic fluorine-based polymer will be described.
図 17を参照すると、ケィ素含有有機フッ素系高分子の様々な態様を示す分子構造 模式図である。  Referring to FIG. 17, it is a schematic diagram of the molecular structure showing various embodiments of the silicon-containing organofluorine polymer.
[0130] 図 17 (A)は、最も基本的な有機フッ素系高分子であって、ペルフルォロアルカンと 呼ばれ、非環式'飽和型炭化水素 (アルカン)の水素原子をすベてフッ素原子で置 換したものである。 [0130] Fig. 17 (A) is the most basic organofluorine polymer, called perfluoroalkane, which contains all the hydrogen atoms of acyclic 'saturated hydrocarbons (alkanes). Place with fluorine atom It has been changed.
ペルフルォロアルカンは、構造が単純で、撥水性、撥油性に富むが、保護すべき 有機 EL素子との密着性が確保できな 、。  Perfluoroalkane has a simple structure and is rich in water and oil repellency, but it cannot secure adhesion to the organic EL elements to be protected.
ペルフルォロアルカンに非飽和結合を導入し(ペルフロォロアルケン)、又は Z及 び側鎖を導入しても、撥水性、撥油性と密着性の両立は容易ではない。  Even if an unsaturated bond is introduced into perfluoroalkane (perfluoroalkene) or Z and side chains are introduced, it is not easy to achieve both water repellency, oil repellency and adhesion.
[0131] 図 17 (B)は、ケィ素含有有機フッ素系高分子の一例であって、ペルフルォロアルカ ン部 432の末端にケィ素含有基 439を導入、結合したものである。 FIG. 17B shows an example of a fluorine-containing organic fluorine-based polymer, in which a fluorine-containing group 439 is introduced and bonded to the end of the perfluoroalkanol part 432.
この場合、ケィ素含有基 439は、トリメチロキシシラン基「一 Si (OCH ) 」からなり、  In this case, the silicon-containing group 439 comprises a trimethyloxysilane group “one Si (OCH 3)”,
3 3  3 3
ペルフルォロアルカン部 432とは炭化水素部 434を介して結合されている。  The perfluoroalkane part 432 is bonded via a hydrocarbon part 434.
[0132] 炭化水素部 434は、ケィ素含有基 439をペルフルォロアルカン部 432に結合する ために、ケィ素含有基のキャリアとして導入されたものであり、炭化水素部の分子量 が大きくなると付随水素原子の数が増え、撥水、撥油性を損ねる恐れがあるので小 分子量であることが望ましい場合がある。その場合は、ケィ素原子 1個あたり炭素数 2 とし、そのため、ケィ素含有基のキャリア分子としてはビニルシラン誘導体が用いられ る。 [0132] The hydrocarbon part 434 was introduced as a carrier of the silicon-containing group in order to bond the silicon-containing group 439 to the perfluoroalkane part 432, and when the molecular weight of the hydrocarbon part increases. A small molecular weight may be desirable because the number of associated hydrogen atoms increases and water and oil repellency may be impaired. In this case, the number of carbon atoms is 2 per ka atom, and therefore, a vinylsilane derivative is used as the carrier molecule for the kalein-containing group.
ペルフルォロアルカン 432と炭化水素部 434とを合わせてケィ素含有有機フッ素系 高分子の主部 430と名づける。  Perfluoroalkane 432 and hydrocarbon part 434 are combined and named the main part 430 of the C-containing organofluorine polymer.
[0133] ここで再び図 15を参照すると、上記ポリシラザンを焼成して得られるシリカ膜 410の 上面に図 17 (B)に示すケィ素含有有機フッ素系高分子からなる膜 420を形成したも のである。 Referring again to FIG. 15, a film 420 made of a silicon-containing organofluorine polymer shown in FIG. 17B is formed on the upper surface of the silica film 410 obtained by firing the polysilazane. is there.
ケィ素含有有機フッ素系高分子は、ケィ素含有基 439側でシリカの表面の水酸基 と反応し、ケィ素含有基 439のケィ素原子からメチロキシ基がはずれて、シリカ 410の 表面のケィ素原子及び隣接するケィ素含有基のケィ素原子と酸素原子を介して結合 し、ケィ素含有有機フッ素系高分子の母体 430は、シリカ表面に対して分子レベルで 結合される。  The silicon-containing organofluorine polymer reacts with the hydroxyl group on the silica surface on the side of the silicon-containing group 439, the methyloxy group is removed from the silicon atom of the silicon-containing group 439, and the silicon atom on the surface of the silica 410 In addition, the matrix 430 of the fluorine-containing organic fluorine-based polymer is bonded to the silica surface at the molecular level, and bonded to the adjacent silicon-containing group via the oxygen atom.
[0134] このように、特にポリシラザンを焼成して得られる高純度シリカの場合は、その表面 の殆どが水酸基で終端された 2酸ィ匕ケィ素であるので、その後力も塗布し焼成したケ ィ素含有有機フッ素系高分子は、ケィ素含有基側でシリカと、シリカ自身と同じ 2酸ィ匕 ケィ素結合により一体化され、分子レベルでの強固な密着が確保できる。 [0134] Thus, in the case of high-purity silica obtained by firing polysilazane in particular, since most of its surface is diacidic silicon terminated with a hydroxyl group, the subsequent force is also applied and fired. The fluorine-containing organic fluorine-based polymer consists of silica and diacid It is integrated by key bonding, and strong adhesion at the molecular level can be secured.
[0135] その上、ケィ素含有有機フッ素系高分子の主部 430は、その大部分を占めるペル フルォロアルカンが剛直で配向しやすいので、上方に整列し、全体として優れた撥 水性、撥油性を呈するので、本実施例による、シリカ膜 410とケィ素含有有機フッ素 系高分子膜 420からなる 2層膜は、有機 EL素子に対して優秀な保護膜となる。  [0135] Moreover, the main part 430 of the fluorine-containing organofluorine polymer is composed of perfluoroalkanes, which occupy most of the main part, so that it is rigid and easily oriented. Thus, the two-layer film composed of the silica film 410 and the silicon-containing organic fluorine-based polymer film 420 according to this embodiment is an excellent protective film for the organic EL element.
[0136] 図 15に戻ると、上記のように整列したケィ素含有有機フッ素系高分子の上面には、 一般には撥水性、撥油性により汚れ 490が付着しにくぐ仮に付着しても容易に排除 できる。  [0136] Referring back to FIG. 15, the upper surface of the above-contained fluorine-containing organic fluorine-containing polymer is generally easy to attach even if it is difficult to attach dirt 490 due to water repellency and oil repellency. Can be eliminated.
し力しながら、高純度シリカにおいても結晶粒界、結晶欠陥などにより、結晶不整が 存在し、例えば図 2の中央部に示すように、そこではケィ素含有有機フッ素系高分子 が結合できず整列にギャップが生じ、そのギャップに汚れ 490 (水性又は油性分子) が侵入すると、特にその侵入部分 490aは、物理的化学的に除去し切れない場合が あり、 OLEDの経年品質劣化をもたらす恐れがある。  However, even in high-purity silica, crystal irregularities exist due to crystal grain boundaries, crystal defects, etc., for example, as shown in the central part of FIG. If a gap occurs in the alignment and dirt 490 (aqueous or oily molecule) enters the gap, the intruding part 490a may not be removed physically and chemically, which may cause deterioration of the OLED over time. is there.
実施例 13  Example 13
[0137] 図 16を参照すると、実施例 13においては、ケィ素含有有機フッ素系高分子の主部 440として柔軟性のある分子構造を有するものを導入する。  Referring to FIG. 16, in Example 13, a main part 440 of a silicon-containing organofluorine polymer having a flexible molecular structure is introduced.
具体的には、図 17 (C)に示すように、有機フッ素系高分子として、ペルフロォ口ポリ ォキセタンを適用し、ペルフルォロォキセタン部 442とする。  Specifically, as shown in FIG. 17 (C), perfluorinated polyoxetane is applied as an organic fluorine-based polymer to form a perfluorooxetane portion 442.
ペルフルォロォキセタンは、より一般にはペルフルォロ(ポリ)エーテルと呼ばれ、数 個(ペルフルォロポリオキセタンの場合は 3個)の「一 CF—」からなる直鎖のみ又は  Perfluorooxetane is more commonly referred to as perfluoro (poly) ether and is a straight-chain consisting of several “one CF—” or three (in the case of perfluoropolyoxetane) or
2  2
側鎖を有するペルフルォロアルカンが酸素原子 oを介して結合 (エーテル結合)され たものである。  A perfluoroalkane having a side chain is bonded through an oxygen atom o (ether bond).
[0138] 酸素原子によるエーテル結合部が複数箇所存在するので、ケィ素含有有機フッ素 系高分子の主部 440は柔軟性に富み、図 16の中央部に示すように、シリカの表面の 結晶不整によるギャップが存在しても、ギャップの周辺のケィ素含有有機フッ素系高 分子の主部が曲力^ながらギャップを埋め、汚れ分子 490を撥いてしまうので、上記 実施例 12に比べて、さらに汚れの撥水性、撥油性を向上することができる。  [0138] Since there are a plurality of ether bond sites due to oxygen atoms, the main part 440 of the C-containing organofluorine polymer is rich in flexibility, as shown in the center of FIG. Even if there is a gap due to, the main part of the fluorine-containing organic fluorine-containing high molecule around the gap fills the gap while bending, and repels the dirt molecule 490. The water repellency and oil repellency of dirt can be improved.
実施例 14 [0139] 上記の実施例 12、 13においては、ペルフロォロアルカン、ペルフルォロポリオキセ タン (ペルフルォロポリエーテル)からなる有機フッ素系高分子部、炭化水素部、そし てケィ素含有基として、典型的、基本的な場合のみを示した。 Example 14 [0139] In the above Examples 12 and 13, an organic fluoropolymer part, a hydrocarbon part, and a key made of perfluoroalkane, perfluoropolyoxetane (perfluoropolyether). Only typical and basic cases of element-containing groups are shown.
本発明によるケィ素含有有機フッ素系高分子において、有機フッ素系高分子部に おける側鎖又は Z及び不飽和結合の導入、炭化水素部における主鎖炭素数の変更 、側鎖の導入、修飾水素のハロゲン又は炭化水素による置換、及びケィ素含有基に おけるメチロキシ基の、水素、炭化水素、水酸基、又はアルコキシ基による置換など により、様々な誘導体の形成が可能であり、それらの選択的導入と全体の重合分子 量の設定により、対応するシリカ表面の結晶不整特性と汚れ物質の特性にマッチし た高い防汚特性を備えた、しかも塗布、焼成がしゃすく生産性の高い保護膜を得る ことができる。  In the fluorine-containing organofluorine polymer according to the present invention, introduction of side chain or Z and unsaturated bond in the organofluorine polymer part, change of main chain carbon number in hydrocarbon part, introduction of side chain, modified hydrogen The formation of various derivatives is possible by the substitution of halogens or hydrocarbons of the above and the substitution of methyloxy groups in the group containing silicon with hydrogen, hydrocarbons, hydroxyl groups, or alkoxy groups. By setting the total molecular weight of the polymer, a protective film with high antifouling characteristics that match the crystal irregularity characteristics of the corresponding silica surface and the characteristics of the soiling substance, and that is easy to apply and sinter is obtained. Can do.
[0140] 一例として、図 17 (D)に示すように、実施例 13に対して、 2炭素原子のかわりに 4炭 素原子力もなる炭化水素部 454を導入し、その第 1と第 3炭素原子にトリメチロキシシ ランを結合する。  [0140] As an example, as shown in Fig. 17 (D), a hydrocarbon part 454, which is a 4-carbon nuclear power instead of a 2-carbon atom, was introduced into Example 13 and its first and third carbon atoms were introduced. Bind trimethyloxysilane to the atom.
本実施例では、ケィ素含有有機フッ素系高分子の主部 450が、 2個の「― Si— 0— 」結合により、シリカ表面に結合されるので、分子レベルでの密着強度がさらに向上し 、主部 450の根本での配向方向がシリカ面に対して略並行になるので、シリカ面の結 晶不整が、さらに効率的に被覆され、防汚特性がさらに向上する。  In this example, the main portion 450 of the fluorine-containing organofluorine polymer is bonded to the silica surface by two “—Si-0—” bonds, so that the adhesion strength at the molecular level is further improved. In addition, since the orientation direction at the base of the main portion 450 is substantially parallel to the silica surface, crystal irregularities on the silica surface are more efficiently covered, and the antifouling property is further improved.
実施例 15  Example 15
[0141] 図 18を参照すると、実施例 15として、上記実施例 12〜14に共通する、有機 EL層 の保護膜の形成手順を示すフローチャートである。  [0141] Referring to Fig. 18, as Example 15, this is a flowchart showing a procedure for forming a protective film for an organic EL layer, which is common to Examples 12 to 14 described above.
[0142] ステップ S1では、ポリシラザン(PHPS)をシクロへキサン溶媒で希釈しポリシラザン [0142] In step S1, polysilazane (PHPS) is diluted with a cyclohexane solvent to obtain polysilazane.
(PHPS)溶液を得る。  Obtain a (PHPS) solution.
後のステップ S 3で比較的低温での加湿乾燥を可能にするため、所定の金属触媒 を添加しておく。  In order to enable humid drying at a relatively low temperature in later step S3, a predetermined metal catalyst is added.
[0143] ステップ S2では、 PHPS溶液を有機 EL素子の ITO膜の上に塗布する。  [0143] In step S2, a PHPS solution is applied on the ITO film of the organic EL element.
[0144] ステップ S3では、温度 60°C、湿度 90%で 1時間、加湿乾燥する。 [0144] In step S3, humidification drying is performed at a temperature of 60 ° C and a humidity of 90% for 1 hour.
これにより緻密で高純度のシリカ膜が形成される。 [0145] ステップ S4では、ペルフルォロ炭化水素部と炭化水素部とケィ素含有基とからなる ケィ素含有有機フッ素系高分子をペルフルォ口へキサンで希釈して前記ケィ素含有 有機フッ素系高分子の溶液を得る。 Thereby, a dense and high-purity silica film is formed. [0145] In step S4, a fluorine-containing organic fluorine-based polymer composed of a perfluorohydrocarbon portion, a hydrocarbon portion, and a silicon-containing group is diluted with perfluorinated hexane to form the above-mentioned silicon-containing organic fluorine-based polymer. Obtain a solution.
[0146] ステップ S5では、前記ケィ素含有有機フッ素系高分子の溶液をシリカ膜の上に塗 布する。 [0146] In step S5, the solution of the silicon-containing organic fluorine-based polymer is applied onto the silica film.
[0147] ステップ S6では、室温放置 1時間で乾燥させる。又は、温度 60°C、湿度 90%で 1 時間、加湿乾燥させる。  [0147] In step S6, the film is dried at room temperature for 1 hour. Alternatively, humidify and dry at 60 ° C and 90% humidity for 1 hour.
これにより、ケィ素含有有機フッ素系高分子が、ケィ素含有基を介して、シリカのケ ィ素と分子レベルで結合される。  As a result, the silicon-containing organic fluorine-based polymer is bonded to the silica silicon at the molecular level via the silicon-containing group.
[0148] 上記のステップ S2、 S3、 S5、 S6を通じ、工程は低温、常圧下で静的に進めること ができ、有機 EL素子に対して物理的、化学的ダメージを与えないので、水分、酸素[0148] Through the above steps S2, S3, S5, and S6, the process can be performed statically at low temperature and normal pressure, and does not cause physical or chemical damage to the organic EL device.
、物理的打撃に関して脆弱な有機 EL素子に対して好適である。 It is suitable for organic EL devices that are fragile with respect to physical impact.
産業上の利用可能性  Industrial applicability
[0149] 有機 EL素子は、低消費電力、高品質で、薄型で、さらには曲面表示も可能な、次 世代表示システム用の素子として注目されているが、実用化に際しては、同じ消費電 力、同じ表示面積において、実効的な発光効率をより一層向上する必要がある。 本発明によれば、有機 EL層として同じものを使っても、実効的な発光効率を上げる ことができる、安価で信頼度の高い周辺構造が提供されるので、次世代表示システム の発達に大いに寄与できる。 [0149] Organic EL devices are attracting attention as devices for next-generation display systems that have low power consumption, high quality, low profile, and can also display curved surfaces. Therefore, it is necessary to further improve the effective luminous efficiency in the same display area. According to the present invention, an inexpensive and highly reliable peripheral structure that can increase the effective luminous efficiency even when the same organic EL layer is used is provided, which greatly contributes to the development of next-generation display systems. Can contribute.

Claims

請求の範囲 The scope of the claims
[1] 透明電極膜と有機 EL層と対向電極層を含む有機 EL発光ダイオード (OLED)と、 前記 OLEDを搭載した基板と、前記 OLEDを覆うように設けられ、前記透明電極膜 に対向する部分が透明であるキャップと、を含む有機 EL素子において、前記キヤッ プの外面もしくは内面に、又は前記透明電極膜の表面側に、マイクロレンズアレイを 備えることを特徴とする有機 EL素子。  [1] An organic EL light emitting diode (OLED) including a transparent electrode film, an organic EL layer, and a counter electrode layer, a substrate on which the OLED is mounted, and a portion provided to cover the OLED and facing the transparent electrode film An organic EL element comprising: a transparent cap, wherein the microlens array is provided on an outer surface or an inner surface of the cap or on a surface side of the transparent electrode film.
[2] 前記キャップがシリコーン榭脂からなり、前記マイクロレンズが前記キャップと一体に 形成されて備えられて!/ヽることを特徴とする請求項 1に記載の有機 EL素子。  2. The organic EL device according to claim 1, wherein the cap is made of a silicone resin, and the microlens is formed integrally with the cap.
[3] 前記キャップと前記基板の接着に際して、前記基板の、前記キャップとの接着部に プライマー処理がなされることを特徴とする請求項 2に記載の有機 EL素子。  [3] The organic EL device according to [2], wherein, when the cap and the substrate are bonded, a primer treatment is performed on a bonding portion of the substrate with the cap.
[4] 透明電極膜と有機 EL層と対向電極層を含む有機 EL発光ダイオード (OLED)と、 前記 OLEDを搭載した基板と、前記 OLEDを覆うように設けられ、前記透明電極膜 に対向する部分が透明であるキャップと、を含む有機 EL素子において、前記キヤッ プの外面もしくは内面にマイクロレンズアレイが前記キャップと一体に設けられ、前記 キャップの内面と、前記 OLEDの上面を含む前記基板の上面との間の空隙に、前記 キャップと前記基板との接着面の間の空隙を含めて、シリコーン榭脂が充填されてい ることを特徴とする有機 EL素子。  [4] An organic EL light emitting diode (OLED) including a transparent electrode film, an organic EL layer, and a counter electrode layer, a substrate on which the OLED is mounted, a portion provided to cover the OLED and facing the transparent electrode film A transparent lens cap, a microlens array is provided integrally with the cap on the outer surface or inner surface of the cap, and the upper surface of the substrate including the inner surface of the cap and the upper surface of the OLED. The organic EL element is filled with a silicone resin including a gap between the cap and the substrate, in addition to a gap between the cap and the substrate.
[5] 前記キャップと前記基板の接着に際して、前記基板の接着部と前記キャップの接着 部の双方にプライマー処理がなされることを特徴とする請求項 4に記載の有機 EL素 子。  5. The organic EL device according to claim 4, wherein when the cap and the substrate are bonded, a primer treatment is applied to both the bonded portion of the substrate and the bonded portion of the cap.
[6] 前記シリコーン榭脂力 ポリジメチルシロキサン(Poly— Di— Methyl— Siloxane、 [6] The above-mentioned silicone repellency polydimethylsiloxane (Poly- Di- Methyl- Siloxane,
PDMS)であることを特徴とする、請求項 1ないし 5のいずれか 1項に記載の有機 EL 素子。 6. The organic EL device according to claim 1, wherein the organic EL device is a PDMS).
[7] 第 1の透明電極膜と有機 EL層と第 2の透明電極膜とを含む有機 EL発光ダイオード  [7] An organic EL light emitting diode comprising a first transparent electrode film, an organic EL layer, and a second transparent electrode film
(OLED)と、前記 OLEDを前記第 1の透明電極膜が接するように搭載した基板とを 含む有機 EL素子において、前記基板の、前記 OLEDを搭載した側に光反射面を備 えることを特徴とする有機 EL素子。  (OLED) and a substrate on which the OLED is mounted so that the first transparent electrode film is in contact with the OLED, wherein the substrate is provided with a light reflecting surface on the side on which the OLED is mounted. Organic EL device.
[8] 前記基板が、その表面に絶縁膜が形成された金属基板であることを特徴とする請 求項 7に記載の有機 EL素子。 [8] The substrate is a metal substrate having an insulating film formed on a surface thereof. The organic EL device according to claim 7.
[9] 前記光反射面が複数の凹面鏡力 なる凹面鏡アレイを含むことを特徴とする請求 項 7又は 8に記載の有機 EL素子。 9. The organic EL device according to claim 7, wherein the light reflecting surface includes a concave mirror array having a plurality of concave mirror forces.
[10] さらに前記 OLEDを覆うように設けられ、前記第 2の透明電極膜に対向する部分が 透明であるキャップを備え、前記キャップの外面もしくは内面に、又は前記第 2の透 明電極膜の表面側に、複数のマイクロレンズからなるマイクロレンズアレイを備えるこ とを特徴とする請求項 7な 、し 9の 、ずれか〖こ記載の有機 EL素子。 [10] A cap is provided so as to cover the OLED, and a portion facing the second transparent electrode film is transparent, and is provided on an outer surface or an inner surface of the cap or of the second transparent electrode film. 10. The organic EL device according to claim 7, wherein a microlens array comprising a plurality of microlenses is provided on the surface side.
[11] ポリシラザン (PHPS)を焼成して得られるシリカ膜と、その上に積層されたケィ素含 有有機フッ素高分子膜を含み、前記ケィ素含有有機フッ素高分子膜のケィ素含有有 機フッ素高分子は、ペルフルォロ炭化水素部と炭化水素部とケィ素含有基とからなる ことを特徴とする有機 EL素子の保護膜。 [11] A silica film obtained by firing polysilazane (PHPS), and a silicon-containing organic fluorine polymer film laminated thereon, and the silicon-containing organic film of the silicon-containing organic fluorine polymer film. A protective film for an organic EL device, characterized in that the fluoropolymer comprises a perfluorohydrocarbon portion, a hydrocarbon portion, and a silicon-containing group.
[12] 前記ペルフルォロ炭化水素部は、直鎖のみ又は側鎖つきの、ペルフルォロアルカ ン又はペルフルォロアルケン、力もなることを特徴とする請求項 11に記載の有機 EL 素子の保護膜。 [12] The protective film for an organic EL device according to [11], wherein the perfluorohydrocarbon part is a perfluoroalkane or a perfluoroalkene having only a straight chain or having a side chain, and also a force. .
[13] 前記ペルフルォロ炭化水素部は、直鎖のみ又は側鎖つきであり、かつ、飽和結合 のみ又は不飽和結合を含む、ペルフルォロポリエーテル(ペルフルォロポリオキタセ ン)力もなることを特徴とする請求項 11に記載の有機 EL素子の保護膜。  [13] The perfluorohydrocarbon portion has only a straight chain or a side chain, and also has a perfluoropolyether (perfluoropolyoctacene) force including only a saturated bond or an unsaturated bond. 12. The protective film for an organic EL element according to claim 11, wherein the protective film is an organic EL element.
[14] 前記炭化水素部は、飽和結合のみを含み、直鎖のみ又は側鎖つきであり、水素原 子の内少なくとも一つが前記ケィ素含有基に置換されていることを特徴とする請求項[14] The hydrocarbon portion includes only a saturated bond, is only a straight chain, or has a side chain, and at least one of hydrogen atoms is substituted with the above-mentioned group containing a hydrogen atom.
11に記載の有機 EL素子の保護膜。 The protective film for the organic EL device according to 11.
[15] 前記水素原子の内、さらに単数または複数個がハロゲンにより置換されていること を特徴とする請求項 14に記載の有機 EL素子の保護膜。 15. The protective film for an organic EL element according to claim 14, wherein one or more of the hydrogen atoms are further substituted with halogen.
[16] 前記珪素含有基は、 1個又は複数個の直鎖ケィ素からなるシランにおいて、 1個又 は複数個の水素原子力、アルコキシル基またはハロゲンにより置換されていることを 特徴とする請求項 11に記載の有機 EL素子の保護膜。 [16] The silicon-containing group may be substituted with one or a plurality of hydrogen atomic energy, an alkoxyl group, or a halogen in one or a plurality of linear silicon silanes. The protective film for the organic EL device according to 11.
[17] ポリシラザン (PHPS)をシクロへキサン溶媒で希釈し、所定の金属触媒を添加した ポリシラザン溶液を得るステップと、 [17] A step of diluting polysilazane (PHPS) with a cyclohexane solvent to obtain a polysilazane solution to which a predetermined metal catalyst is added;
前記ポリシラザン溶液を有機 EL素子の ITO膜の上に塗布するステップと、 20°C以上 100°C以下の所定の温度と所定の湿度で、所定の時間、加湿乾燥して シリカ膜を形成するステップと、 Applying the polysilazane solution on the ITO film of the organic EL device; Forming a silica film by humidifying and drying at a predetermined temperature of 20 ° C. to 100 ° C. and a predetermined humidity for a predetermined time;
ペルフルォロ炭化水素部と炭化水素部とケィ素含有基とからなるケィ素含有有機フ ッ素系高分子をペルフルォ口へキサンで希釈して前記ケィ素含有有機フッ素系高分 子の溶液を得るステップと、  A step of diluting a silicon-containing organic fluorine-based polymer comprising a perfluorinated hydrocarbon portion, a hydrocarbon portion, and a silicon-containing group with perfluorinated hexane to obtain a solution of the above-mentioned silicon-containing organic fluorine-based polymer. When,
前記ケィ素含有有機フッ素系高分子溶液を前記シリカ膜上に塗布するステップと、 Applying the silicon-containing organofluorine polymer solution onto the silica film;
20°C以上 100°C以下の所定の温度と所定の湿度で、所定の時間、加湿乾燥して、 前記ケィ素含有有機フッ素系高分子を、シリカのケィ素原子と分子レベルで結合さ せるステップと、 Humidified and dried for a predetermined time at a predetermined temperature and a predetermined humidity of 20 ° C or higher and 100 ° C or lower to bond the silicon-containing organofluorine polymer to the silica atoms at the molecular level. Steps,
を含むことを特徴とする有機 EL素子の保護膜の製法。  A process for producing a protective film for an organic EL device, characterized by comprising:
PCT/JP2005/015295 2004-08-24 2005-08-23 Organic el element, organic el element protection film and method for manufacturing the organic el element protection film WO2006022273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531925A JPWO2006022273A1 (en) 2004-08-24 2005-08-23 Organic EL element, protective film for organic EL element and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-243489 2004-08-24
JP2004243489 2004-08-24
JP2004296750 2004-10-08
JP2004-296750 2004-10-08
JP2004334742 2004-11-18
JP2004-334742 2004-11-18

Publications (3)

Publication Number Publication Date
WO2006022273A2 true WO2006022273A2 (en) 2006-03-02
WO2006022273A1 WO2006022273A1 (en) 2006-03-02
WO2006022273A3 WO2006022273A3 (en) 2006-04-20

Family

ID=

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287462A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Electro-optical device and electronic equipment
JP2008066126A (en) * 2006-09-07 2008-03-21 Pentax Corp Sealing member and organic electroluminescent device
GB2460822A (en) * 2008-06-03 2009-12-16 Cambridge Display Tech Ltd Organic electroluminescent device
JP2010050080A (en) * 2008-08-19 2010-03-04 Samsung Mobile Display Co Ltd Organic light emitting display
WO2011027754A1 (en) * 2009-09-01 2011-03-10 パナソニック電工株式会社 Organic luminescent element
JP2011065943A (en) * 2009-09-18 2011-03-31 Fujifilm Corp Organic electroluminescent element
WO2011093125A1 (en) * 2010-01-26 2011-08-04 住友化学株式会社 Light-emitting device and manufacturing method thereof
WO2012098936A1 (en) * 2011-01-18 2012-07-26 日東電工株式会社 Top-emission type organic electroluminescent element and method for manufacturing same
US8373341B2 (en) 2007-07-10 2013-02-12 University Of Florida Research Foundation, Inc. Top-emission organic light-emitting devices with microlens arrays
JP2014120433A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Top emission type organic el display device
JP2020068203A (en) * 2018-10-22 2020-04-30 エルジー ディスプレイ カンパニー リミテッド Display device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514791A (en) * 1996-07-10 1999-12-14 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Siloxane and siloxane derivatives as encapsulants for organic light emitting devices
JP2000077188A (en) * 1998-08-31 2000-03-14 Canon Inc Exposure device and image forming device
JP2001243840A (en) * 2000-02-29 2001-09-07 Mitsui Chemicals Inc Transparent electrode
JP2002505791A (en) * 1996-07-10 2002-02-19 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Encapsulation of organic light emitting devices using siloxane or siloxane derivatives
JP2003187966A (en) * 2001-12-20 2003-07-04 Ulvac Japan Ltd Light-emitting device
JP2003344608A (en) * 2002-03-20 2003-12-03 Nitto Denko Corp Antireflection film, optical element and display device
JP2004025732A (en) * 2002-06-27 2004-01-29 Fuji Photo Film Co Ltd Gas barrier film
JP2004039500A (en) * 2002-07-04 2004-02-05 Seiko Epson Corp Organic electroluminescent device, manufacturing method of organic electroluminescent device and electronic apparatus
JP2004079291A (en) * 2002-08-13 2004-03-11 Matsushita Electric Works Ltd Organic electroluminescent element
JP2004111380A (en) * 2002-08-29 2004-04-08 Toray Ind Inc Sealing resin composition for organic electroluminescent element, organic electroluminescent element, and method for sealing organic electroluminescent element
JP2004119147A (en) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd Light emitting module, substrate for it, and member for it
JP2004127662A (en) * 2002-10-01 2004-04-22 Sony Corp Display device
JP2004200148A (en) * 2002-12-18 2004-07-15 General Electric Co <Ge> Lighting device for extracting light from flat light source
JP2004198590A (en) * 2002-12-17 2004-07-15 Konica Minolta Holdings Inc Article with thin film, its manufacturing method, low-reflection body, and transparent conductive body
JP2004227940A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Display body, display panel, display device, and manufacturing method
JP2005100815A (en) * 2003-09-25 2005-04-14 Kyocera Corp Organic electroluminescent element
JP2005199572A (en) * 2004-01-16 2005-07-28 Nitto Denko Corp Pollution prevention type anti-reflection film and display

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514791A (en) * 1996-07-10 1999-12-14 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Siloxane and siloxane derivatives as encapsulants for organic light emitting devices
JP2002505791A (en) * 1996-07-10 2002-02-19 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Encapsulation of organic light emitting devices using siloxane or siloxane derivatives
JP2000077188A (en) * 1998-08-31 2000-03-14 Canon Inc Exposure device and image forming device
JP2001243840A (en) * 2000-02-29 2001-09-07 Mitsui Chemicals Inc Transparent electrode
JP2003187966A (en) * 2001-12-20 2003-07-04 Ulvac Japan Ltd Light-emitting device
JP2003344608A (en) * 2002-03-20 2003-12-03 Nitto Denko Corp Antireflection film, optical element and display device
JP2004025732A (en) * 2002-06-27 2004-01-29 Fuji Photo Film Co Ltd Gas barrier film
JP2004039500A (en) * 2002-07-04 2004-02-05 Seiko Epson Corp Organic electroluminescent device, manufacturing method of organic electroluminescent device and electronic apparatus
JP2004079291A (en) * 2002-08-13 2004-03-11 Matsushita Electric Works Ltd Organic electroluminescent element
JP2004111380A (en) * 2002-08-29 2004-04-08 Toray Ind Inc Sealing resin composition for organic electroluminescent element, organic electroluminescent element, and method for sealing organic electroluminescent element
JP2004119147A (en) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd Light emitting module, substrate for it, and member for it
JP2004127662A (en) * 2002-10-01 2004-04-22 Sony Corp Display device
JP2004198590A (en) * 2002-12-17 2004-07-15 Konica Minolta Holdings Inc Article with thin film, its manufacturing method, low-reflection body, and transparent conductive body
JP2004200148A (en) * 2002-12-18 2004-07-15 General Electric Co <Ge> Lighting device for extracting light from flat light source
JP2004227940A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Display body, display panel, display device, and manufacturing method
JP2005100815A (en) * 2003-09-25 2005-04-14 Kyocera Corp Organic electroluminescent element
JP2005199572A (en) * 2004-01-16 2005-07-28 Nitto Denko Corp Pollution prevention type anti-reflection film and display

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287462A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Electro-optical device and electronic equipment
JP2008066126A (en) * 2006-09-07 2008-03-21 Pentax Corp Sealing member and organic electroluminescent device
US8373341B2 (en) 2007-07-10 2013-02-12 University Of Florida Research Foundation, Inc. Top-emission organic light-emitting devices with microlens arrays
GB2460822A (en) * 2008-06-03 2009-12-16 Cambridge Display Tech Ltd Organic electroluminescent device
US8330361B2 (en) 2008-08-19 2012-12-11 Samsung Display Co., Ltd. Organic light emitting diode display with a plurality of condensers
JP2010050080A (en) * 2008-08-19 2010-03-04 Samsung Mobile Display Co Ltd Organic light emitting display
WO2011027754A1 (en) * 2009-09-01 2011-03-10 パナソニック電工株式会社 Organic luminescent element
US8519610B2 (en) 2009-09-01 2013-08-27 Panasonic Corporation Organic luminescent element
JP2011065943A (en) * 2009-09-18 2011-03-31 Fujifilm Corp Organic electroluminescent element
JP2011154800A (en) * 2010-01-26 2011-08-11 Sumitomo Chemical Co Ltd Light-emitting device, and manufacturing method thereof
CN102726121A (en) * 2010-01-26 2012-10-10 住友化学株式会社 Light-emitting device and manufacturing method thereof
WO2011093125A1 (en) * 2010-01-26 2011-08-04 住友化学株式会社 Light-emitting device and manufacturing method thereof
US8890394B2 (en) 2010-01-26 2014-11-18 Sumitomo Chemical Company, Limited Light-emitting device and manufacturing method thereof
WO2012098936A1 (en) * 2011-01-18 2012-07-26 日東電工株式会社 Top-emission type organic electroluminescent element and method for manufacturing same
JP2012164630A (en) * 2011-01-18 2012-08-30 Nitto Denko Corp Top-emission type organic electroluminescent element and method for manufacturing the same
JP2014120433A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Top emission type organic el display device
JP2020068203A (en) * 2018-10-22 2020-04-30 エルジー ディスプレイ カンパニー リミテッド Display device
US11075347B2 (en) 2018-10-22 2021-07-27 Lg Display Co., Ltd. Flexible display device

Also Published As

Publication number Publication date
KR20070049223A (en) 2007-05-10
WO2006022273A3 (en) 2006-04-20
JPWO2006022273A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
US8552634B2 (en) Organic light-emitting display apparatus
US8445898B2 (en) Organic/inorganic hybrid thin film passivation layer for blocking moisture/oxygen transmission and improving gas barrier property
US6576351B2 (en) Barrier region for optoelectronic devices
CN1270374C (en) Encapsulated microelectronic devices
TWI389271B (en) Package of environmental sensitive element and packaging method using the same
JP5341701B2 (en) Display device and digital camera
JP4905783B2 (en) Organic semiconductor device
JP5362948B2 (en) ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
KR101261142B1 (en) Organic light emitting device, lighting apparatus, display apparatus and method for manufacturing the organic light emitting device
JP5144041B2 (en) ORGANIC ELECTROLUMINESCENT LIGHT EMITTING DEVICE AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
US20140339509A1 (en) Organic light-emitting display apparatus
US8664852B2 (en) Organic light emitting display device and method for manufacturing the same
KR101596070B1 (en) Radiation-emitting device and method for producing a radiation-emitting device
TWI694006B (en) Barrier film laminate and electronic device comprising such a laminate
JP5319420B2 (en) Organic electroluminescence device
CN109088006B (en) Flexible substrate and display panel
JPWO2011016126A1 (en) Display device
US20210202873A1 (en) Oled display substrate and method for manufacturing the same, display device and packaging method thereof
KR102396298B1 (en) Flexible display apparatus
JPWO2006022273A1 (en) Organic EL element, protective film for organic EL element and method for producing the same
JP5533073B2 (en) Electro-optical device and illumination device
JP2009087860A (en) Organic el display panel and method of manufacturing the same
EP3598502B1 (en) Package structure, display panel and display device
WO2017033823A1 (en) Electronic device
US9099662B2 (en) Substrate and display device including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006531925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077006700

Country of ref document: KR

122 Ep: pct application non-entry in european phase